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SUMMARY
Bernstein's analysis of the laminar boundary layer develop-

ment aft of s shoock wave in a shock tube is corrected in the
light of more recent theoretiosl results., The analysis is
extended to include certain pressure gradisnt corrections,
Ackroyd's analyeis of the running time in a shock tube, which
was based on Bernstein's work, is aleo re-examined, The
corrected results show a significant change in boundary layer
characterietice and running time as compared with Bernastein's
results, However, the effects of the additional pressure

gradient corrections are showm to be negligible,
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I Introduction,

Bernstein, in his analysis presented in ref.l, examines the
unsteady growth of the laminar boundary layer induced by the
passage of the primary shock wave along the channel of a shock tube,
He has assumed that there is no attenuation of the shock wave
and is able, therefore, to redhce the equations of motion to a
quasi-gteady form by considering the flow relative to the shock
wave, The analysis is based on the channel flow integral momentum
and mase flow equations and the molution of these equations
requires knowledge of the nature of the wall friction in the channel
and the form parameter (which is the ratio of the displacement
and momentum thicknesses for the channel flow boundary layer).
Thus, in order to solve these equationsa, Bernatein makes two
important assumptions, 'The first 1s that expressions for the
chamnel flow wall friction and form parameter may be taken to be
the same as those on a moving plate which experiences the same
external flow conditions as those existing in the inviscid core
of the channel flow, The second assumption is that relative to
the wall the velocity profile for the shock-induced boundary layer
le pimilar to the velocity profile for a steady laminar
compressible boundary layer, The first assumption is valid
provided that the boundary layer in the channel does not become

so thick as to be comparable to the radius of the channel,



This assumption ip retained in the present paper. In ref.3, it is
ghown that the velooity profile for a laminar shock=induced
boundary lasyer depends principally on the ratioc of the wall velocity
to that of the inviscid flow (the flow being viewed relative to
the moving shook wave), Clearly, the second of Bernstein's -
assmuptions is unjustified and work presented in refs, 2 and 4 is
used to correot Bernstein's work here,

Although the effects of pressure gradients are aoccounted for
in the major part of the work outlined sbove, it is neceasary to
apsume that pressure gradients are zero in developing expressions
for twotimportant parameters, These parameters are both dased on
veloolties measured relative to the wall, in which case a strong
similarity is noted in the behaviour of thess p;raméters when
compared with th; behaviour of the corresponding parameters for
the steady boundary layer, The paramsters are the form
parameter, Hy and a shape parameter, f, which is shown to be the
ratio of a transformed boundary layer thiockness and the
momentum thickness, Since the work involved in corracting thesa
for the effects of pressure gradient was felt to be unwarranted by
the smallness of the corrections, the latter were taken to be
those established in ref,7, for the steady laminar compresaible
boundary layer, These corrections are not rigorously Jjustifiable
and may be viewed with scepticism, However, because pressure

gradients in shock tubs channel flows are unlikely to be large and



the corrections themselves are small, it was falt that the ultimate

effeots of thase corrections on the channel flow may be instructive,

In fact, the results suggeet that pressure gradient corrections

to the two parameters mentioned above may be, in general, negleoted,
In section II we present the basic integral momentum and

mass flow equations for the channel flow as derived by Bernstein .

Seotion III presents the corrections to Bernstein's work for the

changing velocity profiles inherent in shock-induced boundary layer

flowa, In section :E we use the work of the previous two seotions

to find the ultimate behaviour of the shock tuba boundary layer, the

inviscid core flow in the channel and the channel running time.

The preasure gradient corrections to the form and shape

parameters mentioned earlier are disoussed in section fz.



IT The Channel Flow Integral Momentum and Mass Flow Equations
Refarring to Pig. 1, in which the shock tube channel flow

is oconsidered relative to the constant strength shoock wave,
velooity u, , it may be showmn 1 that the integral momentun

equation is,
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Tﬂe distances x, ¥y and & are respectively the boundary layer
development length from the foot of the shook wave, the radial
distance from the channel wall and the radius, or hydraulio
radiusy of the channel, The upper limit of the integrals of
equations Ii.?,lig is some convenient radial distance from the
wall to a point which is always outside the boundary layer; h

must also be invariant with x, The suffix e refers to quantities

evaluated in the inviscid ocore flow at the distance x from the



origin of the bhoundary layer and suffix o demotes ohannel flow
parameters, The quantities p and 7, are respectively the dsneity
and the wall friotion whilst u ias the veloocity parallel to the
X cowordinate axis and is measured relative to the shock wave,
Note that the form of equatiom II,l is the usual form of the
ripe flow integral momentum equation but that the direotion of
the wall friction is reversed. This ia due to the fact that, in
the co-ordinate system taken relative to the shock wave, the wall
moves with the velocity u, which is always greater than ug s the
inviseid core flow volqo:lty.
The mass flow equation may be written as

Ko fi 58, I3

where suffix eo refers to quantities evaluated directly behind
the shock wave,

By the direct differentiation of equation 1II.3 with respect
to X it is posalble to obtain an expression for d’@/dx .
Consequently, the elimination of Uc between equations II.l and

11,3, may be shown to yleld,
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Bernstein assumes in ref, 1., that the form of the inviscid core

flow may be represented by the one~dimensional isentropic flow

equationay in which case the flow quantities in the core flow

such as the density, p,s the Mach number, Mg, and the viscosity,

Me

y may be expressed in terms of the core flow velocity, u,.

Hence, in terms of their values aft of the shock wave, these

quantities are written as
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Consequently, it would appear that, provided relationships can be

found for the channel flow boundary layer form parameter, ib, and

the wall friction, Zﬁ y then we may determine the variation

of the inviecid core flow velocity, g » with the development

length, x.
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II1., The Form Purameter,'ﬁ; and the Wall Friotion on a Moving

Plate,

Bernstein has shown in ref.l, that the integral momentum
equation for the boundary layer induced by the passage of a plane,
constant velocity shock wave over a plate has the same form as
equation II,1, when the flow is considered relative to the wave,
Here again, as in equation II,1, pressure gradient effects are
included but we note that the expressions for the momentum and mase
flow thicknesses together with the form parameter must be re-

defined, They are now, respectively,

- [l b

Here we have dispensed with the suffix ¢ to distinguish between
plate flow and channsel flow boundary layer parameters.

Bernstein notes that the definitions of the two boundary
layer thicknesses, both in equation III.1 and equation II.2, are

not the conventional ones in the mense that velocities are not



raforred to wall or plate,

thicknesaes are, therefore,
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and, also, H = 2.

By the use of the transformation,
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Bernstein was able to show that,
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Hanee, guffix 1 ia used to denote an 'equivalent' incompressible
boundary layer,

In order to derive an expresaion for H, the form parameter
for the flow relative to the plate, Bernstein makes use of the
differential form of Crocce's zero pressure gradient plate flow
energy equation, Writing this equation in the gteady co-ordinate
syatem relative to the shock wave and heeding the boundary condition

that at y=0y u= 4, , he finds on integration that,

A, T. D B =11 b 00 ot RO T By i z(“'_“ L
L -fe T, +{l T+ c(ac 1) o - e 1) ““u‘)' W s

f
where T ls the temperature.

Henca, it followe that H ie given by

He 2H, + G- W<
e
For the purposes of calculation, Bernsteln assigns to Hi
the Blasius value of 2,59. However, work reported in ref.2,
which 1a based on exact molutiona to the problem of the shock-
induced boundary layer on a flat plate provided by Mirels (ref,3.),
shows that H, varies with uw/we ,  Values of H, against Wy/ue
are shown in Fig, 2, For the purposes of the pregent calculations
we shall take a value of H1 corresponding to a particular value

of uwfug, s although wu,/fue increases monotonically with x
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in the presont problem, The latter variation, however, is dus
to pressure gradient effects only and i not due to a dependence .
on the shook strength as considered by Mirels, Purthemmore, the
varisation of 1!1 with uw/llg ia not large between the values of,
Ay Ywiwe =2 and Uy fup e @,

In order to odtain an expression for the wall friction 7,
Bernstein writes the velocity profile relative to the plate in the

Pohlhausen quartic approximate form, is,,

=l
~
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where Y is given by equation 1II,3,
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& being the effective edge of the velogity boundary layer and,

A = f‘dz/" Uy - T
(____ ‘Jx(' lﬁ)

Consequently, the expression for T may be written in non~

dimenaional form as,
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Bernstein shows, using equation IIX.4, that,
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Hence, equation III,10 may be re—written as,

v | A %:—J(E:m—'}ﬂ){mw,zp-;;)}. T

*Note that in the formation of the Reynolds number, Reo, a is used

as the significant length, For the moment, a may be taken to
denote any significant length, say the length of the plate. However,
its ultimate purpose is to reconcile the expression for Tws

equation III.10, with equation II.4 at which stage a will again be
taken to mean the channel radius,



In order to provide values for f in cur present calculations
we take acoount of the variation of £ with @ , the index in the
viscoaity-temperature relationship . ol T®.  With the aid of the
results presented in ref,.,4, the spproximate expresaion for f for a

flat plate boundary layer may be shown to be,

-
T, z Tfu, Yt W
fLUL [,g, LAY f;""e(:.-')]’ Ew
where ﬁl is a funotion of uw/u, ’ 32 may be taken to be 0,31,
T is the Prandtl number and,
Uy n
Z . ou,z-oo‘ls(.. -I) ,
Ue
s
where,
n = —0 H(‘B") 4+ 0 3K
In his calculations presented in ref,l., Bernatein takeas
['F-]u-l to be 9,072 (the value obtained by matohing the Blasius

solution to the Pohlhausen profile, equation III.7, with u,/fu,

e 0}, whilst Bl and 532 are taken to be the values given by Young
(ref,5.) for u,/ju, =0, namely 0.45 and 0,18, The index Z is alao
ohos‘en in accordance with the work of ref.5, as 0.5. Again, as
was the case for H , results obtained from Mirels' work in ref,3

i
{Bee rof.2) show that the parameter [{]m" varies with uw/u¢.

15
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A graph of this variation is included in Pig,2. TFor the same
reasons as those outlined earlier in the discussion on the ochoioce
of H;y we shall take in our present caloulations values of ['F l‘_‘
corresponding to the particular values of  Ww/ue, chosen,
Similarly, the variation of By with u,/u, given in ref.4 may

bs modified in this respect to give,

B, = o36- 0.06 4¥, W e
Yoo



IV The Boundary Layer Development and Running Time in a Shock
Tube Channel,

Bernstein argues in ref,l that in order to solve the combined
momentum and mass flow eq\;ation {equation 11,4) we may approximate
to the two unknowns, ﬁo and 2,, s by the use of the values of
the equivalent plate flow parameters presented in seotion IIIX,
Consequently, we may use equations III.4 and III,6 together with
the apprroximation,

ﬁc > §H, iv.a

which ia then used with equation II,4, We see from a comparison

of equations 11,2 and 1II1,1 that the above approximation is most
accurate when the values of y/a inside the boundary layerx
are very much less than unity, However, as Bernstein argues,

since 'E'l'c and H represent the ratio of two boundary layer thicknesees,
the approximation may well be adequate for larger values of Yy /a.

We may also make use of the equations III.4 and III.6 to obtain an
expresaion for the term %:o Ei_EG which ocours in squation

A d(%‘:.
II.4. Bernastein shows that this relationship ie of the form,

e - 2 Yo - Iy g L
E_:.O_l_"c = | +7:'IN¢+_1¢_[|—:'1:(|+ ﬂﬂzﬂ-ﬂ‘[l—Y‘lmc]_ W2
% 21 AR I G

A bas been argued for the approximation to io’ t{or 1)
repregents the ratio of the two boundary layer thicknesses and

Bernstein therefore uses in equation II.4 the approximation,

17



r, ¥ 1 .3
which is used in conjunction with equation III,13}, the term in %g
being eliminated from the latter by the use of equation II.3}

Kote that the approximations used above for H and f are
strictly velid not only for plate flows but also for flows with
£ero pressure gradient, In aection:f tentative corrections to
H and £ for the effects of presaure gradient are suggested,

We denote the conditionas ahead of and immediately aft of the

shock wave ﬁy suffices 1 and 2, writing a, for the sound speed

1
in region 1,!’5l for the Mach number of the shock wave (fﬂs,s uw/a.).
Assuming that the temperature in region 1 is the same as the wall

temperature aft of the shock wave, Bernatein shows that,

RCO = M.sl R' Tl'n.‘ * ]

h T2 = X '
where 12 _rz E'4

and R| = f| Q.a. J

Thus, with the aid of equations 1V.l - 1V.4, equations III,4,
III,6 and 111,13, Bernstein shows that equation II,4 reduces to the

form,

e

) (I AT ms
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o
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The nmumerioal integration of squation Ei.5 now ylelda the
variation of u, with x,

In the case of the shock tube, the point x « 0, t = O {the
time ¢ being messured from the instant of diaphragm burst)
represents the 'origin' of the shockwave, At this point, therefora,
the shock wave and contact surface coincide (see Fig.3).Now, since
the contact surface in the inviescid core flow represents the
firat particles of gas set in motion by the shock wave, we see that

the time taken for the core flow at the contact surface to develop

to a velpoity e at a distance x from the shock wave 1s,

X
t=f-‘-‘-" N 7

u
o e

With the aid of equations 1V,5 and 1V.6 the time t may be shown

to be,
Ye
Uy,
- (5]
e-AMRTY | Safu) Ns
lb 1 Ti-eo

Purthermore, considerations of the geometry of Fig,3. show that the



Tunning time, or hot flow duration between shock wave and contact

surface,y inm,

tR = ‘—x"'."" Eq.

and that the corresponding distance from the diaphragm at which this

running time occurs is,

x’c {::uw-x. EJO

Following ref,6, we are thus able to form the following non—

dimensional parametersi

x = l “X ' T:.- _'.Q_t-t.ﬂ.ca’
R@ R,&
ou
X‘= .'.9,"_’(‘ Té = .,_9.:.{:3&1
R,E ’ Rla'

In ref.6, values of X,T,X', and TR were calculated using values of
H and f provided by Bernstein and which, in section III, are shown
to be in error, Consequently, values of X,T,X' and TR have been
re—calculated in the light of the work of section III, The
effects of pressure gradient on the vglues of these non~dimensional

parameters are conasidered in the followling section,
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‘i Corrections to H and f for the Effects of Pressure Gradient

¥e recall that in seotion III expressions were provided for
H and f which were derived from considerations of shock—induced
boundary layers on flat plates, Since pressure gradient effects
are included in all the relevant expressions required for the
integration of equations 1V.5 other than those for H and f (squations
II1.6 and III,14) it would be of interest to examine how the effects
of preasure gradient may modify these and, ultimately, the effect
upon the variation of u, with x, Although no rigorous
corrections are available for this type of boundary layer when
a pressure gradient ies introduced along the wall, corrections are
available for the case of the steady ocompressible laminar
boundary layer {which oorrespoﬁda to the case for which uyfu, =0).
Now, in considering the latter ocase in their 'first simple method'
Luxton and Young in ref.7 show that the form parameter H may be

written as,

1<}

H - .I_W H + y:‘ Mcig

T, ¢ 2

[ 4
and this expransion is shown to be valid for zero or small
pressure gradient flowa. We may compare equation'i.l. with the
corresponding equation 1II.6 for the shock-induced boundary layer
care and we note that the latter equation reduced to the former
M uyfu =0 and Ei is chosen appropriately, We note that in

squation III,6 (the shock-induced cass) and in squation V,1, Me[‘&:")



and Me respectively both denots the Mach number of .the flow
external to the boundary layer relative to the wall, Hence, we
see that there is a atrong similarity in the behaviour of the form
parameter 14 based on velooities which are referred to the wall,
This similarity in the behaviour of H may be seen to sxtend to f

since, acoording to Iuxton and Young,

-

- A0-mE e potand, 1.

for the esteady flat plate boundary layer, This expression may
bs compared with squation III.14 for the shock-induced case but
in equation V.2 By = 0.45s B, = 0.18 and we note a elight

disorepancy in the index to the Prandtl number, ¢ ., Also in

equation E.Z [I-] muet be chosen to agree with the condition

W)
that u'[ut =0,

In oxder to correoct equations -_\z.l and E.Z for the effects of
pressure gradient, Luxton and Young in ref,7 suggest in their
'complete method' the corrected quantities H' and f' whers,

B MH, 4+ YT;_.‘H: + k;)\:& Is

’
T
e [ A

=]
¥

{'= f(r+ k,)\),

22
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Tr Yeing th; recovery temperature, The origin of the non-
dimensiocnal pressure gradient term, A, may pa found in the
repragsentation of the velocity profile as a Pohlhausen quartio
in Y/A  (defined in equations III.3 and III.8), Now, in
section III it was seen that from a Pahlhausen point-of-view,

the relevant non-dimensionanl pressure gradient parameter for

the shock-induced boundary layer wes A y defined in equation
I11,9, Consequently, in considering an appropriate correction

for the shoock-induced boundary layer we shall write,

T Sim w1 KA v
Hi - :‘_-:H‘: + Y-i Me(% l) + T "{;' _,.7
P -
[’ ;(1 * k,a&), Y8
whera, now, 2z ifq

EREIRES
_-f.e = |+ {i e ™ qg.
The index Z is given by equation III, 15, In the chclioce of

values of Kl and K2 woe are restricted to the values given by

Luxton and Young for the case of wyfu, =0, In ref,7, values



of X, and K, are plotted against the parameter S, 1 where,

and in determining K, and I(? from this source ,we shall take Tr

1
to be given by equation I.9 « Also, it is noted that the values
of Kl and K2 as given by Luxton and Young depend upon whether

or not the pressure gradient is favourable or asdverse, The
sign of A for the shock—induced boundary layer case implies
that the pressure gradient is favourable, and indeed,considering
the core flow relative to the wall, it will be seen that gas
elements will always accelerate, Consequently, values of Kl
and K2 will be melected from those given ft;r a favourable
preasure gradient,

Although the approximations V,7 and V.8 are extremely
tentative, it is felt that,eince the pressure gradients induced
in the core flow of a shock tube are unlikely to be large, the
approximations may be permitted, However, we note that even
if the forms of the corrections incorporated in equations E.?
and 2.8 are correct, the parsmeters K’l and K2 will probably be
functions of, say “w[ug,

For the purposes of caloulation we shall retain the rule

explained in section III that, in the selection of values for

24



H, and [{]‘“l » we shall choose values appropriate o the valuos

of ayfue, » We shall oaloulate values of R and £ using
squations III.4 and III,2 as before, equating these quantities to
Eo and ?o as guggeatod in nection ﬁ . However, the expreassions
for H' and f£' (equatione E.T and 2.8 ) will replace those for H
and ¢ (Oquations 1I1.6 and 1IX.14) in equations III. 4 and 111,12
Furthermore, it ie now necessary to develop an extended expression
Tor §:° d‘——Fi"- based on our new relationship for H', equation

st
E.'f. This may be showm to be,

) 5[+ BTN g (o),

-

y.,



In order to integrate equation 1V,5 using the pressure
gradient corrections contained in equations V.T, V.8 and in
2.11 it 4 necemsary to develop some iterative procedure to find
the correct value of A, Comparing equation III.9 for A
with equation T—_!.S and making use of equation II,3 it follows

that /\. must satisfy the condition,

i x
{ { ‘.'fﬂw_g) S /_‘:co)‘fe

A ailfee | Felrelg ¥
EXE
we

Conmequently, starting at wefu, =1 and A =0y we may use equation
_V_.12 as & check and basis for an iterative procedure at each

successive interval in the numerieal integration of equation _I__\T.S
Onoe the correct valus of A hae besen found, the time % may

be caloulated and hence further values of X,?,X' and 'l'll obtained,
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E Mecunssion and Conclusions

The numerical integration of equations 1V,5 and 1V.8,
together with the various supplementary equations which desoribe
the behaviour of the boundary layer and the running time, has
been carried—out on the University of London Atlas computer,

The results of the calculations based on the analysis of

peotions II ¢to EE are compared with Bernstein's available results.
Thus, Fig.4, which shows the variation of u,[u,, with -9'/5,
inoludes Bernatein's results for a shock Mach number of M, =2
only., It is seen in this figure that the agreement is very

close. A similar agreement may be noted in Fig.5, which showa

the variation of ic with Ug/ep, . Values of /L shown in

Fig,6 and provided by the present work (none of Bernstein's results -
for A are available) indiocate that pressure gradient effeots
become increasingly important as the shock Mach numbexr deoreases,
Thus we see that the analysis presented in asections II to :E may
become increasingly approximate as the shock Mack number

decreases, As has been noted in rof.6, boundary layer thick-
nesses generally increase with decreasing shock Mach number.

The increase of J\ with decreasing shock Mach number appears
to be consistent with this fact. Thus the zaro pressure gradient
expressions for H and f presented in section III become increaaingly

susceptible to error with decreasing shock Mach number. Furthermore,
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our earlier assumptions that .ﬁo =, ?c & ¥ * may be invalid
becausa of the thickness of the boundary layer at low shoc;
Mach numbers.

Fig.7 shows the variation of X with s, and here we see that
appraeciable differences occur between the present work and
Bornstein's analysis, We note that these differences occur
only because of our adjustments to Bernstein's values of Hi and f
(see section III). Thus the marked change in X due to these
adjustments must be due to the accumulation of the less
significant individual changes noted earlier for _ﬁc and 5(,/ a.

Graphs of TR against X' are shown in Pigs. 8 & 9 in which
are included values of running time measured experimentally,

We see in Fig.B8 that for | «7/5 the present analysis is in better
agreement with the experimental values at the higher shock

Mach numbera (MS‘ =5 and g, data by Musgrove (ref.8) and Ackroyd,
respectively), whilst for the case of Mg, =3 the present analysis
appears to underestimate the running time by app£oximately the
same amount by which the running time was overestimated in ref,6,
The results for M, «1.6, Y -5/3, shown in Fig.9 indicate the
same tendency as that noted in Fig.8 for low values of shock
Maoch mumber, The experimental results shown in Fig.9 were
cbtained by Duff (ref.,9) and are the only consistent set of

results available for Y =5/3., Their other claim to importance

“However, as Bernstein has noted, these approximations will be more
valid than statements concerning the individual terms in H° and Hg
for example 6. 2 6 .




is the low value of the shoock Mach number at which they wers
obtained, The analytioal results for A, M, 1.6, [=5/3,
whioh are not included in Pig.6,indicate that -A reaches s
maximun value of approximately 0,7 near ugfn, «0,3, Again,
the conolusions drawn from Figs, 8 and 9 throw doubt on the
validity of the assumptions that E & Hy) T 2 f and the assumed
gero pressure gradient nature of H and £ shom in seotion III,
However, we may hope that the results of the pressure gradient
oorrections to H and £ presented in lOOtiOH‘E indiocate the
likely order of magnitude of the errors in the latter assumption,
We shall discuss these results presently. Improvements to the
analysie to remove the assumption (ﬁ; ﬁ‘ﬁ.'?;'= £) do not appear
to be worthwhile, since sny corrections to the analysis that
these improvements provide may well be less significant tﬁan

the effects of shock attenuation which, striotly, should almo

be included in the analysis, As shown in ref.,6, this typs of
analysis, based on the integral momentum and mass flow equations,
appears o bs more reliasble than any other in predicting the
behaviour of the ohannel boundary layer and the running time.
Thus it would bes of interast to examine what the effeots of shock
attenuation would have on this type of analysis, Another
phenomenon which may be comparatively significant, and which

has not been included in the analysia, is that of the diaphragm

opening time., This may be inferred from some of the more



detailed experimental results shown in ref.6, Note that transition
to turbulence in the ohannel boundary layer has been dealt with

in gome detail in ref. 6 and that those experimental points shown

in Fig.8 which may be affected by transition lie at the lower
values of '1'n and X' and, therefore, do not interest us here,

The oorrections to H and £ for the effecte of preasure
gradient suggested in section :_V' gensrally produce results which
agree clossly with the results damed on the simpler sxpressions
derived in section III, The pressure gradient-corrected results
are not inoluded in Figs.4-6 for this reason, although the
results show that A decreases progressively from the values
shown in Fig.6 as the shock Mach number decreases. In the
iterative procedure used to determine the final value of A
an aoceptable dipagreement of 1% was specified between the
values of /A taken at the beginning and end of a oyole, Thus
the number of iterative cycles required to determine A
increased with deoreasing shock Mach number, FPressure gradient
oorrectionas are included in the results for TR againat X' (Pigs,
8 &9), If we accept these corrections as indicating the order
of magnitude which pressure gradient corrections to H and f may
provide, then we see that these corrections to H and £ are not

likely to be as significant as the inclusion of sheook attemuation

and the finite bursting time of the dlaphraga in the analysis,
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Sound speed in regionm § ,
radivs, or hydraulio radius,
boundaxry layer parameter defined in equation 111,11,

boundary layer parameter corrected for the sffects
of pressure gradient, ses equation V,8

funotion defined in equation 1V.6

radial distance from wall to a point which is always
outside the boundary layer,

boundary layer form parameter, defined in equation III,2

boundary layer form parameter corrected for the effects
of pressure gradient see equation V.T.

presgure gradient correction paramesters which are
functions of Sw .

Mach number
index defined in equation III, 15,
Reynolds number,

T —
parameter equal to T 1y mee equation V,10
time,
non-dimensional time, see equation zz.ll
temperature in reglon J,

velocity in the x-direction and measured relative to
the shock wave,

distance from the diaphragm

non~dimenglional distance from the diaphragm, see
equation IV,11
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Co-ordinate parallel to the wall measured from the foot
of the shock wave,

non-dimensional form of x, seae equation if.ll

co-ordinate perpendicular to the wall and measured
from the wall,

transformed form of y, see equation III,.3
index defined in equation III, 15,
parameters defined in equation III,16,

ratio of the specific heats of the gas at constant
pressure and constant volume,

value of y which denotes the edge of the velocity bdoundary
layer.,

mass flow thickness of the boundary layer, see squation
III.2

transformed form of &, ses equation III.B

momentun thickness of the boundary layer, sees equation
III,2

non—dimensional pressure gradient parameter, nee
equation V.5,

coafficient of viscosity.
denaity.

Prandtl number,

shear stress

index in the empirical viscosity - temperature
relationship, M « T

non-dimensional pressure gradient parameter, see
equation III.9



SUBSCRIPTS

1

2

80

5J

refers
refers
refors

refers

to oonditions ahead of the shock wave.
to conditions immediately aft of the shock wave,
to channel flow parameters,

to conditions in the inviscid core flow outside

the boundary layer at a distance x from the origin of
the boundary layer.

refears
aft of

refers
refers
refers
re}ers

refers

Note that the

to conditions in the inviscid core flow immediately
the shock wave,

to an 'equivalent' incompressible boundary layer,
to recovery conditions in the boundary layer.

to running times.

to a shock wave moving into region jJ.

to wall conditions,

superscript refers generally to quantities which

are measured relative to the shock wave,
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