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SUMMARY

The broad effects of certain variables on the aerodynamic efficiency of
caret wings are investigated. The variables considered are slenderness ratio,
volume coefficient and upper surface incidence; skin friction, including the
efflects of wing loading, altitude and transition Reynolds number; and parasite
drag. This study highlights the important areas for future investigation, and
suggestions are made for experimental and theoretical work. Detailed conclu=~

sions are given at the end of the Report,

* Replaces R.A,E, Technical Report No., 66036 - A.R.C. 28,172.
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1 INTRODUCTL ON

In recent years a number of methods1—u have been suggested for designing
wing shapes to support known inviscid supersonic and hypersonic flow fields.
The advantage of using this approach is that, apart from viscosity effects,
the pressure distribution over at least part of the overall surface is
specified exactly, thus avoiding the difficulties and inaccuracies associated
with the use of approximate theories to calculate pressures on wings of

5

arbitrary shape. The term waverider has teen coined” to denote a wing of
this kind, the shock system of which is contained below the wing between the

leading edges.

The simplest wing in this class is the caret wing proposed by Nonweiler1,
and this forms the subject of the present study. This type of wing at its
'design' condition generates below it a plane oblique shock wave attached to
its leading edges, and hence has a uniform pressure over its lower surface,
Although the caret waverider is not necessarily the most efficient aerodynami-
cally it has the advantage for the purpose of the present study compared with
other types (e.g. the 'Jones! wingz, based on a conical flow field) that its
volume and the overall aerodynamic forces acting on it are comparatively easy
to caloulate, and it offers a wider degree of freedom in the choice of plan-

form for a given Mach number and volume.

Since the flows on the upper and lower surfaces of waveriders at their
'design' condition are independent (apart from the minor effect of leading
edge blunting), a variety of upper-surface shapes can in principle be chosen
(e.g. Ref.6), although to be classed as a waverider the upper-surface of the
wing should strictly be shock-free, i,e. the pressures on this surface should
be at or below the ambient value. Theoretical studies of caret wings to date
have usually assumed the upper=-surface to be generated by lines parallel with
the free stream direction. In this case, and in the absence of viscous or
extraneous drag items, the ratio of 1lift to drag is given simply by the

cotangent of the lower-surface incidence.

The purpose of this Report is to investigate systematically the broad
effects of certain variables on the aerodynamic efficiency of caret wings.
The caret wing is assured to have a delta planform and plane surfaces on
each side of the centre line, (see Fig.1). This approach is a convenient
way of relating the aerodynamics and geometry of families of vehicle shapes

to their operating conditions. The variables investigated in this study are:-



(1) Slenderness ratio (i.e. semispan/length) and volume coefficient

(i.e. volume/plan areai/z) at zero upper-surface incidence.,

(i1)  Upper-surface incidence, at given values of slenderness ratio

and volume cosfficient.
(iii) Mach number, in the range 5-10.

(iv) Skin friction, including both the effect of typigal arbitrary
values of skin friction coefficient, and alsc of calculated skin friction

assuming various wing loadings, attitudes and transition Reynolds numbers,

(v) Parasite drag, present in various arbitrary amounts, This item
would include base, fin and leeding-edge bluntness drag; (although the basic
wing of Fig.1 has sharp leading edges, the effects of blunting the leading

edge are considered), l

In Appendix 4 it is showm that aerodynanic efficiency is measured more
correctly by the weight to drag }atio rather than by the more familiar lift
to drag ratio. Aerodynamic 1lift is less than the weight due to the effect of
the Earth's curvature causing a centrifugal 1ift to be developed which of
course varies as (flight speed)zl Hence in this Report aerodynamic efficiency
is presented as weight to drag ratio where couparisons are being made or
implied between one speed and another, but as the more familiar 1ift to drag
ratio where speed effects arc essentially irrelevant. Since aerodynamic
efficiency is only one factor affecting overall range it is obviously most
important that investigations of the present kind should be linked with others
which consider propulsion, flight trajectory, stability and control, and struc-
tural aspects, (see Section &4).

Section 2 of this Report aﬁd”also the five Appendices give details of
the theoretical background to the estimates of 1if't to drag and weight to
drag ratios described later. In Section 3 the effects of the variables (i)-(v)
listed above are as far as possible considered separately., Tinally in Section &

sugzestions are made for further work, both experimental and theoretical.

2 THECRY
2.1 Geometry

Fig.1 shows a caret wing* of delta planform of span 2s and length ¢ ,

whose upper and lower surfaces are at incidences of Oy and A to the free-

stream direction, respectively, measurcd in the XZ-plane, The base of the .

¢ The basic wing cons!d.red here has sharp leading edges. Changes in geometry caused by leading-edge
blunting are discussed in Appendix D.



wing is chosen to be at right angles to the free-stream direction in all cases,

Thus the plan and base area, and volume, of the wing are:-

Plan area = s8¢ = 8 (1)
Base area = s34 (tan a = tan aU) (2)
1
Volume = 3 s ¢ (tan a - tan °‘U) . (3)
It is convenient at this stage to introduce the volume coefficient*,
% = volume/(plan area)i/z.
Thus, .
1 /8\?
T o= o3 \s> (ten o - tan q) . (&)

In order to calculate the contribution to drag from skin friction, it
is necessary to know the wetted areas of the upper and lower surfaces, SU

and SL respectively., These are given by:=-

S 2 1
é-t-’- = sec ay {1 + -:15 cos” a; (tan & - tan %)2}2 (5e)
S 2 1
§£ = sec ap {1 + fE 0032 a (tan Z - tan QL)2}2 (5b)

where £ is the incidence of the plane of the leading edges to the free-strean
direction, i.,e, the angle between the free-stream and the attached oblique

shock wave, which is a function of Mo and are

It is sometimes convenient to express these wetted areas in terms of
Qs Op and the anhedral angles of the upper and lower surfaces in the plane
of the base Y and ¥, respectively, in which case equations (5a) and (5b)
become s~

SU 2 2 1
g = seo qy sec Y (1 ~ sin ¥y sin GU)Z (6a)

* Volume coefficient is a parameter particularly appropriate to project studies,
and those concerned with the aerodynamic forces on particular shapes may prefer
to express the geometry in terms of the included angle between upper and lower
surfaces in the plane of symmetry = 2¢ say. From equation (4),

L
2 A

ten ap - tan a; = 3v (s/€)2 = tan 20 for small ay e



SL 2 2 1
T = seo ap sec Y (1 ~ sin yp, sin aL)2 (6v)
where tan ;= g (ven Z - tan aU) (6c)
ten ¥ = § (tan Z - tan aL) (6d)

In equations (fa) and (6b) above it is normally sufficiently accurate

to equate the terms in brackets te unity.

Using equstions (5) in conjuncticn with the equations given below in
Section 2.3, the area ratios SU/S and SL/S have been calculated as functions

of B _s/¢, Mo C end M , for o = 0 and 0.2/B_, and these have been plotted
o ° TP o o
on Fig.2. It will be noted that the ratio SL/S depends almost entirely on

B s/¢ whereas the upper-surface rztio is affected by M2 C  and B GU as
° ° P o)
well as by BO s/&, The effect of upper-surface incidence on SU can be

estimated to a close approximateion by dividing the value at oy = 0, and the
2 /[, W
same B s/2 and M_ C_ , by {4 4 .
° ° P \' " =%

From the foregoing, it can be seen that three indepcndent gcometrical
variabl-s must be specified to define the shape of the caret wing and its
attitude rclative to the free-streanm direcction. Thu three which will usually

be specificd in this Report are
(i) Volume cocfficient, t = volume/(plen area)B/z R
(ii) Slenderness ratio, s/€,
(1ii) Upper-surface incidence, oye

If these are fixed, along with the Mach number, then the shock angle £ and
the normal pressure distribution - and hence to a very close approximation
the 1ift coefficient - arc determined, Conversely, 1lift coefficient can be
varied by varying any one of these parametcrs and hence can replace any onc
of them as an independent variavle; this is done in this study, e.g. CL
replaccs ay unless the latter is fixed. The 1ift to drag ratio at a given
Mach number, wilh arbitrary values for the skin friction force coefficients
on each surface is of course also a function only of these three variables.

But if the friction drag is to be calculated, the wing leading and size



(or weight) of the aircraft must be specified also, along with some criterion

for estimating the transition position.

It may be required to know the flow conditions in e plane normal to
the leading edge, for example in calculating effects of leading-edge blunting,
(see Section 2.4.1 and Appendix D) or the conditions for shock detachment,
(see Section 2.3 below), Denoting the velocity component of the free-stream

normel to the leading edge by VN and the corresponding Mach number by MN ’
0 o
the ratios VN /Vo, and MN /Mo are given simply by the sine of the angle
o 0
between the leading edge and the free-stream vector through the wing apex:-

v 1
N, - MNo _ [tanz Z + s?/@z]a (7)
Yo ¥ sco” Z + 32/62

Since both the X-Z plane and the plane normal to the leading edge are normal
to the shock plane, the velocity components normal to the shock eveluated in
these two planes must be identical. Thus, if ZN is the shock angle measured

in the plane normal to the leading edge and ay the lower-surface incidence in

this plane,
Io sin Z
W T sin g (8)

Similarly, the ratio of the heights above the shock, of the surface and of
the free-stream vector through the leading edge must be the same in the two

planes, i.e.

ten (éN - QN) an -
tan gy = & tan Z * (9)

Here, a and O of course refer to the same surface, which may be either the
upper Or lower surface. Equations (7), (8), (9) may be combined to give

ay in terns of a, = and s/¢

2 2,2.%
tan oy = % (gec 4 ; sé/& )2 tan a (10)
tan” Z + 8" /&° - tan % tan a




Some otservations can be made about the likely limits of variation of
t and s/¢. A typical value of t for large supersonic aircraft is about 0.0k
(see Ref.8), though for small airbraft somewhat larger values are obtained
since the dimensions of certain iiems'remain constant, e.g., crew dimensions.
However, for a hypersonic aircrafﬁ based on the caret wing higher values of
© will probably be needed. This is because with increase of Mach number the B
size of the propulsion system will most likely increase, and if it is
integrated with the airframe this would teke up part of the volume of the
caret wing as defined in Fig.1, i.e. the propulsion nozzle would partly or
wholly fill the base area., Also, at high Mach numbe?s‘the use of hydrogen

4
0’1', but its low density would require &

as & fuel has certain attractions1
large storage volume. For these reasons, values of 7 for the basic caret wing
significantly higher than 0.04 would seem to be needed. In this investigation

therefore, values centred round 0,08 will be considered.

The slenderness ratio s/€ must have a practical lower limit determined
by considerations of low-speed handling, airfield performance etc,, which is
likely to be between 0.2 and 0.3. Following Ref.8, the minimum slenderness

ratio which is considered in this study is 0.2.

2,2 Qverall 1lift and drag

The overall 1ift and drag coefficients based on plan area are:-

SU SL
CL = CPL - CPU - CFU 5 sinay - CFL 5 sinap _ (11).
EH SL , .
CD = CPL tan o, = CpU tan Oy *+ CFU 3 COS Gy + CFL 3 cos aL + CDP (123)

where CFU and CFL are the mean t&ngential force coefficients due to skin

friction, each based on the appropriete surface area for the upper and lower

surfaces respectively, and C._ is & parasite-drag coefficient based on plan

DP
area 5. For convenience, we may write

s S
= il L 12b
Opp = Cpus 2%t Oy 0% % (120)

i.e. CDF is the total skin-friction drag coefficient based on 8. Then

(12¢)

C = C tan ap = CpU tan Oy + CDF + CDP

D Py,



2.3 Pressure coefficients

The pressure coefficient C_ on the lower-surface of a caret wing can
L
be expressed in terms of the shock wave angle £ and the free-stream Mach

number Mo by means of the well-known equation from two-dimensional oblique-

shock theory12

=

b .2 2
ch e (sin” Z - 1/M) (13)

The relationship between the lower-surface incidence ar, the shock-wave

angle and the free-stream Mach number can alsc be obtained from classical

theory12

2 cot Z (sin2 Z - 1/M§)
tan o = 5 5 (14)
y+ 1 -2 (sin” Z ~ 1/Mo)

For y = 1.4, these equations become

Cp, 2 (sin® £ - 1/M)) (15)

and

. 5 cot & (sin2 z - 1/M§) (16)
T 6 -5 (sin2 Z - 1/M§)

The shock-wave angle Z can be eliminated from (15) and (16) giving tan a in

terms of C and M
Py, o

C

(17)

13 ’:1 - 0.6 Cpy, - 1/M§}%
Py,

tan =
"L 2-¢C 0.6 C. + 1M
Pr 0

There is no explicit relation for C_ 1in terms of M° and o e Ir Gy is given,

L
equation (17), which is virtuelly a cubic in Cp , must be solved, For desk
L
computation, it is sometimes more convenient to use an approximation for C
L

in terms of a and Mo’ A number of such approximations are discussed in

Appendix B.



The foregoing equations apply at angles of incidence of the lower-surface
below the maximum at which a shock can be attached to the leading edges. To
celculate this maximum incidence and the associated maximum pressure coefficient,
it is necessary to consider flow conditions normal to the attachment line,

i.e. in a-plane normal to the leading edge. Shock detachment occurs if &
meximum turning angle in this plane, (QN)max is exceeded, This critical angle

increases as the Mach number in this plane MN increases, but the shock angle
o

at (GN)max’ which is also a maximum for that particular Mach number, exhibits

only a small variation12 - between 64° and 68° - for all Mach numbers My
o

greater then 1.40. Now, from equations (8) and (45),

2 o \2

MN - sin Zﬁ

0

and since the relevant values of:Mi Cp in this study exceed unity, M > 1,40
L o
o . s o .
and so we can use éN € 64 as a convenient condition for -ensuring that the

shock is attached to the leading edges. From equations (7), (8) and (15),

(3/6)2 (ﬁi - 0.6 ¥ G )2

0052 Z - PL
N T .2 2 g2 , 2 2
Me {1 + 0.6 Mo CPL + -g? ([30 - 0.6 Mo CPL)}

Making the approximations Bo o Mé and that 0.36 Ci is small cf, unity, Cp can
L L
be expressed in terms of Zy, M and s/¢:-

. 2 2 2
. . 5 (s/¢)° tan éN - 1/M0
P, 3 14-(3/@)2 (1+2 tan C%Q

Assuming a minimum s/£ of 0,2 and a minimum Mach number of 5, the pressure
coefficient corresponding to a shock detachment angle of 64° is » 0.177. This

is likely to be well above the values appropriate to cruising'fligh%.

At the present time no exact solution exists for the pressure distribu-
tion on the upper-surface of a caret wing with Ay # 0. However, since at

hypersonic Mach numbers the contribution to overall lift and drag from the



1

pressure distribution on the upper-surface is likely to be much less than
the contribution from the lower-surface, an approximate value of the mean
pressure coefficient on the upper-surface should be adequate for the purposes
of calculating overall 1lift and drag. It has therefore been assumed that

the mean pressure coefficient on the upper-surface, C_ , is that corresponding

to a two-dimensional expansion or compression, as the case may be, through
the "surface incidence", aﬁ, where surface incidence is defined as the com-
plement of the angle between the free-stream vector and the normal to the
surface. Since the upper-surfaces of the caret wings considered in this
Report are composed of two flat facets, the surface incidence and the pressure
coefficient over each facet will be constant. The surface incidence, aﬁ, is

given by:-
sin af = sin oy cos Y (18)

where ¢U is the anhedral angle of the upper-surface in the plane of the base
(equation (6c)).
13

Measurements of upper-surface pressures have been made ~ at Mo = 4.3
on a caret wing of slendermess ratio 0.25, for which the design condition
was oy = O, The following table gives the measured increments in negative
pressure coefficient on the upper-surface, at various spanwise stations, due

to increasing upper-surfece incidence from zero to ko and also to 100.

Distance from wing CL

Local semispan 0 0.2 0.4 0.6 0.8 0.9
-4 oy %0 = y° 0.010  0.0145 0.0185 0.0185 0.021 0,020
-4 ch, o = 10° 0.029 0.033 0.0345 0.0375 0.042 0.0395

Values of the mean pressure coefficient on the upper-surface estimated
by the method described above are -0.017 for ay = 4° and -0.0365 for ag = 100,
the anhedral angle ¢U being 550 in this case. Thus, although the pressure on
the upper~surface varies somewhat across the span, ~ as might be expected -
from & low value near the ridge line to a high value near the leading edge,

the method used in this study to calculate Cp gives a reasonable mean

value. u



12

Convenient approximations for calculating Cp in . terms of aﬁ ere given

in Appendix B. U

The above equations for the pressures on tne wing surfaces, which are
used for the estimates of 1lift and drag described later in this Report, apply
strictly to the basic caret wing'of Fig.1 which has sharp leading edges. It
is assumed that any rounding of the leading edges which may be necessary for
structural reasons will be small - a radius of the order of 0.1% of overall
length, say. A simple analysis of the 1ift and drag penalties due to leading
edge blunting is given in Appendix D based on the assumption that the pressures
on the flat after-surfaces behind the tangent lines to the leading e@ge fadius

are the same as those given above for a sharp-edged wing,

2.4 Skin friction

2.4.1 Transition location

Before estimates can be made of overall skin-friction drag it is of
course necessary to know the extent of laminar and turbulent flow on each
surface of the wing. Unfortunately, information on this topic is very ‘
limited at hypersonic speeds. A useful summary of the present state of
knowledge on transition at supersonic speeds, with a limitéd indication of

1
hypersonic trends, has been made by Michel 4.

For smcoth, flat plates with zero heat transfer from the surface, it
is known that Ret, the Reynolds number based on conditions. at the edge of the
boundary layer and distance from the leading edge to the midpoint of the
transition zone,increases as Mach number increases above about 3. Heat
loss from the surface by radiation and conduction has the effect - within
certain limits ~ of increasing Rey still further, the combined effect of
Mach number and heat loss increasing Ret typically by an order of magnitude
between subsonic speeds and & Mach number of about 10. Yet another effect
of Mach number on the laminar boundary layer is é% decrease its sensitivity
to roughness15, - again, typically, for a flat plate the size of roughness
necessary to have a significant affect on Re, increases by an order of

magnitude between subsonic speeds and M_ = 3.

For these reasons, hypersonic flight speeds offer the prospect of
higher values of Ret than those normally obtained at lower. speeds, without

special attention to surface fihish.
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On the basis of the very slender available evidence, a ‘datum' value

for Ret of 107 will be assumed for the calculations in this study of skin
friction drag at Mach numbers in the range 5-10, but in view of the many
unknowns, and to illustrate the effect of variation of Ret
will be considered also in some cases. These are, an 'optimistic! Ret of

2

2.5 x 10" and a very 'pessimistic' value of zero, - i.e., an all-turbulent

, two other values

boundary layer. For the cases considered in this Report, the ratio of wall
temperature Too to boundary-layer recovery temperature Tr, calculated at a
point just ahead of the transition zone, varies from about 0.5 at Mo = 5 and
a relatively low attitude to about 0.2 at Mo = 10 at a relatively high
altitude,

The datum Ret of 107 is based on the results of experiments with flat
plates having sharp, unswept leading edges in two-dimensional flow, Now although
the flow over the surfaces of a caret wing having sharp leading edges is a
close approximation to that on a two-dimensional flat plate, some rounding of
the leading edge might be necessary to keep local temperatures in this region
within practical limits, - and it is known that the combination of leading-
edge rounding with sweepback can cause boundary-layer transition at or near the
leading edge, this being attributed at low speeds16 to so-called cross-flow
instability. Criteria for estimating the critical leading-edge radius which
Jjust causes transition near the leading edge have been developed for low
speeds, but although it is knovm that & similar phenomenon exists at super-
sonic and hypersonic speeds, the conditions under which it occurs at these
speeds are not well understood. Topham17 has correlated available experimental
data from wind tunnels on heat transfler rates to yawed cylinders at hypersonic
speeds up to Mo = 10. He suggests a method for calculating the critical
cylinder radius below which heat transfer rates correspond to theoretical
values for a laminar boundary-layer and above which the heating rates exceed
the laminar values and hence, it is inferred, transition to turbulent flow
has begun at the stagnation line. Topham's criterion, (which is nominally a
critical Reynolds number of 130 based on stagnation-line conditions and the
boundary-layer momentum thickness derived from velocity components parallel
with the stagnation line), involves a knowledge of the velocity distribution
near the stagnation line, in a plane normal to it. To make an estimate of
critical leading-edge radius for the caret wing, a pressure distribution

round the leading edge in this plane of the Newtonian type has been assumed
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. . . 1
(as in Appendix D), since a correlation 8 of experimental results for yawed
cylinders shows that this is a good approximation where the Mach number
component normal to the stagnation line lies between 1.5 and 3.0 - the typical

range for caret wings., Hence, the following values of the critical leading-

edge radius, T opit? have been calculated for caret wings of delta planform
with Oy = 0.
1 | ' b | l
ks 5 5 5 | 5 110 (10 |10 |10
s/€ 0.2 {0.2 | 0.3 10.3] 0.2 0.2 |0.3 [0.3
Cp 0.06 {0.10 | 0,06 ] 0.10] 0.05 | 0.08 | 0,05 | 0.08
L
. 2
Topit (in) W/S = 25 1b/rt"] 0.6 |1.2 |0.6 | 1.2 | 0.8 [1.5 {1.0 | 1.8
. 2
Topit (in) W/S = 50 1b/Pt°| 0.3 |0.5 10.3 0.5 | 0wk | 0.7 ]0.5 0.8
! 1 : : i :

Present indications are, then, that to achieve a significant proportion
of laminar flow over the wing surfaces the leading-edge radius must be below -
perhaps well below - these values. Recent studies1? in Structures Department,
R.A.E, suggest that in fact this is quite practical. Therefore the datum
Ret of 107 can be regarded as feasible, although a real degree of uncertainty
must attach to any particular value, in view of the dearth of information on

hypersonic transition.,

Apart from its effect on skin-friction drag and hence on the ratio of
1ift to drag, the proportion of wing area on which the boundary layer is
laminar has & direct effect on the kinetic-heating problem, since equilibrium
temperatures in the laminar region are likely to be several hundred degrees
lower than those in the turbulent region at the higher hypersonic speeds.

For a given transition Reynolds number the proportion of laminar flow on cne
wing surface will depend on the length of the wing, Mach number, wing loading,
1ift coefficient and the division of 1lift between the two surfaces. Fig.3
shows an example for ¢ = 0.08 and a wing loading of 25 lb/TtZ. Curves of
SLAM/SS at Mo = 5, 7 and 10 are given for the upper and lower surfaces as a

function of overall 1lirt coefficient. Results are shown for three ways of
varying CL:-

(a) by varying upper-surface incidence with s/¢ constant at 0.2
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(b) by varying upper-surface incidence with s/& constant at 0.3, and
(c) by varying 3/6 with the upper-surface streamwise.

The ratio SLAM/S is readily presented for an arbitrary transition
Reynolds number Ret, so while the curves shown apply to Re f109W (i.e. =='1O7
for W = 100 000 1b), a correction chart is given for other values of Ret. For
the particular volume and wing loading chosen, the upper surface has roughly
50% more laminar flow than the lower. An important feature is that the area
of laminar flow on both surfaces increases both with CL and Mo. For flight
at the higher Mach numbers where the kinetic heating problem is severe, it
may be advantageous therefore to fly at a relatively high 1ift coefficient
and slenderness ratio even if this implies an increase in drag above the

minimum. This point is discussed further in Section 3.4.2.

2,4.2 Estimation of skin friction

The method used to estimate skin friotion for each surface of the caret
wing,in order to obtain the results discussed later in this Report, is fully
described in Appendix C. Zero conduction into the wing surface has been
assumed, heat loss being by radiation only, with emissivity = 0.8. PFigs.C1
to C5 of Appendix C enable a rapid estimate to be made of skin friction for
any constant pressure wing surface of delta planform, given the values of
stream Mach number, surface pressure coefficient, altitude, overall length

and transition Reynolds number.

Figs.h(a) and h(b) present examples of the tangential force coefficients
due to skin friction, CFU end CFL for the upper and lower surfaces respectively,
each based on the appropriate wetted area. Values are shown as functions of
overall 1lift coefficient for M 5, 7, and 10, and wing loadlnga of 25 and 50 lb/f‘t
assuming the 'datum' tran31tion Reynolds number (10 ). It will be noted that
there is typically a very large difference between the upper and lower surface
values of friction-force coefficient which becomes more marked as Mach number
increases. Changes in overall length and upper-surface incidence do not have
a large effect, although the latter is favourable and would tend to reduce
the variation in overall friction drag with Cr, at constant t and s/é. A
typical mean friction-force coefficient biased towards upper-surface values

to take account of its greater wetted area would be 0,0012.

Some examples of the overall friction-drag coefficient (equation (12b))

have been calculated for the datum transition Reynolds number, and are
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presented in Fig.5 as functions of CL' The effect on CDF is compared of

varying CL by varying, individually, args s/¢ and 7. It will be noted that

Cop
conclusions regarding the trend of this variation. The increase of CDF with

is far from being independent of CLand it is difficult to draw general

increase of CL is greatest if the latter is obtained by inereasing v. Changing

C,
tion in CDF°

2.5 Parasite drag

by chenging 5/ at constant T and g tends to produce the smallest varia-

In this study, arbitrary values have been postulated for CDP’ the para-
site-drag coefficient based on plan area., The term parasite drag is here
intended to cover the drag of fins, control surfaces, any base area not filled
by the engine efflux, enginec installation items not debited to net thrust, the
drag penalty of rounding the wing lcading edge to achieve an acceptable leading-
edge heating rate, and the drag of miscelléneous excresences not included in
this 1ist., Clearly it is not possible to assign specific values to these
qusntities at this stage. Appendix D presents an approximate method for

estimating the drag of a given amount of leading-edge rounding.

2,6 Maximum 1lift to drag ratio with (CDF + CDP) constant and a; = 0

Rclatively simple expressions can be derived for the maximum 1ift to
drag ratio develeoped by a caret wing at a given Mach number, and for the 1ift
coefficient and incidence at which this occurs, if two conditions or con-

straints are specified. These are
(i) (CDF + CDP) is sensibly invariant with incidence (i.e. CL) ,
(ii) the upper-surface incidence is always zero.

These conditions, particularly the second, impose restrictions on the generality
of the results obtained and these will be discussed at the end of the analysis,
+ should be noted from the outset however that zero upper-surface incidence -
which may be a desirable constraint because it ensures an orderly and predic-
table flow - nas the result that variation of 1lift coefficient (i.e. lower-
surface incidence)at a given Mach number implies variation of the volume
coefficient © and/or of the span/length ratio, in accordance with the relation-

ship of equation (4) with ay = 0,

Denoting overall 1lift and drag with Qi 2ETO by LZ’ DZ’ and neglecting

the very small contribution to 1ift from the friction force on the lower-suriace
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equation (11) gives

C = C
Ly PL
and therefore from equation (12c)
D C.., + C
—-Z- = —————-—DF DB + tan a (19)
L c L
Z LZ

Substituting for tan o from (17), we have for vy = 1.4

2

c 1= 0.6 Cp - 1/M_ _ 1
EZ _ CDF + CDP LZ L, 02
L C T TCC 2 (20)

Z L, Ly, 0.6 C, + 1/M
Z
Hence, by differentiation with respect to CL , and with the first assumption
Z

listed above, viz that (Cm + C ) is invariant with C_ , it can be shown
DF DP Lz

that C£ » the 1ift coefficient for maximum ratioc of 1lift to drag with oy = o,
Z

is given by solutions of the equation

c*ﬁz 9.6"3 {1 4 S/GM‘E ciz)}
(Cpp + Cpp) 7 e 10 i, c{z)ﬁ/}' e (212)
where
(1 + 0.3 W c* )(1 - 0.6 C* - 1/M2)-1§ (1 - 0.5 c* )2
(1 6)3/2 - " 2 7 2 - w: . (21p)
(1 - 0.7 C’I':Z - 1M )1+ 0.3 Mi czz) - 0.2 Giz

Now for values of Ci less than 0.1 - and this will be found to be normally

2
the case - and for Mach numbers in excess of 3, then -0.04 < 6 < 0.04.

Therefore it is valid to regard the dependent variable on the L.H. side of

equation (21a) as a function mainly of M C; , Mach number itself being a
Z

second, much less important variable. Therefore we can write
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c u ct
Z z 2 1/3
= ~ (M c*) o £[M_ (Chp + Cr) /710
2/3 1/342 o L o ‘“’DF © “DP
(Cpp + Cpp) [, (Cpp + Cpp) 7] z

eee  (22)

In Fig.6, values of CE /(CDF + CDP)Z/B'calculated from equation (21)
Z

. 1/3 -
have been plotted against MO (CDF + CDP) for Mo = 3, 7 and 15. It can be

seen that for all likely values of (CDF + CDP),-- 0.0005 to 0.01 say - varia-

tion of Mo between 3 snd 15 has only a very small effect on the relationship

2 .
between C* /(C__ + CDP) /3 and M (CDF + CDP)1/3 Further, for

LZ DF

1/3 . .
Mo (CDF + CDP) / 2 0,9, the approximation
C* =~ 2

2/3
L, ‘ + Cpp) ( ,

(g

gives C# to an accuracy better than 29,
z ;
Maximum 1ift to drag ratio is readily obtained from equation (20) with

CL = Cz . In this case the appropriate approximation is
Z Z ] '

L
== C.. + C ) ~ fM_(C,+ Co) /7]
<§Z)max pF * UDP o "o T “op
The exaot relationship is plotted in Fig,7 end again Mach number itself has
only a very minor effect, A good approximation to the results shown, for

0.5 < M (Cpp + GDP)V3 < 2.51s

L
- o~ 23)
(Dz> 73" 2/3
max (cDFE+ Cop) M, (Cpp + Cpp)
Finally, (aL);, the 1ower-$urface incidence for maximum 1if't to drag

ratio with zero upper-surface incidence, is obtained from equation (19) in
1 .

the form -
2
(ten o) 1 (o + ) £l (c, + C fzﬁ
173 © ‘ /3 % = o \Yop * “pp
(Cpp + Cpp) (£/25) oy (Cpp + Cpp) Ly

. s S \m 1/3 . 1/3
Fig.8 shows the variation of (taq GL)Z/(CDF + CDP) with M_ (CDF + C P)

4 useful result from the foregoing is that the product of the ordinates

of Figs.7 and 8, viz (tan QL); x.(Lz/Dz)max, does not vary rapidly with the



19

primary independent variable, Mo (CDF + CDP)1/3. The following table gives
values of this product, along with (LZ/DZ)max/Mo obtained by dividing the

; - 1/3
ordinates of Fig.7 by M, (CDF + CDP) .

1/3
MO(CDF + CDP) 0.5 1.0 1.5 2,0

(LZ/DZ)max/Mo 2,2 0.86 0.52 0.37
(tan ag )% (LZ/DZ)max 0.53 0.58 0.61 0.62

It is edequate to regard the interesting range of (Lz/bz) /Mb as 0,4-2.0

in the present context, from which we can conclude
# =
(tan op)¥ (L/D,) = 0.58 * 0.04 (24)

All the foregoing results apply strictly within the constraints

imposed on the analysis, i.e. (CDF + CDP) invariant with C. and upper-surface

L

Dp
allowance for extra-to-wing drag items and it is normal practice to regard

streamwise., Considering the first of these conditions, C_, is an arbitrary
these as essentially invariant at a given Mach number. Cpp on the other hand
will in general vary with CL’ and although in principle this variation can

be calculated from the data given in Appendix C - examples have already been
given in Figs.5(a) and 5(b) - in practice this would complicate this analysis

enormously. Hence constant values of C., have perforce to be assumed, Now,

from the curves of Cop presented in Fig2?5(a) and 5(b) for streamwise upper-
surface it can be seen that it is more nearly correct to assume a constant
CDF if CL is changed by variation of s/€ at a given ¢ than by variation of

T at a given s/¢. Hence the analytical results derived above are best inter-
preted as applying to the case of a caret wing with streamwise upper-surface
for which the value of 7 is given, and ay, and CL are changed by varying s/Z.
It is in any case natural to regard v as an independent variable, the value
of which is determined essentially from considerations of stowage. So, with
given values of Mo and 1 and with an estimate of (CDF + CDP)’ (tan GL)E can
be obtained from Fig.8 and this corresponds to a particular 'optimum' value

of s/¢ for the upper-surface streamwise case, given from equation (4) by



20

(s/0)3 - {-(Eng,-cf’-’l’-—)-z}z (25)

The interpretation of this and indeed all the foregoing results in this
section requires special care in view of the second constraint imposed on the
analysis, i.e. that the upper-surface incidence shall be zero. The signifi-
cance of this constraintxcan be uﬁderstood best by reference to Fig.E2 of
Appendix E which shows, for M, = 5 and 10, both (L/D)max and LZ/DZ for a two-
dimensional wedge as functions of wedge semi-angle ¢ and (CDF + CDP)' Values
of LZ/Dz for the caret wing correspond exactly to those of the wedge of semi-~
angle %(GL)Z having the same (CDF + CDP)’ end the maxima in the wedge LZ/DZ

curves on Fig.E2 are precisely the values of (LZ/DZ) for the caret given

max
on Fig.7, and occur at & = %-(ai);'as given by Fig.8. The curves of (L/D)max
on Fig.E2 refer to the maximum with respect to variation of incidence at a

given semi-angle and (C and these only ccincide with the LZ/DZ

op * Cpp)»
curves where this cptimum incidence happens to correspond to Oy = 0, (see
Fig.E1). The (L/D)max values for %edges are not exactly the same as those
for caret wings with the same (CDF.+ CDP) and (aL - aU) = 28, because the
anhedral on the caret reduces upper-surface 1lift at a given Oge However,

the general trend of (L/D)max will clearly be similar, In particular, for
the highest (L/D)max, (GL - GU) should be reduced to a very low value, - less

than 2° - so long as C,, 1s not thereby increased. For given values of =t

thought to be relevantDio this study, this corresponds to extremely low values
of slenderness rotio as given by equation (4), much lower than the minimum
praétical value as determined by low-speed considerations, i.e. about 0.2,
Since Fig.5 shows that at Mach numbers of 7 and 10 there is not much varia-
tion in Cop with s/¢ down to 0,2, at these speeds the optimum slenderness
ratio from the standpoint of 1ift to drag ratio when ay is free to vary will
be the minimum practicable value. At Mach 5 on the other hand, Fig.5 shows
an gppreciable increase in CDF due to decreasing s/¢ from 0.3 to 0,2; there-~
fore the best slenderness ratio at this speed is likely to be in this range

depending on the value of <.

To sum up, the analytical results obtained in this section may be broadly

interpreted as follows

(1) I (s/Z); is less than ‘the minimum practical value of 0.2 or
thereasbouts, then the best ratio of 1lift to dreg is obtained with
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this minirmum slenderness ratio and with approximately zero upper-surface

incidence, although this lift to drag ratio will be less than (LZ/DZ)max
as given by Fig.7.

(2) 1r (s/i); is equal to or greater than the minimum practical value
of around 0.2, the results of course apply to the case ay = O but (LZ/DZ)max
will be significantly less than the best 1if't to drag ratio using upper-surface
lift, with s/€ = 0,2 at M, = 7-10 and 5/€ & 0.2-0.3 at M, = 5.

The following are some typicael values of (tan GL)E derived from Fig.8

using typicel skin-friction drag coefficients from Fig.5:~

M 5 7 10
Cop 0.0038  0.0031  0.0026
(tan aL); Cpp = © 0.095 0.099 0.104
(tan aL); Cpp = 0.001 0,105 0.113 0.120

Taking tan aL)E = 0.105 as typical, from equation (25) (8/6);>-0.2 if

T < 0,08 or thereabouts. Hence if 7 < 0,08, restriotion to ay =0

would cause a loss in lift to drag ratio, If ¢ 2> 0.08, optimum ay is near
to zero but a minimum practical slenderness ratio of 0.2 involves some
sacrifice in 1ift to drag ratio, These points are illustrated further in

Section 3.2,

3 REVIEW OF FACTORS AFFECTING DRAG

301 Slenderness ratio and volume coefficient

In this end the next section the effects of variation of the geometrical
variables T, s/¢ and Gy on the lift to drag ratio at particular Mach numbers
are considered; this section deals with variation of T and s/€ with the upper-
surface streamwise, the next with variation of Ay at particular values of <
end s/£. In both cases, the effect of variation of the surface friction coeffi-
cients is excluded - to reduce the number of variables affecting the results -

by assuming an arbitrary constant value of 0.001 for both CFU and CFL'

Lift to drag ratio with ay = O has been plotted against s/€ in Figs.9(a)
to (c) and against C; in Figs 10(a)-(c), for Mach numbers 5, 7 and 10 in
each case, These results show the rapid fall-off in LZ/DZ as s/¢ is reduced
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below the value for (LZ/DZ)max at a given 1, which has already been discussed
in Section 2.6; this is in effect the penalty for not making use of upper-
surface 1lift. Also evident is the decrease in optimum slenderness ratic below

a practical lower limit of 0,2 when T exceeds 0,08.

Due to variation in wetted area these results do not correspond exactly
to the constant CDF case treated ana}ytically in Section 2.6, However, if
we take for C = 0.001 an approximate mean C,p of 0.0025, Fig.8 and equation (25)
give for T(S/Z);, 0.026, 0,030 and 0,034 at Mach numbers 5, 7 and 10 respectively,
These values agree closely with those shown on Figs.9(a)-(o) on the envelope
curves of 1lif't to drag ratio vs slenderness ratio. This is to be expected

and C the variation of C with <

since for a given slend i
given slenderness ratio,C FL? DF

FU
is small,

Fig.11 shows maximum ratio of 1lift to drag plotted against volume coeffi-
cient, the maximum being with respect to variation of slenderness ratio at
constant volume coefficient unless this occurs at s/4 < 0.2, in which case the
velue at s/€ = 0,2 is plotted., The appropriate values of s/£ are shown on
the curves. This picture underlines the importance of % as the main geometrical
variable, the decreasing importance of Mach number as 1 increases, and the need

for low values of slenderness ratio if < 2 0.06,

3,2  Upper-surface incidence

In the preceding section and in 2,6, the constraint is imposed of assuming
the upper-surface to be aligned in the free stream direction, so that variation
of CL implies variastion of either < or s/&. If we now allow a; to vary, CL
can be regarded as an additional, independent variable and for given values
of Ms 7, s/¢, C Cor and C

FU*> “FL DP
sarily occur when Oy is zero.

, maximum 1ift to drag ratio does not neces-

In Figs.12(a)=12(c), lift to drag ratio for caret wings at Mach numbers
of 5, 7 and 10 has been plotted against C , assuming CFU = CFL = 0,001 as in
Figs.9 and 10, CDP = 0 and {in some cases) 0,002, and various values of T and
s/¢, incidence now being free to vary independeatly. These results confirm
the expectation from the wedge calculations of Appendix E, already discussed
in Section 2.6, that restriction of ay to zero involves a significant loss
in 1ift to drag ratio only if (aL - aU) < 60—70 depending on CDP’ i.es from
equation (4), and assuming s/¢ = 0.2, if t < 0,08-0.09. It will also be

noted that maeking ay & variable enhances the favourable effect of a low
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slenderness ratio at a given v. The best slenderness ratio for maximising

I/D at constant Cpg 28 Cpp

considered except M, = 5 and T= 0,06, for which s/£€=0.251is marginally better.

is the minimum practical value of 0.2 in all cases

Fig.13 shows maximum 1ift to drag ratio vs T where the maximum is with
respect to variation of both Oy and s/¢, but again with the proviso that
s/¢ 2 0,2, The correspording curves from Fig.11 for ay = 0 are also shown
for comparison., With 9y varying, the effect of 1 is even greater than if
ay = 0. 0ddly enough, the favourable effect of upper-surface lift at low <

is greater at the higher Mach numbers.

A point which emerges from Fig.12 is that at 1lif't coefficients con-
siderably greater than those for maximum 1if't to drag ratio, as it varies with
Ay variation of slenderness ratio at constant v and CL has little effect on
L/D. This raises the question, if it is required to use a lift coefficient
appreciably in excess of that corresponding, say, to oy = 0 (for example, in
order to reduce surface temperatures), what are the relative merits of
achieving this by (a) increasing ays (b) increasing s/¢ or (¢) by increasing 1?
Figs.14(a) and 14(b) answer the question for ¢ = 0,08, s/£ = 0.2 and 0.3.

In all cases, variation of upper-surface incidence is significantly superior

to the other ways of increasing C, for given values of CF and CFL’ and

since upper-surface incidence tends to reduce CFU (see Fig.h) this result
is likely to be valid also for actual, as distinct from arbitrary values of
skin friction force coefficients. However, Fig.14 considers the case of
variation of the three geometric parameters separately; it is clear from
Fig.12 that increasing s/£ has little or no adverse effect, provided oy is
increased as well, A higher value of slenderness ratio may be advantageous,
if high 1lift coefficients can be developed, in increasing the proportion of

laminar flow by reducing overall length,
3.3 Mach number

Considering next the effect of free-stream Mach number on drag, this can

be approached in several ways according to the constraints imposed on the

relevant variables,

The simplest case is that treated theoretically in Section 2.6 in which
the upper-surface is meintained streamwise and it is postulated that
+ CDP) is independent of CL at a given Mach number, Fig.15 shows

(Cop
maximum 1lift to drag retio calculated with these assumptions, plotted
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against Mach number for a range of values of (CDF + It will be noted

Cop)e
that maximum LZ/DZ at constant (CDF + CDP> falls markedly as Mach number
increases, e typical example being (CDF + CEQ = 0.,003C, for which(LZ/DZ)max
decreascs by over 17% between M, =5 end M =10,

For the purpose of showing the effect of Mach number on drag, the
above results are misleading inasmuch as they take no account of the fact
that for given values of T, s/ and plan area, wetted ares falls as Mach
number increases, and hence for this reason alone, CDF will decrease also.
Further, for some values of ¢, the slenderness ratios implied by the results
on Fig,15 arc below the minimum practical value. Fig.16 which shows maximum
1ift to drag ratio vs Mach number for given values of ¢ assuming surface-
friction coefficients CFU and CFL censtant and equal to 0,001 takes account
of these points. These curves have been obtained by cross-plotting from
the resulvts already discussed in Sections 2.1 and 3.2. The upper figure is
for a streamwise upper surface, the lower shows values at the optimum upper-
surface incidence; in both cases the 1ift to drag ratio shown is the maximum
as it veries with slenderness ratio, subject to the restriction that this is
never less than a lower practical 1limit of 0.2, A noticeable feature of
these results is that the decrease of maximum 1if't to dreg ratio with Mach
number is much less than that shown on the previous figure, for the reasons
already given. With Ay = 0, meximum LZ/DZ decreases between Mach numbers
of 5 and 10 by about 10% if < = 0,06, by 6% if ¢ = 0.08, and by only 3% if
¢ = 0.10. Allowing the upper surface to take up the best incidence reduces

slightly the variation with Mach number for those cases affected.

The above results apply if CFU and CFL are constant. However, Fig.lk
shows that there are considerable variations of these coefficients with both
Mach numbcr and 1lift coefficient. The efflect of this on 1ift to drag ratio
is presented on Fig.17 for a particular example, t = 0.08, CDP =0, ard a
wing loading of 25 lb/ftz, friction being calculated for the 'datum' transi-
tion Reynolds number of 107, (see Section 2.4.1). The upper graph of Fig.17
shows the variation with Mach nuuber of (a) the friction-drag coefficient as
given by Fig.5(a) for the case T constant and slenderness ratio varying and

(v) the variation with Mach number of the wave-drag coefficient Cz (tan aL)z.
Z
The 1ift coefficient for maximum 1lift to drag ratio CE has been obtained in
Z
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this case by starting with the theoretical value given by Fig.6 (which applies

strictly to constant CDF)’ then increasing this by small steps to find the
optimum, Having determined CE - shown on the upper graph for Mo = 5,7, 10 =

the corresponding slenderness %atio was calculeted, and was found to be
approximately 0.2 at all Mach numbers, i.,e. about the minimum practical value,

Both friction and wave dreg fall as Mach number increases, as does CE , the
Z
net result being that meximum lift/drag, shown on the lower graph, falls by

only 3% between Mo = 5 and Mo = 10, This oan also be inferred from Fig.15
by taking appropriate values of CDF from Fig.5(a). It happens that the
results shown on Fig,17 also apply to the case of an all-turbulent boundary
layer with a wing loading of /0 lb/ftz; in fact the general conclusion may
be drawn that variations in maximum L/D with Mach number in the range 5-10

are, typically, small.

Finelly,it is argued in Appendix A that in considering the effect of
speed on airframe cruise efficiency, the weight to drag ratic is a more

relevant criterion than the lift to drag ratio, where

w _ L/D L/D (26)

DI Ty L (u/26)°

the factor LAV being the effect of the Earth's curvature in reducing the
aerodynamic 1lift required to support the vehicle at a given speed. Maximum
W/D, also shown on the lower graph of Fig.17, increases continuously with

Mach number from Mo = 5 upwards.

To sum up, increasing Mach number tends to improve the aerodynamic
efficiency criterion W/D, and slenderness ratios in the range 0,2-0,25 seem

to be the optimum for volume coefficients of 0.08 or thereabouts.

3.4 Skin friction

2.4.1 Arbitrary skin friction

To gain some idea of the importance of skin friction, weight to drag
ratios with zero upper-surface incidence are presented in the following table
for three arbitrary values of friction-force coefficient,=0, 0.001 and 0.002,
assumed to be the same on both upper and lower-surfaces. Two cases are con-
sidered; a caret wing with T = 0,08, and s/¢ = 0.02, and the two-dimensional

wedge which has the same lower-surface incidence as the caret wing. The
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latter can be regarded as an equivalent 'ideal' wing with the same planform,
section and volume as the caret, but with zero anhedral and yet pressures on
the lower-surface corresponding to two-dimensional flow, as on the caret.

T = 0,08, s/€ = 0.2, ay = 0, CDP =0

C

FU and CFL 0 0.001 0.002

W/DZ caret M_=5 2.7 £.55 4.9
W/Dz wedge M_ =5 9.7 7.35 5.9

w/DZ caret M_ =10 | 11.0 6.85 5.0

=
i

—
l®]

W/DZ wedge 11,0 7.4 5¢6

Since the upper-surface incidence is here presumed to be zero, the only differ-
ence between the ideal wedge and the caret wing from the point of view of lift

and drag for given values of C_,, and is the greater surface area of the

U & Opy,
caret., For friction coefficients in the range 0,001-0,002, this surface area
penalty reduces the weight to drag ratio of the particular caret considered
by 0.8-1.0 at Mach 5, and by 0.55-0.6 at Mach 10. The effect of a friction
coefficient of 0.001 is to reduce the weight to drag ratio by about a third
compared with the wing in inviscid flow. This large effect underlines the
necessity for including calculated rather than arbitrary values of skin

friction drag in weight to drag ratio estimates. This is dene in Section 3.4.2

below,

An effect of increasing the friction-force coefficient from 0.001 to
0.002 is to increase slightly the optimum slenderness ratio for best weight
to drng ratio at given values of ©. Thus, if 7 = 0,08 and ¥ = 7, 5/€ = 0,25
is better than 0.2 if the friction coefficient is 0.002, but not if it is

0.001,

3.,4.2 Caslculated skin friction

The skin-friction drag coefficient for a caret wing with fixed =, s/2,
length and Mach number depends on the 1lir't coefficient (i.e. aU) wing loading
W/S and transition Reynolds number Re.. Figs 18(a), (b), (c) show W/D vs cy,



27

at Mach numbers 5, 7, 10 respectively, for a caret wing having = = 0,08,

8/¢ = 0.2 and zero parasitic drzg, where friction drag has been calculated by
the method described in Appendix C. On each figure, curves are shown for the
three assumptions concerning transition mentioned in Section 2.4.1, the middle
curve in each case representing an average ‘'datum' value, the upper one an
optimistic and the lower e pessimistic value. The two groups of curves on
each figure are for two wing loadings, 25 lb/?tz on the left, 50 lh/ft2 on
the right, Also shown on the figures, as numbers above and below the line
for upper and lower-surfeces respectively, are the percentage areas of each
surface covered by a laminar boundary layer, Surface temperatures at a point
10 £t behind the leading edge in the laminar flow region and 10 ft behind the
nominal transition line in the turbulent flow region are shown in the boxes
at each end of the CI/EAS scale, the first number referring to the laminar,
the second to the turbulent region, upper and lower numbers applying to

upper end lower wing surfaces,
The following points emerge from e study of these results:-

(a) Weight to drag ratio at a given wing loading increases with Mach
number, not only the maximum velues as anticipated in Section 3.3 , but also

values at a given EAS below that for maximum W/D.

(®) 1Increasing Mach number and lift coefficient at a given wing loading
both inorease the percentage area of laminar flow on each surface. With Ret = 16%
a wing loading of 25 1b/ft2, Mo = 10, CL » 0,08 and ¢ = 100 ft, the whole of
the upper-surface and more than 2/3 of the lower-surface is covered by a
laminar boundary layer, the associated surface temperatures in the laminar
region being 600°C or less, and the weight to drag ratio about 6. At this
relatively high Cqs it would probably be advantageous to increase s/¢ and thus

decrease overall length.

2
(¢) 1Increasing wing loading from 25 lb/'ft2 to 50 1b/ft increases W/D

if Ret < 12 x 107, reduces it if Ret > 12 x 107,

(d) The area of laminar flow on the upper-surface is roughly 50%
greater than that on the lower for the 'datum' transition case.

(e) At the particular volume coefficient and slenderness ratio considered,
the weight to drag ratio with upper-surface streamwise is less than 3% below
the maximum for a given wing loading, Mach number and Ret. Inoreasing Qyy does
however reduce EAS and the mean surface temperatures, and could be important

on this account.



3.5 Pearasite drag

It is probably true to say that the sum of the parasite drag items
listed in Section 2.5 constitute the biggest area of uncertainty in the estima-
tion of 1lift to drag ratio for a hypersonic aircraft. Considering the main
items in turn, if a fin area of roughly 10% of wing plan area is required -
which is typical of conventional aircraft - this would account for about
0.0005 in CDP at MO = 5 decreasing to about half that value at Mo = 10, It
could well be less than this however, and until the lateral characteristics
of caret wing configurations over the whole speed range have been studied no
better estimate can be made. The penalties in lift and drag of blunting the
leading edges have been evaluated in Appendix D and it is shown there that
if radii as large as the critical for leading-edge transition have to bhe used
these are equivalent to parasite drag coefficients varying between 0.0003 and
0.001. However, much smaller leading-edge radii may be structurally feasible.
Even more difficult to estinate is the base drag contribution since this
depends on the effective nozzle area, which will vary between climb, cruise
and glid? phases of the flight. The ratio of base to reference area is
3¢ (s/€)2, so for a typical wing having ¢ = 0.08 and s/¢ = 0.2, and assuming
the base pressure coefficient suggested in Ref,7, then if fraction b of the
total base area is not filled by the efflux, the base parasite drag coefficient
is 0.15b (1/M§ - 1/Mi). The maximum value of this (i.e. b = 1, appropriate
to gliding £light) would therefore be as high as 0,0048 at M, = 5 falling to
0.0014 at MO = 10, For cruising flight b << 1, and much smaller values
would be appropriate. Until specific studies of propulsion amd flight
trajectories are made it will clearly not be possible to assign realistic
values to base drag coefficient., Sundry excrescences, controls etc are
another unknown. Thus the aggregate CDP for cruising flight might be as
low as 0.C01 or even less, or as great as 0,002 or more, with a tendency

to fall as Mo increases,

Figs.12(a) to (c) show the effect of a parcsite drag coefficient Cop
of 0,002, which is typically to reduce (L/D)max by atout unity, and to
increase the 1ift coefficient at which this is obtained by aebout 0,015,

Variation of C,.. does not affect optimum slenderness ratio significantly.

Dp
It cen ec=sily be shown that the decrease in 1ift to drag ratio due to
. 2
parasite drag, at a given Cf is approximately equal to CDP x (L/D)O/QL,

where (L/D)O is the 1ift to drag ratio at Cyp = O,



4 POSSIBLE FURTHER WORK

The foregoing study constitutes only a small preliminary part of the
work which would be necessary to establish the potentialities of hypersonic
air-breathing vehicles. Items of work which are essentially continuations of
that described herein, and which would be required for an overall assessment,

are as follows:-

(a) A4 wider range of speeds, weights and basic configurations would
be considered; the latter might include double carets, non-delta planforms,

curved upper surfaces and non-planar shocks,

(b) The effects of adding propulsion systems to the wing should of
course be investigated. These could be limited in the first instance to
cruise propulsion and later extended to systems for acceleration and cruise.
range of flow cycles with heat addition from various fuels could be studied,

together with their effect on airframe volume requirements.

(¢) In association with (a) and (b) above, the effects of flight pro-
file on overall range performance would have to be esteblished, particular
attention being paid to airfield performance and transonic acceleration

capability.

(d) Finally, these preliminary assessments would lead into more
detailed considerations of layout, weights, balance and stowage and also of
the problems of stability and control over the whole speed range. At this
stage also, a review of the formidable propulsion, structural and mechanical

design problems would be necessary.

Besides suggesting lines of further study as outlined above, the
present Report has highlighted certain aspects of basic hypersonic aero-
dynamics where new data and a better understanding would benefit future

asgessment work. These include the following:-

(a) Criteria for boundary layer transition are required at Mach
numbers up to at least 10, taking into account effects of blunted and swept
leading edges, surface roughness, heat transfer and pressure gradients,
Free flight experiments in addition to wind tunnel tests are desirable -~ if

not essential - f'or this,

(b) The characteristics of upper-surface flow fields requires further

investigation, including effects of vortices, shocks and viscous interaction,
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(c) Methods would be required for the reliable prediction of the 1if't
and drag of simple hypersonic aircraft configurations at off'-design conditions,
and also for calculating other forces and moments relevant to problems of

flight dynarics.
5 CONCLUST ONS

(1) In order to demonstrate one aspect of the relationship between the
geometry and aerodynamic characteristics of a hypersonic aircraft,a simple
case has been chosen which exhibits the essential features, i.e. the caret
wing at its design condition. The 1ift and drag of families of such wings
have been calculated for the Mach number range 5-10 in terms of three inde~
pendent geometrical variebles, volume coefficicnt = volume/(plan area)i/z’
slenderness ratio = semispan/length, and upper-surface incidence. In order
to caiculate skin friction drag, particular values of wing loading have been
chosen, and certain criteria have been assumed for boundary layer transition.
It 1s important tc note that velid comparisons between different hypersonic
aircraft configurations must take account of eny differences between these,

or related, paramsters,

(2) The volume coefficient T is the most significant geometric parameter
affecting meximum lift to drag ratio, L/D. At low values of 7 (less than

about 0.09), maximum L/D is obtained with lift developed on the upper as well
as the lower surface, and constraining the upper surface to be streamwise
causes appreciable loss in L/D at all Mach numbers. With increase of T, ithe
upper~-surface incidence for meximum L/D falls, and is about zero for T 2 0.09.
The slenderness ratio s/¢ for maximum L/D is about 0.3 at 1 = 0.06 and M, =5,
decreasing es M and 7 increase, so that in general for maximum 1lift to drag
ratio, the best slenderness ratio is close to the minimum likely to be dicteted

by considerations of low speed handling.

(3) The 1ift coefficicnt for maximum L/D increases slightly with increase
of v, and decreases slightly with increase of Mo,its value being typically

within the range 0,05-0,07 for most practical configurations.

(L) If it is required to use a 1lift coefficient in excess of that for maximum
1/D (e.g. to increase the ares of laminar flow on the wing surfaces), then an
increase in upper-surface incidence Oy either alone or in combination with
some increase in 8/¢, is superior to increasing either T or s/€ with Oy

constant.
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(5) Wide variations in skin friction and heating can result from different
operating conditions, and assumptions regarding transition location. In

particular:-

(1) Increasing Mach number and increasing 1ift coefficient (at a
given wing loading) both inorease the percentage area of laminar flow on each
surface. The area of laminar flow on the upper-surface is typically 50%
greater than on the lower surface (for the assumption of Ret = 10"), All-
laminar boundary layers on both surfaces is a feasible prospect for a small
(W = 50000 1b) aircraft with a low wing loading for cruise (W/S = 25 1b/ft2)
at a Mach number of about 10; the associated surface temperatures would be

600°C or less.

(ii) The skin-friction force coefficient on the upper surface is
appreciably less than that on the lower surface, the difference becoming more

marked as Mach number and 1lift coefficient increase.

(iii) With increase of Mach number, a favourable variation of wetted
area and skin friction drag coefficient opposes the unfavourable variation
of wave drag, with the result that L/D is approximately invariant with Mach
number for the range considered, i.e. M of 5-10., Thus the aerodynamic

efficiency factor W/D increases continuously from Mach 5 upwards.

(iv) The use of an arbitrary value for skin friction force coefficient
(0,001 is commonly used) may be misleading, since it has been shown that
there are large variations in skin-friction force coefficient with Mach number,
incidence and wing loading, as well as large differences between values for

the upper and lower surfaces of the wing.

(6) Reducing wing loading from 50 to 25 lh/ftz reduces the equilibrium skin
temperatures in both the laminar and turbulent region on the wing surfaces,
end increases the area of laminar flow. The effect of wing loading on W/D
depends on the size of the aircraft and the value of transition Reynolds
number; for example, it has been calculated that for a wing of 100 ft root
chord, reduction of wing loading from 50 to 25 lb/'ft2 reduces W/D for

Ret <12 x 106, end increases it for Rey > 12 x 10,

(7) Only in the case of zero upper-surface incidence, and skin-friction
drag coefficient invariant with lower-surface incidence, is it possible to
derive simple theoretical expressions for maximum L/D and the 1lift coeffi-

cient at which it is obtained. For all other conditions, numerical
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caloulations are required to obtain a clear picture .of the effects of variation

in Mach number and geometry.

(8) The precise value to assign to the parasite drag items (viz:- drag due
to fins, leading edge blunting, base area and miscellaneous excrescences)
constitutes a large area ¢f uncertainty in the estimation of L/D. The range

of possible values of C., might well be equivalent to-a 15% variation in meximum

Dp
L/D, with the likelihood of higher values at the lower Mach numbers,
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AFRODYNAMIC EFFICIENCY CRITERIA FOR HYPERSONIC LONG RANGE ATRCRAFT
(See Section 1)

For long range hypersonic aircraft, consideration must be given to the
contribution to range from the acceleration, cruise and deceleration phases
of the flight trajectory. To obtain estimates of range, assumptions must be
made regarding the type of fuel and the amount that can be ocarried, the
performance of the propulsion unit, the aerodynamic efficiency of the vehicle,

and the form of the flight trajectory.

In this Appendix, the discussion is limited to that of aerodynamic
efficiency. Conventionally, this efficiency is expressed by the ratio of 1lift
to drag, but as will be shown below this criterion is insufficient for high
flight speeds when the curvature of the vehicle's flight path (due to the

curvature of the Earth) is taken into account.

(a) Acceleration phase

Equating forces along the flight path,

av
w 0 .
F_.D+-g-dt+Ws:LnY (a1)
While normal to the flight path,
2 2
'’ ve v
L = Weosgy - = W (1 ~==) = W - = (42)
® Rog V.
S
where F = net thrust
L = 1lift
D = drag
W = weight
Vo = speed
® = radius of flight path
Ry = earth radius
VS = satellite speed
¥ = angle of climb.
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aw

Combining equations (A1) and (A2), putting T = e and neglecting

the small effect of the angle of climb, we get

av (4 -'v2/v2)
aw o 'S
at - ‘G[‘:; dto * (L/D) __J (83)

where o = specific fuel consumption,

Thus the instanteneous value of the aerodynamic efficiency is given by
(v/p)(4/1 - Vi/Vé), which from equation (A2) we find is equal to the ratio
weight/drag. The mean value of the aerodynamic efficiency during the accelera
tion phase will clearly depend on the veriation of L/D and dvd/at over. this
part of the flight trajectory, but a simple solution to equation (A3) can be
obtained for the case of constant (L/B) and cons#anf acceleration dVo/Ht = ng.
Thus

v

Log, (%) - &igc [‘” - -(chg)ﬁé)] )

where VC = cruise speed g
3A = average s.f.c. for the acceleration phase
suffix 1 = initial conditions (v1 = 0)
2 = final conditions (V2 = cruise speed VC)

The range covered during the acceleration'phase, if the acceleration is

constant, is given by

C

or

£ :gA l:n(L/D) . (SL{Dx)rc/svs)] Hote < 3) (+6)

Thus the mean value of the aerodynamic efficiency during the acceleratlon

phase, for the case of constant L/D and acceleration, is (L/D)/(1 - VC/3¥ )
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(b) Cruise phase

Now the familiar Breguet range equation for an aircraft cruising at
constant speed is
v w
- - L L _2
Cruise range Ry = D loge 7

%

3
where suffices 2 and 3 refer to initial and final conditions for the cruise

phase, respectively (V2 =V, = Vc).

3
This equation is obtained from

? ? aw ? L aw
c c
RC=fV2dt=-[~—T=-[—DL (A6)
2 2 2

<
<

C C

with the following assumptions
Vb L
(1) That =* = is a constant.
g, D
(3i) That the speed is low enough for the difference between 1lift and
weight to be ignored (i.es L W),

It cen be shown that assumption (i) remains substantially valid for hypersonic
speeds. But the second assumption is obviously invalid (see equation (42)),

since it leads to errors in excess of 5% at Mach numbers above about 6.

Substituting the value for 1ift from equation (A2) in equation (A8) we
get, after integration

v W

2
- 8 AL W)

c (1 -V /) 3

¢/'s
or
v W

. L¥ 2 A8

Thus the weight/drag ratio is the important airframe efficiency

criterion for cruising flight.

(o) Glide phese

Equating forces along the flight path, assuming zero thrust, we get
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W av

0 =D+-g—Vo-a§9-—WsinY (49)

Combining equation (A9) with (A2), and neglecting the small effect of

the angle of descent*, we get

1
g

<_L.> v_av (210)

D 2,2
1 - Vo/vs

Integration of equation (A10) for a glide from the cruise speed VC to

zero speed, at a constant L/D, gives the glide range, R, as

-
s {L 1
R, = ==[=) 1log (a11)
o - 2 () 2 )
. 1 Vc/vs
i.e, V2 v2 V2 2
o EOE @@ e
&\ Vg Vg

The deceleration during a glide at constant I/D will vary, thus from

equation (A9)

| (1 - v
v %% = -g —-—15754232 ‘ (413)

Thus the mean value of the aerodynamic efficiency during the glide

1
phase, for the case of constant L/D, is

2 2
(L‘. 1+ % VC +1 VC’2+ .
\D 2 ;;z 3 ‘V—E er
S S

* Neglecting the term W sin y in both the acceleration and glide phases
virtually eliminates the error. -
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Appendix B

APPROXTMATIONS FOR THE PRESSURE BEHIND A PLANE SHOCK
OR A PRANDTL-MEYER EXPANSION
(See Section 2,3)

No explicit relations exist which give the pressure behind a single,
plane shock or following a Prandtl-Meyer expansion in terms of upstream Mach
number and flow turning engle, In meny cases, e.ge. the present study,
incidence is virtually specified as an independent variable, and the lack
of an adequate direct method for calculating the surface pressure is incon-
venient, Accordingly, to simplify the computation required for the results
presented in this Report, the following approximate relations were developed
end used, end their accuracy and ranges of applicability assessed by com-

parison with exact values,

Pressure behind a plane, obligue shock

From the obligue shock equations12, the following relation can readily
be obtained between the shock angle &, the turning angle (i.e. incidenoce) a

and the upstream Mach number M°

M sinZ ¥ sina
o 0

2 . 2 ¥ 4+ 1
Mo sin’ & - 2 cos (& - a) -1 =0
Hence for 3+ 0
. 1
8in & = o=
M,
BO
and cos & = T
o
where = ;Mz 1
By =Y - d
Now if the approximetion is made that
0
cos (£ ~a) = cos (4 - “)a»o = ﬁ: (B1)

i.e. that the cosine of the angle between the shock and the surface behind

the shock is invariable with o then
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2
2 2 + 1 Mo ,
M sin & =~ X2 2 singM sing -1 =2 0
0 2 BO o
Hence,
) M2 f' 1 2 2
Msinécx-i'—-—gsina,+i1+u————-s:_nc.
) L B, ; L B
| s}
N\ .
, 2
or, writing mn = 1;ff— -Eg sin a
’ ‘ o
M sinZ = n+ ;1 + nz (BZ)
o - Y :
Now from the oblique shock relations
_ N 2 2
MOCP Y+1(Mos:m zZ-1)
Hence,
2 N 2
M, €, Y+1{n +n‘~\(:1+n} (B3)

or Bo C / >

T sing = Mt ANl (3)

Equation (B3) with M, instead of B and a instead of sin a is sometimes
known as the hypersonic approximation (e.g. Ref,20), in which form it is
commonly regarded as being valid only for large Mo and small a. The range
of useful accuracy of the approximation in the form given by equation (B3) is
rather wider than this would imply however, Fig.B1 shows the ratic of the
exact pressure coefficient to that given by equation (B3) for a range of
Mach numbers and turning angles, with vy = 1.4. For Mach numbers below 3
the approximation gives pressuré to within 2% for angles up to ebout 70
below that for shock detachment, and for Mach numbers of 3 or above this

- : o
accuracy is maintained for angles up to at least 29,

For Mo = oo the exact solution for pressure coefficient is
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2
C, (M =) = {1 + sin o - /1 - (72 +1) sin’ & + ¥ sin® a} (B4)

v+ 1

whereas the value given by equetion (B3) is

Cp (M°=oo) ~ (y+ 1) sin“ @ (Bs)
Equation (BL4) reduces to (B5) for small sin2 a, and gives values within 1%
of equation (B5) for angles up to 25°,

The accuracy of equation (B3) for moderate angles can be improved
considerably by a relatively simple modification. In the so-called Busemenn
expansion (Ref.12, equation (152)) for pressure coefficient as a series in

powers of a, the coefficient of a 1is

(p + 1) " = 17
B = E
2Bo

2
Equation (BS) may be modified so that the coefficient of sin a in the
expansion of CP as a series in sin a is the same as the Busemann coefficient

2
of a , (the coefficients of sin o and a are of course already the same), by

writing
2 8 2 ! 2
M, Cp & T {n (1 -€) + T)wJ1 + M } (86)
B, C —
cr 0 I 2
Zsina = 1 (1-e)+ 1+ (B6)
where L 1
e - - m——
= T . .2

2
(v + 1) M B,

The addition of the 'correction' factor (1 ~ €) to
value of ¢ for y = 1,4 is 0.085 at Mo = 2,1) gives
accuracy at the lower angles. For Mach numbers of

equation (B6) predicts C, to within %% for turning

equation (B3), (the meximum
a useful improvement in
3 or more Fig.B1 shows that

angles up to about 200, an
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accuracy likely to be adequate for almost all practicel purposes. Since ¢ = 0
when M_ - oo, equation (B6) reduces like equation (B3) to equation (B5) in this
limit,

Equation (19) in Ref.21 gives an alternative expression for the pressure
coefficient behind an oblique shock. Although expressed in a somewhat different
form, this in fact differs from équation (B6) above only by the addition of a

small term A inside the square root of the latter equation, where

2
M
A = tan2 a - (I;E-;>2 <1 + —%) sin2 a
p
. o

The effect of this is to increase the incidence range over which accuracy is
better than.1% by about 50 for Mach numbers between 3 and 7, at the cost of
a very slight loss in mean accuracy within this incidence range. At other

Mach numhers the differences between the two expressions are very small,

Finally, for many purposes adequete accuracy over a smaller range of
turning angles at the higher Mach numbers is given by a simple cubic eguation

in n, Fig.B1 shows the accuracy of the following polynomial for y = 1.4.

2 M2 : M2 2 M2 3
M C = 2 =2 3sing+ 1.2 (=2 sin a) + 0.28 (=2 sin o ®7)
° P Bo Bo Bo .

For Mach numbers of 4 or above, this expression predicts CP to within 1%%.accu—
racy up to an incidence of abou? 150/Mo degrees, which corresponds to

Mo CP € 13.5, With the additional restriction a < 150, ?he same expression
with sin o replaced by o inredians gives a similar accuracy for Mach numbers

above 2.2,

Once the surface pressure coefficient behind an oblique shock is known,
the other characteristics of the flow can readily be calculated from the

following well known relations,

2 .2 v+ 1 2
Mo sin & = 1+ A M0 Cp
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2 - L . 4 ,X¥
Q

Py T° 2 P

o
[o]

(y +1) Mi sin’ Z

3“ = _2
Pa (y-1)Mosin2z.,+2
M T, N (M2 sinzg - Dy M2 sin® 2 + 1)
"ol "{’ -— YE: }
M, T Mg (y +1)" sin” &
/2
end if viscosity ~'Er:—777

T, T/'l‘o + 117/To

T "1+ 197/%,

Re _ o X
ke, Po M,

Pressure following a Prandtl-Meyer expansion

It is well known that the expression which can be derived for the pressure
coefficient behind & plane, oblique shock with turning angle a, in the form of
& series in ascending powerszof o (the latter being assumed small) has the
same coefficients of o and o as the analogous series which can be derived
for the pressuve coefficient after a Prandtl-Meyer expansion through an angle
(-0). Hence it might be expected that the foregoing approximations would
apply with reasonable accuracy to expansions through angle a if the sign of
o is changed throughout.

In fact, fortuitously, equation (B3) asbove is remarkably accurate in
this respect. With the sign of a changed, this equation gives the pressure
coefficient following a Prandtl-Meyer expansion to within 2% of the exact
inviscid values for y = 1.4 at all Mach numbers, provided the turning angle
does not exceed 9OB°/M§ degrees, (i.e. -Mﬁ Cp < 1.33).

A simpler equation which gives the Prandtl-Meyer pressures for y = 1.4
. 2
to a similar accuracy up to a lower limiting turning angle o of 5OBO/Mo degrees
2 R
(-Mo Cp. < 1.05) is

) Mi Mi 2 2 3
- = 2 ——— - .2 — ° -2 8
M, Cp Bou, 1 (Bo a.> +036C;oa.> (88)

where g is measured in radians.
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Appendix C
MEAN SKIN FRICTION IN SUPERSONIC FLOW ON A DELTA WING SURFACE
ASSUMING ZERQO CONDUCTION AND CONSTANT SURFACE FPRESSURE
(See Section 2.4 etc)

The mean skin friction drag on each surface of a delta caret wing has been
estimated by the following method and used to derive some of the results (e.g.
Section 3.4.2) discussed in the main text of this Report. The numerical results
obtained are presented in full ih a convenient graphical form in this Appendix.
"Datum' values of mean friction for all-laminar or all-turbulent boundary
layers, which include the effects of Mach number, surface pressure,altitude
and surface length are first derived, then the skin friction drag for one wing
surface obtained from these, The calculation method assumes a constant surface
pressure coefficient Cp, and therefore applies strictly only to the lower-
surface of a delta caret wing. However, the results can reasonably be
applied generally to sensibly plane delta wing surfaces with fully super-
sonic leading edges, provided Cg is interpreted a3 the mean value for the

|
surface,

C.1 Datum skin friction

'Datum' values of mean skin friction coefficient on flat plates at
incidence have been calculated for all-laminar and all-turbulent boundary
layers, assuming for the former a constant chord surface and for the latter
a surface of delta planform. In all cases, the flow is taken to be two-
dimensional, with a specified constant pressure coefficient over the surface,
local stream corditions being those following a single oblique shock in the
case of pressures above free stream and those following an isentropic expan-

sion in the case of pressures below free stream.

The effect of compressibility on skin friction has been allowed for
by the intermediate enthalpy method22, whereby the incompressible equations
for skin friction are applied to an 'equivalent' incompressible stream having
the same pressure and velocity just outside the boundary layer but an effec-

tive intermediate enthalpy iint; where

i

int = 0,22 i+ 0.28 1 + 0.5 lw
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ir = recovery enthalpy
i = enthalpy just outside the boundary layer
iw = enthalpy corresponding to surface temperature.

Datum values of mean skin friction coefficient have been calculated for
a range of values of the four variables:- free stream Mach number Mo, surface
pressure coefficient Cp, altitude z and chord length Xy an oF Xmpp? (XTURB is the
root chord of the delta planform assumed for the turbulent boundary layer).,
To avoid excessive numerical computation, the following two simplifying

assumptions were made:-

(a) TFor given values of the four variables listed above, a single,
representative value of iw has been taken for the whole datum surface. By
ignoring temperature variation over the surface in this way, local skin
friction can be expressed in the incompressible form for each case and
integrated over the surface to give the datum mean value. The enthalpy
corresponding to surface equilibrium tempcrature at the mid chord point of
the laminar or turbulent surface, as the case may be, has been taken as this
mean value of iw' Surface temperature has been obtained from the charts
given in Ref.23 for zero conduvction. These cover the same range of variuables
and assumptions, and have been computed for an emissivity of 0.8. They show
that the varistion of surface temperature with distance from the leading edge

is in fact not large over most of the surface,

(v) For the turbulent boundary layer, local skin friction in incompres-
sible flow at a point distant x behind the leading edge has been taken as

0.0592
(Ce)pzs = R_jﬁ'

where Re is Reynolds number based on ccnditions at the edge of the boundary
layer and distance x, This has the advantege over the more accurate
Wieghardt and other commonly used formulae that it can readily be integrated
to give a mean value over the delta planform assumed for the datum turbulent
friction. PFor a constant chord surface, the above formula gives the same
meen skin friction as the Prandtl-Schlichting formule, which is widely used,
at a Reynolds number based on chord of 107, but is 10% lower at Re = 10 »
Now from Fig.”1 which shows Reynolds number per foot in terms of free stream

Mach number, Cp and wing loading, and from Fig.12 which shows L/D vs Cps
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it can be inferred that flight Rexnolds numbers are likely to be in the range
0.25 - 1,0 x 106 per foot, i.e. the Reynolds number based on mean turbulent
boundary layer length is likely to be in the range 107-108. On average then,
the estimate of datum mean friction for the turbulent boundary layer may be

a few per cent low; however, this:will be partially offset by a pessimistic
assumﬁtion in the method used to obtain overall friction from the datum values,

which is described in the second part of this Appendix.

It is found that datum values of mean skin friction CFd computed in this
way can be expressed, to an accuracy better than 2% for the ranges of the
variables considered, as a constant multiplied by the product of four functions,
each one of which depends on only one of the variables M_, M Cp’ altitude and
chord length x. Accordingly, it has been possible to present the results in
the convenient graphical form shown on Figs.C2 and C3. Fig.C2 shows
CFd vs Mi Cp for three Mach numbers and an arbitrary fixed altitude of 150 000ft
and a chord length of 10 ft. TFig.C3 presents the altitude and chord length
functions by which the values derived from the previous figure must be multi-

plied to obtain datum mean skin friction coefficient at other altitudes and

for other chord lengths.

C.2 Skin friction for a delta surface

To obtain the skin friction for one delta wing surface (i.e. either
upper or lower) with given values of stream Mach number, surface pressure
coefficient, altitude and overall surface length, it is necessary first to
determine the distance to transition on the wing centre-line, X an® For this,

the transition Reynolds number Re, must first be decided, (values assumed for

t
the caret wing are given in the main body of this Report, Section 2.4.1).

Then

Ret

*Lam T (Reo/X)(Re/Reo)

where Reo/x stream Reynolds number/ft, given on Fig.Ci,

Re/Re = local/stream Reynolds number, given on Fig.Ch.

On the delta surface for which the overall skin friction is required
the areas of laminar and turbulent flow will in general look like those shown
in the sketch on Fig.C5. The ratios of laminar and turbulent areas on the

surface to the total area of the surface Sq are respectively,
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Stmp _ /, _ﬁ._m__)'?
Sg \ ¢

The laminar area SLAM comprises a constant chord region, of area

T - (]

and a delta planform region, comprising two halves, outboard of the constant

chord region, having an aggregate area

ey

Now in order to calculate the friction force acting on the whole
surface comprising these areas of laminar and turbulent flow, two simpli-

fying assumptions have been made as follows:-

(1) The mean laminar skin friction over a narrow strip of local
chord C in the 'delta' region of laminar flow has been taken as equal to
the datum mean value which appl&es over the constant chord region further
inboard, multiplied by (xLAM/C)E; For calculating incompressible mean

laminar friction the usual Blasius formula has been used, i.e. Cp ™ Re s

N

so what this assumption implies 1s that the effective mean wall tempera-
ture for the delta region of laminar flow is taken to be the same as that
used to calculate the datum values of mean laminar skin friction, which
is the temperature at distance %'XLAM behind the leading edge, It follows

that the mean skin friction over the delta region of laminar flow is

L

Coadran = 3 (Cradray



L6 Appendix C

(i1) The second assumptioﬁ is thet the mean turbulent skin friction
drag acting over the appropriate region of the surface is the datum value,
with TR > & - X Thus, .the mean turbulent skin friction is calculated
as if the transition line were a leading edge and the laminar boundary layer
did not exist, This means that the turbulent boundary layer is assumed to
begin from zero thickness at transition whereas in fact its thickness here
will be approximately that of the laminar layer. This assumption is somewhat
pessimistic (i.e. leads to higher drag) but is tacitly taken to be offset by
the slightly optimistic formula used to calculate the datum values of mean

turbulent skin friction.

From the foregoing, it follows that the mean skin friction drag

coefficient for the upper or lower surface of a delta wing is given by

2
Cpg = [‘2 .’ifi.“_’! -3 (%‘AM) ] (Cpa) ray * E - ijﬁ (Cpa)ume

where (C and, (C arefobtained from Figs.C2 and C3 for X an and

Fd)LAM Fd)TURB
*TURB = & - XAy respectively, Fig.C5 expresses the above equation graphically.
Thus, for given values of stream Mach number, surface pressure coefficient,
altitude, overall length and transition Reynolds number, Figs,C2-C5 inclusive
contain all the information required to make a rapid estimate of the mean

skin frictlon on a delta wing with supersonic leading edges, assuming zero

conduction and sensibly constant pressure over each surface,
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EFFECT OF LEADING EDGE BLUNTNESS ON LIFT/DRAG
(See Sections 2.3, 2.5, 3.5)

Some blunting of the wing leading edges may be required in order to
avoid excessive local temperatures, but it is desirable to keep such blunting
as small as possible so as to keep the flow around the leading edges laminar
(as discussed in Section 2.4.1) and also to minimise the effect on the wing

flow field.

To obtain an estimate of the change in 1lift/drag arising from such
bluntness let us consider a section normal to the leading edge of a caret
wing, as shown in Fig.D1. To simplify the problem the wing upper-surface is

taken to be in the streamwise direction (i.e. ay = 0, CP = 0), such that
U

the anhedral angle of the wing upper-surface in the YZ-plane is

2,
Wy = sec” [} + <§> tan” 42} ,

where £ is the shock-wave angle. This angle & determines the lower-surface
pressure coefficient, the lower-surface incidence, and the volume of the

wing since (see Sections 2.1 and 2,3):-

_ 2 2y oL
CPL = % ( sin® Z -2 (p1)
o
and
c cot & 1
PL s z
tan GL = —E_:—E——- = 3=z (é) (DZ)
P,

The length of each leading edge is

FA R (32 + 82 5802 é)f (p3)

The effective leading edge sweep is

L7
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D 1
;- gsz + 22 ton® z)®

A = co T (DL")
(52 + £? sec” z)?
and the Mach number component normal to the leading edge is
M, = M cos A (p5)

[o}

To blunt the wing leading edge it is assumed that the triangular portion
of the wing OAB shown in Fig.D1 is removed (OB = d), and that an approximately
hemi-cylindrical leading edge (of diameter 2r = AB) is added in its place,

Now the change in force per unit length of leading edge due to blunting,

acting normal to the lecading edge, is from Fig.D1

r/2
P = 2r(/ ' (p - pa) cos © d6 - p, °r (p6)

o

and the total drag from both leading edges is

Dip = 2Ps sec | (»7)
Thus
7/ 2
DLE by
cy = 5 = L 7 sec WU[:‘[ C. cos 6 d6 - C ;] (p8)
IE 4 p, V. st P P
o o
where CD is based on the plan area sé of the original sharp edged wing.
LE

Now from the modified Newtonian epproximation for blunt bodies (which
experiments18 have shown to be a close approximation to the pressure distribu-

2
tion on a yawed cylinder, for 1.5 < MN < 3.5) we know that C_ = C cos O,
0 psta
: g
where C is the pressure coefficient at the stagnation point, 6 = O.

pstag
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Thus from equation (D8) we get

o
i.e.
r 2
C = l,.—secxlrI:—C - C .] (D9)
DLE ¢ vl Pstag Pr.j
Now
- 2
C = C cos A
pstag pstag
where G = stagnation pressure coefficient appropriate to MN (vased on
Pstag . o
free streem dynamic pressure)
So equation (D9) becomes
r 2= 2
c = L = sec [% C cos" A - C ;] (p10)
D ¢ WU > Pstag p

It should be noted that equation (D10)applies only to a caret wing, where

the variables i, C , A and C_ are related by the condition that a plane
U" Pitag Py,
shock wave of incidence Z is contained between the leading edges (as described

earlier), and not to a wing with arbitrarily assigned values for these

variablese.

For a caret wing of given slenderness ratio s/¢, and lower-surface

pressure coefficient, increase of Mach number increases [ but decreases
svag
the enhedral angle W, with the nct result that Cj /(r/¢) is reduced;
LE

increase of lower-surface pressure coefficient though increasing the required
anhedral angle, decreases the term in square brackets in equation (D10) to

give a net decrease in Gj /(r/¢). These effects are illustrated by the
LE
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values of G /(r/€) tubulated at the end of this Appendix for a range of
LE

Mach number, lower-surface prcssure coefficient and slenderness ratio,

Also tabulated at the end of this Lppendix are values of the critical
leading edge radius in fect for wwo valvues of wing loading (from Scction 2.4.1),
together with the resulting leading edge drag coefficients for a wing of 100 f't

root chord. Since C_  in this tuble is approximately equal to the overall
L
lift coefficient, and since overall values of lift/drag are typically about 6,

it follows that the overall drag coefficients fall between 0,01 and 0,02,
Thus even for the case of leading edge radii as large as the critical value,
the drag arising from blunted leading edges amounts to only about 1% of the
total drag for a wing loading of 50 lb/ftZ, and about 29 for a wing loading
of 25 1b/ft2.

However, the result of blunting the wing leading edges is also to reduce
wing plan area, and hence overall 1if't, since a strip of constant width d
has been lost from each lower wing surfece (see Fig,D1). Aissuming that the pres-
sure coefficient on the remaining plane part of the lower surface is unaffected
by the leading edge tlunting, and ignoring any 1ift developed on the blunted

leading edges themsclves, then

(Lift)r (Plan area)r (Lower surface wetted area)r
leftir:O (Plan area)r:O (Lower surface wetted area)rzo
2

i

(1 - %—;:@-> (p11)

where SL = lower-surface wetted area for wing with sharp leading edges (see
equation (6) and Fig.2)
suffix r refers to wing with blunted edges of radius r

suffix r=0 refers to wing with sharp leading edges.

The distance 4 is related to the leading edge radius and the lower-surface

incidence (in a plane normal to the leading edge, see Fig.D1) by

2r 2r L
= |

— (D12)
oy 30 (s/0)2 M Oy

o~
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From equation (10) of Section 2.1 and equation (D3) above

YAl ~ {ﬁi tan2 Z + s?/@z - tan % (D13)
tan Ay T s tan ap
Hence from (D12)
SL £ SL L tan @

This equation in conjunction with (D11) and Fig.2 for S/SL gives the
ratio of the 1ift with blunted edges to that with sharp edges, in terms of
the wing and shock geometry. Equations(D1) and (D2) can be used to express

tan £ and tan ar, in terms of Mo and CP .
L

Percentage lift losses have been calculated for wing loadings of
25 1b/ft2, and 50 1b/ft2, for the same values of critical leading edge
radii as used previously for calculating drag increase, and the results are
tabulated at the end of this Appendix. It can be seen that the 1ift loss
arising from blunted edges varies between 2-5% for a wing loading of

2
25 1b/ft , and between 1-2% for a wing loading of 50 1b/ft .

This percentage decrease in 1ift is about twice the percentage
increase in drag, and the total decrease in lift/drag is therefore h~7” for
& wing loading of 25 lb/ft and 2-37 for a wing loading of 50 lb/ft . This
is a significant loss in lift/drag, and emphasises the importance of design-
ing for the smallest possible leading edge radii.
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M 5 5 5 5 10 10 10 10
C, 0.06 0.10 0.06 0.10 0.05 ©.08 (.05 0.08
L .
s/% 0.2 0,2 0.3 0.3 0,2 0.2 0.3 0.3
Cy /(x/%) 0.39 0.33 0.56 0.51 0.21 0.18 0,42 0.39
LE ,
Topit 25 /5t 0.05 0.10 0,05 0.10 0,065 0.125 0.085 0.15
L 2
107 ¢y 25 1b/ft 2 3 3 5 1 2 Iy 5
LE ! :
T it 9O 1b/5t 0.025 0.045 0.025 0.045 0,030 0,055 O0.0LO 0,065
10" C, 50 w/ee’ 1 11 2 1 1 2 3

LE
- AIZ 25 To/et’ 3.2 4.7 2.5 3.6 2.7 ko 3.0 K2

2
- AL% 50 1b/ft 1.6 2.2 1,3 1.6 1.2 1,8 1.4 1.6

The above figures represent no more than an attempt to estimate very
approximately the performance penalties of leading-edge blunting, Future
work should be directed towards obtaining a more detailed understanding of
the flow field in the region of the leading edge, so that a more accurate

assessment can be made,
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Appendix B
THE LIFT AND DRAG CHARACTERISTICS OF A TWO DIMENSIONAL WEDGE
AT HYPERSONIC SPEEDS
(See Sections 2.6, 3.2 and 3.k4.1)

E.1 Approximations for surface pressure (y = 1.4)

For the lower surface, if ap < 150, Mo > 2.2, Ma; < 2.25 radians, it is

shown in Appendix B that the following expression predicts pressure coefficient

to an accuracy of better than 1%

2 2 3
M CpL = 2 fap + 1.2 (MaL) + 0.28 (MQL) (1)
where
M2
)‘10.L = Eg x GL radians

o]

For the upper surface, the above equation of course gives Mi Cp for
[¢]
Ty negative, with —Gp = A For Oy positive, equation (8) of Appendix B

would be the appropriate expression for —Mo CpT comparable with equation (1)
)
above. Up to May = 0.6 however, and for M_ > 4, equation (1) with -ay; = ap

gives an accuracy of better than 2%, At MaU = 0.85, the error is increased

to 4% but it is in the sense of predicting low values of —CPU, which may

in fact be more realistic. Hence, for upper-surface pressure, it will be

convenient to use equation (E1) with the appropriate sign changes, i.e.

-Mi ch = 2 Hay - 1.2 (,'mU)2 + 0,28 (MasU)3 (E2)

E.2 Normal force coefficient

Using equations (B1) and (E2) above, it can readily be shown that the *
normal force coefficient CN based on plan area for a wedge of semi angle ¢

radians and chord line incidence a radians is given by

B, C

&

N . 4[! + 1.2 M9 + 0.42 (M ‘9)2]*' 0.56 (/40')2 (E3)
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E.3 Axial force coefficient

If it is assumed that CDF,'the skin friction drag coefficient for both
surfaces (based on plan area) and CDP’ the coefficient of base and extraneous

drag items also based on plan area are both independent of incidence then with

sin # = # the axial force coefficient CA based on plan area is given by

n%p, c, = s, Cp + (2.h + 1.68 #O) (A 9) (o) (E4)
Q
i.,e (CA ) CDo)
a B, 5 = (2.4 + 1.68 HO) H D
a
where
% (c. -¢c._ -C_) = L1 4 0.6m0+ 0.0 (19)° |82 (E5)
o “'p, ~ “pF T P [_ y

E.4 Lift and drag coefficients

C, = C, cosa - C, sina = ¢, (1 - Z 2) -C

L N A = N = A%

Hence from (E3) and (Ek)

c -
B, (712 + CD) = 4[1 +1.2 HO+ 042 (/40)2}{0.56—2+ 4'8”’92” 222 (/419)?:] (Ha)*
(V)

A -
eeo (E6)
Similarly,
C. = C.sina+C, cos'a = Gy a+ C, (1 = 1a2)
D N A I\ | A 2
Hence, from (E3) and (By)
o (% - CDo) C 2
75 m L1+ 1.8 (M9) + 0.84 (n9) }— 0.5 BQ CD
a S . o
(L, 1.2 49 + 0.8k (40)° 2
+ \-0.96 - MZ } (//lq,) (E?)
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E.5 Lift/drag ratio

From the relation

(Ma) {Bo (%-Ti + CD°> - B, cDo}

(Ha)® —- 4 7B, C)
a °

=i
it
1

and equetions (E6) and (E7), it is seen that L/MD depends mainly on the vari-
ables M#, Mo and MZBO CD , With Mach number itself a fourth, less important
)

variable,

Approximate expressions can be derived from the foregoing equations for
the maximum 1ift/drag ratio (as it varies with incidence) on a particular
wedge at a given Mach number, and for the incidence at which this maximum is
achieved, which will be denoted by o*. For convenience, we rewrite equation
(E6) in the form

go CL

o7

= LA+ T (/4a)2

i

14+ 1.2 (08) + 042 (8)° - 0.25 B 6

where x1
o

fqp kot 9.6 (48) + 5,04 (19)>
* P
H

and Xz

The magnitude of A, will normally lie between one and three while that of

1
of A, will be approximately unity.

Similarly, equation (E7) may be written

i

where Ay = 1+ 1.8 (19) + 0.8 (n8)? - 0.125 B, cy
[e]

2
M

and A 1a

+
]



56 Appendix E

the megnitudes of A, end %\, being broadly similar to those of A and A

3 1

respectively,
Now the value of Mo fer maximum lift/drag ratio of a given wedge at a
fixed Macn number is denoted by Mo* and is given by the relevant solution

of the following equation,

2 s 5 2 2 I
M oMPy O {“ M by E g a8, | () - {% MM T RN X}} (#a)

0.

Ao A
2 "4 6
- Mo =
T (Aa) 0 (E9)
and the mazimum 1ift/drag ratio is then ,
, Mo 2
1+ % — (Ma*)
A A
o H | ’ 1 (£10)
—\ 2 Eafj A A
D, 2 ER (Ma*)ZJ
max Y

The factor in the large bracket in the above eguation exprssses the effect

2
on maxlimum 1ift/drag of the variation with a of CB/Q and (CD - GD V.
9

The solution of equation (9) for (Ma*) can oniy be done by successive
approximetion. The first approximation is obtained by neglecting the "non-

linsar 1ift" terms A, and %), vhich gives, from equation (E9)

H

(Max)® & ——2 (Et1a)

1o

a*

: 0 %

{"ZX‘;\ (Ef1a)
/

and from equation (10)

h

I 4
& s —
(Mo ) = 5—15757;;; Kj (E11b)

Thus, for most cases of interest, (Ma*), will be less than unity, except perhaps

at Mach nuubers in excess of 10,
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Purther refinement of the approximetion for (Ma*) yields the following
which is within 1% of exact solutions of equation (9) ir Q’ia"') < 1.1,

2 2 2
HB, Cp 2 H8, C HB, Cy 2
AR\ PRI S VAR W e i Y A
(o*) = (=% ) HRETA G~ s wnn Bl il W (R
3 1 3 1°3 3
ees (B12)

The effect of the "non-linear 1lift" factor in large brackets is to increase
the optimum incidence by e meximum amount of only 2% at Ma & 0.65; equation
(B141a) is a very good approximation therefore.

Using equetion (E12) for (a*) and the first approximation given by
equation (Ei4a) for (1 a."‘)2 in equation (E10), the following can be derived
for maximum 1lift/drag

2OC
<%>max " o, ;:’10”0)%[1 *117(2;12'x>< ) 373%2 M( ;)}
ees (B13)

This shows that the effeot on maximum lift/drag of the non-linearity in the
1ift curve (which is expressed by the term in large brackets) is appreciable
only if (Ma*) exceeds 0.5 or so. With (Ma*) equal to unity, the gain is
about 10%.

The 1ift coefficient for maximum lift/drag is easily obtained; neglecting
the small effect of non-linear 1ift on {a*), this is

2

, M Cp g L Bo Cp

c = —

e )l ) S
Similarly the drag due to incidence at a = (a*) is

2

s  C e (815)

CX - = C 1+ E15

3=, = %, [ 5 ()
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Again, the terms outside the large brackets in equations (B14) and (E15) are

those which would be obtained if'CL/h and (CD - CD )/h? were independent of o
o
and equal to their values for o - O, while the terms in large brackets express

the effect of these quantities varying with a.

The incidence for maximum lift/drag as given by equation (E11a) is
plotted on Fig.E1.as (aﬁ) = (o*) - 0 against semi angle ¢ for Mach numbers 5
and 10, Optimum upper-surface incidence is shown for three values of
(CDF + CDP)’ viz.0, 0,002 and 0,004, the first value corresponding to a
wedge alone with zero extraneous or base drag in inviscid flow, the second to
the case pf a wedge alone, agaiﬁ with zero base drag but a typical surface
of 0.001, and the third to C_, = 0,001 and en

FS

P of 0.002., Also shown on this figure

by chain dotted lines are corresponding values calculated from the linear

friction coefficient CFS

extrancous and base drag coefficient C

theory equations commonly used for lower supersonic Mach numbers, i.e.

La,
C;=—
L Bo

2

L9

C = 2C + C b —

Do FS DP Bo

CD = CDo + CI,G

!
The significant features of the results presented on Fig,E1 are
(1) The non-linearities associated with hypersonic flow decrease the
optimum upper-surface incidence for maximum 1lift/drag on a wedge by an amount

which is roughly proportional to wedge angle.

(i1) Zero upper-surface incidence happens to correspond to the condition
for maximum 1ift/drag, (when realistic friction and extraneous drag items are

o)
taken into account), if the wedge semi angle is 40—5 .

Fig.E2 shows wedge lift/drag for the same range of wedge angle, Mach

number and (C CDP) as in Fig.E1. Two cases are presented, maximum 1ift/

+
DF
drag and 1lift/drag with upper-surface incidence zero (dashed lines). Taking

a typical value for C of 0.002 (which is presumed to be invariable with

DF

incidence) the difference between the two 1lift/drag ratios is not significant
: ) o

if ¢ lies between 30 and 5%9 for CDP = 0, or between 31" and 6 for

CDP = 000020
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SYMBOLS
axial force coefficient = axial force/%po Vi S
. 1 2
drag coefficient = drag/Zp, v, s
total friction drag coefficient for upper and lower surfaces

increase in drag coefficient due to rounding a sharp leading
edge

drag coefficient at zero lift (for a wedge)

parasite drag coefficient (see Scetion 2.5)
. 2
local skin friction stress coefficient = friction stress/%p v

mean tangential force coefficient due 30 skin friction, based
on a specified wetted area and 5po Vo

'datun' value of CF for a laminar boundary layer on a constant

chord wing surface

'datum' value of CF for a turbulent boundary layer on a wing
surface of delta planform

CF for one complete surface of a wing

GFS for the uppcr and lower surfaces respectively
2
. e s o v 1
1ift coefficient = 11f‘t/§po v, S
normal force coefficient = normal force/%po Vi S

2

pressure coefficient = (p - po)/%po v,

CP on the upper and lower surfaces, respectively
Cp at the lecBing edge stagnation line
pitot pressure coefficient at specified Mach number

local wing chord
drag

width of plane lower wing surface, measured normal to leading
edge, which is removed when sharp leading edge is rounded

(see Fig.D1)
net thrust
acceleration due to gravity
lopal enthalpy at the edge of the boundary layer
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erit

SYMBOLS (Contd)
effective 'intermediate' enthalpy for a boundary layer
recovery enthalpy, ,the value corresponding to surface tempera-
ture with zero heat transfer

enthalpy corresponding to actual surface temperature
coefficients on Fig.C5

1lift

overall length of wing, measured parallel to stream direction
length of one leading edge

local Mach number at the edge of the boundary layer

free stream Mach number

component of MO normal to the leading edge

MS/BO (in Appendix E)

1 dvo

g at
force/unit length of leading edge (in Appendix D)
local static preséure on the surface

free stream static pressure

range

ranges in acceleration, cruise and glide phases respectively

radius of curvature of flight path, in a vertical plane

radius of Earth

Reynolds number, based on conditions at the edge of the boundary
layer and a specified length x

Reynolds number, based on free stream conditions and a specified
length x

Reynolds number, based on conditions at the edge of the boundary
layer and distance from the lecading edge to the midpoint of
the transition zone

radius of leadiné edge rounding, measured in a plane normal to
leading edge

critical value of r, above which boundary layer transition
begins at or near the stagnation line

reference area = plan area, projected onto a streamwise plane,
at design incidence for a caret wing, zcro incidence for a
wedge
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SYMBOLS (Contd)

wetted area of one surface of a wing of delta planform (in

Appendix C)
S, for the upper and lower surfaces respectively of a delta

caret wing

S

area of laminar boundery layer on one surface
area of turbulent boundary layer on one surface

semispan
local static temperature at the edge of the boundary layer

free stream static temperature
recovery temperature = surface temperature with zero heat transfer
ectual surface temperature

time

total stream velocity over surface, at the edge of the boundary
layer

aireraft velocity in cruise phase
free stream (aircraft) velocity

component of Vo normal to the leading edge

satellite veloocity

weight of aircraft

distance along surface, in local stream direction

distance along surface, on wing centre-line, from leading edge
to midpoint of transition zone (see Fig.C5)

overall length of & delta planform area covered by a turbulent
boundary layer (see Fig.CS)

geometric altitude

angle of incidence of chord line (in Appendix E)

angle of incidence of upper and lower surfaces respectively,
measured in the plane of symmetry, (sce Fig.1)

angle of incidence of upper surface, measured in a plane
normal to the surface

angle of incidence of a surface measured in a plane normal to
the leading edge

W - 4
(o}

N

ratio of specific heat at constant pressure to that at
constant volume
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SYMBOLS (Contd)

angle of climb (in Appendix A)
variable in equation (B6)

angle between shock wave and stream direction, measured in the
plane of symmetry (see Fig.1)

angle between shock wave and stream direction, measured in a
plane normal to the leading edge

2
x;i—l-eg sin o (in'Appendix B)
0

semi angle of wedge (in Appendix E)

angle in blunted leading edge geometry (in Appendix D, see
Fig.D1)

effective sweepback of leading edge = cos” (MN /Mo)
0

functions of M®, (ih Appendix E)

local density at the edge of the boundary layer

free stream density

specific fuel consumption

average specific fuel consumption for the acceleration phase

specific fuel consumption during the cruise phase
volume coefficient = volume/Sj/2

anhedral angles of'upper and lower-surfaces respectively,
measured in a plane normal to the free stream direction

Suffices and index

(),
(s
( )y
(),
(),
(),
(),
()*

for lower wing surface

free stream value

for upper wing surface

with upper-surface streamwise
initial conditions:
conditions prior tp(cruise

conditions at end of cruise

value giving maximum lift/drag
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