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For boundary lwers of a class which includes those develofing in 
"rooftop" pressure distributions, the small departures from looal equilibrium 
(Nash') which occur ere shown to have an even smaller effeot on the growth of 
momentum thiclmess. The assumption of precise loosl equilibrium thus provides 
a simple but accurate basis for predictions of momentum thickness, and a 
calculation method is fonmilated aooortingly. 
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List of Symbols 

x, Y co-ordmates measured along and. normal to the surface, 
respectively 

P static pressure 

u mean velocity in x-dIrection 

M Mach number 

P density 

v kinematx visooslty 

T static temperature 

6' . displacement thxkness:- 

0 momentum thxtiess:- 

H shape factor:- H = 6*/O 

G shape factor:- 

G = 

in incompressible flow- 

f wall shear stress w 

n pressure-gradient parameter:- 

6' dp 
n = -- 

rw ax 

Subscr+s/ 
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Subscripts 

e value at edge of boundary layer 

w value at wall 

co some reference value (free stream, e.g.) 

Note 

The symbol f( ) denotes any arbitrary function. 

1. Introauct1on 

The prediction Of the profile drag of two-dimensional aerofoils depends 
on the availability of an accurate method for calculating the growth of mmeni~~~ 
thickness in the turbulent boundary layer at subsonic and transonio speeds. 

The present work is mainly concerned with boundary layers developing 
111 pressure distributions not too far from the "flat rooftop" type which consists 
of a run of constant pressure followed by a linear or near-linear pressure rise. 
This type of pressure distribution is obtained on many practical aerofoils at 
their design (cruise) condition. The maximum local Mach number is usually not 
much above unity (the "sonic rooftop" section 1s designed for M z 1 over 
the constant-pressure plateau). Over this restricted range of conditions there 
is good reason to expect simple boundary-layer techniques to apply. 5e 
treatment of boundary layers negotiating leading-edge suction peaks is 
considerably more difficult and will not be dealt with in detail m this paper. 

The trea~nt of boundary layers in which the pressure-gradient 

parameter R(= k--) satisfies the condition dR/dx > 0, which includes 

the case of the "rooftop" pressure distribution, is simple because the shape of 
the mean velocity profile is principelly a function of the local pressure 
gradient', and only the thicbess of the layer significantly reflects the 
influence of upstream history. To use the terminology of Ref. 1, the departures 
from local equilibrium are small. It will be shown in Section 2 that the effect 
of these departures from equilibrium on the growth of momentum thickness is even 
smaller. Indeed the assmption of precise local equilibrium is a yalid 
approximation for many purposes. In the present paper this assumption is used 
as the basis of a calculation method which is more simple than the advanced 
methods currently being developed, but whose range of validity is limited to the 
types of pressure distribution under consideration. 

ln Sectlon 3 comparisons are made with measurements in incompressible 
,flow and vvlth the predictions of other calculation methods. Section 4 consists 
of a discussion of the effects of compressibility on the momentum equation and 
on the local-equilibrium assumption. 

In the present calculations use has been made of the skin-friction law 
specified in Ref. 2. This was based on the work of Nash3 and Spalding and Chib. 
The relevant expressions are reproduced here in Appendix I. 

5e present method has already been used extensively for profile-drag 
predictions. A prellmlnary'note17 has already been issued reporting some Of 
this work. 

2./ 
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2. The Momentum Equatmn m Incompressible Flow 

2.1 The growth of' a turbulent boundary layer zm two dxnenszmns 1s 
calculated by integrating the momentum-mtegral equation 

$( peuZ,e) = g1 * n), . ..(I) 

where 
6' ap 

n = --, 

'w ax 

. ..(2) 

along the surface, smultaneously with a skin-friction law such as that 
described in Ref. 2) and an auxiLiszy equation. Equation 1) can also be 
written m the form:- 

ae e&l T 
-= 

ax 
-(H+2-*e)->+-& 

ue dx Pe$ 

. ..(3) 

Instead of specifying an auxiliary equatxon at the butset we shall 
exsmne the consequences of making varmus assumptxons about the G - II 
trajectories of boundary layers of the type being consdered. The subsequent~' 
dxcusslon m thus Section ml1 be restricted to lncompressxble flow. 
Compresslbikty effects ml1 be discussed in SectIon 4. ! 

2.2 Equii~brmm turbulent boundary layers are chsractermed by a 
particular, constant, value of the pressure-gradxnt parameter 11 and a 
correspondmg, constant, value of the shape factor G. All possible equd~brmn 
boundary layers are represented by a unique function G(n). Fig. 1 shows this 
function for positive values of II. 
is given by 

An empl;rlcal fit to the expermental data 

G = 6-l (II + 1.81)' - l-7, . ..(4) 

as suggested in Ref. 1. 

Boundary layers developing m arbitrary pressure gradients do not in 
general satxfy the condition 11 = constant, snd usually both II and G we 
functions of x. If G IS plotted +gamst II, for a particular boundary layer, 
a traJectory is obtamed along whxh x varies. It is a property of a 
boundary layer for which II mcreases monotonically mth x that the traJectory 
lies close to the locus of all possible equilibrwm boundary layers'. Fig. 2 
illustrates this behaviour wxth two sets of experunental data. Th~7 situation 
can be described as "local equllibnum" but the notIon should. not be 
misinterpreted. The correspondence to actual equdibrium boundary layers does 
not, for mstance, extend to the shear stresses5 except at the wall. 

2.3 If any relation is speclfxed connecting G and lT, and use 1s made 
of a skin-frxtlon law 

T UO 

-JL = f e,GorH , . ..(5) 

%" Y > 

equation (I)/ 
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equation (1) (or (3)) can be reduced to the form 

ae 

( 

ue 8 au 
- = f e,--2 . 

> 
. ..(6) 

ax " ue ax 

The assumption of precwe local equilibrium, which corresponds to sn 
exact correlation between the G - II trajectory and the equdibrlum locus 
(equation (4)), together with the skin-frictxon law of Ref. 2, leads to the 
function plotted in Fig. 3. The derivative de/d.x is roughly a linear 
function 'of - (e/u,) du$dx and, over a limited range of Reynolds number, 
the effect of vsrlations of ueO/v is appro-tely rndependent of the pressure 
gradient. Tne contrzbutlon of the skin-friction term to de/&~ is small 
except for very small pressure gradients. Separation is predicted when 
- (e/u,) du$d.x reaches a value of about 0'004; de/a, reaches a va ue of about 
0.02 at separatmn, which agrees with the figure swested by McQuad h . 

2.4 The effect on @O/dx of departures from local equilibrium can be 
assessed by taking a relation between G and II different from the equdibrlum 
one. The boundary layers on rooftop aerofqils are usually m equdibrwm at 
the start of the pressure rise (that is, at the end of the run of constant pressure) 
and the departures from local equilibrium occur for values of Ii greater than 
zero. In Fig. 4 calculations are illustrated assuming that the values of 
G - 6.5 are 50 percent above and below the local eqwlibrium values. The 
results are also tabulated in Table 1. It 33 seen that these gross departures 
from equdibrium do not have a marked effect on 83/&c, partxulsrly if the 
departures are 111 the direction of the curve "A" in Fig, 4 (inset). 

Table 1 

Values of de/a, for d/u = 10' '(see also Fig. 4) 

e au loCal G-6.5 - 6.5 
equdibrim 50$ high:- 5:$ low:- 

"frozen" 
_-- 

UC3.X ae/ax ae/ax $ alrf. ae/ax ’ $ arff. ae/ax ;b dlff. 

0 x 13 1.32 x Id 1.32 0 1.32 0 1.32 0 

0.5 2.08 2.83 -1'7 2'93 +I*7 2.97 +3.1 

I*0 4.51 4-46 -I*1 b58 +I*6 4.63 +2.7 

1'5 6'20 6.23 +0*5 6.23 +0*5 6.20 +I*3 

2'0 PO3 a.67 +a-0 7'97 -0.7 7'94 -1-I 

2.5 992 9.69 -2.3 Y-59 -3.3 

3-O 12*00 11*4J.+ -4.7 11.25 -6.3 

The limiting case of a trajectory lying below the equilibrium locus 
would be the case G = constant. This might correspond to a situation where 
the pressure gradient was applied so rapidly that the boundary layer &d not have 
time to respond. H, d Tw also if the skin-friytion law continued to hold, 

wuula/ 
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would be "frozen" at their initial values at the start of the pressure rise. 
Even in such a case the effect on &/dx is not large (Table 1). 

The lnsensititity of &/dx to departures f&m looal equilibrium can 
be explained by noting that de/&x is the sum of two terms (see equation (3)) 
which have a dependence on G of opposite sign. A decrease, say, of G leads 
to a decreane of the pressure-gradient term and to an xncrease of the 
skin-frictxon term, and vice versa. Departures from local equilibrium thus 
have an appreciable effect on the ratlo of the two terms but little effect on 
their sum. 

2.5 The conclusion from the work in Section 2.4 is that, for boundary 
layers 111 which dJl/d.x > 0, it 1s not necessary to predict the departures from 
equilibrxm in sny detail for the purposes of calculating the rate of gravth 
of momentum thickness. Indeed, in most cases, the assumption of precise local 
equillbrwm wuuld appear to be adequate. A calculation method based on this 
assumption is specrfled by equations (1) (or (3)) and (4), together with the 
definitions of the vsrlous qusntitxes and a skin-friction law. All the 
necessary equations are listed again in Append= I(a). Values of the other 
integral parameters are provided by the calculation method, although these will 
not generally be so accurate as the predxted values of 0. The analysis of 
experimental data in Ref. 1 suggested that the assumption of local equilibrium 
could give predlctlons of H which are accurate to about + 10 percent for 
values of II up to 12. The predxcted values of II can be exsnun ed to check 
that an/ax > 0 and hence that the method is being used within its range of 
valldity, 

If momentum'thxtiess only is required, an approxunation to the full 
equations can be obtained by fitting an emplrxcal expressIon to the curves m 
Fig. 3. A possible form of such an expression is:- 

. ..(7) 

2.6 An expression for @/dx of the form of equation (6) is also a 
feature of the "quadrature" methods for calculating momentum thickness. A 
number of such methods can be found in the literature. Specifically, these 
methods assume a linear dependence of d@/dx on - (e/u,) dud&~ and a power 
law for skin friction:- 

a.0 
- = a. 
ax 

0 au 
-C.-ev 

ll edx 

. ..(a) 

The values of the constants a, b and c vary from one method to another; 
on page 81 of Ref. 7 seven sets of these constants are listed as suggested by 
different authors. 
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condition' 
The quadrature methods imply the exlstenoe of some local-eqtiilibrium 

(not necessarily a physically realistx one), and Fxg. 5 shows that 
they can be regarded as the results of attempts to approximate the correct 
variation of de/a, with - (e/u,) dudclx by a straight line. It is clear 
that this c-t be done with any accuracy over the full range of pressure 
gradients and the quadrature methdds are thus of limited value. Rmi's value of 
C is about the most realistic compromise. 

3. Comparison with Experiment and with other Methods 

The justlfxation for the use of the local-equzlibnm assumption, 
over its range of validity, as a basis for calculating momentum thickness has been 
argued from a theoretical standpoint in the previous Sections. Comparisons 
with experiment are therefore not essentxl.. Nevertheless it will be reassuring 
to make one such comparison with a suitable set of measurements. Another 
oompar=son will be made vvlth an experiment which did not conform to the 
restrxtion CM/& > 0. Here the method is being used outside its range of 
validity and the interest is merely m seeing what order of inaccuracy 1s 
introduced. 

The first comparison is with the measurements by Schubauer and 
Spangenberg'y II~ their pressure dlstrlbutlon 9". This boundary layer exhibits 
a monotonic xncrease of II with x and approximates to local-equilibrium growth 
(see Fig. 2). The results are shown in Fig. 6. The experiment was not exactly 
two-dunensional and the corresponding discrepancies in the momentum equation are 
indicated in the figure. F'rediotlons**by the methods of Head20, McDonald and 
Stoddart21 and Bradshaw et a122 are also shown in Fig. 9. All four sets of 
predxtlons are within the experimental accuracy. The difference between our 
value of 0 at x = 110 inches and that given by Head's method is no more than 
cam be accounted for by a 10 percent error in 0 at x = 0. In this example 
the local-equilibrium method is in good agreement both with measurement and with 
more sophzsticated oalculatxon methods. 

The second comparison is with measurements by Bradshaw and Ferriss 18 

in a boundary layer lnltlally developing in an adverse pressure gradient which is 
subsequently removed. In thjs case dIl/dx < 0 and substantial departures from 
local equdlbrium occur (see Ref. 1). The results in Fig. 7 show that dS/d.x is 
overestimated throughout. For x > 60 inches, the pressure gradient 1s 
effectively zero and the overestimate of dO/d.x can be accounted for simply in 
terms of the amount by which G exceeds its equilibrium value. 
and. ",0/V = IO' ) the error in de/a, is as follows:- 

For ll = 0, 

G Error, $ 

15 
10 ;: 

8 12 
6.5 0 

At/ 
-4---------------------------------------- 

It is only the expressions for momentum thlololess that imply the assumption of 
local equilibrium. It must be stressed that no such interpretation can be 
made of the auxiliary equations also derived by some of these authors, except 
in the case of Hurill who suggested the local equilibrium concept 111 1931. 

19 
The calculated results for the methods of Head, and McDonald and Stoddart wwx 

taken from Ref. 21. The authors are indebted to Mr. Bradshaw for supplying 
the results for the method of Ref. 22. 
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At x = 95 in. 0 is overestimated by about 6 percent. If the run of 
constant pressure had extended indefmitely, the error in 0 would probably 
not have lnoreased indefinitely since the error in d0/dx would have decreased 
to zero as G approached its equilibrium value. 

The other calculation methods give more accurate predxtions of 8, 
in Fw,. 7, according to the extent to whxh they tak.6 account of the physical 
processes 3nvolved. As noted z.n Ref. 18 this is a good. boundary layer for 
exposing weaknesses 3.n predxtlon methods. 

4. Compressibdity Effects / 

!J!he extension of the local-equilibrium method to compressible flow 
depends on the avadability of a suitable skin-friction law (whxh has been 
discussed J.II Ref. 2) and of some expression for the locus of all possible 
equilibrium boundary layers at non-zero Mach number. 
equation remains unchanged (equation (1)). 

Themomentum-integral 

In my dxcussion of ewdibrium boundary layers in compressible flow 
speculation plays the maJor role because no relevant data exist. However in 
the present context the lack of definitive information 1s not a major obstacle. 
The two main reasons for this are:- 

(a) The Mach-number range under consxderation (0 < Me < 1) is not 
large, so that the effects of compressibility are unlikely to 
be dominant. 

(b) A corollary of the fact that de/a, is largely insensltive to 
departures from equillbrlum (whxh carries over to compressible 
flow much as descrlbed in Section 2.4) is the fact that the 
G - II locus for equilibrium boundary layers does not have 
to be specified very accurately for the purpose of predicting 
accurate values of 0 under local-equilibrium conditions. 

In view of these two observations we feel justified in assuming that 
equation (4) 1s valid for our calculations in compressible flow. The definitioL 
of II remains the same as in lncompresslble flow and G is defined, and 
related to the other integral parameters, as described in Ref. 2, i.e., 

where 

s i OD( 
G= .!2 

( > 

0 

u,-u)“%Y 

l- 
w 

i 

O3 be4 ay’ 

0 

H+l 
ii = - 1. 

I +o*i7aPe 

. . . (9) 

. . . (IO) 

. ..(n) 
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On this basis the relatlcn between de/a, and 

be calculated and is illustrated in Fig. 8 as a fun&Ion of Mach number. The 
general trend is a decrease of de/&x with increasing Mach number over most of 
the range of pressure gradients. !Cc provide a compazxscn with these 
calculations the results are also shown of applying the Stewartson/Mager 
transformation24 to the results for Me = 0. The values of d8/dx obtained 
by the two methods are approximately the same for small pressure gradients but 
the Mager transformatxm predicts a much more rapid decrease (with increaslrig 
Mach number) of - We) ".& at separation and. would thus predict an 

earlier separation In the same velocity distnbutlon. Thls tendency would be 
aggravated by the higher values of de/d, predicted by &he Mager transformation 
for large pressure gradients. 

To illustrate the predicted effect of Mach number on the growth of 
momentum thxtiess, calculatwns have been made, uszng the present method, on 
the same ve1oclt.y distribution, u Q u,, as considered in Fzg. 6, with the seme 

origin of the boundary layer and Reynolds number, but for M = 1. These 

results are shcwn LXI Fig. 9. CalcuJ.ations were also made using the alternative 
form of the skin-friction law proposed in Ref. 2 (I.e., equation (9) of Ref. 2); 
the predIcted values of 8 were lndistingulshable from the former calculations. 

Consistent mth Fig. 8, the growth of momentum thickness 1s less in 
ccmpresslble than xn lnccmpressible flew. At x = 120 inches the value of 0 
is about 24 percent lower than for M 00 = 0; of this 24 percent, about 

6 percent is the result of the dzfference in 0 at x = 0. As a ccmpsrlson 
wxth the ca.lcul.at~cns using the present method, Fig. 9 also shows the predictIons 
by the quadrature method of Spence25 which ltlvolves a transformation based on 
Eckert's intermediate-enthalpy method for flat-plate skin frictxxn. At both 
M = 0 and. 1 the predxticns using the method of Spence lie above the present 

pzedictions (see Sectlcn 2.6 and Fig. 5). The decrement in 0 due to 
compressibility is, however, of roughly the same order as indxated by the 
present calculations. This (to borrow a phrase from Dr. Spence's paper) is 
reassuring but bes not necessarily mean the answers sre correct. 

5. Conclusions 

For turbulent boundary layers in tilch the pressure-gradient 

" q: ;zJ parameter increases monotonically mth x (a class which 

v? 
includes those develcplng UI "rooftop" pressure distnbutlons), such departures 
from local equilibrium that occur at all (see NashI) have a small effect on the 
growth of mcmentum thictiess. Accurate predictions of momentum thickness XI 
incompressible flow can be made on the assumption of precise local equilibrium. 
On this basis the usual "auxiliary equation" appearing in the calculat~cn methods 
can be replaced by a simple algebralo relatlcn which expresses the locus of all 
possible equilibrlwn boundary layers XI the shape-factor/pressure-ptient plane. 
me values of the other integral parameters are obtained from the cdculaticn 
method but these m-t be regarded as less reliable than the pretilcted mCmedUm 
thicknesses. It can be checked that the method is being used within its range 
of validity by exsminlng the predxted varzaticn Of n Wrth X. 

2./ 
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2. The exte@.on of the local-equilibrium concept to compressible flow 
depends only on the specification of the appropriate equilibrmm loci. Even 
though no relevant experimental data exist as to their position, a pmvisional 
assumption is regarded as sufficiently accurate for the purposes of calculating 
mcmeritum thxkness for Mach numbers up to one. 

3. The calctition method for subsonic end transonic speeds is specified 
by the equatmns listed in Appendix I. An Algol computer program using the 
method for calculating the boundary-layer development over two-dimensional 
aerofoils is shown in Appendix II. 

APPENDIX I/ 
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APPENDIX1 

Smmmry of Important Formulae 

A. Nl Equations 

1. Momentum equatmn:- 

%( peuy = 'w(l+n), 

or 

with 

a0 eau T 
-= - (H + 2 -%) -e+w* 
ax ue dx PeUi 

2. Skin-friction law (Ref. 2):- 

& E ki. ~.L~134n(FR.~)+~75} 

PeUe 
-1 

1724 

+ 1'5G + - 
Ga + 200 

16.87 3 

, 

1 + 0'066 9 - 0'008 "',, e 
FR = l- w13qtie + ~027 $. e 

3. "Auxiliary equation" (equilibrium locus):- 

G = 6.1 (ll + W31+ - 1.7. 

4. Relation between G, H and rw:- 

with 

5. Definition of II:- 

6' ap H 0 au 
n =-- = - .- 2 

Tw ax T 
pv 

( > 

ue dx 

'e"', 

B./ 
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B. Appmximation for Incompresszble glow 

UO 

For la9 < 2 < IO5 an approximation to equations (1) to (5) above 
V 

isLgiven by 
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AIGQL Program 

A specmen Algol program using the local-equlibrmm calculatmn 
method 1s shown below together with the relevant xnput instructions. At the 
N.P.L. the program is ra on an Faglish Electric-Leo-Marconi XDFY machine. The 
running tune 1s less thRn 2 mrnutes per run. 

The program is for the calculation of the,boundary-layer g&h over 
a thick aerofoil speclfled by rectangular co-ordinates X, Y, (arbitrarily spaced 
chordwise stations). The pressure distribution can be spewfled 111 terms of 
u u,, $ CP or P/Ptotal. An interpolation is made to find the pressures/velocities 

at evenly spaced points along the surface of the aerofod. The isentropic-flow 
relations are used to derive arrays of u u 
subsequent calculations. .d- * 'JTca for use in the 

Up to three chord Reynolds numbers and three transition posItions can 
be spec 
method2 '6" 

ied per run The leminar boundary layer is calculated using Thwxites 
together with the Stewartson transformation. Continuity of momentum 

thxknes$ is assumed at the transitxon point so long as u,e/v, > 320; if it 

does not 8 is increased to make ueO/ve = 320, (see Refs. 17, 27). 

The turbulent boundary-layer equations (see Appendix I, above) are 
solved by a step-by-step process. An iteration is performed, uwolvlng 0, II, 
G, TW and H, over two forward points. When the process has converged the 
integral parameters are known more accurately at the first forward. point than at 
the second. The calculation then moves forward one step; the values are 
already knawn appmxlmately at the new first forward point and can be improved by 
the subsequent xteratum. Approximate values are also derived at the new second 
forward point, and so on. Integrations are performed by fitting quadratic 
expressions to the integrands over the three points and then integrating the 
quaaratl.cs. 

This procedure 1s fast and has the advantage that relatively few steps 
are required for most purposes. The calculation shown in Fig. 6 was performed 
usmg intervals III x of 4 inches ad 10 mches. The predicted values of 0 
at x = 110 inches agreed to within 0'25 percent. 

The output from the program consists of tabulated values of 8, 6+, n, 
G, H and. fw. The values of 8 are, of course, relatively insensitive to 
departures from local equilibrium whereas the same is not true of the other 
integral parameters, end the predicted values of these should be treated mth 
caution. 



procedure int~xl,yl,x2,y2,x3,y3 a b c rail); , , , 3 
value xl,~l,x2,~2,~3,~3; 
~x1,~l.x2,JR.x3.~3.a,b.c; 

md, 





1 until 1” do 

F&g mq 
t[i]~=l+O~2XMt2j 
gOto print; 

%[Zl+(Si-S)XCOS(an~lel) 
Y12l+(si-s)xs~n(anglel - 

Wldj 

next : Ti=i-1 j 

dsr:=sm-si+ds; 
end; 

Xte t~Xt(30~[[2Cl[6S~~tx=[20~)j 



ior i.-I ste 1 until 11-l do 
m i~:-i~(5x”~i=Tlt5mLi-~ltl.5+8x”~ilt5xt~lltl.5-u~‘i+llt5xt~i+rlrl.5~ 

xO.08333333xds; 

_ 

if lmbda>“.“9 than hmbda:*.09; 
T lambda)” the8n 
& hh:~lxexp(6.263xlambda~l95xlambdat3); 

ll:-sqrt(0.0~9~.~3xLambda)-0.05; 
if Lambda>O.O89 M Il:4; 

end else- 
- ~hh:R+0.983x(Lambda~.25)+5.83x(lambda~.25)f2; 

Il:-aqrt(0.01184-0.81LbtLambda); 

write 30,rtc,2Xll/thsts~ilXurilXt~Il/rerjrl); 



11+1724/ 
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dlU[l] =if 1<11-1 then 0 5x(u[i+21-u~lj)/(u~1+11+9-6)/d 
CTntn 7cTiTFr 

s e1se(1-ul1l/(ul1+11+.-6))/ds; _ 

iX(l+pllkl)Xds/w[klt2/3. 
SXthetaf-l]+l ZSXintegf-ll+Txinteg(Ol-O ?5Xinteg[ll)/ 

"Lr,lcrg-",/t[ilw 5; 
theta[l I =(u[i, hxxt[i-I IT2 

’ 
5xtheta(-1 l+integ[-1 l+4Xlntegl0l+integ[l I)/ 

“~‘It3r.*&l/+~l,sl t, 5t 
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if i=ii-1 and k-13 then 
iiigin k:r; - 

end; 
goto cant; 

end; 
ririte text 
write text 

30,[[2c][6s]trailingYedge:_L2c]I); 
3(;,T6s~heTa*=*l); 

'.~rite(30,ff,(t~taTo]x. 
write text(3o,[[cl[6s]h*=[5sl~ * - .' .. 
write(3O,ff,(h~]~ds=dsr~+hT-i- idsr)/ds); 3 

outt: 
write text(3Q,[[pJJ); 

(ds-d?r)+theta[llxdsr)/ds): 
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