Abstract:
Oscillation of control-surface tabs has occurred in flight. General experience and the investigations of this report suggest that the oscillations were flutter, involving translation of the tab, arising from bending of the local control-surface structure, coupled with rotation of the tab about its hinge, arising from either backlash or elasticity of the tab controlling mechanism. Binary flutter calculations show that, for this coupling, the normal remedy, i.e. mass-balancing, is only partially effective (static mass-balancing roughly doubles the backlash flutter speed but may decrease the elastic flutter speed). If the tab controlling mechanism is adequately stiff, elimination of backlash gives higher flutter speeds than would be obtained by mass-balancing alone and in practice probably removes the danger of flutter. Flutter is completely prevented by aerodynamically balancing and dynamically mass-balancing (C.G. on hinge line) the tab.