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SUMMARY

For boundary lasyers of a class which includes those developing in

(Nash1) which occur are shown %o have an even smaller effeot on the growth of

momentum thicknesse

The assumption of precise local equilibrium thus provides

a simple but accurate basis for predictions of momentum thiclkmness, and a
calculation method is formulated acocordingly.
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List of Symbols

Xy ¥ co~ordinates measured along and normal to the surface,
respectively

P gtatic pressure

u mean velocity in x-darection

M Mach number

i density

v kinematic wviscosity

T gtatic température

8* °  adisplacement thickness:-
o0 ma
o Pty

6 momentum thickness:-
oo u

6:: ——(1—_)(36(

o pu, u,

H shape factor:- H = &%/®

G shape factor:-

, j ” (v -u)*ay

»

. f " (aw) ay

(o]

in ancompressible flow:-
il
2 .z
m 1
o= (7)) (3)
T H
w
T wall shear stress
I pressure-gradient parameter:-
8* ap
H = —
T dx
W

Subscrapts/



Subseripts

e vglue at edge of boundary layer
w value at wall
oo some reference value (free stream, e,g.)

Note

The symbol f{ ) denotes any arbitrary function.

1. Introduction

The prediction of the profile drag of two-dimensional aerofoils depends
on the availabalaty of an accurate method for calculating the growth of momentum
thickness in the turbulent boundary layer at subsonic and transonic speeds,

The present work 1s mainly concerned with boundary layers developing
in pressure distributions not too far from the "flat rooftop" type which consists
of a run of constant pressure followed by a linear or near-linear pressure rise,
This type of pressure distribution is obtained on many practical aerofoils at
their design (cruise) condition. The maximum local Mach number is usually not
much above unity (the “sonic rooftop™ section 1s designed for M =~ 1 over
the constant-pressure plateau), Over this restricted range of conditions there
1s good reason to expect siample boundary-layer techniques to apply. The
treatment of boundary layers negotiating leading-edge suction peaks 1s
consrderably more dafficult and will not be dealt with 1n detail in this paper.

The treaggent of boundary layers in which the pressure-gradient
dp ’
parameter I ( = ——-—-) satisfies the conditron dlI/dx > O, which includes
Ty dx '

the case of the "rooftop" pressure distribution, 1s simple because the shape of
the mean velocity profile is principally a function of the local pressure
gradient1, and only the thickness of the layer significantly reflects the
influence of upstream history. To use the terminology of Ref, 1, the departures
from local equilibrium axre small, It will be shown in Section 2 that the effect
of these departures from equilibraium on the growth of momentum thickness is even
smaller, Indeed the assumption of precise local equilibrium is a valid
approximation for many purposes. In the present paper this assumption 13 used
as the basis of a calculation method which is more simple than the advanced
methods currently being developed, but whose range of validaty 1s limited to the
types of pressure distribution under consideration,

In Section 3 comparisons are made with measurements 1n incompressible
flow and with the predictions of other calculation methods, Section 4 consists
‘of a discussion of the effects of compressibility on the momentum equation and
on the local-equilibrium assumption,

In the present calculations use has been made of the skin-friction law
specified in Ref. 2, This was based on the work of NashJ and Spalding and Chik,
The relevant expressions are reproduced here in Appendix I,

The present method has already been used extensively for profile-drag
predictions, A prellmlnary'note17 has already been issued reporting some of

this work.
2./
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2. The Momentum Equation in Incompressible Flow

2.1 The growth of a turbulent boundary layer in two dimensions is
calculated by integrating the momentum-integral equation

a
— (p¥?8) = 1 (1 +1), D ees (1)
ix € w
5% dp
where n = ——, eee(2)
T dx
w

along the surface, simultanecusly with a skin-friction law (such as that
described in Ref. 2) and an auxaliary equation., Equation (1) can also be
written in the form:-

ao 5] due Ty
'Y (3)

n
I
T
u]
+
[p"]
i
o b
o
+
.

dx u dx pu?
e e

Instead of specifying an auxiliary equation at the outset we shall
examine the consequences of making various assumptions about the G ~ I
trajectories of boundary layers of the type being consadered. The subsequent |’
discussion in this Section wall be restricted to incompressible flow.
Compressibility effects will be discussed in Section 4.

2.2 Equilibrium turbulent boundary layers are characterised by a
particular, constant, value of the pressure-gradient parameter I and a
corresponding, constant, value of the shape factor G, A1l possible equilibrium
boundary layers are represented by a unique function G(II). Fig. 1 shows this
function for positive values of M.  An emparical fit to the experimental data
is given by ’

1
G = 61 (I1 + 1-81)2 = 1-7, eoo(l)
asz suggested in Ref. 1. )

Boundary layers developing in arbitrary pressure gradients do not in
general satisfy the condaition I = constant, and usually both II and G are
functions of =x. If G s plotted against [I, for a particular boundary layer,
a trajectory is obtained along which x varies. It is a property of a
boundary layer for which [I 1increases monotonically with x that the trajectory
lies close to the locus of all possible equilibrium boundary 1ayers1. Fig., 2
illustrates this behaviour wath two sets of experimental data, This sifuation
can be described as "local equilibraum" but the notion should not be
misinterpreted, The correspondence to actual equilibrium boundary layers does
not, for instance, extend to the shear stressesd except at the wall,

2,3 If any relation is specified connecting G and II, and use 1s made
of a skin-friction law

T uee
= f(-"‘—-, G or H) » ---(5)
pu ? v

equation (1)/
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equation (1) (or (3)) can be reduced to the form

do ueﬁ 0 du
—— = f(———,—‘"""—g)o 0--(6)
dx v u, dx

The assumption of precise local equilibrium, which corresponds to an
exact correlation between the G ~ II trajectory and the equalibraium locus
(equation (4)), together with the skin-friction law of Ref. 2, leads to the
function plotted in Fig. 3. The derivative d8/dx is roughly a linear
function of - (8/ue) duy/dx and, over a limited range of Reynolds number,
the effect of variations of ug®/v 1is approxamately independent of the pressure
gradient, The contrabution of the skin-friction term to d8/dx is small
except for very small pressure gradients., Separation is predicted when
- (8/u,) dug/dx reaches a value of about 0°004; d5/dx reaches a value of about
0*02 at separation, which agrees with the figure suggested by McQuaid®,

2.4, The effect on :d8/dx of departures from local equilibrium can be
assessed by taking a relation between G and [ dafferent from the equilibrium
one, The boundary layers on rooftop aerofoils are usually in equilibrium at
the start of the pressure rise (that is, at the end of the run of constant pressure)
end the departures from local equilibrium occur for values of NI greater than
zero, In Fig, 4 calculations are illustrated assuming that the values of
G - 6*5 are 50 percent above and below the local equilibrium values, The
results are also tabulated in Table 1, It 138 seen that these gross departures
from equilibrium do not have a marked effect on df/dx, particularly if the
departures are in the directzon of the curve "A" in Fig, L4 (inset).

Table 1
Values of d5/dx for uw/v = 10* '(see also Fig. 4)
loeal G- 65 G- 65 " "
) E du equilibrium 507% high:~ 507 Llow:- frozen
u dx a0/dx a/ax % diff. | @/ax % aifr. | a8/ax i dafr.
0x 108 | 1+32 x 1¢° 1032 0 1032 0 1+32 0
05 2+ 88 2:83 | =17 2:93 | +i7 2:97 1 431
1+0 4 51 belo | =11 Le58 | 4+1°6 Leo3 | 427
1+5 6* 20 623 | +0°5 6223 | +0-5 628 | 413
2+0 8+ 03 8267 | +8+0 797 | -0°7 7941 =11
2¢5 9« 92 9e69 | =23 9¢59 1 =33
340 12000 eldy | ~4e7 11025 | ~6¢3

The limiting case of a trajectory lying below the equilibrium locus
would be the case G = constant, This might correspond to a situation where
the pressure gradient was applied so rapidly that the boundary layer dad not have
time to respond, H, and Ty also if the skin—frigtion law continued to hold,

would/
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would be "frozen" at their initial wvalues at the start of the pressure rise,
Even in such a case the effect on d9/dx is not large (Table 1).

The 1nsensitivity of df9/dx to departures from local equilibrium can
be explained by noting that d9/dx is the sum of two terms (see equation (3))
which have a dependence on G of opposite sign, A decrease, say, of G leads
to a decrease of the pressure-gradient term and to an increase of the
skin-friction term, and vice versa, Departures from local equilibrium thus
have an appreciable effect on the ratio of the two terms but little effect on
their sum,

2.5 The conclusion from the work in Section 2,4 is that, for boundary
layers in which dall/dx > 0, it 1s not necessary to predict the departures from
equilibrium in any detail for the purposes of calculating the rate of growth
of momentum thickness, Indeed, in most cases, the assumption of precise local
equilibraum would appear to be adequate. A calculation method based on this
assumption is specified by equations (1) (or (3)) and (4), together with the
definitions of the various quantities and a gskin-friction law, All the
necessary equations are listed again in Appendix I(a), Values of the other
integral parameters are provided by the calculation method, although these will
not generally be so accurate as the predicted values of 0O, The analysis of
experimental data in Ref., 1 suggested that the assumption of local equilibrium
could give predictions of H which are accurate to about * 10 percent for
values of II up to 12, The predicted values of Il can be examined to check
that dll/dx > © and hence that the method is being used within its range of
validity,

If momentum thickness only is required, an approximation to the full
equations can be obtained by fitting an empirical expression to the curves in
Fig, 3. A possible form of such an expression is:-

-3

ao u b g du 0 du 2
— = {24711 6n(—i>+4'75 —3——-—‘2+120(-——-9>
dx v u dx u  dx
e e
’ 8 du 3
—25000(——6-) vee(7)
ue dx

2.6 An expression for d6/dx of the form of equation (6) is also a
feature of the "quadrature" methods for calculating momentum thickness. A
number of such methods can be found in the literature., Specifically, these
methods assume a linear dependence of d9/dx on - (6/u_) du e/dx and a power

X A e
law for skin friction:;-

an we P 6 au,
—_— = a . (""e""“) -0 g - . .o-(8)
dx v u, dx ,

The values of the constants a, b and ¢ wvary from one method to another;
on page 81 of Ref, 7 seven sets of these constants are listed as suggested by
different authors.

The/
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The quadrature methods imply the exagtence of some local-equilibrium
condition® (not necessarily a physically realistic one), and Fig. 5 shows that
they can be regarded as the results of attempts to approximate the correct
variation of d9/dx with - (6/u.) du./dx by a straight line, It is clear
that this cannot be done with any accuracy over the full range of pressure
gradients and the gquadrature methods are thus of limited value, Buri's value of
¢ 1is about the most realistic compromise,

3. Comparison with Experiment and with other Methods

The Jjustification for the use of the local-equilibrium assumption,
over its range of validaty, as a basis for calculating momentum thickness has been
argued from a theoretical gtandpoint in the previous Sections, Comparisons
with experiment are therefore not essential, Nevertheless it will be reassuring
to make one such comparison with a suitable set of measurements. Another
comparlison will be made with an experiment which did not conform to the
restriction dll/dx > 0. Here the method is being used outside its range of
validaty and the interest 1s merely in seeing what order of inaccuracy is
introduced.

The first comparison is with the measurements by Schubauer and
Spangenberg19 in their pressure dastrabution "D"., This boundary layer exhibita
a monotonic increase of I with x and approximates to local-equilibrium growth
(see Fig. 2). The results are shown in Fig. 6, The experiment was not exactly
two-dimensional and the corresponding discrepancies in the momentum equation are
indicated in the figure. Predictions’” by the methods of Head?®, McDonald and
Stoddart?! and Bradshaw et al22 are also shown in Fig, 9,  All four sets of
predictions are within the experimental accuracy. The difference between our
velue of 8 at x = 110 inches and that given by Head's method is noc more than
can be accounted for by a 10 percent error in 6 at x = 0, In this example
the local-equilibrium method is in good agreement both with measurement and with
more sophisticated calculation methods,

The second compariscon is with measurements by Bradshaw and Ferriss18
in a boundary layer initially developing in an adverse pressure gradient which is
subsequently removed, In this case dll/dx < O and substantial departures from
local equilibrium occur (see Ref. 1). The results in Fig, 7 show that d8/dx is
overestimated throughout, For x > 60 inches, the pressure gradient is
effectively zero and the overestimate of dB8/dx can be accounted for simply in

terms of the amount by which G exceeds its eguilibrium value. For NI = O,
and uee/v = 10', the error in d9/dx is as follows:-
G Exror, %
15 83
10 31
8 12
6°5 0

#It is only the expressions for momentum thickness that imply the assumption of
local equrlibrium, It must be stressed that no such interpretation can be
made of the auxiliary equations also derived by some of these authors, except
in the case of Buri!' who suggested the local eguilibrium concept in 1931,

**The calculated results for the methods of Head, and McDonald and Stoddart were
taken from Ref, 21. The authors are indebted to Mr. Bradshaw for supplying
the results for the method of Ref. 22,
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At x = 95 in. © 1is overestimated by about 6 percent. If the run of
constant pressure had extended indefinitely, the error in © would probably
not have increased indefinitely since the error in d9/dx would have decreased
to zero a8 G approached its equilibrium value,

The other calculation methods give more accurate predictions of 9,
in Fag. 7, according to the extent to which they take account of the physical
processes i1nvolved. As noted in Ref, 18 this is a good boundary layer for
exposing weaknesses 1n prediction methods,

L. Compressibility Effects

A

The extension of the local-equilibrium method to compressible flow
depends on the availability of a suitable skin-friction law (which has been
discussed in Ref. 2) and of some expression for the locus of all possible
equilibrium boundary layers at non-zero Mach number, The momentum-integral
equation remains unchanged (equation (1)).

In any discussion of equilibrium boundary layers in compressible flow
speculation plays the major role because no relevant data exast, However in
the present context the lack of definitive information i1s not a major obstacle,
The two main reasons for this are:-

(a) The Msch-number range under consideration (0 < Mg < 1) is not
large, so that the effects of compressibility are unlikely to
be dominant,

(b) A corollary of the fact that d8/dx is largely insensitive to
departures from equilibrium (which carries over to compressible

flow much as described in Section 2.,4) is the fact that the

G ~ @I locus for equilibrium boundary layers does not have
to be specified very accurately for the purpose of predicting
accurate values of © under local=-equilibrium conditions.

In view of theze two observations we feel justified in assuming that
equation (4) 1s valid for our calculations in compressible flow. The definition
of II remains the same as in incompressible flow and G is defined, and
related to the other integral parameters, as described in Ref, 2, i.e.,

[T e

1
p o
G = (-E) o s nc-(9)
rw j (uedu) dy
o
1
pR 2 1\
) e
T H
H+ 1
where H = - 1. eee(11)
: 1+0'178M2
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On this basis the relation between df/dx and = (G/ue) due/dx can

be calculated and is 1llustrated in Fig. 8 as a function of Mach number, The
general trend is a decrease of d9/dx with increasing Mach number over most of
the range of pressure gradients. To provade a comparison with these
calculations the results are also shown of applying the Stewartson/Mager
transformationZ¥ to the results for Me = O, The values of d0/dx obtained
by the two methods are approxamately the same for small pressure gradients but
the Mager transformation predicts a much more rapid decrease (with increasing
Mach number) of = (O/ﬁe) due/dx at separation and would thus predict an

earlier separation in the same velocity distribution. This tendency would be
aggravated by the higher values of ae/dx predicted by the Mager transformation
for large pressure gradients.

To illustrate the predicted effect of Mach number on the growth of
momentum thickness, calculations have been made, using the present methed, on
the same velocity distrabution, ue/%n, as considered in Fig. 6, with the same

origin of the boundary layer and Reynolds number, but for Moo= L These

results are shown in Fag., 9. Calculations were also made using the alternative
form of the skin-friction law proposed in Ref., 2 (1.e., equation {9) of Ref. 2);
the predicted values of O were 1ndistinguishable from the former calculations.

Consistent wath Fig, 8, the growth of momentum thickness 1g less in

compressible than in incompressible flow, At x = 120 inches the value of ©
is about 24 percent lower than for M = 0; of this 24 percent, about
6 percent is the result of the difference in O at x = 0, As a comparison

with the calculations using the present method, Fige. 9 also shows the predictions
by the quadrature method of Spence2’ which 1nvolves a transformation based on
Eckert's intermediate-enthalpy method for flat-plate skin friction. At both

qn = 0 and 1 the predictions using the method of Spence lie above the present

predictions (see Section 2.6 and Fag. 5). The decrement in © due to
compressibility is, however, of roughly the same order as indicated by the
present calculations, This (to borrow a phrase from Dr. Spence's paper) is
reassuring but does not neceasarily mean the answers are correct,

5. Conclusions

1. For turbg%ent boundary layers in whach the pressure-gradient
d

parameter II ( = -—-—2 ) increases monotonically wath x (a class which

T dx
includes those developing in "rooftop" pressure distributions), such departures
from local equilibrium that occur at all (see Nashl) have a small effect on the
growth of momentum thickness.,  Accurate predictions of momentum thickness in
incomressible flow can be made on the assumption of precise local equilibrium.
On this basis the usual "auxaliary equation" appearang in the calculation methods
can be replaced by a simple algebraic relation which expresses the locus of all
possible equilibrium boundary layers in the shape-factor/pressure-gradient plane,
The values of the other integral parameters are obtained from the calculation
method but these must be regarded as less reliable than the predicted momentum
thicknesses. It can be checked that the method is being used within its range
of validity by exemining the predicted variation of NI with x,

2./



- 10 -

2. The extension of the local-equilibrium concept to compressible flow
depends only on the specification of the appropriate equilibrium loci. Even
though no relevant experimental data exist as to their position, a provisional
assumption is regarded as sufficiently accurate for the purposes of calculating
momentum thickness for Mach numbers up to one,

3 The calculation method for subsonic and transonic speeds is specified
by the equations listed in Appendix I, An Algol computer program using the
method for calculating the boundary-layer development over two-dimensional
aerofoils is shown in Appendix II,

APPENDIX I/
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APPENDIX T

Summary of Important Formulae

A. Full BEquations

1. Momentum equation:-

d
Al a —
- (Deueﬁ) = Tw(1 + ),
aé 6 du T
or — =z ~(H4+2-M)——2,F
dx eudx pu’
e e e

2, Skin-friction law (Ref, 2):-

T 1 u b
¥.o= |¥e, 2'1|.7115n<F .i)+t,.-75
n C R
pu v
e e e
-2
1724
+ 1°5G 4 ———— ~ 16°87 ,
G* + 200
i
with F2 = 1 4 0°066 M - 0°008 M,
[ o] [+ e
Fp = 1= 0-151;1\42 + 0°027 M’e

3. "fuxiliary equation® (equilibrium locus):-
’ 1
G = 61 (I + 1°81)2 = 17,

L. Relation between G, H and 7 _:-

H = (E+1)(1+0178%) -1,
T AR
with B = 1-@( Wﬂ) .
Pele
be Definition of [M:=
8% ap H 6 du
I = e = ———‘-'—.""—-‘—e'
2
Pele

B./
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B. Approximation for Incompressible Flow

u f
For 10 < == < 410° an approximation to equations (1) to (5) above
v ]
is, given by
-3
ao ubd
— = {24711 en (-—“’—) + h 75
dx v
8 du B du 3
= 3——4 120 -—----?->
u,  dx u dx
e e
: & du 3
- 25 000 -——e) .
u_  dx
e

APPENDIX TI/
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APPENDIX II

ALGOL Program

A specimen Algol program using the local-equilibrium calculation
method 18 shown below together with the relevant input instructions. At the
N.P.L. the program is run on an English Electric~lLeo-Marconi EDF9 machine, The
running time 1s less than 2 minutes per run,

The program is for the calculation of the boundary-layer growth over
a thick aerofoil specafied by rectangular co-ordinates X, Y, (arbitrarily spaced
chordwise stations). The pressure distribution can be specified in terms of
ue/qn, Cp or P/btotal' An interpolation is made to find the pressures/velocities

at evenly spaced points along the surface of the aerofoil, The isentropic-flow
relations are used to derive arrays of ue/h and Te/T for use in the

<0
subsequent calculations.

Up to three chord Reynolds numbers and three transition pesitions can
be spec%fied per rumn, The laminar boundary layer is caleulated using Thwaites
method 2 together with the Stewartson transformation. Continuity of momentum
thickness is assumed at the transition point so long as u G/b > 320; if it

does not B is increased to make u.ee/ve = 320, (see Refs, 17, 27).

The turbulent boundary-layer equations (see Appendix I, above) are
solved by a step-by-step process. An iteration is performed, involving O, I,
G, 7w and H, over two forward points, When the process has converged the
integral parameters are known more accurately at the first forward point than at
the second, The calculation then moves forward one step; the values are
already known approxamately at the new first forward point and can be improved by
the subsequent iteration, Approximate values are also derived at the new second
forward point, and so on. Integrations are performed by fitting quadratic
expressions to the integrands over the three points and then integrating the
gquadratics,

This procedure is fast and has the advantage that relatively few steps
are required for most purposes. The calculation shown in Fig, 6 was performed
using intervals 1n x of 4 inches and 10 inches, The predicted values of ©O
at x = 110 mnches agreed to within 0*25 percent.

The output from the program consists of tabulated values of ©, &%, II
G, H and 7y. The values of @ are, of course, relatively insensitive to
departures from local equilibrium whereas the same is not true of the other
integral parameters, and the predicted values of these should be treated with
caution,
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Calculation method based on local equilibrium
ALGCL PROGRAM

begin 11bra§x AU, MBS
real mi,ds,dsr;
Infeser ie¢,ne, i, i1,dir, 1,1, 11, '3, '
array ul(0.100]1,t[0 1007, xe 11 3l,re[1.3];

procedure Int(x1,¥1,x2,y2,x3,¥3,28,b,¢, fall);
value x1,y1,%2,¥2,x3,y3;
reaI x1 ,yl,XE,ye.-X3;}’3:a:b:05
label rail;
Begin real dj
. e T =(x3-22)x (%221 Ix(x3-x1);
if d=" then goto fall;
ai= y1x]§§xx§$§- ,
bo={=y1x(x312-x212 ) +y2x{x3T2=-x112 -¥?x(x272-x172)

/43
¢ ={y1x(x3-x2)-y2x{x3-x1 J+y3x{x2-x11)/d; ’

end,

fe=format([6sd ddddd]);
£t .=format{[d.ddddd]7;
s =rformat([5s+d dddad ;;
fe.=format(]6sd ddddde]
OpenEEO 3
open{3v};
ne+=read{20);
for ic.=} step 1 until ne do

begin ml.=read(20)};
dir =read(20i;
l.=read(20)}
ds.=read(205,
for 1:=1 step 1 until 3 de
Teli]l =read(£0); 3a
for 1 =1 step 1 until ]
XE[1}:i=read(v) —
write text£30,[f65]Pro am*AF4[ce]]);
write text{30, 657M*=%§;
write{3v, format{[sd. ddddee]),m1);

3

~

x21T2xx3 J=y2x ( x1Xx T2—x1?2xx3)+y3xgx1xx2T2-x1TEXx?))/d;



begin

comment Interpolation etc of input data}

real s,st,ss,sm,output,m,mb,angle,anglel,a,b,c;
inEeger Jshj
array x[1 31,901 31, 1nput{1.3];
Qolean cpi,phl
Welts T extfiu s[{6s]s[128)x[ 128yl 188 Ju/utnt[7s]t/t4nt[7s]ml2e] ]);
¢pl =(dir=?

phi:=(dir=2);
11+==13 :
dsr.=ds,
81 =03
%25 J =1 ste 1 until 1 do
egin for
'b_in x[h x[h+1
vin]. —y h+1
input(h] -1nput[h+1 1;
end}

ETﬁi.—readieug
v[3] =read{20
input[3] .-read(eu),

Air j<3 then goto ou

B.=sqrt{(x[2 —xl1]}TE+ (y[2]- Y[?]}Te 3
SS--sqr X[3] x[2])r2+(y[3]-y[2])12);
sm.=(1f J<1 then s else s+ss+ds);

if ? =] Then anglel‘=arctan{{y[3]=v12])/(x(3 (21}
Tat (o, 1npuf 11ys,input[2], s+ss, input[3],a,b,¢c,fall
for =11+1 step 1 untill 100 do

EEEin sl = 1)Xds=dsr;

if si)sm then goto next;

‘Output =a+bXs1+EXs1T2;

1f mi<0 05 then goto 1nc0mp;

IT phi then goto pon;

If not ©pl then goto vel;

ep outpdt =140 1Xm XUutnut)/(H—') 2xmit2)13 5;
poh m =sqrt{5x{1/outputtc 2957183-1});

t[1] =142 2><m11‘2)/§1+0 2xmT2) ;
uf1] =m/mixsqrt(tfil])

oto print,
vel ulT] =output,

angle =if x[B]=x[1] then 1 5706 else arctanﬁ(y[E §E1])/(x[2]-x[1]));



out

fail
fin.
end;

next:

end;

incomp:

print.

end;
1T =1-1;

16

m:=mixu{i];

mb.=2;
for his=l
5@51n

end;
mb =m,

end;

step 1 until 10 do
m“"?=u 1 dmIxsgre{ (TFo. 2xant2) /(140 2>amite));
%ﬁ mb<ép-4 then

egin m =03
=5 t[1]1=1+0.2xm172;

goto print;
end;

ITrébs(1- /mb)<y=3 then
Berin t[i].=f1+u.?>?m‘i‘?2)/(1+0.2m1~2);
50%0 print;

IT cpt then output =sqrt{abs{l-cutput});

t[1]:=13

Ul1]:=cutput;

write(30,r,1xds),

wrlte(30,f, (1f si¢s then x[1)+sixcos{angle) else x[2]+(31-s)Xcos(angle1);g'
write(30,fs,TIf si¢s then y[1]+sixsin{angle) else y[2]+(si-s}xsin(anglel i;
write(30,f,u H

wrlte(30,f,8(1]);

write 30,fc,m1xuti]/sqrt(t[1]));

dar:=sm-si+ds}

Wite text(30,[[2c][6s}st¥=[20]]);
for h.=1,2,3 do
I xt[hI>0 then write(30,fe,xt[h]);

write text
wrilte text (3G,

write text(32,[[c

s1[2¢][6s]trailing*edge(2¢c]]);

68]s*=165]1);
write(30,ff, (111 }xdsfder : '

[65 ]u/uinf*=*]);

wrlte(30,ff,(dTII:TJX§ds-dsr)+uTli]xdsr)/ds);
write text(30,[[e][6s]t/tinf¥=*]);
write(30,rr, (tTIi'-T} (ds-dsr)+tTil}xdsr)/ds);

write text(30,[{p]}

oto finj
wilte text(30,[suspect*datal),

b



17

in comment Boundary layer calculatilon;
real 1nteg,du,lambda,hh,1l;

Inte eger Jr,Jt, ft I‘t.c-
arra te,li-

armat ([ 6ad, dddp+nd
c;) H

F

I‘tc‘ﬂfcn"mat SBd dddy+
for Jrisl Bte 1 unti 3

begin T relirl< 'goto outr;
Write text 30, 1nar*bounclary*layer[2c_]_]_),
write text 30, e'-
write (30,forma dddn+ndccc !
write text {30,101 5}_3_[_12altheta 105_]_re (thata)LG;_]__delta[10a]h[125'|cr[2cu),

ror 1 -=1 ste 1 until 11-1 do
Beégin o -1EE"T(5xu[1“T1;5§§§iE1]T1 S+8xul1)1exte(1]T1, 5-u[1+!]T5xt[1+1]Tl 5)
integ<p-8 then integ
ET\eta[ ? [1]T3xa rt(integ/re[Jr]/t[i]T3), .
du: =-0.5x(u{1 1 -ug
1ambda s mduxthetal 1 T2xre{Jrix(1+0 2xmit2 Jxsqrt (£{1] )
it lambda>0.09 then lambda:=0,09;
T lembdad0 them
Begin  hh:=FR0,61xexp(6. 283x1ambda+h95x1ambda73),
11l:e8qrt (0,0729-0.773% lambds }=0.05;
if lambdaj0,089 then 11:=0;
e 83x (Lambda+0..25 )45, 83x )
1N hh:=2+40, 983x (lambda+0.25 )45, lambda+0,25 )12}
11:=aqrt (0.0484-0, 81 8¢ 1lambda ) g

aend;

Thv= (hbt1 3% (140, 2xmi72) /6l 1] =13
write (30,f,1xds );
write {30, ft theta 11);
write (30,0t thetal 1]xul 1]1xre[ Jrlxtl 1171, 5),
write {30,ft, theta. xhh);

write 30,1‘ hh

write (30, ftc,Exll/tmta[ilxu[i]xt{_‘L]/re[Jr] HH

_Tée text {30,[Ip]]);




begin
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comment Turbulent boundary layer;

beglin

real gb,m,ren;

Thteger K,kk,fts,1t,

array dlu,g,h,w,pi,integ[-1 1];

Tts =rormat([5s+d. dddy+nd]);

for Jt =1,2,3 do

T xt(3t]<0 then goto outt,

=entier(x 540 5)3

write text(30,[[6s]turbulent*boundary*layer[2}]);

write text(30,][6s8]re*=]);

write (30, format{(d dddn+nchcl),regjr]); ,

write text{30,{(&s]s(12s]thetalivsldeltal10s]pt]13s]al 14s]nl12s]er[2c]]);

theta(0]:=0;

theta[1]:=theta[1t]}

if theta[l]xuiit]xt§1t1T1 5xre

Theta[t].=320/{uf1t | +p-6)/8[1t

dlugl w={ulite1 1/ (a1t l4p-6 a1

al1):=6,5;

for kk:=1 step 1 until 10 do

BeEin m-=m$xu[1f|7sqrt(ﬁTTt]2;
ren.=ref jrijxthetal 1 Ixu 1t1xt§1t]nr 5x(1-0 134mt2+0 02TxmT3);
w[l]:=(1+0.066xm12-0.008meg X(2. 471 1xIn{ren+10 )44, 75141 5xgt1]+172h/

(?[1}T2+20(J -16 87;

nl1 :=1/E1-g[1]/w 1]);
h[1]).=(h 1]+1Exs1+0.178xm1T2)/t[1t}-1;
pil1] =-theta[ xh[l]waT]TQxdlu[] 3
if pi{1]¢-1 5 then pil1].=-1.3;
Zh :=6.szqrﬁT§TTT?+1 Bi)=i 73

end y

d;

Ategli1] -=uftt]rex(1+p1f1])xds/wlt]12/3;

for 1.=1t step 1 until] 11-1 do

Fggin for K.=-1,0 do

Begin  dlulk].=dlulk+1];

integlk .=1ntes[k+1];
theta[k]i=theta[k+1]3
wlk] . =w[l+11;
pilk].=p1[k+1];
h[k}:sh k+1];
gli]i=g[k+1[;

Jrl<320 then
1.5/re[TTT,
/ds;

end;



conv.
cont:
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] =if 1<¢ii-1 then 0 Sx(u[1+2]=ul1])/(ul1+1 }+p=6)/ds else(r-uli]/{ul 1+1]+0-6))/ds;
1t Ethen goto cont;
].=2k‘ITo?:ET[—1];
=2xw[0 )ew[-1]; .
[1]¢=1 5 then pi[1}.==1 5;
1110 then w 1? =103
Tor kk.=1 sTep 1 until 10 do
Begin for k =U,T do
Integ(k] =uTT+k]ltext(i+k]t2 5x{1+pi{k]Ixds/wik]t2/3;
thetal0] =(u(1-11T?x§{1-1]g§/5?t?etaé-t]+1 PExintegl-1l42xinteg(0 -0 P5xinteg(11}/
¢ {ul1l12+p-6)/t[1i]12 5;
theta[1] =(uf1-1]T2xt[i-1]72 5xtheta£-l]+1nteg[-1]+ux1nteg[0]+1nteg[1])/
(uli+11124p-6)/t[1+1]12 53

ot

Begin  BIKT <6 (ptlk]+1 81)
egin glk] =6 ixsgrt(pilkl+1 B1)=1 7;
m.=mixul 1+k /sqrtEt[1+k]);,
ren =reljrixtheta[klxul1+kIxt{i+k]T1 5x(1-0 13WmT2+0 027xmt3);
wlk] =(1+0.066xmt2-0 008xmt3)x(2 4711x1In(rent1))+4 75)+1 sxg[kﬁ+17au/
glklT2+200)-16 873
h{k].=1/(1-glkl/wlkl};
nlk] =(n k1+1)x§1+ﬂ 179am1t2) /e[ 14kl
pllk]-=~theta[k]xh[k]xw[k]T2xdlu[k];
if pi[k]¢-1 5 then ?1[k] =-1 53
IT pilklypl then pilk}.=pl}
z% kk?S]Egg abs(1-gb/g[11)<:. 005 then goto conv;
gb =gi1];

end;
end;
& =23
write 3U,f,(1+k)xd5%°
write{3),ft,thetalk 3,
write{30, £t, thetalkixhk] ),
write(3),fts,pi[k]});
write(30,ft, k});
write{3.,f,hikl};
ir g[k]>B00 then write(30,fte,”) else
write(20, fres B/wik]taxul t+k]Text [TFRIT2 5);



outt:

end;
end;

end;
end;
ends;

end
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1f 1=11-1 and k=0 then

begin k=]
goto cont;
end;

end;

Virite textE3O [2c][6s]trailing¥edge:[2c]]);
write text(30,T[6s]theta*=*]);

write(30, ff,(thethO]x(ds dsr§+theta[1]xdsr)/ds);
write text(30 [{e][6s]h*=[55] %

write(30,ff, (h‘{_]—(‘ds-dsr‘)‘+hT xXdsr)/ds);

write text(3“,_Lpll)
outr: write text(30,[[pll);

closegeog;
close(30);



ALGOL PROGRAM

Specimen input

1; ---mumber of cases
0.65; ---Mach number

13 =-—-rrogram directive (0 for velocity, 1 for Cp, 2 for P/Ptotal)
15; ==-mumber of input values
0.05; ~--8pacing of output pointa
v5; »7; »o8; ---Reynolds mumbers{put 0 1f not requirea)
0.05; 0.2; 0.4; —~~transition pesitions

e e anput

03 o 03 1.1&000;
0,00901; 0,01329; =-1.06950;
0.038063 0.02864; -1,069503
0.08427; 0.04440; -1,06950;
0.14645; 0.05916; -1.065503
0.22221; 0.05543; -1.06950;
0.30866; 0.080093 -1,065950;
0.40245; 0.08315; ~1,03950;
0.50000; ©.07886; ~0,86247;
0.597553 C.06874; -0.66053;
0,65134; 0.02527; ~0,46634;

O, 77779; 0.04043; ~0.28738;
0.85355; 0.02648; =0.13052;
0.91573; 0.01494,' =0,00179;
1.05 03 0.17268;

> --=-end message
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For boundery layers of & class which includes those
developing in "rooftop" pressure distributions, the small
departures from local equilibrium which occur are shown
to have an even smaller effect on the growth of
momentum thickness, The assumption of precise local
equilibrium thus.provides a simple but accurate basis
for predictions of momentum thickness, and a calculation
method is formulated accordingly.
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