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Summary

The limitations of near-~equilibrium sclutions in expanding
non-equilibrium flows are discusged. The breakdown of this type
of solution far downstream is investigated for a vibrationally
relaxing gas, It is shown that valid asymptotic solutions can
be derived by the use of matching technigues. Asymptotic frozen
levels of the vibrational energy are obtained for a particular
flow model.

1. Introduction

In recent years a large body of literature has been devotied
to the effects of finite rate processes on expanding guasi-one-
dimensional flows. The importance of this problem stems [rom
its application to the flow in hypersonic wind tunnels, rocket
nozzles, ete. Relatively simple solutions can be obtained when
the rate parameter A (ratio ol the time scale of the flow to
the time scale of the rate process- ), baced on some characteristic
conditions, 1is large. Under these circumstances a perturbation
of the equililbrium solution, for which the time scale of the rotse
orccess is identicolly zero, would seem to be appropriaste.

However, near-equilibrium analyses ol expanding flows suffer
from two limitations. This type of perturbation soluticen 1s in
general singular at any position in the flow where conditions are
specified (for A >> 1 +he order ol the equations is reduced by
one). Bloom and Ting (1960) (see also Napolltano (1962))- showed
that it was pOSSlblL to obtain a uniformly valid solution.of
this problem by using conventional "boundary-layer" tebnnlques.

In addition, for an expanding flow, the perturbatioir.
solution will also become invalid for downstream where-the Jocal
ratio of the flow time scale to the time scale' 0f the race process
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becomes small. The departure [from equilibrium becomes "large"
in such regions and the assumption c¢f "small" deviations from
an equilibrium solution 1s no longer valid. (The precise
meaning of "large'" and "small® will be outlined in the main
body of the paper), It is this breakdown of the perturbation
solution with which the present paper is concerned.

Associated with this breakdown is the freezing of the
energy, ¢', in the lagging mode, i.e. o' tends asymptotically
to some constant non~zero value, though the cquilibrium
distribution o¢', corresponding to the local translational
temperature, approaches zero. This freezing phenomenon was
brought to light in the early numerical work on this problem
and much effort has been devoted to obtaining the asymptotic
frozen levels for varicus types of rate process. Because of
the complexity of the exact numerical calculations many
approximate methods for obtaining this asymptotic level have
been devised, see e.g. Bray (1959) Rosner (1962), and Stollery
and Park (1963). Analytical investizations (Blythe 1963a,b) have
shown that the phenomenon of freezing 1s associated with a
turning point of the appropriate rate equation., An example
of the type of equation considered there can be written

1 ds
- -= + P(E,N)s = Q(E,N) coe (1.1)
N dg

with s =0 at & =&, x

where N >> 1, P(E,N) and Q(E,N) are 0(1) and s = Q;g?i

is the relative departure from equilibrium, ~The turning point
behaviour is given by the zero of P(E,N), which is defined
by & =1, For E< 1, P(E,N) >0 and a perturbation
solution ol the type

. o UM O@ e (1.2)

is valid, This solution breaks down at & =1 and it is
necessary to modify the solution there by Iincluding the
derivative term (see section 4). Note that Tor N >> 1 the order
of (1.1) is reduced by one and, in general, (1.2) will not
satisfy the boundary condition imposed on (1.1),

These analytical investigations were confined to the case
where ¢ 18 small compared with the stagna 1?n enthalpy H}.
Under this essumption by neglecting terms O %T> etc., it is

0
possible to show thet as a first approximation the
equations governing the flow are uncoupled from the rate-
equation. In the present paper no assumption is made regarding
the magnitude of o' and in general the Jlow cguablons
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and the rate equation will be coupled. It will, however, be
assumed that the rate parameter A, based on initial conditions
where the flow 1s assumed to be in equilibraium, 1s large. It

can then be expected that a near--equilibriuwn perturbation
solution (expansion in inversc powers ol A) will be velid in
some region. This solution muy need modification, in the

manner outlined by Bloom and Ting (196C), near the initial
equilibrium staticn. As noted above this perturbation solution
will also break down sufficiently Tar downstream. It follows
for A >> 1 that this will be a "large' distance downstresm.

In fact the rate equation again exhibits the turning point
behaviour found in the uncoupled case. In addrtion, Tfor A D> 1,
it follows that immediately upstream of thas transition rezion
"near' to its ecuilibrium value o'

-

g' 15 "small" a d,
[ A 1, e Py ~
(0 /6! 1 is OE;J) and far downstream o /ﬁé <P Consequently

in the vicinity of the turning pcint, and downstream of it,

the {lovw equations and the rate equation are again uncoupled
to a first approxmmation. Hence, within and downstream of this
region the approach used in the uncoupled case (Blythe 1963b)
should be valid. The technigue used therc was to obtain

valid solutions (of eguation (1.1)) applicable to each of the
regionsof interest, i.e. the region upstream of the turning
point, the region in the vicinity of the turning point, and
finally the region downstream of the turning point (from which
the asymptotic frozen level was detcrmined). Boundary
conditions for the soluticns in the various regions were
determined by means of appropriate matching procedures. As

is well known matching or patching techniques form a very useful
tool for dealing with turning point problems of this type which
involve a large parameter.

Similar technigues are agein used here, In the present
case the solution valid immediately upstream of the turning
point must be matched, at its upsiream Yedge', to the behaviour
of the near-equilibrium solution far downstream.  IDasentially
there are nc major differences in the ovc$all pictures for

o‘/H5 arbitrary with A >> 1 and for %7 small: the

O
effect of the coupling in the Lormer case enters via the upstream
matching conditions for the solution in the vicinity ol the
turning point. Varicus types ol rate equation can be treated
and solutions of these eqguations which have been obtained
previously for the uncoupled case can be carried over by
utilising this modification on the matching conditions. The
asymptotic levels of o© so determined are influenced by the
coupling in the perturbation region. Considerable interest
centres on these asymptotic levels and even though they are
influenced by the coupling, it again follows, as in the uncoupled
case, that thesc values are not in agreement with those derived
by the 'sudden-freeze" approximation (Bray, 1959).

The analysis is carried out in detail for a vibrationally
relaxing gas. It 1s assumed that the gas can be represented by
a system of harmonic oscillations and that the Landau-Teller
rate equation is valid (Landau and Teller (1$36), Shuler (1959)).



2. Basic equations

2,1 Thermodynemic model

It is assumed that the translation and rotational modes of
the gas are fully excited, that the vibrational mode can be
represented by a system of harmonic oscillators, and that
dissociation, ionization and similar phenomena are negligible.,

For a system_of harmonic oscillators the equilibrium
enerzy contont o'  1s given by

6' - o o e e ; * e (201 )

where 6' 1is the characteristic temperature of vibration, T'
is the translational temperature, and R the gas constant.
The rate equation governing the variation of the vibrationsal
energy o' is assumed to have the form (see e.g. Landau and
Teller (1936), Shuler (1959) Herzfeld and Litovitz (1959))

Do’ Lo [ (2.2)
m— = e ~ o™ (T *o‘] eoe (2.2
D! - ,L.i(pl,Ti) L . - )

Here gET denotes” the usual éonvective operator, p'. is the
density, and <' 4is-the local relaxation time. 1In general

.&-1 ]
— = p'ﬂ'(T') ... (2.3)
T,

(see e.g. Johannesen (1961)). Several expressions for O2+(T')
have been derived, each of which shows some measure of
ualitative agreement with the available experimental data
Herzfeld and Litovitz (1959), widom (1957)). In an example
prezemicd in oeetion 5 it is ascumed that :

Q(T') = Aexpdb'T

There is.some theoretical justification for 'this choice

(Widom (1957))° However, it should at best be regarded as an
empirical fit to the experaimental data (Stollery and Park (1963)).
It 1s more convenient to re-write the above expression in the
form ‘

Q'(T) = A exp b<§L> ‘ s (2.4

6"
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where b is now dimensionless and is assumed to be 0(1). [For
O0n, for which (2.4) fits the experimental data very well,

bw 3.6, For N, b= 2. These values were derived using
Blackmenis (41956) expcrimental data.]

The assumption that the rate eguation has the form (2.2) is
open -to question. In general, it can be shown that (2.2) is
valid for a system of harmonic oscillators when only small a
fraction of the oscillators is excited (Shuler 1959). In the
present analysis this latter assumption is certainly violated.
However, no suitable alternative equation has yet been proposed
and, in fact, it is usual to assume that (2.2) remaimsvalid
(Stollery and Park (1963)) though some evidence does exist to
the contrary (Johannesen and Zienkiewlcz (1963)), Modifications
to the form of (2.2) can easily be included in the analysis
provided that the characteristic feature of the rate equation,
namely that the rate of change of vibrational energy is
proportional to the local departure from equilibrium, remains
unchanged. It can be shown that any such modification would be
of direct importance only in the coupled near-equilibrium
reglon (seesection 3): far downstream the rate cquation would
again reduce to the form (2.2) (for A >> 1), since there the
fraction of excited oscillators would be small, though the
boundary conditions (matching conditions) for ihe solution far
downstream would be influenced by the form of the rate equation
upstream,

+

2.2 Flovw cguctiong

The equations governing the gquani-one-dimensional flow of
a vibrationally relaxing gas can be written

Continuity N
PYA = m ver (2.5)
Momentum
dv 1 dp
v - = Lol LI ] (206)
dx Yp 4x .
Energy
Y P Y _ Y
——— - T + a72 = —_——— o‘e + - VeQ e (2-7)
y-1p 2 -1 2
State
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The variables have been non~dimensionalized by putting

PI’ p’ T? v?
P = -, p = --, T = -—y v = =7

1 i 1 a

pe pe Te fe

0, A' m' X' LN AN ) (2.9)
O = oot A= e, mo= moeeen, x o= o

RT, Ay Pelr e ¢

where p' 1is the pressure, v’ the velocity, A'(x') the
cross-sectional area at any station x', £ 1s some
characteristic length associsted with the nozzle, vy is the
ratio of specifac heats neglecting vibration (frozen specific
heat rat10§ and a% is the frozen speed of sound. The suffix

t denotes conditions at the cross-secticn of minimum area and
the suffix ‘e denotes conditions at the initial equilibrium
station, All flows considered here will start from equilibrium
conditions. These conditions may or may not coincide with
stagnation conditions.

2.3 Transformed equations

The rate equation and the equation governing the
distribution of o' can bhe recast in non-dimensional form as

do pil
-—- = A -= [6 - d] T .ee (2.10)
dx v
_ 6
0 T e i ——— - — * . (2-11)
5 :
exp(f)-1
where -
_ ' 6 '(T")
(o] = - e = _— = “:""‘""" " re (2012)
t t ?
RT, 7! 2l (1))
and
épéﬂé
A = —...—.'-— LI ] (2013)
afe

A is termed the rate parameter and represents some initial ratio
of the flow time scale to the time scale ¢of the rate process
(for v, Tinite it may be better to use v) rather than ap]

as the scaling velocity). A %% is the local value of thais
ratio., Por A >> 1 1% can be expected that, initially, the
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energy distribution will follow, in some sense, the eqguilibrium
distribution. This near-equilibrium behaviour can bc expected

to break down where Agﬂ becomes 0(1), i.e. where the time

scale of the rate process bacomes of the same order of magnitude
as the time scale of the flow., A <K 1 implies that near-frozen
conditions will hold everywhere. It is assumed that A >> 1 for
all initial conditions considered here.

The exponential temperature dependence of o© makes it more
convenient to use a new independent variable

z = - . e (204

-

rather than the dimensionless distance (Blythe 1963b). liguations
(2.5), (2.6). (2.7), (2.10) and (2.11) become

PzvA = m ... (2.15)
dv 1 1 dp
Vo= = == - - vo. (2.16)
dz Yz p 4z
Yy 1 Y Y - Y
=== +0 4 V2 = --= 40, + - V32 voo (2.17)
-1 2 2 Y-1 2
do B .
-- = AR{(z,0) [o(z)-d] oo (2.18)
dz
where (2)
zpii(z) 4dx
F(Z,O) = @ zm=-soeems es- L (2-19)
v dz
3(2) = s (2.20)
(o] B4 - @ mame . s 2520
862_1
The equation of state
P
p = - oo (2.21)
Z

has been used to eliminate p.

A more meaningful dependent variable than ¢ is the
relative departure from equilibrium s, defined by

6 = mee ... (2.22)
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In terms of s equation (2.18) becomes

ds 1 do 1 do
-~ + |AF(2,8) + - ==|8 = - - -- eee (2.23)
dz ¢ dgz G dz

The structure of this egquation should b oted. It can be seen

that for A>> 1, 2z finite, s is O 1}. However, as 2z =

Y

F ~ 0 and this perturbation solution is singular at infinity.
In fact the term in square brackeits passes through a zero for

large 2. This zero is termed a turning point, or transition
point of the differcntial equation and associlated with it is

a rapid growth in the relative departure from equilibrium s.

In the neighbourhood of this zero the perturbation solution

will become invalaid.

The solution for fainite =z also exhibits a further type
of singuiar behaviour namely that usually associated with the
behaviour of perturbation solutions of this type (for which the
order of the equation 1s reduced by one) near some boundary along
which conditions are specified, i.e. s =0 on 2z =1, T
{"'5 which,

z = 1 the perturbation solution gives s = KFT}—ﬁj + 0 ;
2’

for v_ #£0, is in general non zero, [For v_ =0, i.e. flow
startiﬁg from equilibrium stagnation condition¥, it can be shown
that no modification near =z =1 1is necessary. The necessary
modification to this type of soclution in the neighbourhood of

z = 1 has been considered previously by Bloom and Ting (1960)
and Napolitano (1962). The solution appropriate here is briefly
outlined in the appendix.

It 18 convenient to write down here twe relationships which,
in principle, together with equation (2.5) determine F as a
function of 2z and s. TFrom equations (2.16) and (2.47) it can
be shown that

- X

P = 2 Y"?exp[fzyéé [5(1+s)]dy} eee (2.20)

[vez + ;?;<1,£> + z (89 - 5(1+s)>] voe {2.25)

where y i1s a dummy variable. x = x(z,s) then Tollows from
(2.15), for any specified A(x), and hence TF(z,s), can be
obtained from equation (2.19).

N[+

<
!



3. Perturbation solution

3.9 v, # 0: Bloom and Ting's approach

For v_ £ 0 the foregoing system of equations can be
reduced to two first order differential equations of the form

1 do
- = f(Z: 0,$P)
A dz
s (3.1
ap (3.1)
- = g(Z, g, p)
dz

with p =1, o = Ee' at z =1, where f£(1, 0, 1) = 0 Bloom

and Ting (1960) and Napolitano (41962) have presented techniques
for obtaining the solution to & similar system of eguations. A
solution ¢ the type

T

c = 2:} ATt ci(z) een (3.2)

i=0
etc. 1
1s sought. The degenerate case obtained by putting A= 0 gives
the equilibrium solution. BSuch a solution is singplar at 2z = 1,
ddq
dz /z=1
The necessary modification to the perturbation solution
igs {found by considering the bchaviour in a layer near

z = 1 whose thickness 1s 0(%). A solution of the form

where the boundary conditions gives %E = 0 #

o = Z A7 ot (v) e (3.3)
i=0 -

etc.

with

oh = © oF = 0{(1421) at z = 1,

where v = A{(z-1), 18 sought in this region. A uniformly valid
solution can then be writien down via the usual technique
associated with inner and outer expansions. The solution near
z =1, in terms of the independent variable s, 1s outlined

in the appendix., The solution for s (z > 1) 18 presented

in detail in section 3.3, It is sufficient to note here that a
solution of the type (3.2) forms a valid outer limit of the
solution (3.3) which 1s valid near z = 1.
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3.2 Ve = 0: convergent-divergent nozzle

This is an important exception when the system of equation
cannot be reduced to the form (3.1). In this case the mass flow
is not known a priori:; in general it is a function of A (see
below) and the equatiorsreduce to the form

1 do 1
A dz A
- (301-")
dp
-~ = g(z, o, p)
az
with ¢ = O, P = 1 at 2z =1.
The value of f*<1, 58, 1, 1) 158 indeterminate ab ainitio,

ct

However it can be shown tha

1 /480
1im 1 c\
f*(z’ G, D ..) e (-._
21 T A A \az/z=1

and 1t follows that a formal perturbation solution of the type
(3.2) is not singular, in this case, at z = 1,

The perturbation solution is not so readily found as for
Vo # 0. It is necessary to determine the appropriate value of
the mass flow at each stage of the approximation, Details ol
the actual determination are given in scction 3.3, LHoth cascs
(vg #0, v, = 0) are treated, but special emphasis i1e placed

on the latter since the former case (ve # 0) has been dealt with at

length by Napolitano (1962). The solutions are presented using s,
rather than ¢, as the independent varisble; this i1s more
convenient with regard to the behaviour for large =z,

3.3 Solution for finite z

A formal solution of the type

i

3 so(2) + % s.(2) +...

oo (3.5)

o]
1

pol2) + 1 Di(2) + ..

ete.
is sought. In accordance with these expansions the function
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P{(z,s) will have an expansion of thc Torm
‘l
F(z,s8) = Fo(z) + - P (2) + ... ... (3.6)
A

From equations (3.5), (3.6) and (2.23)

So - O A
1 1 do
5, = -—=- - --
» o dz

‘ Q " un (3'7)
12 2
- i~1
1 {1 4o dsi_1} 1
O O S P F. s,
i r, 5 az 1 dz r, 21: k™i-k
=1 "

Note that s, depends only on the T, (k 2 1) which can be
assumed known insofar as computing s, 18 concerned (s, = 0).
From equations (2.24), (2.25) and (3.7) .

- X z 45
Pe = =2 71 exp[[ v -- dy}
1 dy
! — L] (3.8)
Z d 1 d
Py = Po j' y -- (- —==-= ==} dy
v Ay N Foly) dy
ete.
(y is a durmmy variable) and
1
2 1 2 _ 1%
Vo = VR 4 --- (1——) + = (0,4~0)
Co Y- zZ
- e (3.9)
1 do
V1 =  mememmm e
YFoVe GZ

etc.

In order to complete the determination of the F (and hence

the Si+1) it is necessary to compute the Ai Lwhere

A = Ay {z) + 1 A(z)+ ... ee. (3.10)
A
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The A_ are easily found from (2.15) 1 the mass flow m is
known.~ For ve # 0 m follows immediately from the boundary
conditions at z =1, 1.e. m = veAe, and

m —~
Ay = —mm=--
PolV,
> een {3.11)
Py VaN
N
Po Vo J

etc.
Hence for any given A(Xx) the Pi(z) Tollow (equation (3.11)
gives x = x(z,4)).

For Vo = 0  the mass {low cannot be determined fronm
conditions at 2z = 1 (for any non-zcro mass {low (A)Z=1 is

infinite)., 1In this case the mass flow can be found from
conditions at the throat. FFrom the continuity, momeatum and
energy equation it can be shown that

1 1 do vRz2 A
-—= (v2z-1) = ze(;zz-—> —— g mmee e : e (3.12)
=1 . y/ dz A dz
n | .
At the throat z= =0 and thus
1 1\ do
- (va z—1 ) = zQ(vZ z——)_ - vee (3-13)
-1 Y/ dz

there*, It is assumed that the throat lies in the region of
validity of the perturbation solution Conseguently the position
of the throat =z = zy 1B given by an expression of the form

: 1 .
Zt = ZO +;{ Z1 + LI I - LI (3.1“-)

where 2z, is given, from (3.13), (3.9) and (3.7) as the root of

1 ’ 1\ do
o (zvéz(Z) -1 = Z“(Vog(z) - ') - see (3.15)

— o M e e s e mm e e wer wear S GEe el mmm e A me e Fer SEE S Sl e e e G emm e e e mam e

¥The usual results for frozen and egquilibraium flow follows
from equation (3.13), i,e, the velocity at the throat is equal
to the appropriate sound speced.



and 1123{ 4
Yaoaﬁzo?oa(zo)“?} {&LZ (U».)Z Z ”zzovo(zc>v1(zo)
Z4y = RV STy FpAN R -
i &4
[0 g 20 vom () 2) [ 2 ?"a]m
ete. ve. (3.16)

It is expected that the mass flow m will be given by an
expansion of the form

1
m = mp + - Mm + ... voo (3.17)

Equations (2.15) and (3.17) give

mo Lo
Ao - —m————
g eee (3.18)
my Py Yy
Ay, = Ay |-~ — = - -
Mg Po Vo J
ete.
The my are now found by considering the conditions on the Ai

at the throat. At the throat

1 C7dA
Alzy) = Ag(3) + R Ay (2o) + 2y <“->z=zo

az
1. dA ‘ dAg\
+ == Ay (7q) + 2, (-—-) + za<———1
A2 dz / z=2, dz /z=z,
d2A,
+ % 2,2 <-—»-> + o eee (3.19)
dze /z=2,
But at the throat
dAN
Alzy) = 1, (——) = 0. vor (3.20)
: dz/ z2=2
t
and it follows that
Ag(ze) = 1
A,(29) = O
e eer (3.21)
d24,
Ay(zo) = % 242 (""")
dz? /z=2,

etc.
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From wrnich

Mg = PQ(ZQ)ZQVO(Zo)
E1(ZO) Vf(zo)] e (3.22)
m1 = Ma] =r——— F o m—— :
O(Zo) Vo(Zo)

etec.
Hence, for any given A(x), the Fi(z) follow.

For Ve # 0 the perturbation solution needs modification,
near 2z = 17 for the reason outlined in scectieon 3.1. This
modification is derived in the appendix,

L, Solution for large z

4.1 OQutline of approach

The class of functions F(z,s) considered lLore are such
that for large z Fiw 0. It follows that the perturbation
(near—equilibrium; solution is singular at infinity. Examination
of equation (2.23) shows the manner of this breakdown. Since

% %g < 0 and approaches -6 as 2 - », then at some point in
the .flow ’
1 do
AF(Z,S) + : - (=4 0 .o (Ll-a1)
¢ dz

Let the wvalue of 2z satisfying this equation be &, Lquation
(4.1) defines the order of magnitude of & with respect to A.
Since F(z,s) 1is a decreasing function of 2z and A >> 1, then
¢ >> 1.

In the neighbourhood of this zero, which is a turning point
of the differential equation, the relative departure from
equilibrium grows rapidly and it is no longer valid to assume
that s is "small". However, upstream of this region o = o(1+s)
is o(1) for large z since of(z) becones exponentially small
as 2z Increases, Hence, as o0 1s a monotonically decreasing
function of =z (equation 2.18), o< 1 within and downstream
of the region near z = &, If terms of 0(0,0) etc. are neglected
for large 2 the 1l¢r caurtions fovaerain~ the cict-ibution
of pressure, velocity ete. are of closed form and can be solved
independently of the rate equation. (This solution 1s of course,
influenced by the known coupled solution for z 0(1).) The
distribution of ¢ &and s 1s then found from the rate equation
utilising this basiec selution for the Llow verichlou.

Solutions of a similar system of equations have bheen, given in
Blythe (41963a,b). These papers were concerned with the case
0 << 1 for all z, The techniques used there can be extended
to the present case where o <L 1 only for z >> 1.
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L.2 B8olution for the L£low variobloo

From equation (2.24)

oY 5 .
g T exp ]Z i [5(1+S)de

P =
dy
1
IR z X
= g Y- eXp f ?g a
= ¥y Y
1 dy

The integral in this expression is re-written

fzz ?f - fz*y 2 @_k1;s)>d& + fﬁ v = dy
1 1

dz ay L% 4y

where z* is large, but is assumed to be in the domain where
the near-equilibrium solution is valid, i.e, 2% < &, For

large =z, 0s, where s 15 given by equation (3.7), becomes
exponentially small and the upper limit in the first term in the
above exprcssion can be replaced by infinity (neglecting terms
which are exponentially small). The second term contains the
contribution from the region in the neighbourhood of and down-
stream of the turning point, where the near-equilibrium
perturbation sclution i1s no longer valid. This term 1s negligible
if =z %% approaches zero "quickly enough" for large =z. Such a
requirement is somewhat morc restrictive than merely asking that
terms 0(c) %be negligible., However. this assumption can be
justified, a posteriori, when the precise orders of magnitude of
the various terms can be written down, [It turns out to be
necessary to assume that terms 0(g loz o) are negligible .in
this region}. It then follows that

P
p = P(A) z -1 veo (L. 2)

where

P(A) = exp /F;éz [6(1+s)]dz s ere (W.3)

s 18 given by (3.2), and
P(A) = Py + =Py + .,. e (bl
A
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where

> e. (4.5)

ete,

From equation (2.25) for =z >> 1, neglecting terms 0(o)

2 1 20, z
v - v02 + —— ('1—--—) + Lk d ol ] ()—}'16)
¥-1 Z g i

Note that this expression is independent of A, though it does
depend on conditions at z = 1. ¥For any given A(x),

x = x(z,A) follows from equations (2.15), (4.2) and (L4.6).
Similarly the asymptotic expansion for F(z g) is given by*

' 1
F{z,s8) = Foalz) + ; Fya(z) + ... oo (B4.7)

where the FiA(Z) are the asymptotic expan81ons of the P, (z)

(neglecting terms  0{o) etc.). .
The retention of terms 0(A~1), though neglecting terms

0{c) ete., can also be justified a posteriori, since it is

shown that for z >> 1 ¢ 1s exponentially small with respect
to A,

IL.3 Form of rate equation for =2z large

Under similar assumptions the rate equation becomes

ds

-+ [AFA(Z,A) - ]s

8 veo (4.8)
az

where FA(Z,A) is given by equation (4.7). A new independent

"It is assumed that x = x(2,A) has a valid expansion of
the type x = 2 —- X (z) for large 2, which e.g. requires that
At

~=El_L iz at wost C(1) Tor lorse z.



- 17 -

varliable E = %/ 1s defined, where & is now to be interpreted
&s the root of

AF,(z,0) -8 = © v (L.9)

In terms of & equetion (4.8) can be written

1 ds
- -+ [G(E’N,A) - '1']5 = 1 e (LL.'}O)
N dE
where
N = e@ “e e (u011)
and
F,(z,A)
G(‘E,N’A) = "é""‘"""-' ‘e (Li..12)
Fo(@,A)

Note for A >> 1, N>> 1. Iguation (L.10) is simply a first
order linear diffecrential ecuation and thc general solution can
be wraitten down in terms of the appropriate integral (Blythe 1963a).
The solution in any region can then bhe obtained via suitable
expansions, for N >> 1, of this integral. A second approach
is to consider the behaviour of the differential ecquation rather
than the integral, in the various regions of interest (Blythe,
1863b). This latter approach probebly yieclds more insight anto
the structure of the solution and the technigue can be applied
to equations of greater complexity than (4.11) (e.g. the non-
lincar asymptotic Tform of the ratc cguaticns governing
dissociation and ionization Blythe 1963b). The second approach
wi1ill be described here because of this greater generality. As
already noted this technique has prcviously becn applicd to the
golution of a similar type of eguation (Blythe 1963b), though

in thatcase © >> 1 and © was O(1). Here © 15 0(1) but
® >> 1. Both cases satisfy N >> 1.

In general

6(5,1,0) = ) A7 6 (2,N) oo (113)
[
1=0
where Go(1,N) = 1 and G(1,N) = 0, i > 1 [The remarks on

the validity of thc expansion of x = x(z,Af for large 2
ensure the validity of the expansion for G|. In ordecr to
procced further 1t i1s necessary to know the expansions of the
Gl(E,N) for N >> 1. In fact the exact detaills of the approach

depend completely on the form of the Gi(E,N). As an example,
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the class of Tunctions Gi(E,N) which have expansions of the
form

1 1
- GZH (5,) + - GiR(E"N) P (“--“—l-)

5, (60) = 0y(E) ¢ -

{where 6;g(E,N) 1is 0(1), Gij(1) =0, save for i=J =0,

when Gpo(1) = 1] will be considered. This is a fairly gencral
class of functions and includes, for a suitable temperature
dependence of the rclaxation frequency, flows in which Awxh

for large z (provided ¥ < 3/2). Types of temperature
dependence permissible include, Tfor example, the exponential
form given in (2.4), any power law dependence, an% also
combinations of both these forms, i.e. 0 ~ T rePl, Note
tha? if A~ x" for large 2z 1t follows that N is

my . , S 5 okt N
O(A ) where m NC=D)

Associated with equation (L.10) are thrcece rcglons of intecrest.
Firstly the region & < 1 where G(E,N) -1 dis c¢(1). It
appears that in this case some suitable perturbation solutinn

expansion in inverse powers of N for the leading terms, if
L4.14) is valid) is applicablc. The system of equations in this
region is again of lower order than (4.10). The rcgion & ~ 1,
where G(E,N) - 1 1s now "small", is a transition region in
which s can be expected to¢ increase rapidly. Finally, for

g€ > 1, it can be shown that & becomes cxponentially large,
though o©s remains finate. The sclutions applicable to each
of these three regions arc dcrived below,

L.y Solution for & < 1

In the region & < 1 a perturbation solution of the type

.1
s = Ego(E) + ﬁ Eo (E) + ..

1 1
+ = (Byo(E) + - By,(8) + ..
A N

.1
+ - ( LI S S ) "8 (’4-015)
A2

is sought. [This form of expansion may only be applicable %0
the leading terms, sec equation (L.14). The general term
depends on the form ol GiR(g,N)]. It Tollows from (4.10)
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and (4.14) that

S T
” C Go(B)1 [Goo(E)-1]
ean (L1416
oo o @ (h16)
" ) [Goo(g)"T]

ete.

While 1t 1s convenient to derave the solution in this form it
is necessary to know the relative orders of magnaitude of N
and A 1in order to write down the error invelved in stopping
at any given term, i.c. if onc usez only the (er@s agiven in

(4.16) the crror term is cither O J—\ or o[ -}, This
N2/ A2/

relationship 1s supplied by equation (4.9) for a given FA(Z).

By consid.ring the behaviour of this solution for small E,
where G TDbecomes large, and the behaviour of the near
equilibraum periturbation solution of scction 3 for large =z it
can readily be shown that the two solutions match provided
terms O(o) etc. are neglected in the near equilibrium solution
for large 2. Thus (4.16) represents a valid outer limit of
the near equilibrium solution,

P

.5 Solution near & = 1

As E - 1 the perturbation solution breaks down, since
Goo(1) =1, and in this region the derivative term becomes
important. It 1s appropriate to seek a solution of the form
(Blythe, 1963b)

1 ‘ -l

s = N%850(u) + Sp4{(u) + O(N 2)
L]

v (NZgyo(u) + 8y4(u) + ...)

e ses {L4017)
where
i
w o= NZ(&-1) voo (4.18)
In the neighbourhood of & = 1
u u2
GO(E’N) = 1 + -7 G30(1) + 5 - Ggo(1) + ...
HE N
y u
+ - (—I G61(1) + o )
N \N2

I vor (419)



and for i 2 1

u u=2
Gi(E,N) = ﬁg Gi0(1) e G"O(1) e
1 u
- - 1
+ . (N% Gi1(1) + ...) .
+ vea . LI (Ll-.20)

From equations (4.10) and (4.17) through (4.20) it follows that

dSo0
m=== + Gyo(1) WSoo
du

l
-

N .21
.. (L.21)

du ’

|

=22 4 60 (1) uS,y
du

~G!o (1) uSy, oo (L.22)
etc.

The solutions of these eguations can be written

.--.-

o0 = Bao o 4030 (1) | + EE?[‘-‘-*%:% l@ s e (U]

Ggo (1)

[ago ()17

WA
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=== 81 = (Byo#u%Bgo) exp [~ Ghol1)u?]
10
NI Ot M o Gk
AT 'F??cggﬁ )r +er (2> u}
n
- (L. 24)
" e (1) soe .24
2640 (1)
ete.

The undetermined constants Bij are Tound by considering

conditions at the upstream cdge of this layer. From equetions
(4.22) and (L.24), as U = -

0 ()] 1 1 1 1 b
Soo ~ Boo Cxp _"G'c; JI '112 o emama= PR SR suibetdendunans - s T,
oee Goo(t) u 50(1)]2 u?

: (B +—40%Boo ) expl-1G40 (147 b 7o S
m———— 801 ~ Bo.“_'guaBoo GXP —’Q'G'o'o 1 112 T R e e 2"- """"""" FeT
Glo (1) [Gg,om)] [G50(1)] 02

k (Byg 42 Boo ) exp{~3040 (1)u8] = ~oms 1
'''''' Sio ~ (Byo2WPBgolexpi=3Ggo (1)U} - Fov=——myz + = e
G-;o“) [00(1)] u

ces (4.25)

However, by considering the behaviour of the solution given by
(4.16) as E -+ 1 it follows that the solutions maich only if the

BiJ = 0. Thus within the transition layer the solution can be
written
1 Gle (1) ud 1 uR 2/3
6 = NPL(W) 4 =—oom=t |- o= L(u) + = mmmm=m = pemmeCos zl + 0(n7%)
3 3 Ggo(1) [G60(1)}
Gl,(1) 1 1
b mm2aol [Nﬁ{~%<u? 4 mmm——— ) u) = w—m——- } + 0(1)}
A Goo (1) 2Gy(1)
NZ
+ O(""“) LRI (L{-- 26)
AQ
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where

L.6 Solution for £ > 1

As E 1increases s Dbecomes exponentially large and
including only the dominant terms the rate egquation reduces to

1 ds i 3
-t 21 ATt e (E,N) - 1) s = 0 oo (4.28)
N df i

1=0

The next term in the asymptotic solution for £ > 1 could
apparently be derived by a formal expansion of the type

5 = SAO + OSA_1 o

but the higher order terms cannot justifisbly be found from
(L4.10) since terms which are exponentially small have already
been ncglected in deraiving this egquation.

From ecuation (L4.28)
s = K expdN fg i - ;Z'A"iei(w,m) ay oo (4.29)
1 1=0

where ¢ is a dwnmmy variable. In order to determine K
consider the behaviour of (4.29) as & - 1. It is seen that,
in terms of the independent variable u

1us
s ~ K exp{—% G50(1)u2} [1 - —=r . G (1) + ...
6N2

1
+ - ("%UQG';O S

F oennan } eos (L.30)

By comparison with the behaviour of %he transition layer
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solution as u - o it follows that the cxpressions match if

L
27 2 .
________ NE e ., eon (L031)

-Ggo (1)

K

1

-1
where ‘the error term is either O(N 2) or O{EEJ . Notec that
2

1
K does not contain a term O(N?/A), but it does contain a term

o(1).

It Tfollows from (4.31), and (4.29) that the asymptotic
frozen level of A 1s given by

:c's' = [:éi‘faﬂﬁ N%GXP["N;T Goo(E)dE - ;': jon ()ag - f%1 (E)dé’.}

ver (4.32)

where Bf 1s the value of o at & =1, i.e.

5o = 6N - : o (. 33)
4,7 Summary

The rcsults of the foregoing analysis are swmarized in the
table given below .

. Independent Dependent .
Domain variable variable Solution
ze~ v=A{z-1) | s = Z A‘iéi(v) See Appendix
i=0
Z>1 2 s = 21IA-iSi(z) See scction 3.3
! i=0
oy _i _j
ES] E=z/3 s = AN Eij(g) Equation 4.16
i=3=0
ul 10 -3 =14
z2>21 E~1 u=N2(Z-1)| s = NEZ AN zJS_,[‘j(u) Cquations 4,25
j_—.-j:O
E>1 E s is exponentially Equations (4,29)
large and (4.31)
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5. Example: asympltotic frozen levels for flow through a
hyperbolic nogzlce

The specific casc of flow through the hyperbolic nozzle
A = 41 + x? eee (B.1)

(v =0), 1s used to illustratc thc approach. It is assumed
th8t the relaxation frequency is given by an expression of the
form (2.4), i.e.

b -~
H(z) = oxp{g (% - 1)j veo (5.2)

It follows that

A _2x=1
Goo(E) = g <2(Y-17

_ _/._2x:1> L Y (503)
Gor (8) = [, JBAN8 (1 _ 1>£ \BG=1)
=15 &
u[1+ ¥ 00}
ete.
and GlO = Gi1 = Gy = 0 iz (y < g)

From eguation (4.32) 1t 1s scen that the asymptotic limating
values are given by

° . Co (N% + O(N—%)> exp{—c1 N*Cz} cee (5uk)

i

Ql

f
where
[uﬂ(Y-1)}% 7
Cog = | =mmwmm—-
2y-1
ey, = 2(‘\(—'1) e (5-5)
2(y-1) 3-2y
Cp = ====—- -2(y-1) [b + mm———— :T—""}
2y-1 M(1+I§“Oe) J
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and

Of = e exp -~ N . v (5-6)

Also, using eguation 4,9

2y-1
5L 3-2v)06 1 1
A =g nEOFT) |y [b ¥ —S*——:L"] -+ 0(“) eer (5.7)
L(1+X235,)7 W N2
where 1 o
L 2613
2(y-1) ¢ 70 o 2(¥-1) [-?— + -;9]4
QO = —»———————————~——*T-*i """"""""""" LI ] (5‘8)
(Pomy ) ®
2(y-1
{r )

- L
Note that N 1s O(A r=1 ), i.e. N is O(A /9) for

Y = ?/5. This fairly weak dependence of N on A inmplies
that the asymptotic seriles will only converge rapidly for
values of A that are numerically very large indeed.

In general, for nozzles which grow asymptotically as
powers of x similar expressions hold#*(though it is necessary
to know the shape of the nozzle for x 0(1 in order to
determine the constants P, and m; (1 2 1) cte.). It 1s

interesting to note that for a nozzle which is asymptotically
wedge shaped, with the relaxation frequency given by (5.2),

c » 0 asymptotically, though it does depart from the
equilibrium distraibution for large =z. This result is a
consequence of thc assumed temperature dependence of . Any
deviation from this dependence of the type

2~ z°% ex > 1
~ P 6 (Z - 1) 8 > 0 e (5.9)

would invalidatc this conclusion.

6, Concluding remarks

oo

The error in neglecting [ y é% {6(1+s)} dy ana

'
2
fzy%%dy in cquation (4.2), where s in these expressions is

N
Zz

given by the near-cquilibraium solution ond o by the solution
for 2z >> 1, can bc shown to be O(N expi—cN! vhere

- A B e mm e SR W B TE TR gE W W ME R SN MM an MR ER bl mh EE WM me M AN S S e SN mm e vm e e e

z
“Provided j' ydo remains smnll for large z.
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o = c(g*) is 0(1), for the hyperbolic nozzle defined by (5.1). It follows
that 211 the error terms in the various asymptotic solutions are exponentially

small with respect to N and it is correct to retain terms O(A'l,N—i) eto,

The solution has been presented for a specaific form of the
Gi(E,N). The extension to other cases, where £0(z) and A(x)

are such that the Gi(g,N) are not given by expansions of this
form, can easily be carried out via similar matching procedures.

The asymptotic approach of o© to some constant non—-zero
value, or freezing of the encrgy in thc lagging mode, has been
the subject of much discussion. . Many approximate methods exist
for determining this asymptotic valuc, the most common of which
is that due to Bray (1959). This approach, the sudden-freeze
approach, is based on the prcdiction, by means of a qualitative
argument of a '"freezing point'. Upstrcam of this point the flow
is assumed to remein in equilibrium while downstrcam of it o
remains constant at its equilibrium value at the freezing point.
It is interesting to note, that the position of Bray's freezing
roint is given by a criterion of the form which defines the
turning point of the ratc bguation. However the analysis
presented here shows that Gp is'not 0(1) as 2z - e« (see

equations (4.29) and (4.31) for the present case. Ixtension to
other cases e.g. the flow of a dissocilating gas, also shows that

c/ﬁf 18 not asymptotically of 0(1). Insofar as the flow of a

dissociating gas 1s concerned it would appear that the sudden
freeze approach gave good agreccment with exact numerical
calculations, This agreement, which 1s perhaps fortuitous,
can probably be accounted for by the slow convergence of the
agsymptotic series in some practical cases.
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Appendix Soilution near =z = 1
Appenaix

At z =1 8 =0, and for all finite F(1,0) the
perturbation solution is singular there. However, for the
class of flows in which v, =0 (convergent-divergent nozzle)

F(4,0) is infinite (as 2z -1 P =~ E—:L;—, apart from some

' z-1)P -
numerical factor) and the pcrturbation solution is valid u
to and including z = 1.

Wthen F 1is finite at 2z =1 1t is necessary to modify
the perturbation solution near -z = 1. In this region the
derivative term is important and the appropriate independent
variable 1s (Bloom and .Ting (196C), Napolitano (1962)?

v = Alz-1) oo (A1)

and a sqlution of the form

1 1 ¢

g8 = =-Z.(v) + ——t(v) + ... ... (A.2)
A A2

is sought. The function F(z,s) will still have an expansion
of the form ' )

-

F(z,8) = Fo(z) +‘o<i> oo (A3)

where F,, as for =z > 1, 1s given by the equilibrium solution.
Consequently, in terms of v

.1
#(z,8) = Fo(1) + 0(-) oo (ALL)
A
and neglecting terms O(%) in the ratc equation gives
az, , 1 4o
——= 4+ F0(1)K,1 = ("‘ - -f) pea (A-5)
dv v 0 dz/z=1
(3)
L, = --8.dz/z=1 [1 - exp{—Fo(1)v}} ... (A.6)
Fo(1)

using the boundary condition that s =0 on v = 0. It then
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follows that as VvV -» e

Fo (1) A
which is in agreement with the first term of the outer solution
(equation 3.7) a z -+ 1, It can be shown in similar fashion
that terms of 054L> etc., match and it follows that (3.7)
AQ

represents a valid outer limit of the solution valid near
gz = 1.

A uniformly valid solution for 2z 2 1 can be written down
using the usual technique. i.e.

Uniformly valid solution = Outer solution + Inner solution

~-Inner expansion (Outer solution).

1N
Thus, neglecting terms O(——) a uniformly valid solution is
‘A2
=N\
- 1 do
1 1 1 do g— = ==/
5 = - | e ——— ("' : """) - ""g"‘g"z"‘g:i exp{"' FO(JI)V] sa (A.?)
A (B (2) G dz Fe (1)

The se¢lutions for v,, p, ete, follow, as belfore, from equations
(2.24) and (2.25).
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