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suhmARY 

The broad effects of certain variables on the aerodynamic efficiency of 

caret wings are investigated. The variables considered are slenderness ratio, 

volume coefficient and upper surface incidence; skin friction, including the 

effects of wing loading, altitude and transition Reynolds number; and parasite 

drag. This study highlights the important areas for future investigation, and 

suggestions are made for experimental and theoretical work. Detailed conclu- 

sions are given at the end of the Report. 

* Replaces R,A.E. Technical Report No. 66036 - A.R.C. 28,172. 
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1 INTRODUCTION 

In recent years a number of methods l-4 have been suggested for designing 

wing shapes to support known inviscid supersonic and hypersonic flow fields. 

The advantage of using this approach is that, apart from viscosity effects, 

the pressure distribution over at least part of the overall surface is 

specified exactly, thus avoiding the difficulties and inaccuracies associated 

with the use of approximate theories to oaloulate pressures on wings of 

arbitrary shape. The term waverider has been coined5 to denote a wing of 

this kind, the shock system of which is contained below the wing between the 

leading edges. 

The simplest wing in this class is the caret wing proposed by Nonweiler', 

and this forms the subject of the Tresent study. This type of wing at its 

'design' condition generates below it a plane oblique shook wave attached to 

its leading edges, and hence has a uniform pressure over its lower Surface, 

Although the caret waverider is not necessarily the most efficient aerodynami- 

oally it has the advantage for the purpose of the present study compared with 

other types (e.g. the 'Jones' wing*, based on a conical flow field) that its 
volume and the overall aerodynamic forces acting on it are comparatively easy 

to calculate, and it offers a wider degree of freedom in the choice of plan- 

form for a given Mach number and volume. 

Since the flows on the upper and lower surfaces of waveriders at their 

'design' condition are independent (apart from the minor effect of leading 

edge blunting), a variety of upper-surface shapes can in principle be chosen 

(e.g. Ref.6), although to be classed as a waverider the upper-surface of' the 

wing should strictly be shock-free, i.e. the pressures on this surface should 

be at or below the ambient value. Theoretical studies of caret wings to date 

have usually assumed the upper-surface to be generated by lines parallel with 

the free stream direction. In this case, and in the absence of viscous or 

extraneous drag items, the ratio of lift to drag is given simply by the 

cotangent of the lower-surface incidence. 

The purpose of this Report is to investigate systematically the broad 

effects of certain variables on the aerodynamic efficiency of caret wings. 

The care-t wing is assuzd to have a delta planform and plane surfaces on 

each side of the oentre line, (see Fig.?). This approach is a convenient 

way of relating the aerodynamics and geometry of families of vehicle shapes 

to their operating conditions. The variables investigated in this study are:- 
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(i) Slenderness ratio (i.e. semispan/length) and volume coefficient 

( i.e. volume/plan area 3/z ) at zero upper-surface incidence. 

0-i) Uppe 
8 

r-surface incidence, at given values of slenderness ratio 

and volume coefficient. 

(iii) Mach number, in the range 5-10. 

(iv) S kin friction, including both the effect of typi_cal arbitrary 

values of skin friction coefficient, and also of calculated skin friction 

assuming various Ning loadings, attitudes and transition.Reynolds numbers. 

w Parasite drag, present in various arbitrary amounts. This item 

would include base, fin and leading-edge bluntness drag; (although the basic 

wing of Fig.1 has sharp leading edges, the effects of blunti.ng the leading 

edge are considered). ! 

In Appendix A it is shoNn that aerodynamic efficiency is measured more 

correctly by the weight to drag ratio rather than by the more familiar lift 

to drag ratio. Aero&ynamic lift is less than the weight due to the effect of 

the Earth's curvature causing a bentrifugal lift to be developed which of 

course varies as (flight speed)*: Hence in this Report aerodynamic efficiency 

is presented as Neight to drag ratio where comparisons are being made or 

implied between one speed and another, but as the more familiar lift to drag 

ratio where speed effects are essentially irrelevant. Since aerodynamic 

effioiency is only one factor affectin, Q overall range it is obviously most 

important that investigations of the present kind should be linked with others 

which consider propulsion, flight trajectory, stability and control, and struo- 

tural aspects, (see Section 4). 

Section 2 of this Report and-also the five Appendices give details of 

the theoretical background to the estimates of lift to drag and weight to 

drag ratios described later, In Section 3 the effects of the variables (i)-(v) 

listed above are as far as possible considered separately. Finally in Section k 

' suggestions are made for further work, both experimental and theoretical. 

2 T:XEORY 

2.1 Geometry 

Fig.1 shows a caret wing" of delta planform of span 2s and length 4 , 

whose upper and lower surfaces are at incidenoes of ate and "r, to the free- 

stream direction, respectively, measured in the X&plane. The base of the . 

9 The basic wing cons!d\.red hex-e has sharp leadlq edges. Clmnges In geonotry caused by leading-edge 

blunting are discussed in Appendix 0. 
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wing is chosen to be at right angles to the free-stream direction in all cases. 

Thus the plan and base area, and volume, of the wing are:- 

Plan area = s4 = S (1) 

Basearea = sb(tanaS,-tan%) (2) 

Volume = 5 se(tan aL - tan cfU) . (3) 

It is convenient at this stage to introduce the volume coefficient*, 

't = volume/(plsn area) 3/2 . 

Thus, 

(4) 

In order to oaloulate the contribution to drag from skin friction, it 

is necessary to know 

and SL respectively. 

sU 
s= 

the wetted areas of the upper and lower surfaces, Su 

These are given by:- 

set 
4 

I e2 + - cos2 “tr (tan zl - tan 
24 

s2 “v) 3 

sL 

c 

d2 s = se0 aL 1 + 7 00s 2 "lc, (tan G - tan 
4 

I2 ' 

(54 

(5b) 

where Z is the incidence of the plane of the leading edges to the free-stream 

direotion, i.e. the angle between the free-stream and the attached oblique 

shook wave, which is a function of MO and FL' . 

It is sometimes convenient to express these wetted areas in terms of 

oU, UL and the anhedral angles of the upper and lower surfaces in the plane 

of the base $, and $L respectively, in which oase equations (5a) and (5b) 

become:- 

sU 
s = seo "tr se0 jfu (1 - sin2 'ku sin2 aU)+ (64 

* Volume ooeffioient is a parameter particularly appropriate to project studies, 
and those concerned with the aerodynamic forces on particular shapes may prefer 
to express the geometry in terms of the included angle between upper and lower 
surfaces inthe plane of symmetry = 26 say. From equation (4), 

tan FL - tan aU = 3 (s/e)' 5 tan 28 for small aU . 



where 

sL 
-i5- = set "r, set $, (1 - sin2 $L sin 2 %)S (6b) 

tan GU = t (can r; - tan %) (64 

tan (IL = p (tan t; - tan aL) @a) 

In equations (6a) and (6b) b a ove it is normally sufficiently accurate 

to equate the terms in brackets to unity. 

Using equations (5) in conjuncticn :vith the equations given below in 

Section 2.3, the area ratios S 

of ~,s/~, h!', C 

v/S and SL/S have been calculated ns functions 

- PL 
and MO, for ~I.C = 0 and 0.2/po, and thzse have been plotted 

on Fig.2. It will be noted that the ratio SL/S depends almost entirely on 

@,s/4 whereas the upper-surface ratio is affected by Mz C 
PL 

and p, c4~ as 

well as by 6, s/e, The effect of upper-surface incidence on SC can be 

estimated to a close approximateion by dividing the value at "ir = 0, and the 

same PO s/8 end Mz C 
FL' 

bY (;  + $) l 

From the foregoing, it can be seen that three independent geometrical 

variab1e.s must be sp ezified -to define the shape of the caret wing and its 

attitude relative to tht, free-stream direction. Thti three which will usually 

be specified in this Report are 

(i) Volume cocfflcient, T = volume/(plF8n ar(-3a) 3/2 , 

(ii) Slenderness ratlqs/&, 

(iii) Upper-surface :ncidencz, aC+ 

If these are fixed, along with the Mach number, then the shock angle ;j and 

the normal pressure distribution - and hence to a very close approximation 

the lift coeff'ici~~nt - arc determined. Conversely, lift coefficient can be . 

varied by varying any ant- of these parameters and hence can replace any one 

of them as an independent variable; this is done in this study, e.g. CL 

replaces au unless the latter is fixed. The lift to drag ratio at a given 

Mach number, with arbitrczry values for the skin friction i‘orce coefficients 

on each surface is of course also a function only of these three variables. 

But if the friction drag is to be calculated, the win& leading and size 
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(or weight) of the aircraft must be specified also, along with some criterion 

for estimating the transition position. 

It may be required to know the flow conditions in a plane normal to 

the leading edge, for example in calculating effects of leading-edge blunting, 

(see Section 2.4.1 and Appendix D) or the conditions for shock detachment, 

(see Section 2.3 below). Denoting the velocity component of the free-stream 

normal to the leading edge by VN and the corresponding Mach number by s , 
0 0 

the ratios VN /V,, and s /MO are given simply by the sine of the angle 
0 0 

between the leading edge and the free-stream vector through the wing apex:- 

(7) 

Since both the X-Z plane and the plane normal to the leading edge are normal 

to the shock plane, the velocity components normal to the shock evaluated in 

these two planes must be identical. Thus, if Z& is the shock angle measured 

in the plane normal to the leading edge and % the lower-surface incidence in 

this plane, 

Similarly, the ratio of the heights above the shock, of the surface and of 

the free-stream vector through the leading edge must be the same in the two 

planes, i.e. 

Here, a and a~ of course refer to the same surface, which may be either the 

upper or lower surface. Equations (7), (8), (9) may be combined to give 

tan Cz;rJ - %) 
tan $ 

= tan (2: - a.) 
tan 5 

% 
in terms of a, z and S/d 

2 tan a~ = e 
(seo2 c + s2/J2)' tan a 

2 2 
tan2 Z + 9 /d - tan 2: tan a 

63) 

(9) 

(10) 
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Some observations can be made about the likely limits of variation of 

7; and s/e. A typical value of 7; for large supersonic aircraft is about 0.04 , 
(see Ref.8), though for small aircraft somewhat larger values are obtained 

since the dimensions of certain items'remain constant, e.g.' crew dimensions. 

However, for a hypersonic aircraft based on the caret wing higher values of 1 

z will probably be needed. This is because with increase of Mach number the "I 

size of the propulsion system will most likely increase; and if it is 

integrated with the airframe this, would take up part of the volume of the ' 

caret wing as defined in Fig.1, i,.e. the propulsion nozzle would partly or 

wholly fill the base area. Also, at high Mach numbers the use of hydrogen 

as a fuel has certain attractions 10,l-l 
9 but its low density would require a 

large storage volume. For these 'reasons, values of z for the basic caret wing 

significantly higher than 0.04 wo,uld seem to be needed. In this investigation 

therefore, values centred round 0.08 will be considered, 

The slenderness ratio s/e must have a practical lower limit determined 

by considerations of low-speed handling, airfield performance etc., which is 

likely to be between 0.2 and 0.3., Following Ref.8, the minimum slenderness -' 

ratio which is considered in this study is 0.2. 

2.2 Overall lift and dra& 

The overall lift and drag coefficients based on plan area are:- 

S s 
CL = CpL - C% - CFU s u sin a~ - CFL + sin QL w- 

su SL , . 
CD = CPL tan % - cpv tan av + cm s 00s av + CFL s COQ % * CDP (124 

I  .  

where CFU and CFL are the mean tangential force coefficients due to skin 

friction, each based on the appropriate surface area for the upper and lower 

surfaces respectively, and CDp is a parasite-drag ooefficient based 'on plan 

area S. For convenience, we may write 

i.e. C DF is the total 

CD 

5 CDF = cm s ys 

skin-friction drag coefficient based on S. Then 

S 

C c 
pL 

hrl~-C 
% 

tan a~ + CDF + CDp 

(12b) 

024 
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2.3 Pressure coefficients 

The pressure coefficient C 
pL 

on the lower-surface of a caret wing can 

be expressed in terms of the shock wave angle G and the free-stream Mach 

number MO by means of the well-known equation from two-dimensional oblique- 
12 shook theory 

C 
pL 

A( = y+l sin2 G - 1/M:) (13) 

The relationship between the lower-surface incidence uL, the shock-wave 

angle and the free-stream Mach number can also be obtained from classical 

theoryI 

2 cot Z (sin' Z - 
tan% = 

V() 

y+l- 2 (sin2 Z - I/M:) 

For y = 1.4, these equations become 

C = 
pL 5( 

sin2 G - l/M;) 

04) 

05) 

and 

tar-y = 
5 cot < (sin2 < - l/M:) 

6 - 5 (sin2 5 - I&) 
(16) 

The shock-wave angle 2: can be eliminated from (15) and (16) giving tan "r, in 

terms of C 
pL 

and MO 

C 
pL ' 

tan aL=z 
pL c 

b-7) 

There is no explicit relation for C 
pL 

in terms of MO and uL . If % is given, 

equation (17), which is virtually a cubic in C 
PL' 

must be solved. For desk 

computation, it is sometimes more convenient to use an approximation for C 
pL 

in terms of cL and MO. A number of such approximations are discussed in 

Appendix B. 
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The foregoing equations apply at angles of incidence of the lower-surface 

below the maximum at which a shock can be attached to the leading edges. To 

calculate this maximum incidence snd the assooiated maximum pressure coefficient, 

it is necessary to consider flow conditions normal to the attachment line, 

i.e. in a-plane normal to the leading edge. Shock detachment occurs if a 

maximum turning angle in this plane, (Qmax is exceeded. This critical angle 

increases as the Mach number in this plane MN increases, but the shock angle 
0 

at (c$max, which is also a maximum for'that particular Mach number, exhibits 

only a small variation 92 - between 64' and 68' - for all Mach numbers MN 
0 

greater than l&I. Now, from equations (8) and (15), 

’ 
MN, = 

(I + 0.6 Id; CpL+ 

:2. 
and since the relevant values of (M c 

O pL 
in this study exceed unity, M > 1.40 

NO 

and so we can use gN 6 64' aa a convenient condition for-ensuring that the 

shock is attached to the leading edges. From equations (7), (8) and (15), 

- 0.6 Mz Cp )2 
L 

co9 *t = 
Mi 

c 
1 + 0.6 ME C + 2 (p', - 

pL e2 
0.6 M2 C 

O pL 
) 

3 

Making the approximations PO .n M; and that 0.36 C* is small of.unity, C can 
pL pL 

be expressed in terms of Z+, M. and s/4:- 

c 
. ~ a (s/4)2 tan2 ZN - 1/M: 

pL 3 1+ (s/q2 (l-c2 tan $J 

Assuming a minimum s/1! of 0.2 and a,minimum Mach number of 5, the pressure 

coefficient corresponding to a shock detac;lment angle of 64' is 2 0.177. This 

is likely to be well above the'vslues appropriate to cruising'flight. 

At the present time no exact solution exists for the pressure distribu- 

tion on the upper-surface of a caret wing with aH f 0. However, since at 

hypersonio Mach numbers th e contribution to overall lift and drag from the 
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pressure distribution on the upper-surface is likely to be much less than 

the Contribution from the lower-surface, an approximate value of the mean 

pressure coefficient on the upper-surface should be adequate for the purposes 

of calculating overall lift and drag. It has therefore been assumed that 

the mean pressure coefficient on the upper-surface, C 
pv' 

is that corresponding 

to a two-dimensional expansion or compression, as the case may be, through 

the "surface incidence", %, where surface incidence is defined as the com- 

plement of the angle between the free-stream vector and the normal to the 

surface. Since the upper-surfaces ofthe caret wings considered in this 

Report are oomposed of two flat facets, the surface incidenoe and the pressure 

coefficient over eaoh facet will be oonstant. The surface incidence, OL;, is 

given by:- 

sin o$ = sin au Jru co9 (18) 

where $, _ is the anhedral angle of the upper-surface in the plane of the base 

(equation (6~)). 

Measurements of upper-surface pressures have been made 13 at MO = 4.3 

on a caret wing of slenderness ratio 0.25, for which the design condition 

was av = 0. The following table gives the measured increments in negative 

pressure coefficient on the upper-surface, at various spanwise stations, due 

to increasing upper-surface incidence from zero to 4' and also to IO’. 

Distance from wing C, 

Local semispan 0 0.2 0.4 0.6 0.8 0.9 

-AC = 4O + au 0.010 0.0145 0.0185 0.0185 0.021 0.020 

-AC ,oU=lOo 
9r 

0.029 0.033 0.0345 0.0375 0.042 0.0395 

Values of the mean pressure coefficient on the upper-surface estimated 

by the method described above are -0.017 for oU = 4’ and -0.0365 for uU = IO', 

the anhedral angle $U being 55’ in this case. Thus, although the pressure on 

the upper-surface varies somewhat across the span, - as might be expected - 

from a low value near the ridge line to a high value near the leading edge, 

the method used in this study to calculate C 
pU 

gives a reasonable mean 

value. 
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Convenient approximations for calculating C in.terms of a; are given 
in Appendix B. % 

The above equations for the pressures on the wing surfaces, which are 

used for the estimates of lift and drag described later in this Report, apply 

strictly to the basic caret wing of Fig.? which has sharp leading edges. It 

is assumed that any rounding of the leading edges which may be necessary for 

structural reasons will be small - a radius of the order of 0.1% of overall . 
length, say. A simple analysis of the lift and drag penalties due to leading 

edge blunting is given in Appendix D based on the assumption that the pressures 

to the leading edge radius 

wing. 

on the flat after-surfaces behind the tangent lines 

are the same as those given above for a sharp-edged 

2-t Skin friction 

2.4.1 Transition location 

Before estimates can be m&de of overall skin-friction drag it is of 

course necessary to know the extent of laminar and turbulent flow on each 

surface of the wing. Unfortunately, information on this topic is very 

limited at hypersonic speeds. A useful summary of the present state of 

knowledge on transition at supersonic speeds, with a limited indication of 

hypersonic trends, has been made by Michel d4 . 

For smooth, flat plates with zero heat transfer from the surface, it 

is known that Ret, the Reynolds number based on,,conditions.at the edge of the 

boundary layer and distance from the leading edge to the midpoint of the 

transition zone,increases as Mach number increases above about 3. _ Heat 

loss from the surface by radiation and conduction has the effect - within 

certain limits - of increasing Ret. still further, the combined effect of 

Mach number and heat loss increasing Ret typically by an order of magnitude 

bet'tiecn subsonic speeds and a Mach number of about 10, Yet another effect 

of Mach number on the laminar boundary layer is 't?o decrease its sensitivity 
‘5 to roughness , - again, typically, for a flat plate the size of roughness 

necessary to have a significant,affect on Ret increases by an order of 

magnitude between subsonic speeds and MO = 5. 

For these reasons, hypersonic flight speeds offer the prospect of 

higher values of Ret than those normally obtained at lower.speeds, without 

special attention to surface finish. 
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On the basis of the very slender available evidence, a 'datum' value 

for Ret of 107 will be assumed for the calculations in this study of skin 

friction drag at Mach numbers in the range 5-10, but in view of the many 

unknowns, and to illustrate the effect of variation of Ret, two other values 
will be considered also in some cases. These are, an 'optimistic' Re 

2.5 x 107 and a very 'pessimistic' 
t of 

value of zero, - i.e. an all-turbulent 

boundary layer. For the oases considered in this Report, the ratio of wall 

temperature To to boundary-layer recovery temperature Tr, calculated at a 

point just ahead of the transition zone, varies from about 0.5 at MO = 5 and 

a relatively low attitude to about 0.2 at MO = IO at a relatively high 

altitude. 

The datum Ret of IO7 is based on the results of experiments with flat 

plates having sharp, unswept leading edges in two-dimensional flow. Now although 

the flow over the surfaces of a caret wing having sharp leading edges is a 

close approximation to that on a two-dimensional flat plate, some rounding of 

the leading edge might be necessary to keep local temperatures in this region 

within practioal limits, - and it is known that the combination of leading- 

edge rounding with swee2back can cause boundary-layer transition at or near the 

leading edge, this being attributed at low speeds 16 
to so-called cross-flow 

instability. Criteria for estimating the critical leading-edge radius which 

just causes transition near the leading edge have been developed for low 

speeds, but although it is known that a similar phenomenon exists at super- 

sonic and hypersonic speeds, the conditions under whioh it occurs at these 

speeds are not well understood. Topham 17 has correlated available experimental 

data from wind tunnels on heat transfer rates to yawed cylinders at hypersonic 

speeds up to MO = IO. He suggests a method for calculating the critical 

cylinder radius below which heat transfer rates correspond to theoretical 

values for a laminar boundary-layer and above which the heating rates exceed 

the laminar v.alues and hence, it is inferred, transition to turbulent flow 

has begun at the stagnation line. Topham's criterion, (which is nominally a 
critical Reynolds number of IJCI based on stagnation-line conditions and the 

boundary-layer momentum thickness derived from velocity components parallel 

with the stagnation line), involves a knowledge of the velocity distribution 

near the stagnation line, in a plane normal to it. To make an estimate of 

critical leading-edge radius for the caret wing, a pressure distribution 

round the leading edge in this plane of the Newtonian type has been assumed 



(as in Appendix D), since a correlation 18 of experimental results for yawed 

cylinders shows that this is a good approximation where the Mach number 

component normal to the stagnation line lies between 1.5 and 3.0 - the typical 

range for caret wings. Hence, the following values of the critical leading- 

edge radius, r_-,,, have been calculated for caret wings of delta planform 

with "v = 0. 

% 
1 

5 

s/e 0.2 

C 
pL 

f 0.06 

r crit (in) W/S = 25 lb/ft* 0.6 

r crit (in) W/S = 50 Yo/ft*/ 0.3 
I L 

5 40 

0.3 0.2 

0.10 0.05 

1.2 / 0.8 

0.5 0.4 I 

IO 

0.2 

0.08 

1.5 

0.7 

10 

0.3 

0.08 

1.8 

0.8 

Present indications are, then, that to achieve a significant proportion 

of laminar flow over the wing surfaces the leading-edge radius must be below - 

perhaps well below - these values. Recent studies 19 in Structures Department, 

R,A.E, suggest that in fact this is quite practical. Therefore the datum 

Ret of IO7 can be regarded as feasible, although a real degree of uncertainty 

must attach to any particular value, in view of the dearth of information on 

hypersonic transition. 

Apart from its effect on skin-friction drag and hence on the ratio of 

lift to drag, the proportion of wing area on which the boundary layer is 

laminar has a direct effect on the kinetic-heating problem, since equilibrium 

temperatures in the laminar region are likely to be several hundred degrees 

lower than those in the turbulent region at the higher hypersonic speeds. 

For a given transition Reynolds number the proportion of laminar flow on one 

wing surface will depend on the length of the wing, F?ach number, wing loading, 

lift coefficient and the division of lift between the two surfaces. Fig.3 

shows an example for a = 0.08 and a wing loading of 25 lb/ft*. Curves of 

sIkJss at MO = 5, 7 and 10 are given for the upper and lower surfaces as a 

function of overall lift coefficient, Results are shown for three ways of 

varying CL:- 

(a) by varying upper-surface incidence with s/e constant at 0.2 
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(b) by varying upper-surface incidence with s/8 constant at 0.3, and 

(c) by varying s/8 with the upper-surface streamwise. 

The ratio S LAhi SS is readily presented for an arbitrary transition --- - 
Reynolds number Ret, so while the curves shown apply to We t =jlO% (Le. =107 

for W = 100 000 lb), a correction chart is given for other values of Re t. For 

the particular volume and wing loading chosen, the uper surface has roughly 

50$ more laminar flow than the lower. An important feature is that the area 

of laminar flow on both surfaces increases both with Cl., and MO. For flight 
at the higher Mach numbers where the kinetic heating problem is severe, it 

may be advantageous therefore to fly at a relatively high lift coefficient 

and slenderness ratio even if this implies an increase in drag above the 

minimum. This point is discussed further in Section 3.4.2. 

2.4.2 Estimation of skin friction 

The method used to estimate skin friotion for each surface of the caret 

wing,in order to obtain the results discussed later in this Report, is fully 

described in Appendix C. Zero conduction into the wing surface has been 

assumed, heat loss being by radiation only, with emissivity = 0.8. Figs.Cl 

to C5 of Appendix C enable a rapid estimate to be made of skin friction for 

any constant pressure wing surface of delta planform, given the values of 

stream Mach number, surface pressure coefficient, altitude, overall length 

and transition Reynolds number. 

Figs.lc(a) and 4(b) present examples of the tangential-f'orce coefficients 

due to skin friction, CFU and CFI, for the upper and lower surfaces respectively, 

each based on the appropriate wetted area. Values are shown as functions of 

overall lift coefficient for MO = 5,7, andl0,andwingloadings of 25 and 50 lb/ft2, 

assuming the 'datum' transition Reynolds number (107). It will be noted that 

there is typically a very large difference between the upper and lower surface 

values of friction-force coefficient which becomes more marked as Mach number 

increases. Changes in overall length and upper-surface incidence do not have 

a large effect, although the latter is favourable and would tend to reduce 

the variation in overall friction drag with CL at Constant 'G and s/e. A 

typical mean friction-foroe coefficient biased towards upper-surface values 

to take aocount of its greater wetted area would be 0.0012. 

Some examples of the overall friction-drag coefficient (equation (12b)) 

have been calculated for the datum transition Reynolds number, and are 
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presented in Fig.5 as functions of CL. The effect on CDF is compared of 

varying CL by varying, individually, a~, s/4 and Z. It will be noted that 

'DF is far from being independent of CLand it is difficult to draw general 

conclusions regarding the trend of this variation. The increase of CDP with 

increase of C L is greatest if the latter is obtained by increasing '6. Changing 

CL by changing s/4 at constant z and "li tends to produce the smallest varia- 

tion in GDP0 

2.5 Parasite draq 

In this study, arbitrary values have been postulated for CDP, the para- 

site-drag coefficient based on plan area. The term parasite drag is here 

intended to cover the drag of fins, control surfaces, any base ares. not filled 

by the engine efflux, engine installation items not debited to net thrust, the 

drag penalty of rounding the wing leading edge to achieve an acceptable leading- 

edge heating rate, and the drag of miscellaneous excresences not included in 

this list, Clearly it is not possible to assign specific values to these 

quantities at this stage. Appendix D presents an approximate method for 

estimating the drag of a given amount of leading-edge rounding. 

2.6 Maximum lift to drag ratio with (CDF + CDP) constant and "or = 0 

Relativelv simple expressions cn.n be derived for the ,naximum lift to . 
drag ratio developed by a ccret wing at a given Mach number, and for the lift 

coefficient and incidence at which this occurs, if two conditions or con- 

straints are specified. These are 

0.) (CDF + CDp> is sensibly invariant with incidence (i.e. CL) , 

(ii) the upper-surface incidence is nl;~?zys zero. 

These conditions, particularly the second, impose restrictions on the generality 

of the results obtained and these will be discussed at the end of the analysis. 

It should be noted from the outset however that zero upper-surface incidence - 

which may be a desirable constraint because it ensures an orderly and predic- 

table flow - has the result that variation of lift coefficient (i.e. lower- 

surface incidence)at a given Each number implies variation of the volume 

coefficient 7 and/or of the span/length ratio, in accordance ?Jith the relation- 

ship of equation (4) with c"u = 0. 

Denoting overall lift and drag rijith a~ zero by Lz, DZ, and neglecting 

the very small contribution to lift from the friction force on the lower-surface 
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equation (II) gives 

CLz = CpL 

and therefore from equation (120) 

!!z = 
C 

DF 
+c 

Lz 
cLz 

Dp + tan a 
L 

Substituting for tan uL from (17), we have for y = 1.4 

f)zl= 'DF + 'DP 
C 

LZ 
I - 0.6 cL 

Z 
- @z 

LZ cLZ 
+ 2-c 

LZ 0.6 c 
LZ 

21 + l/MO 

3 

09) 

(20) 

Hence, by differentiation with respect to C 
Lz' 

and with the first assumption 

listed above, viz that (CDF + CDp) is invariant with CL , it can be shown 
Z 

that C* 
LZ 

, the lift coefficient for maximum ratio of lift to drag with a~ = 0, 

is given by solutions of the equation 

c* 
LZ 

9 61’3 11 + 5/0$ . c; >I 

+ cDp)2'3 
= z- (1 + 6) 

('DF c; )]VJ 
Z 

(214 

where 

(I + 0.3 Mz c;I )(I - 0.6 c* - ,/ME)& (1 - 0.5 c* J2 

(1 + tp c 2 LZ LZ 
2 

< c; ) * (2’b) (1 - 0.7 c; - 0.2 c* 
Z 

- l/Mo)(l + 0.3 
Z 

Lz 

Now for values of CE less than 0.1 - and this will be found to be normally 
Z 

the case - and for Mach numbers in excess of 3, then -0.04 < 6 < 0.04. 

Therefore it is valid to regard the dependent variable on the L.H. side of 

equation (21a) as a function mainly of ME Cz , Mach number itself being a 
Z 

second, much less important variable. Therefore we can write 
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C” 
LZ 

+c)273 = 
v3 

I# 

('DF DP 
lM 

0 

\  

.  .  .  (22) 
I  

In ~ig.6, values of C* /(CDF + 
LZ 

'Dp> 2'3 'calculated from equation (2~) 

have been plotted against MO (CDF + CDP) v3 for MO = 3, 7 and 15. It can be 

seen that for all likely values of (CDF + C,),.- 0,0005 to 0.01 say - varia- 

tion of MO between 3 and 15 has only avery small effect on the relationship 

between C* /(CDF + CDP) */3 
LZ 

and MO (C DF + 'DP 
y/3. Further, for 

% (%I? + 'Dp' 
v3 3 0.9, the approximation 

+ 'DP 
y/3 

I . 

gives 

CLz = 

C;T to an accuracy better than 2%. 
Z 

Maximum lift to drag ratio'is readily obtained from equation (20) with 

C" . 
LZ 

In this case the appropriate approximation is 
, 

$,F + $P)“~ fi f[Mo (CDF + CDp)"3] 
. 

The exaot relationship is plotted in Fig.7 and again Mach number itself has 

only a very minor effect, k good approximation to the results shown, for 

0.5 < MO CCDF + CDp) v3 < 2.5 is . . 1 

Lz (J 
d.62 0.24 

D max /c (CDF +v + Ido (CDF + CDPj2'3 
(23) 

Finally, (CLL);, the lower-surface incidence for maximum lift to drag 

ratio with zero upper-surface indidence, is obtained-from equation (19) in 
I 

the form * - 

(tan cf.,& 1 (CDF + C,,p)2'3 lb 

(cDF + CDp)"3 = (Lz/Dz)ma (CiF + CDp)"3 -' 'zz 
2 f [MO (CDF + CDp) J 

Fig.8 shows the variation of (tan aL)l/(CDF + CDp) v3 with MO (CDF + CDp) v3 

A useful result from the fdregoing is that the product of the' ordinates 

Of Figs,7 and 8, viz (tan c+.,)i x ,(Lz/Dz)max, does not.vary rapidly with the 
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primary independent variable, Mo (CDF + CDp) v3 . The following table gives 

values of this product, along with (LS/Dz)madMo obtained by dividing the 

ordinates of Fig.7 by MO (CDF + CDp)'/3. 

Mo(CDF + 'DP) 
v3 0.5 1.0 

(Lz/DZ)maJMo 2.2 0.86 

(tan aL)k (LdDz)- 0.53 0.58 

1.5 2.0 

0.52 0.37 

0.61 0.62 

It is adequate to regard the interestin Q range of (L/D~)~OJ(M~ as 0.4-2.0 

in the present context, from which we can conclude 

(tan a.& (LdDz)max = 0.58 2 0.04 (24) 

All the foregoing results apply strictly within the constraints 

imposed on the analysis, i.e. (C DF + CDP) invariant with CL and upper-surface 

streamwise. Considering the first of these conditions. CDp is sn arbitrary 

allowance for extra-to-wing drag items and it is normal practice to regard 

these as essentially invariant at a given Mach number. CDF on the other hand 

will in general vary with CL, and although in principle this variation can 

be calculated from the data given in Appendix C - examples have already been 

given in Figs.5(a) and 5(b) - in practice this would complicate this analysis 

enormously. Hence constant values of CDF have perforce to be assumed. Now, 

from the curves of CDF presented in Figs.5(a) and 5(b) for streamwise upper- 

surface it can be seen that it is more nearly correct to assume a constant 

C DF if CL is changed by variation of s/8 at a given 'c than by variation of 

?; at a given s/4. Hence the analytical results derived above are best inter- 

preted as applying to the case of a caret wing with streamwise upper-surface 

for which the value of z is given, and aL and CL are changed by varying s/J. 

It is in any case natural to regard 't as an independent variable, the value 

of which is determined essentially from considerations of stowage. So, with 

given values of MO and 1; and with an estimate of (CDF + CDp), (tan oL)z can 

be obtained from Fig.8 and this corresponds to a particular 'optimumt value 

of s/4 for the upper-surface streamwise case, given from equation (4) by 
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(25) 

The interpretation of this and indeed all the foregoing results in this 

section requires special care in view of the second constraint imposed on the 

analysis, i.e. that the upper-surface incidence shall be zero. The signifi- 

cance of this constraint can be understood best by reference to Fig.E2 of 

Appendix E which shows, for MO = 5 and 10, both (L/D)nax and Lz/Dz for a two- 

dimensional wedge as functions of wedge semi-angle 8 and (CDF + CDp). Values 

of Lz/Dz for the caret Oping correspond exactly to those of the wedge of semi- 

=h3le Z&Qz having the same (CDF t C,), and the maxima in the wedge Lz/Dz 

curves on Fig.E2 are precisely the'vslues of (Lz/Dz)max for the caret given 

on Fig.7, stnd occur at d = 3 (ai);' as givenby Fig.& The curves of (L/D)max 

on Fig.E2 refer to the maximum with respect to variation of incidence at a 

given semi-angle and (CDF + C,), and these only ccincide with the Lz/Dz 

curves where this cptimum incidence happens to correspond to a~ 2 O,(see 

Fig.El). The (L/U)max 
I 

values for wedges are not exactly the same as those 

for caret wings -&th the same (CDFV+ CDp) and (aL - %) = 28, because the 

anhedral on the caret reduces upper-surface lift at a given a~. However, 

the general trend of (L/D)- will clearly be similar. In particular, for 

the highest (L/D)max, (a+,., - c$,) should b e reduoed to a very low value, - less 

than 2' - so long as CDF is not thereby increased. For given values of 'G 

thought to be relevant to this study, this corresponds to extremely low values 

of slenderness ratio as given by equation (4), much lower than the minimum 

practical value as determined by low-speed considerations, i.e. about 0.2. 

Since Fig.5 shows that at Mach numbers of 7 and 10 there is not much varia- 

tion in CDF with s/i? down to Oe2, at these speeds the optimum slenderness 

ratio from the standpoint of lift to drag ratio when a~ is free to vary will 

be the minimum practicable value. At Mach 5 on the other hand, Fig.5 sh'ows 

an appreciable increase in CDF due to decreasing s/4 from 0,3 to 0.2; there- 

fore the best slenderness ratio at this speed is likely to be in this range 

depending on the value of 2. 

To sum up, the analytical results obtained in this section may be broadly 

interpreted as follows 

(1) If <s/e>; is 1 ess than 'the minimum practical value of 0.2 or 

thereabouts, then the best ratio of lift to drag is obtained with 
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this minir~~~ slenderness ratio and with approximately zero upper-surface 

incidence, although this lift to drag ratio will be less than (LS/DS)~~ 

as given by Fig.7. 

(2) If b/a; is equal to or greater than the minimum practical value 

of around 0.2, the results of course apply to the case a~ = 0 but (Lz/Dz)mx 
Will be significantly less than the best lift to drag ratio using upper-surface 

lift, with s/4 ti 0.2 at MO = 7-10 and s/e fi 0.2-0.3 at MO = 5. 

The following are some typical values of (tan aL)z derived from Fig.8 

using typical skin-friction drag coefficients from Fig.5:- 

MO 5 7 10 

'DF 0.0038 0.0031 0.0026 

(ta +; CDP = ' 0.095 0.099 0.104 

(tan a$; CDP = 0.~~ 0.105 0.313 0.120 

Taking @an cf.,.,); = 0.105 as typical, from equation (25) (3/&)1>0.2 if 

'c < 0.08 or thereabouts. Hence if 7; < 0.08, restriction to QV = 0 

would cause a loss in lift to drag ratio. If 7 b o-08, optimum c+, is near 

to zero but a minimum practical slenderness ratio of 0.2 involves some 

sacrifice in lift to drag ratio. These points are illustrated further in 

Section 3.2. 

3 REVIEW OF FACTORS AFFECTING DRILG 

3.1 Slenderness ratio and volume coefficient 

In this and the next section the effects of variation'of the geometrical 

variables 2, s/4 and a~ on the lift to drag ratio at particular Mach numbers 

are considered; this section deals with variation of 'G and s/e with the upper- 

surface streamwise, the next with variation of "v at particular values of z 

and a/c. In both cases, the effect of variation of the surface friction ooeffi- 

cients is excluded - to reduce the number of variables affecting the results - 

by assuming an arbitrary constant value of 0.001 for both CFG and CFL. 

Lift to drag ratio with "v = 0 has been plotted against s/4 in Figs.Y(a) 

to (c) and against CL in Figs IO(a)-(c), for Mach numbers 5, 7 and IO in 

each case. These results show the rapid fall-off in LZ/DZ as s/e is reduced 
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below the value for (LZ/DZ)max at a given z, which has already been discussed 

in Section 2.6; this is in effect the penalty for not naking use of upper- 

surface lift. Also evident is the decrease in optimum slenderness ratio below 

a practical lower limit of 0.2 when 7 exceeds 0.08. 

Due to variation in wetted area these results do not correspond exactly 

to the constant CDF case treated analytically in Section 2.6. However, if 

we take for C = 0.001 an approximate mean CDF 

give for T(s/Z)* 

of 0.0025, Fig.8 and equation (25) 

S, 0.026, 0.030 and 0.0% at Mach numbers 5, 7 and 10 respectively, 

These values agree closely with those shown on Figs.y(a)-(c) on the envelope 

curves of lift to drag ratio vs slenderness ratio. This is to be expected 

since for a given slenderness ratio C ' FU and 'FL, the variation of CDF with ?; 

is small. 

Fig.11 shows maximum ratio of lift to drag plotted against volume coeffi- 

cient, the maximum bein g with respect to variation of slenderness ratio at 

constant volume coefficient unless this occurs at s/4 < 0.2, in which case the 

value at s/P. = 0.2 is plotted. The appropriate values of s/E are shown on 

the curves. This picture underlines the importance of z as the main geometrical 

variable, the decreasing importance of Mach number as z increases, and the need 

for low values of slenderness ratio if 'G 3 0.06, 

3.2 *r-surface incidence 

In the preceding section and in 2.6, the constraint is imposed of assuming 

the upper-surface to be aligned in the free stream direction, so that variation 

of CL implies variation of either z or s/e. If we now allow "v to V=YY CL 
can be regarded as an additional, independent variable and for given values 

of MO, 'G, s/4, C m' 'FL and 'Dp' maximum lift to drag ratio does not neces- 

ssriljr occur when uU is zero. 

In Figs.l2(a)-12(c), lift to drag ratio for caret wings at Mach numbers 

of 5, 7 and IO has been plotted against CL, assuming CFu = CFL = 0.001 as in 

Figs.9 and 10, CDp = 0 and (in some cases) 0.002, and various values of T and 

S/J?, incidence now being free to vary independe:?tly, These results confirm 

the expectation from the wedge calculations of Appendix E, already discussed 

in Section 2.6, that restriction of aU to zero involves a significant loss 

in lift to drag ratio only if (aL - uU) < 6'-7' depending on CDp, i.e. from 

equation (4), and assuming s/d = 0.2, if cc < O,O8-0.09. It will also be 

noted that making aU a variable enhances the favourable effect of a low 
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slenderness ratio at a given Z. The best slenderness ratio for maximising 

L/D at constant C Fu aJnd 5% is the minimum practical value of 0.2 in all cases 

considered except MO = 5 and 2~0.06, for which s/45=0.25ia marginally better. 

Fig.13 shows maximum lift to drag ratio va z where the maximum is with 

respect to variation of both o.D and s/e, but again with the proviso that 

s/e 2 0.2. The corresponding curves from Fig.11 for o.D = 0 are also shown 

for comparison. With aC varying, the effect of z is even greater than if 

bv = 0. Oddly enough, the favourable effect of upper-surface lift at low 7 

is greater at the higher Mach numbers. 

A point which emerges from Fig.12 is that at lift coefficients con- 

siderably greater than those for maximum lift to drag ratio, as it varies with 

"v' variation of slenderness ratio at constant z and C L has little effect on 

L/D. This raises the question, if it is required to use a lift coefficient 

appreciably in excess of that corresponding, say, to c+, = 0 (for example, in 

order to reduce surface temperatures), what are the relative merits of 

achieving this by (a) increasing aC9 (b) increasing a/d or (c) by increasing 1;? 

Pigs,ile(a) and 14(b) answer the question for z = 0.08, s/-C = 0.2 and 0.3. 

In all cases, variation of upper-surface incidence is significantly superior 

to the other ways of increasing CL for given values of CFU and CFL, and 

since upper-surface incidence tends to reduce CFu (see Fig.4) this result 

is likely to be valid also for actual, as distinct from arbitrary values of 

skin friction force coefficients. However, Fig.14 considers the case of 

variation of the three geometric parameters separately; it is clear from 

Fig.12 that increasing s/e has little or no adverse effect, provided oC is 

increased as well. A higher value of slenderness ratio may be advantageous, 

if high lift coefficients can be developed, in increasing the proportion of 

laminar flow by reducing overall length. 

3.3 Mach number 

Considering next the effect of free-stream Mach number on drag, this can 

be approached in several ways according to the constraints imposed on the 

relevant variables. 

The simplest case is that treated theoretically in Section 2.6 in which 

the upper-surface is maintained streamwise and it is postulated that 

('DF f GDP> is independent of CL at a given Kach number. Fig.15 shows 

maximum lift to drag ratio calculated with these assumptions, plotted 
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against Mach number for a range of values of (C DF + 'DP 1 ' It will be noted 

that maximum Lz/Dz at constant (CDF + CDp > falls markedly as Mach number 

increases , a typiccl example being (CDF + $4 = O.O03G, for which(Lz/DZ)max 

&XX.XCLSCS by over 17% bet;ieen MO = 5 a:ld MO = IO, 

For the purpose of showing the effect of Mach number on drag, the 

above results are misleading inasmuch as they take no acco*unt of the fact 

that for given values of T, s/e and plan area, wetted area falls as Mach 

number increases, and hence for this reason alone, C DF will decrease also. 

Further, for 301w values of z, the slenderness ratios implied by the results 

on Fig.15 are below the minimum practical value. Fig.?6 which shows maximum 

lift to drag ratio vs Mach number for given values of a assuming surface- 

friction coefficients Cr7 and CpL constant and equal to 0.001 takes account 

of these points. These curves have been obtained by cross-plotting from 

the results already discussed in Sections 3.1 and 3.-Z. The upper figure is 

for a streomwise upper surface, the lower shows values at the optimum upper- 

surface incidence; in both cases the lift to drag ratio shown is the maximum 

as it varies with slenderness ratio, su3ject to the restriction that this is 

never less than a lower practical limit of 0.2. A noticeable feature of 

these results is that the decrease of maximum lift to drag ratio with Mzch 

number is much less than that shown on the previous figure, for the reasons 

already given. With "v = 0, maximum Lz/Dz decreases between Mach numbers 

of 5 and 10 by about 10% if' T = 0.06, by 6% if T = 0.08, and by only 3% if 

'G = o,-IO. Allowing the upper surface to take up the best incidence reduces 

slightly th e variation with Mach number for those cases affected. 

The above results apply if Cm and CFL are constant. However, Fig.4 

shows that there are considerable vLa- -Fiations of these coefficients with both 

Mach number and lift coefficient. The effect of this on lift to drag ratio 

is presented on Pig.17 for a particular example, 't = Oe08, CDp = 0, and a 

wing loading of 25 lb/ft' , friction being calculated for the 'datum' transi- 

tion Reynolds number of .107, (see Stction 2.4.1)* The upper graph of Fig.17 

shows the variation with Mach number of ( a) the friction-drag coefficient as 

given by Fig.5(a) for the case z constant and slenderness ratio varying and 

(b) the variation with Mach number of the wave-drag coefficient C* 
LZ 

(tan a& 

The lift ooefficient for maximum lift to drag ratio Cz has been obtained in 
z 
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this case by starting with the theoretical value given by Fig.6 (which applies 

strictly to constant C,), then increasing this by small steps to find the 

optimum. Having determined Cz - shown on the upper graph for MO = 5,7,10 - 

the corresponding slenderness $atio was calculated, and was found to be 

approximately 0.2 at all Mach numbers, i.e. about the minimum practical value. 

Both friction and wave drag fall as Mach number increases, as does Cz , the 
2 

net result being that maximum lift/drag, shown on the lower graph, falls by 

only s between MO = 5 and MO = 10. This oan also be inferred from Fig.15 

by taking appropriate values of CDF from Fig,5(a). It happens that the 

results shown on Fig.17 also apply to the case of an all-turbulent boundary 

layer with a wing loading of 50 lb/ft2; in fact the general conclusion may 

be drawn that variations in maximum L/D with Mach number in the range 5-10 

are, typically, small. 

Finally,it is argued in Appendix A 

speed on airframe cruise efficiency, the 

relevant criterion than the lift to drag 

W ~. L/D _ - 

that in considering the effect of 

weight to drag ratio is a more 

ratio, where 

(26) 

the factor L/W being the effect of the Earth's curvature in reducing the 

aerodynamic lift required to support the vehicle at a given speed. Maximum 

W/D, also shown on the lower graph of Fig.17, increases continuously with 

Mach number from MO = 5 upwards. 

To sum up, increasing Mach number tends to improve the aerodynamio 

efficiency oriterion W/D, and slenderness ratios in the range 0.2425 seem 

to be the optimum for volume coefficients of 0.08 or thereabouts. 

3.4 Skin friction 

3.4.1 Arbitrary skin friction 

To gain some idea of the importance of skin friction, weight to drag 

ratios with zero upper-surface incidence are presented in the following table 

for three arbitrary values of friction-force coefficient,-O,O.OOl and 0.002, 

assumed to be the same on both upper and lower-surfaces. Two cases are con- 

sidered; a caret wing with z = 0.08, and s/4 = 0.02, and the two-dimensional 

wedge which has the same lower-surface incidence as the caret wing. The 
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latter can be regarded as an equivalent 'ideal' wing with the same planform, 

section and volume as the caret, but with zero anhedrsl and yet pressures on 

the lower-surface corresponding to two-dimensional flow, as on the caret. 

z = 0.08, s/d = O”2, 5 = 0, CDP = 0 

] 
Z 

2 a 
0 

w/Dz wedge MO = 5 9.7 

W/D, caret MO = 10 11.0 

W/D z wedge MO = IO 11.0 

I 

i- 

I 
L 

6.55 

7-35 

6.85 

7.4 I L 

Since the upper-surface incidence is here presumed to be zero, the only differ- 

4.9 

5.9 

5.0 

5.6 

ence between the ideal wedge and the caret wing from the point of view of lift 

and drag for given values of CFU and CFL is the greater stlrface area of the 

caret. For friction coefficients in the range 0.001-0,002, this surface area 

penalty reduces the weight to drag ratio of the particular caret considered 

by 0.8-1.0 at Mach 5, and by 0.55-0.6 at Mach IO. The effect of a friction 

coefficient of 0.001 is to reduce the weight to drag ratio by about a third 

compared with the wing in inviscid flow. This large effect underlines the 

necessity for including calculated rather than arbitrary values of skin 

friction drag in weight to drag ratio estimates. This is dcne in Section 3.4.2 

below. 

An effect of increaskg the friction-force coefficient from 0.001 to 

0.002 is to increase slightly the optimum slenderness ratio for best weight 

to drag ratio at given values of 'G. Thus, if T = 0.08 and hlo = 7, s/4 = 0.25 

is better than 0.2 if the friction coefficient is 0.002, but not if it is 

0.001. 

3.k.2 Calculated skin friction 

The skin-friction drag coefficient for a caret wing with fixed 7, s/4, 

length and Mach number depends on the lir't coefficient (i.e. %) wing loading 

W/S and transition Reynolds number Ret. Figs 18(a), (b), (c) show W/D vs CD 
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at Mach numbers 5, 7, 10 respectively, for a oaret wing having z = 0.08, 

s/d = 0.2 and zero parasitic drag, where friction drag has been calculated by 

the method described in Appendix C. On each figure, curves are shown for the 

three assumptions concerning transition mentioned in Seotion 2.4.1, the middle 

curve in each case representing an average 'datum' value, the upper one an 

optimistic and the lower a pessimistic value. The two groups of curves on 

each figure are for two wing loadings, 25 lb/ft2 on the left, 50 lb/ft2 on 

the right. Also shown on the figures, as numbers above and below the line 

for upper and lower-surfaces respectively, are the percentage areas of each 

aurfaoe oovered by a laminar boundary layer. Surfaoe temperatures at a point 

IO ft behind the leading edge in the laminar flow region and 10 ft behind the 

nominal transition line in the turbulent flow region are shown in the boxes 

at each end of the CI/EA.S scale, the first number referring to the laminar, 

the second to the turbulent region, upper and lower numbers applying to 

upper and lower wing surfaces, 

The following points emerge from a study of these results:- 

(a) Weight to drag ratio at a given wing loading increases with Mach 

number, not only the maximum values as anticipated in Section 3.3 , but also 

values at a given EAS below that for maximum Wb. 

(3) Increasing Mach number and lift coefficient at a given wing loading 

both inorease the percentage area of laminar flow on each surface. W'th Ret = 44 
a wing loading of 25 lb/ft*, M 

0 
= 10, CL b 0.08 and 4, = 100 ft, the whole of 

the upper-surface and more than 2/S of the lower-surfaoe is covered by a 

laminar boundary layer, the assooiated surface temperatures in the laminar 

region being 600'~ or less, and the weight to drag ratio about 6. At this 
relatively high CL, it would probably be advantageous to increase s/d and thus 

decrease overall length. 

(0) Inorezsing wing loading from 25 lb/g"' to 50 lb/ft2 increases W/D 
if Ret < 12 x 10 , r&luoes it if Ret > 12 x IO . 

(d) The area of laminar flow on the upper-surface is roughly 50% 

greater than that on the lower for the 'datum' transition ease* 

(e) At the partioular volume coefficient and slenderness ratio considered, 

the weight to drag ratio with upper-surface streamwise is less than 3% below 

the maximum for a given wing loading, Maoh number and Ret. Inoreasing % does 

however reduce JUS and the mean surface temperatures, and could be important 

on this account. 
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3.5 Parasite drag 

It is probably true to say that the sum of the parasite drag items 

listed in Section 2.5 constitute the bj.,agest area of uncertainty in the estima- 

tion of lift to drag ratio for a hypersonic aircraft. Considering the main 

items in turn, if a fin area of roughly 1% of wing plan area is required - 

which is typical of conventional aircraft - this would account for about 

0.0005 in CDp at M 
0 

= 5 decreasing to about half that value at M, = IO. It 

could well be less than this however, and until the lateral characteristics 

of caret wing configurations over the whole speed range have been studied no 

better estimate can be made. The penalties in lift and drag of blunting the 

leading edges have ?leen evaluated in Appendix D and it is shown there that 

if radii as large as the critical for leading-edge transition have to be used 

these are equivalent to parasite drag coefficients varying between 0.0003 and 

0.001. However, much smaller leading-edge radii may be structurally feasible. 

Even more difficult to estimate is the base drag contribution since this 

depends on the effective nozzle area, which will vary between climb, cruise 

and glide phases of the flight. The ratio of base to reference area is 

32 (s/c+, SO for a typical wing having T = 0.08 and s/C: = 0.2, and assuming 

the base pressure coefficient suggested in Ref.7, then if fraction b of the 

total base area is not filled by the efflux, the base parasite drag coefficient 

is 0.15b (1/h{: - l/d). The maximum vaiue of this (i.e. b = 1, appropriate 

to gliding flight) would therefore be as high as O.GO48 at MO = 5 falling to 

0.0014 at MO = 10. For cruising flight b << I, and much smaller values 

would be appropriate. Until specific studies of propulsion and flight 

trajectories are made it mill clearly not be possible to assign realistic 

values to base drag coefficient. rjundry excrescences, controls etc are 

another unknown. Thus the aggregate CDp for cruising flight might be as 

low as 0.001 or even less, or as great as 0.0(?2 or more, with a tendency 

to fall as MO increases. 

Figs.l2(a) to (c) h s OG the effect of a parasite drag coefficient GDP 
of 0.002, which is typically to reduce (L/D) max by about unity, and to 

increase the lift coefficient at which this is obtained by about 0.015. _ 

Variation of CDP does not affect optimum slenderness ratio significantly. 

It can easily be shown that the decrease in lift to drag ratio due to 

parasite drag, at a given CL is approximately equal to GDP x (L/D):/%, 

where (L/D), is the lift to drag ratio at C DP = 0. 
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4 PCSSIBLE FUR!l!HERWORK 

The foregoing study constitutes only a small preliminary part of the 

work which would be necessary to establish the potentialities of hypersonic 

air-breathing vehicles. Items of work which are essentially continuations of 

that described herein, and which would be required for an overall assessment, 

are as follows:- 

(a) A wider range of speeds, weights and basic configurations would 

be considered; the latter might include double carets, non-delta planforms, 

curved upper surfaces and non-planar shocks. 

(b) The effects of adding propulsion systems to the wing should of 

course be investigated. These could be limited in the first instance to 

cruise propulsion and later extended to systems for acceleration and cruise. A 

range of flow cycles with heat addition from various fuels could be studied, 

together with their effeot on airframe volume requirements. 

(o) In association with (a) and (b) above, the effects of flight pro- 

file on overall range performance would have to be established, particular 

attention being paid to airfield performance and transonic acceleration 

capability. 

(d) Finally, these preliminary assessments would lead into more 

detailed oonsiderations of layout, weights, balance and stowage and also of 

the problems of stability and control over the whole speed range. At th&s 

stage also, a review of the formidable propulsion, structural and mechanical 

design problems would be necessary. 

Besides suggesting lines of further study as outlined above, the 

present Report has highlighted certain aspects of basic hypersonic aero- 

dynamics where new data and a better understanding wxx.xld benefit future 

assessment work. These include the following:- 

(a) Criteria for boundary layer transition are required at Mach 

numbers up to at least IO, taking into account effects of blunted and swept 

leading edges, surface roughness, heat transfer and pressure gradients. 

Free flight experiments in addition to wind tunnel tests are desirable - if 

not essential - for this. 

(b) The characteristics of upper-surface flow fields requires further 

investigation, including effects of vortices, shocks and viscous interaction. 
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(c) Methods wol1l.d be required for the reliable prediction of the lift 

and drag of simple hnorsonic: aircrsaft oorti'igurstions at off-design conditions, 

and also for calculating other forces and moments relevant to problems of 
flight dynarcics. 

5 COMCLusIOIC3 

(1) In order to d emonstrate one aspect of the relationship between the 
geometry and aerodynamic characteristics of a hypersonic sircraft,a simple 

case has been chosen rvhich exhibits the essential features, i.e. the caret 

wing at its design condition. Tne lift and drag of families of such wings 
have been calculated for the Mach number range 5-10 in terms of three inde- 
pendent geometrical vz9ables, volume coefficient = volume/(plan area) 3/2 

3 
slenderness ratio = semispan/length, and upper-surface incidence. In order 

to calculate skin friction drag, particular Clues of wing loading have been 

chosen, and certain criteria have been assumed for boundary layer transition. 

It is important to note that valid comparisons between different hypersonic 

aircraft configurations must take account of any differences between these, 

or relatcd,par~~meters. 

(2) The volume coefficient cc is the most significant geometric parameter 

affecting maximum lift to drag ratio, L/D. At low values of 7; (less than 

about O.OY), maximum L/D is obtained with lift developed on the upper as well 

as the lower surface, and constraining the upper surface to be streamwise 

causes apprt"ciable loss in L/D at all Mach numbers. Y'ith increase of z, the 

upper-surface incidence for maximum L/D fails, and is about zero for z 2 0.09. 

The slenderness ratio s/C for maximum L/D is about 0.3 at 7; = 0.06 and MO = 5, 

decreasing as M and 7; increase, so thc:t in 
0 

general for maximum lift to drag 

ratio, the best slenderness rL?tio is close t,3 the minimum likely to be dictated 

by considerations of low speed handling. 

(3) The lift coefficient for maximum L/D increases slightly nith increase 

of 7, and decreases slightly with increase of Mo,its value being typically 

vkthin th? range 0.05-0.07 fo r most practical configurations. 

(L) If it is required to use a lift coefficient in excess of that for maximum 

L/D (e.g. to increase thz area of laminar flow on the wing surfaces), then an 

increase in upper-surface incidence a~, either alone or in combination with 

some increase in B/d, is superior to increasing, either 7 or s/4 ilith c+, 

constant. 



31 

(5) Wide variations jn skin friction and heating can result from different 

operating conditions, and assumptions regarding transition looation. In 

particular:- 

(i) Increasing Mach number and increasing lift coefficient (at a 

given wing loading) both increase the percentage area of laminar flow on each 

suzface. The area of laminar flow on the upper-surface is typically 5@ 

greater than on the lower surfaoe (for the assumption of Ret = i07). All- 

laminar boundary layers on both surfaces is a feasible prospect for a small 

(W = 50(800 lb) aircraft with a low wing loading for cruise (W/S = 25 lb/ft2) 

at a Maoh number of about IO; the associated surface temperatures would be 

600°C or less. 

(ii) The skin-friction force coefficient on the upper surfaoe is 

appreciably less than that on the lower surfaoe, the difference becoming more 

marked as Mach number and lift coefficient increase. 

(iii) With increase of Mach number, a favourable variation of wetted 

area and skin friction drag coefficient opposes the unfavourable variation 

of wave drag, with the result that L/D is approximately invariant with Mach 

number for the range considered, i.e. MO of 5-10. Thus the aerodynamic 

efficiency factor W/D increases continuously from Mach 5 upwards. 

(iv) The use of an arbitrary value for skin friction foroe ooefficient 

(0.001 is oommonly used) may be misleading, since it has been shown that 

there are large variations in skin-friction force coefficient with Mach number, 

inoidenoe and wing loading, as well as large differences between values for 

the upper and lower surfaces of the wing. 
3 

(6) Reducing wing loading from 50 to 25 lb/ft& reduces the equilibrium skin 

temperatures in both the laminar and turbulent region on the wing surfaces, 

and increases the area of laminar flow. The effect of wing loading on W/D 

depends on the size of the aircraft and the value of transition Reynolds 

number; for example, it has been calculated that for a wing of 100 ft root 

chord, reduction of wing loading from 50 to 25 lb/ft' reduce8 W/D for 

Ret < 12 x 106, and increases it for Ret > 12 x IO 
6 

. 

(7) Only in the case of zero upper-surface incidence, and skin-friction 

drag coefficient invariant with lower-surface incidence, is it possible to 

derive simple theoretical expressions for maximum L/D and the lift ooeffi- 

cient at which it is obtained. For all other conditions, numerical 
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caloulations are required to obtain a clear picture .of the effects of variation 

in Mach number and geometry. 

(8) The precise value to assign to the parasite drag, items (viz:- .drag due 

to fins, leading edge blunting, base area and miscellaneous excresoences) 

constitutes a large area ef uncertainty in the estimation-of L/D. The range 

of possible values of CDp might well be equivalent .to .a.;$ variation inA maximum . . . 
L/D, with the likelihood of higher values at the lower Mach numbers. 
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Appendix A 

AEZODYNAKCC EFFICIENCY CRITERIA FOR HYPl3RSONIC LONG RANGE AIRCRAFT 
(See Section 1) 

For long range hypersonic aircraft, consideration must be given to the 

contribution to range from the acceleration, cruise and deceleration phases 

of the flight trajectory. To obtain estimates of range, assumptions must be 

made regarding the type of fuel and the amount that can be oarried, the 

performance of tk propulsion unit, the aerodynamic efficiency of the vehicle, 

and the form of the flight trajectory. 

In this Appendix, the discussion is limited to that of aerodynamic 

efficiency. Conventionally, this efficiency is expressed by the ratio of lift 

to drag, but as will be shown below this criterion is insufficient for high 

flight speeds when the curvature of the vehicle's flight path (due to the 

curvature of the Earth) is taken into account. 

(a) Acceleration phase 

Equating forces along the flight path, 

F 
dvO = D+w-- 

is dt 
+ W sin y 

While normal to the flight path, 

where F = 

L = 

D = 

w = 

v, = 

w = 

net thrust 

lift 

drag 

weight 

speed 

radius of flight path 

earth radius 

-&) = W(I -3) (A2) 

satellite speed 

angle of climb. 
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Combining equations (Al) and (A2), putting T = - ;;, and neglecting 

the small effect of the angle of climb, we get 

1 aw 

Appendix A 

I dW 1 

C 

dvO (1 - f&J 
77 dt= -O-- g at+ (L/D) ] (A3) 

where B = specific fuel consumption. 

Thus the instantaneous value of the aerodynamic efficiency is given by 

(L/D)(l/l - f/$, 9 which from equation (A2) we find is equal to the ratio 

weight/drag. The mean value of the aerodynamic efficiency during the aooelera- 

tion phase will clearly depend on the variation of L/D and dVo/at over-this 

part of the flight trajectory, but a simple solution to equation (A3) can be 

obtained for the case of constant (L/D) and constant acceleration dVo/dt = ng. 

Thus . . 

where VC = cruise speed I 

Q* = average s.f.o. for the acceleration phase 

suffix1 = initial conditions (V 1 =o) . 

2 = final oonditions (V2 = cruise speed VC> 

The range oovered 

oonstant, is given by 

during the acceleration'phase, if the acceleration is 

(A51 

or 

vC 
RA = q L (L/D) 

(L/D)2 2 ] loge &), 
+ (1 - V$$, 

Thus the mean value of the 'aerodynamic efficiency during the aoceleration 

phase, for the case of constant L/D and aoceleration, is (L/D)/(l - V@V~> 
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(b) Cruise phase 

Now the familiar Breguet range equation for an aircraft cruising at 

constant speed is 

Cruise range RC = 

where suffices 2 and 3 refer to initial and final oonditions for the cruise 

phase, respectively (V2 = V3 = VC>. 

This equation is obtained from 

3 
RC = V2 dt = - o@ 

with the following assumptions 

vc L 

O-) That oc 
jj is a constant. 

(ii) That the speed is low enough for the difference between lift and 

weight to be ignored (i.e. L +#). 

It can be shown that assumption (i) remains substantially valid for hypersonio 

speeds. But the second assumption is 

sime it leads tc errors in exoess of 

Substituting the value for lift 

get, after integration 

VP 

obviously invalid (see equation (A2)), 

5% at Mach numbers above about 6. 

from equation (62) in equation (A6) we 

or 

RC = 

V 

RC = c 
w2 $ ; log, FJf- 

3 

Thus the weight/drag ratio is the important airframe efficiency 

criterion for cruising flight. 

(A7) 

(A@ 

(0) Glide phase 

Equating forces along the flight path, assuming zero thrust, we get 



36 

0 -WV = D+g 
dvo - - W sin y 

OdR 

Appendix A 

(A9) 

Combining equation (AS) with (A2), and neglecting the small effect of 

the angle of descent*, we get 

Integration of equation (Al?) for a glide from the cruise speed VC to 

i.e. 

(Al 0) 

zero speed, at a constant L/D, gives the glide range, RC as 

RG = $(+)i, + (j)+$$+ . ..] 

(All) 

(Al 2) 

The deceleration during a glide at constant L/D will vary, thus from 

equation (As)' 

dV 
' E = - g (L/D) c 

Thus the mean value of the;aerodynamic efficiency during the glide 

phase, for the case of constant L/D,,is 

(Al3) 

* Neglectin, 7 the term W sin y in both the acceleration and glide phases 
virtually eliminates the error. 
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Appendjx B 

APPROXDWIONS FOR THE PRESSURE BEHIND A PLJUE SHOCK 

ORAPRANDTL-M3YERFXPANSION 

(See Section 2.3) 

No explicit relations exist which give the pressure behind a single, 

plane shock or following a Prandtl-Meyer expansion in terms of upstream Mach 

number and flow turning angle. In many oases, e.g. the present study, 

incidence is virtually specified as an independent variable, and the lack 

of an adequate direct method for oaloulating the surface pressure is incon- 

venient. Accordingly, to simplify the computation required for the results 

presented in this Report, the following approximate relations were developed 

and used, and their accuracy and ranges of applicability assessed by oom- 

parison with exact values. 

Pressure behind a plane, oblique shock 

From the oblique shook equations 12 , the following relation can readily 

be obtained between the shook angle z, the turning angle (i.e. incidenoe) a 

and the upstream Mach number M 
0 

Mz sin' C - 9 
MO sin C Mo sin a 

co9 (G - a) -1 = 0 

Hence for 3+ 0 

and 

where (2 
PO =po-I . 

Now if the approximation is made that 

BO 
CO8 (t: - cd 2 co3 (5 - a& = r 

0 

i.e. that the cosine of the angle between the shock and the surface behind 

the shock is invariable with a then 
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Hence, 
-- 

M2 2 
MO sing /c y 0 

43 
sin a + 

or, writing 
M L 

rl ‘Z y-2 
PO 

sin a , 

Now from the oblique shock relations 

M2 C 
OP = y+l 

4 (Mz sin2 Z - I) , 

Hence, 

01: P c 
0 

I 
2 sin a 

2 q++Jl+r: 

b3) 

(B3) 

Equation (B3) with MO instead of PO and a instead of sin a is sometimes 

known as the hypersonic approximation (e.g. Ref.20), in which form it is 

commonly regarded as being valid only for large MO and small a, The range 

of useful accuracy of the approximation in the form given by equation (B3) is 

rather wider than this would imply however, Fig.Bl shows the ratio of the 

exact pressure coefficient to that given by equation (B3) for a range of 

Mach numbers and turning angles, with y = 1.4. For Mach numbers below 3 

the approximation gives pressure to within 2% for angles up to about i" 

below that for shock detachment, and for Mach numbers of 3 or above this 

accuracy is maintained for an&s up to at Gast 29'. 

For M 
0 

= mthe exact solution for pressure coefficient is 
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Cp(M~=m) = --& 1+ysin2a- I-(y2+j)sin2 
c 

2sin4a 
4 

a+ Y 
3 

(B4) 

whereas the value given by equation (B3) is 

Cp (Mo=OO) h (y + 1) sin2 a (B5) 

Equation (B4) reduces to (B5) for small sin 2 CL, and gives values within 1% 

of equation (B5) for angles up to 25'. 

The accuracy of equation (B3) for moderate angles can be improved 

considerably by a relatively simple modification. In the so-called Busemann 

expansion (Ref.12, equation (152)) for pressure coefficient as a series in 

powers of a, the coefficient of a2 is 

B = 
(Y + 1) Mt - 4PE 

4 
2p0 

Equation (B3) may be modified so that the coefficient of sin2 a in the 

expansion of C as a series in sin a is the same as the Busemann coefficient 

of a 2,( p the coefficients of sin a and a are of course already the same), by 

writing 

cr 

where 

P c i---- 
0 i 
2 sin a 

s q(l-&)+ d+T-12 
Y/ 

036) 

036) 

The addition of the 'correction' factor (1 - a) to equation (B3), (the maximum 

value of E for y = 1.4 is 0.085 at MO = 2.1) gives a useful improvement in 

accuracy at the lower angles. For Mach numbers of 3 or more Fig.Bl shows that 

equation (B6) predicts C 
P 

to within &$ for turning angles up to about 20°, an 
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accuracy likely to be adequate for almost all practical purposes, 

when Mo + 00, equation (136) reduces like equation (B3) to equation 

limit. 

Since s+O 

(B5) in this 

Equation (19) in Ref.21 gives an alternative expression for the pressure 

coefficient behind an oblique shock, Although expressed in 

form, this in fact differs from equation (B6) above only by 

small term A inside the square root of the latter equation, 

a SOAeWhat different 

the addition of a 

where 

a = tan2 a -(y)" (A+$) sin2 a 

0 

The effect of this is to increase the incidence range over which accuracy is 

better thanI% by about 5' for Mach numbers between 3 and 7, at the cost of 

a very slight loss in mean acouraoy within this-incidence range. At other 

Mach numbers the differences between the two expressions are very small. 

Final?.y, for many purposes adequate accuracy over a smaller range of 

turning angles at the higher Mach numbers is given by a simple cubic equation 

in V. Fig.Bl shows the accuracy of the following polynomial for y = 1.4. 

M2 
M*C c: 2 fsina+i.2 

OP 0 

(2 sin CL~ + 0.28 (2 sin u,)3, (BT) 

For Mach numbers of 4 or above, this expression predicts C to wit:hin 1% accu- 
P 

racy up to an incidence of about 130/M3 degrees, which corresponds to 

ME Cp c 13.5. With the additional restriction a s 15', the same expression 

with sin a replaced by a inradians gives a similar accuracy for Mach numbers 

above 2.2. 

Once the surface pressure coefficient behind an oblique shook is known, 

the other characteristics of the flow can readily be calculated from the 

following well known relations, 

Mz sin2 c = 1+-y MZC 
P 
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E 
PO 

= * = ,+XM2C 
0 0 2 0 P 

8-S 
(Y + 1) Mz sin* t: 

P 2 
SO (Y - 1) MO sin* ~ + 2 

M To c 4($sin2g - l)(y b!; sin2 c + 1) 

Ti=F'- Id; (y+ if sin 
2 

Is 3 

T3i2 
and if viscosity ry T + 117 

Re 
"eo= 

T/To + 117/T 
1 + W/T,' 

Pressure following a Prandtl-Meyer expansion 

It is well known that the expression which can be derived for the pressure 

coefficient behind a plane, oblique shock with turning angle a, in the form of 

a series in asoending powers20f a (the latter being assumed small) has the 

same coeffioients of a and a as the analogous series which can be derived 

for the pressure coefficient after a Prandtl-Meyer expansion through an angle 

(-4. Hence it might be expected that the foregoing approximations would 

apply with reasonable accuracy to expansions through angle a if the sign of 

a is changed throughout. 

In fact, fortuitously, equation (B3) above is remarkably accurate in 

this respect. liJith the sign of a ohanged, this equation gives the pressure 

coefzicient following a Prandtl-Meyer expansion to within ti of the exact 

inviscid values for y = 1.4 at all Mach numbers, provided the turning angle 

does not exceed YOpo/M: degrees, (i.e. -Mz Cp < 1.33). 

A simpler equation which gives the Prandtl-Meyer pressures for y = 1.4 

to a similar accuracy up to a lower limiting turning angle a of 508/M: degrees a-I 
(-ME cp ( 1.05) is 

- ME Cp = 2$a-1.2($a~+O.%$a)l (B8) 

where a is measured in radians. 
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k&Y3ldix c 

MEU'J SKIN FFUCTION IN SUPERSONIC FLOW ON A DELTA WING SIXFACE 

ASSUMING ZERO CONDOCTION AND CONSTANT SURFACE PRESSURE 

(See Section 2.4 etc) 

The mean skin friction drag on each surface of a delta caret wing has been 

estimated by the following method and used to derive some of the results (e.g. 

Section 3.4.2) discussed in the main text of this Report. The numerical results , 
obtained are presented in full in a convenient graphical form in this Appendix. 

'Datum' values of mean friction for all-laminar or all-turbulent boundary 

layers, which include the effects of Mach number, surface pressure,altitude 

and surface length are first derived, then the skin friction drag for one wing 

surface obtained from these. The calculation method assumes a constant surface 

pressure coefficient C 
P' 

and therefore applies strictly only to the lower- 

surface of a delta caret wing. However, the results can reasonably be 

applied generally to sensibly plane delta win g surfaces with fully super- 

sonic leading edges, provided C ' 

surface. 
Y 

is interpreted as the mean value for the 

c.1 Datum skin friction 

'Datum' values of mean skin friction coefficient on flat plates at 

incidence have been calculated for all-laminar and all-turbulent boundary 

layers, assuming for the former a constant chord surface and for the latter 

a surface of delta planform. In all cases, the flow is taken to be two- 

dimensional, with a specified constant pressure coefficient over the surface, 

local stream conditions being those following a single oblique shock in the 

case of pressures above free stream and those following an isentropic expan- 

sion in the case of pressures below free stream. 

The effect of compressibility on skin friction has been allowed for 

by the intermediate enthalpy method 22 , whereby the incompressible equations 

for skin friction are applied to an 'equivalent' incompressible stream having 

the same pressure and velocity just outside the boundary layer but an effec- 

tive intermediate enthalpy iinti where 

lint = 0.22 ir + 0.28 i + 0.5 i 
w 
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i r = recovery enthalpy 

i = enthalpy just outside the boundary layer 

iw = enthalpy corresponding to surface temperature. 

Datum values of mean skin friction coefficient have been oalculated for 

a range of values of the four variables:- free stream Mach number MO, surface 

pressure coefficient C 
P' 

altitude z and chord length b or wBs (xTDRD is the 

root chord of the delta planform assumed for the turbulent boundary layer). 

To avoid excessive numerical computation, the following two simplifying 

assumptions were made:- 

(a) For given values of the four variables listed above, a single, 

representative value of i o has been taken for the whole datum surface. By 

ignoring temperature variation over the surface in this way, local skin 

friction can be expressed in the incompressible form for each case and 

integrated over the surface to give the dstum mean value. The enthalpy 

corresponding to surface equilibrium tcmpcrature at the mid chord point of 

the laminar or turbulent surfaoe, as the case may be, has been taken as this 

mean value of i 0. Surface temperature has been obtained from the charts 

given in Ref.23 for zero conduction, These cover the same range of variables 

and assumptions, and have been computed for an emissivity of 0.8. They show 

that the variation of surface temperature with distance from the leading edge 

is in fact not large over most of the surface. 

(b) For the turbulent boundary layer, local skin friction in incompres- 

sible flow at a point distant x behind the leading edge has been taken as 

where Re is Reynolds number based on ccnditions at the edge of the boundary 

layer and distance X* This has the advantage over the more accurate 

Wieghardt and other commonly used formulae that it can readily be integrated 

to give a mean value over the delta planf'orm assumed for the datum turbulent 

friction. For a constant chord surface, the above formula gives the same 

mean skin friction as the Prandtl-Sohlichting formula, which is widely used, 

at a Reynolds number based on chord of 407, but is 10% lower at Re = 108e 

Now from Fig.9 1 which shows Reynolds number per foot in terms of free stream 

Mach number, CL and wing loading, and from Fig.12 which shows L/D vs CL, 
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it can be inferred that flight Reynolds numbers are likely to be in the range I 
0.25 - 1.0 x ,06 per foot, i.e. t&e Reynolds number based on mean turbulent 

boundary layer length is likely to be in the range 107-108. On average then, 

the estimate of datum mean frictidn for the turbulent boundary layer may be 

a few per cent low; however, this &.ll be partially offset by a pessimistic 

assumption in the method used to obtain overall friction from the datum values, 

which is described in the second part of tE& Appendix. 

It is found that datum values of mean skin friction CFd computed in this 
way CEUI be expressed, to an accuracy better than 2% for the ranges of the 

variables considered, as a constant multiplied by the product of four functions, 
2 each one of which depends on only one of the variables MO, MO C , altitude and 

P 
chord length x. Accordingly, it -has been possible to present the results in 

the convenient graphical form shown on Figs.C2 and C3. Fig.C2 shows 

CFd vs h!z Cp for three Mach numbers and an arbitrary fixed altitude of 150 OOOft 

and a chord length of 10 ft. Fig.C3 presents the altitude and chord length 

functions by which the values derived from the previous figure must be multi- 

plied to obtain datum mean skin friction coefficient at other altitudes and 

for other chord lengths. 

c.2 Skin friction for a delta surface 

To obtain the akin friction for one delta wing surface (i.e. either ( 

upper or lower) with given values of stream Mach number, surface pressure 

coefficient, altitude and overall surface length, it is necessary first to 

determine the distance to transition on the wing centre-line, kM. For this, 

the transition 

the caret wing 

Then 

Reynolds number Ret must first be decided, (values assumed for 

are given in the main body of this Report, Section 2.4.1). 

where Reo/x = 

Re/Reo = 

Ret 

);LAM = (Reo/x)(Re/Re ) 
0 

stream Reynolds number/ft, given on Fig.Cl, 

local/stream Reynolds number, given on Fig.C4. 

On the'delta surface for which the overall skin friction is required 

the areas of laminar and turbulent flow will in general look like those shown 

in the sketch on Fig,C5. The ratios of laminar and turbulent areas on the 

surface to the total area of the,surface SS are respectively, I 
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SLAM = 
sS 

*XLAM- x2 
e 

Y-9 
e 

&g = I,zu?! 
2 

sS i 
e 

) 

The laminar area SW comprises a constant chord region, of area 

*[?fF - (+?y] 
and a delta planform region, comprising two halves, 

chord region, having an aggregate area 

sS 

outboard of the constant 

Now in order to calculate the friction force acting on the whole 

surface comprising these areas of laminar and turbulent flow, two simpli- 

fying assumpt!ons have been made as follows:- 

(i) The mean laminar skin friction over a narrow strip of local 

chord C in the 'delta' region of laminar flow has been taken as equal to 

the datum mean value which applps over the constant chord region further 

inboard, multiplied by (xLAM/C)2. For calculating incompressible mean I 
laminar friction the usual Blasius formula has been used, i.e. CF N Re-‘, 

so what this assumption implies is that the effective mean wall tempera- 

ture for the delta region of laminar flow is taken to be the same as that 

used to calculate the datum values of mean laminar skin friction, which 

is the temperature at distance 3 tiM behind the leading edge. It follows 

that the mean skin friction over the delta region of laminar flow is 

($J* = 4 (cFd)LMvl 
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(ii) The second assumption is that the mean turbulent skin friction 

drag acting over the appropriate region of the surface is the datum value, 

with sru~~ = 4 - tiMe Thus,,the mean turbulent skin friction is calculated 

as if the transition line mere a leading edge and the laminar boundary layer 

did not exist. This means that the turbulent boundary layer is assumed to 

begin from zero thickness at transition whereas in fact its thickness here 

will be approximately that of the laminar layer. This assumption is somewhat 

pessimistic (Le. leads to higher drag) but is tacitly taken to be offset by 

the slightly optimistic formula used to calculate the datum values of mean 

turbulent skin friction. 

From the foregoing, it follows that the mean skin friction drag 

coefficient for the upper or lower surface of a delta wing is given by 

C 
FS = --- ‘I (cF~)LfLM + F - +J (CFd)mB 

where cCFdjm and (cFd)Tm are/obtained from Figs.C2 and C3 for kM and 

SURB = 4 - tiM respectively. Fig.C5 expresses the above equation graphically. 

Thus, for given values of stream'hjach number, surface pressure coefficient, 

altitude, overall length and transition Reynolds number, Fi.gs.C;Z-C5 inclusive 

contain all the information required to make a rapid estimate of the mean 

skin friction on a delta wing with supersonic leading edges, assuming zero 

conduction and sensibly constant pressure over each surface. 
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EFFECT OF LEADIKG EDGEBLUNTNESS ON LIFT/DUG 

(See Sections 2.3, 2-5, 3.5) 

Some blunting of the wing leading edges may be required in order to 

avoid excessive local temperatures, but it is desirable to keep such blunting 

as small as possi'ole so as to keep the flow around the leading edges laminar 

(as discussed in Section 2.4.1) and also to minimise the effect on the wing 

flow field. 

To obtain an estimate of the change in lift/drag arising from such 

bluntness let us consider a section normal to the leading edge of a caret 

wing, as shown in Fig.Dl. To simplify the problem the wing upper-surface is 

taken to be in the streamwise direction (i.e. oU = 0, C 
pU 

= 0), such that 

the anhedral angle of the wing upper-surface in the Y&plane is 

+J = seo -’ [1 f ($ tqt , 

where rl is the shock-wave angle. This angle g determines the lower-surface 

pressure coefficient, the lower-surface incidence, and the volume of the 

wing since (see Sections 2.1 and 2.3):- 

C = 5 
( 

sin2 ts - 1 
PL > Id* 

0 

and 

C 
pL 

cot c 

tanaL= 2-C 
,a 

=32~ 

PL 0 

The length of each leading edge is 

(DA > 

@2) 

03) 

The effective leading edge sweep is 
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h = co;-l s' + 4 tan < 
$yggq 

and the Mach number component normal to the leading edge is - 

so = MO co3 A 

Appendix D 

b4) 

(D5) 

To blunt the wing leading edge it is assumed that the triangular portion 

of the wing O&3 shown in Fig.Dl is removed (OB = d), and that an approximately 

hemi-cylindrical leading edge (of diameter 2r = AB) is added in its place. 

Now the change in force per unit length of leading edge due to bluriting, 

acting normal to the leading edge, is from Fig.Dl 

d2 
P = 2r 

s 
: (P - p,) cos 8 d0 - pL 2r 

0 

and the total drag from both leading edges is 

DLE = 2PssecqU 

W) 

b7) 

Thus 

DLE 
742 

'DLE = I 
=4 5 set I$ U 

T [J 
Cp cos 8 de - C 

P Ll 
b8) 

0 

where C 
DLE 

is based on the plan area se of the original sharp edged wing. 

Now from the modified Newtonian approximation for blunt bodies (which 

experiments 18 have shown to be a close approximation to the pressure distribu- 

tion on a yawed cylinder, for 1.5 < MN < 3.5) we know that Cp = Cp 00s 2 0, 
0 stag 

where C 
P 

is the pressure coefficient at‘the stagnation point, 6 = 0. 
stag 
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Thus from equation (D8) we get 

742 
'DLE = 4, 2 set #fu c cos3 0 d0 - C 

Pstag P II 

i.e. 

Now 

cDLE 

= 4$secjru fC, 
[ stag 

-Cl 
PI4-J 

C = 75 cos2 A 
P stag P stag 

(D9> 

where ? = 
P 

stagnation pressure coefficient appropriate to % ( based on 
stag free stream dynamic pressure) 0 

So equation (Dg) becomes 

cDTJE 
= 4 5 set 

4 
5 Ep cos2 A - c 

stag P II 
@I 0) 

It should be noted that equation (DlO)applies only to a caret wing, where 

the variables $D, F 
P 

, A and C 
PL 

are related by the condition that a plane 
stag 

shock wave of incidence Z is contained between the leading edges (as described 

earlier), and not to a wing with arbitrarily assigned values for these 

variables. 

For a caret wing of given slenderness ratio s/4, and lower-surface 

pressure coefficient, increase of Mach number inoreases 5 but decreases 

the anhedral angle jrD, with the net result that C D$(r/4~s;:greduced; 

increase of lower-surface pressure coefficient though increasing the required 

anhedral angle, decreases the term in square brackets in equation (DIO) to 

give a net decrease in CD LE/(d~)o Th ese effects are illustrated by the 
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values of C DLE/(r/%) tabulated a t the end of this Appendix for a range of 

Piach number, lowcr- surface prcssure coefficient and slenderness ratio. 

Also tabulated at the end of this kppendix are vel.ues of the critical 

leading edge radius in feet for two values of wing loading (from Si:ctf.on 2.&l), 

together with the resulting leading edge drag coefficients for a wing of 100 ft 

root chord. Since C 
PL 

in this table is approximately equal to the overall 

lift coefficient, and since overall values of lift/drag are typically about 6, 

it follows that the overall drag coefficients fail between 0.01 and 0.02. 

Thus even for the case of leading edge radii as large as the crjtical value, 

the drag arising from blunted leading edges amounts to only about 1% of the 

total drag for a wing loading of 50 3b/ft2, and about 2$ for a wing loading c 
of 25 lb/f+. 

However, the result of blunting the wing leading edges is also to reduce 

wing plan area, and hence overall lift, sfnce a strip of constant width d 

has been lost from each lower wing surface (see Fig.Dl). Assuming that the pres- 

sure coefficient on the remaining plane part of the lower surface is unaffected 

by the leading edge blunting, and ignoring any lift developed on the blunted 

leading edges themselves, then 

(Lift) (Plan area>r (Lower surface wetted area)r 

(Lift)rzO = (Plan area)r=O = ILower surface wetted ares)rzO 

2 
= 

where s L = lower-surface wetted ~~32 for wing with sharp leading edges ( see 

equation (6) and Fig.2) 

suffix r refers to wing with blunted edges of radius r 

suffix r=O refers to vring with sharp leading edges. 

The distance d is related to the leading edge radius and the lower-surface 

incidence (in a plane normal to the leading edge, see Fig.Dl) by 

d f+ 'tan 2r 2r tan UL 

"NL 
= - tan 

32 (s/@p 79, 
m 2) 
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From equation (10) of Section 2.1 and equation (D3) above 

51 

2 
taz’, = s 

tax-l2 t: + s 
[ 

2/42 
tan c”L 

- tan < 1 
Hence from (Dj2) 

- tan G 1 

04 3) 

(D+!d 

This equation in oonjunotion with (Dll) and Fig.2 for S/SL gives the 

ratio of the lift with blunted edges to that with sharp edges, in terms of 

the wing and shock geometry. Equatiom(D1) and (D2) can be used to express 

tan 2: and tan uL in terms of MO and C . 
pL 

Percentage lift losses have been calculated for wing loadings of 

25 lb/ft', and 50 lb/ft2 , for the same values of critioal leading edge 

radii as used previously for calculating drag increase, and the results are 

tabulated at the end of this Appendix, It can be seen that the lift loss 

arising from blunted edges varies between 2-5$ for a wing loading of 

25 lb/ft2, and between l-2% for a wing loading of 50 lb/ft2. 

This percentage decrease in lift is about twice the percentage 

increase in drag, and the total decrease in lift/drag is therefore 4-75 for 

a wing loading-of 25 lb/ft2 and 2-j"; for a wing loading of 50 lb/ft2. This 

is a significant loss in lift/drag, and emphasises the importance of design- 

ing for the smallest possible leading edge radii. 
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Mo 5 5 5 5 IO 10 10 10 

C 0.06 
pL 

0.10 0.06 0.10 0.05 0.08 c.05 0.08 

s/e 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 

cDLEik/‘) 0.39 0.33 0.56 0.51 0.21 0.18 0.42 0.39 

rcrit 25 lb/ft2 0.05 0.10 '0.05 0.10 0.065 0.125 0.085 0.15 

IO4 c DLE 25 lb/ft2 2 3 3 5 1 2 4 4 
I 

r crit 50 lb/ftz 0.025 0.045 0.025 0.045 0.030 0.055 0.040 0.065, 

lo4 c 'LE 50 lb/ft2 1 1 ' 2 I I 2 3 

- AL% 25 lb/ft2 3.2 4.7 2.5 3.6 2.7 4.1 3.0 4'.2 

- AL% 50 lb/ft2 1.6 2.2 .1.3 1.6 1.2 1.8 1.4 1.6 

The above figures represent no more than an attempt to estimate very 

approximately the performance penalties of leading-edge blunting. Future 

work should be directed towards obtaining a more detailed understanding of 

the flow field in the region of the leading edge, so that a more accurate 

assessment can be made. 
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Appendix E 

THE LIFT AND DRAG CHARACTERISTICS OF A TWO DIMENSIONAL WEDGE 

AT HYPERSONIC SPEEDS 

(See Sections 2.6, 3.2 and 3.4.1) 

E.l Approximations for surface pressure (y = 1.4) 

For the lower surface, if uL ( 15', MO > 2.2, H% < 2.25 radians, it is 

shown in Appendix B that the following expression predicts pressure coefficient 

to an accuracy of better than 1% 

where 

Y2 c 
O pL 

= 2 "a~, + 1.2 (~a&~ + 0.28 (A%)3 

M2 
Mt = $x 

0 “L 
radians 

(El ) 

For the upper surfaoe, the above equation of course gives M* C for 
O pu 

oU negative, with -oU = +aL* For oU positp, equation (8) of Appendix B 

would be the appropriate expression for -Mo C 
p?J 

comparable with equation (1) 

above. Up to MaU = 0.6 however, and for Mo 3 4, equation (1) with -oU = uL 

gives an accuracyof better than 2$. At HaU = 0.85, the error is increased 

to 4% but it is in the sense of predicting low values of -C 
9r' 

which may 

in fact be more realistic. Hence, for upper-surface pressure, it will be 

convenient to use equation (El) with the appropriate sign changes, i.e. 

-M2 c 
O % 

= 214% - 1.2 (~a&~ e 0.28 (M$3 (E2) 

E.2 Normal force ooefficient 

Using equations (El) and (E2) above, it can readily be shown that the 8 

normal force coefficient CN based on plan area for a wedge of semi angle 6 

radians and chord line incidence a radians is given by 

‘0 ‘N -= 
a 4 + 1.2 Al9 + 0.42 (!oj2 1 + 0.56 hd2 (E3) 
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E.3 

Appendix X 

Axial force coefficient 

If itis assumed that CDF,, the skin friction drag coefficient for both 

surfaces (based on plan area) and GDP, the coefficient of base and extraneous 

drag items also based on plan area are both - independent of incidence then with 

sin 79 = 6 the axial force coefficient CA based on plan area is given by 

i.e. 

M280 CA + (2.4 + 1.68 MB)(M 6)(Ma)* 
0 

(c* - CD ) 

%I 2O 
= (2.4 + 1.68 At?) A6 

a 

w 

where 

M2Po (CD 
0 

- CDF - cop> = 4 ‘1 + 0.6 M6 + 0.14 (M@2 L 1 oiz@2 (E5) 

E.4 Lift and drag coefficients 

cL 
= CN 00s a - CA sin a c CN (1 - h2) - Cp 

Hence from (E3) and (E4) 

f3, (2 + CD3 G 4[1 +1.2j~4t0.42 ~/Io)2]+[o.56-2+408A;;2*52 @@2 (Mu)~ 

. . . (E6) 

Similarly, 

cD = CN sin a + CA cos 'a S CN a + CA (1 - $U2) 

Zence, from (E3) ad (E4) 

PO (‘D - cD ) ’ 

-F m 4 
c 

I; + 1.8 (~9) + 0.84 (fda)2 'D 
0 

+ c 0.56 - 1.2 ~6 + 0.84 (d2 M2 3 

ha)2 
(E7) 
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E.5 Lift/drag ratio 

From the relation 

1 
R 

= 

(Au) p3” (; + CD) - PO CD(J 
PO ('D - 'D ' 

(Aa)2 ,--y+ + M2f% cD 
0 

(E8) 

and equations (E6) and (E7), it is seen that L/&D depends mainly on the vari- 

ables M6, Aa and A28, CD , with Mach number itself a fourth, less important 
0 

variable. 

Approximate expressions can be derived from the foregoing equations for 

the maximum lift/drag ratio (as it varies with inoidenoe) on a particular 

wedge at a given Mach number, and for the incidence at which this maximum is 

aohieved, which will be denoted by a*. For convenience, we rewrite equation 

w in the form 

co cL - = i&h,+ 
a 3 x2 (Aaj2 

where h I = I + 1.2 (At?) + 0.42 (A@* - 0.25 8, 'D 
0 

4c 9.6 (tq 4) 5.04 (A@ 2 
and x2 + = 1.12 - 

2 
A 

The magnitude of h, will normally lie between one and three while that of 

of X2 will be approximately unity. 

Similarly, equation (E7) may be written 

P, @-) - c~ > 
0 

a* 

= 4h3+ +h/+ (Act)2 

where h 
3 

= I + 1.8 hS) + 0.84 @V)2 - 0.125 PO CD 
0 

and x4 ;= 1.12 - 2.4 (M8) + 1.68 (Ma) 
2 

2 
A 



56 Appendix E 

the magnitudes of h3 and X4 being broadly similar to those of' h, and X, .' 
re$TJect- L' ,&vely. 

Now the value of Mu fcr maximum lift/drag ratio of a given wedge at a 

fixed i&cn number is denoted by /+IL* and is gi.ven by the relevant solution 

of the following equation, 

= 0 (EV) 

and the muimum lift/drag ratio is then 

The factor in the large bracket in the above equation expresses the effect 

on maximum lift/drag of the variation xith cc of CD/u and (CD - CD )/CL*. 
3 

The solution of equation (9) for (Ma*) can oniy be done by successive 

approximation. The first approximation is obtained by neglecting the "non- 

iinear IAft" terms h2 and h 4' which gives, from equation (E9) 

i.e. 

and from equation (10) 

N2Fo c* 
(Ma”)2 h 4h3 O 

a" h 

(Ella) 

(Ella) 

(Ellb) 

Thus, for most cases OS Interest, (Ma*), will. be less than unity, except perhaps 

at Mach numbers in excess of IO. 



Appendix x 57 

Further refinement cif' the approximation for (Au*) yields the following 

which is within 1% of exact solutions of equation (9) if @CL*) < 1.1. 

. . . (E12) 

The effeot of the "non-linear lift" factor in large braokets is to increase 

the optimum inoidenoe by a maximum amount of only Z$ at Aa c 0.65; equation 

(Ella) is a very good approximation therefore. 

Using equation (E12) for (CL*) and the f&rst approximation given by 

equation (El-la) for @!a*)2 in equation (EIO), the following can be derived 

for maximum lift/drag 

. . . (M3) 

This shows that the effeot on maximum lift/drag of the non-linearity in the 

lift curve (which is expressed by the term in large braoketa) is appreciable 

only if (AU*) exceeds 0,5 or so. With (NQI*) equal to unity, the gain iS 

The lift coefficient for maximum lift/drag is easily obtained; neglecting 

the small effect of non-linear lift on (CL*), this ia 

Similarly the drag due to incidence at a = (a*) is 

(El 4) 

(El 5) 
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Again, the terms outside the large brackets in equations (El&) and (E15) are , 
those which would be obtained if'CD/a and (CD - CD )/a* were independent of a 

0 

and equal to their values for a + 0, while the terms in large brackets express 

the effect of these quantities &rying with a. 

The incidence for maximum lift/drag as given by equation (Ella) is 

plotted on Fig.El ,as (s) = (u*)l - 6 against semi angle 8 for Mach numbers 5 

and 10. Optimum upper-surface incidence is shown for three values of 

(CCF + CDP), viz.0, 0.002 and 0.004, the first value corresponding to a 

wedge alone with zero extraneous or base drag in inviscid flow, the second to 

the case of a wedge alone, again with zero base drag but a typical surface 

friction coefficient CFS of 0,001, and the third'to CFS = 0.001 and an 

extraneous and base drag coefficient C DP of 0.002. Also shown onthis figure 

by chain dotted lines are corresponding values calculated from the linear 

theory equations commonly used for lower supersonic I&h numbers, i.e. 

4a 
CL: = PO 

2 

CDo' 
= 2CFS + CDP + 5 

0 

cD. = cDo + cL a 
The significant features of the'results presented on Fig.El are 

(i> The non-linearities associated with hypersonic flow decrease the 

optimum upper-surface incidence for maximum lift/drag on a wedge by an amount 

which is roughly proportional to wedge angle. 

(ii) Zero upper-surface incidence happens to correspond to the condition 

for maximum lift/drag, (when realistic friction and extraneous drag items are 

taken into account), if the wedge semi angle is 4'-5'. 

Fig.E2 shows wedge lift/drag for the same kange of wedge angle, Mach 
number and (CDF + CDp) as in Fig.El. Two cases are presented, maximum lift/ 

drag and lift/drag with upper-surface incidence zero (dashed lines). Taking I 
a typical value for CDF of 0.062 (which is presumed to be invariable with 

incidence) the difference between the two lift/drag ratios is not significant 

if 9 lies between 3’ and 5s’ for CDp 7 0, or between 32’ and 6’ for 

%P z 0.002. 
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GA 
cD 

'DF 

cDLE 

cD* 
'DP 

% 

cF 

(cFd)LA* 

(CFd&JRB 

'FS 

'FU"FL 

cL 

cN 

cP 
C 
&P.L 

C 
pstag 

-d 
P stag 

a 

D 

d 

F 

f3 
i 

SYMBOLS 

axial force coefficient = axial force&p0 Vz S 

drag coefficient = dragJ&, V,' S 

total friction drag coefficient for upper and lower surfaces 

increase in drag coefficient due to rounding a sharp leading 
edge 

drag coefficient at zero lift (for a wedge) 

parasite drag coefficient(see Section 2.5) 

local skin friction stress coefficient = friction stress/&i V2 

mean tangential force coefficient due 3 
o skin friction, based 

on a specified wetted area and &o V, 

'datum' value of C F for a laminar boundary layer on a oonstant 
chord wing surface 

'datum' value of CF for a turbulent boundary layer on a wing 
surfaoe of delta planform 

CF for one complete surface of a wing 

CFS for the upper and lower surfaces respectively 

lift coefficient = lift/$po Vf S 

normal force coefficient = normal force/&p0 Vz S 

pressure coefficient = (p - po)/$30 VE 

Cp on the upper and lower surfaces, respectively 

Cp at the leading edge stagnation line 

pitot pressuro coefficient at specified Mach number 

local wing chord 

drag 
width of plane lower wing surface, measured normal to leading 

edge, which is removed when sharp leading edge is rounded 
(see Fig.Dl) 

net thrust 

aaceleration due to gravity 

local enthalpy at the edge of the boundary layer 
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;YMBOLS (Contd) 

i 
int 

i r 

i 

QIAM~kmB 

L 

e 

et 

M 

*0 

MN 
0 

N 

n 

P 

P 

PO 

R 

RA,RC,RG 

R 

2O 

Re 

Re* 

Ret 

r 

1: 
crit 

S 

effective 'intermediate' enthalpy for a boundary layer 

recovery enthalpy,,the value corresponding to surface tempera- 
ture with zero heat transfer 

enthalpy corresponding to actual surface temperature 

coefficients on F&C5 

lift 

overall length of wing, measured parallel to stream direction 

length of one leading edge 

local Mach number at the edge of the boundary layer 

free stream Mach number 

component of MO normal to the leading edge 

l~?/j3~ (in Appendix E) 

1 clv 0 

gdt 

force/unit length,of leading edge (in Appendix D) 

local static pressure on the surface 

free stream static pressure 

range 

ranges in acceleration, cruise and glide phases respectively 

radius of curvature of flight path, in a vertical plane 

radius of Earth 

Reynolds number,bised on conditions at the edge of the boundary 
layer and a specified length x 

Reynolds number, based on free stream conditions and a specified 
length x 

Reynolds number, based on conditions at the edge of the boundary 
layer and distance from the leading edge to the midpoint of 
the transition zone 

radius of leading edge rounding, measured in a plane normal to 
leading edge 

critical value of r, above which boundary layer trxxsition 
begins at or near the stagnation line 

reference area = plan area, projected onto a streamwise plane, 
at design incidence for a caret wing, zero incidence for a 
wedge 
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SYMBOLS (Contd) 

sS 

%AM 

%!ulB 
3 
T 

*cl 

Tr 

T 
0 

t 

V 

VC 
vO 

F3 

vS 

W 

X 

Z 

a 

av% 

wetted area of one surface of a wing of delta planform (in 
Appendix C) 

Ss for the upper and lower surfaces resgeotively of a delta 
caret wing 

area of laminar boundary layer on one surface 

area of turbulent boundary layer on one surface 

semispan 

local static temperature at the edge of the boundary layer 

free stream static temperature 

recovery temperature = surface temperature with zero heat transfer 

actual surface temperature 

time 

total stream velocity over surface, at the edge of the boundary 
layer 

airoraft velocity in cruise phase 

free stream (aircraft) velocity 

component of V, normal to the leading edge 

satellite velooity 

weight of aircraft 

distance along surface, in local stream direction 

distance along surfaoe, on wing centre-line, from leading edge 
to midpoint of transition zone (see Fig.C5) 

overall length of a delta planform area covered by a turbulent 
boundary layer (see Fig.C5) 

geometric altitude 

angle of incidence of chord line (in Appendix E) 

angle of incidence of upper and lower surfaces respeotively, 
measured in the plane of symmetry, (see Fig.1) 

angle of incidence of upper surface, measured in a plane 
normal to the surface 

angle of incidence of a surface measured in a plane normal to 
the leading edge 

Y ratio of specific heat at constant pressure to that at 
constant volume 
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SYMBOLS (Contd) 

angle of climb (in Appendix A) 

variable in equation (~6) 

angle between shock wave and stream direction, measured in the 
plane of symmetry (see Fig-l) 

angle between shock wave and stream direction, measured in a 
plane normal to the leading edge c-l 

sin a (inAppendix B) 

semi angle of wedge (in Appendix E) 

angle in blunted leading edge geometry (in Appendix D, see 
Fig.Dl) 

effective sweepback of leading edge = cos -' (MN /MO) 
0 

functions of M6, (in Appendix E) 

local density at the edge of the boundary layer 

free stream density 

specific fuel consumption 

average specific fuel consumption for the acceleration phase 

specific fuel consumption during the cruise phase 

voiume coefficient = volume/S 3/2 

anhedral angles of upper and lower-surfaces respectively, 
measured in a plane normal to the free stream direction 

Suffices and index 

( Jr, for lower wing surface 

( 10 free stream value 

( 4J 
( b 

( 4 

for upper wing surface 

with upper-surface'atreamwise 

initial conditions; 

( 12 
( )3 

( 1' 

conditions prior tc cruise 

conditions at end of cruise 

value giving maximum lift/drag 
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