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Summars 

The limitations of near-equ%librium solutions in expanding 
non-equilrbrlum flows are discus$ed. The breakdown of this type 
of solution far downstream is investigated for a vibrationally 
relaxing gas, It is shown that valid asymptotic solutions can 
be derived by the use of matching techniques. Asymptotic frozen 
levels of the vibrational energy are obtained for a particular 
flow model. 

1. &troductlon 

In recent years a large body of literature has been devoted 
to the effects of finite rate processes on expanding quasi-one- 
dimensional flows. The importance of this problem stems Prom 
its application to the flow in hypersonic wind tunnels, rocket 
nozzles, etc. Eelatively simple solutions can be obtained ivhen 
the rate parameter h (ratio of the time scale of the flow to 
the time scale of the rate proces::'~ ), based on some characteristic 
conditions, is large. Under these circumstances a perturbation 
of the equilibrium solution, for which the time scale of the rctc 
pocoss is idonticcLly ZUFO, woulcl SBC~ to be appropriztc. 

however, near-equilibrium analyses oi expanding flows suffer 
from two limitations. This type of perturbation solution 1s in 
general singular at any position in the flow where conditions are 
specified (for A >> 1 the order of the equations is reduced by 
one). Bloom and Ting (1~760) (see also Napolitano (1962))~~sh&ed 
that it was possible to obtain a uniformly valid solution.$f 
this problem by using conventional "boundary-layer" t+nnlques; 

In addition, for an expanding flow, the perturbatiai?. 
solution will also become invalid for downstream wherWthe~.loczil 
ratio of the flow time scale to the time scaid'of tne race process 

------I----------_-_______II______ 

,“R~~~?ccs N.P.I;. .I,erq RoPort 1093 - kn.c.27 588. 
‘hly n sin&~ ?ntc procass is consilcrod hero. 
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<becomes small. The departure from equilibrium becomes “large” 
in such regions and the assumption of “small” deviations from 
an equilibrium solution is no longer valid. 
meaning of “large” and 

(The precise 
“small” will be outlined in the main 

body of the paper), It is this breakdown of the perturbation 
solution with which the present paper is concerned. 

Associated with this breakdown is the freezing of the 
energy, e’, in the lagging mode, i.e. a’ tends asymptotically 
to some constant non-zero value, though the equilibrium 
distribution c??, corresponding to the local translational 
temperature, approaches zero. This freezing phenomenon was 
brought to light in the early numerical work on this problem 
and much effort has been devoted to obtaining the asymptotic 
frozen levels for various types of rate process. Because of 
the complexity of the exact numerical calculations many 
approximate methods for obtaining this asym totic level have 
been devised, see e.g. Way (4 959) Kosner 
and Park (1963). 

7 1962), and Stollery 
Analytical investigations (Blythe 1963a,b) have 

shown that the phenomenon of freezing is associated with a 
turning point of the appropriate rate equation. An example 
of the type of equation considered there can be written 

1 ds 
- -- + P(C,N)s = Q(t;,N) 
N as 

with s = 0 at g 4 E. 
-- 1 

where N >> 1, P(E,N) and Q(c,N) are O(1) and s = “Li”;- 

is the relative departure from equilibrium. “The turning point 
behaviour is given by the zero of P(g,N), which is defined 
by 5 = 1. For E; < 1, P(C,N) > 0 and a perturbation 
solution of the type 

S = ------ f 0 . . . (I .2) 

is valid. This solution breaks down at E = 1 and it is 
necessary to modify the solution there by including the 
derivative term (see section 4). Note that for N >> 1 the order 
of (1 .I ) is reduced by one and, in general, (1 ,2) will not 
satisfy the boundary condition imposed on (1 .I ). 

These analytical investigations were confined to the case 
where (Ii is small compared with the stagna ion enthalpy HA. 

Under this aosumption by neglecting terms 0 CL etc. 
ij H:, 

it is 

possible to show that as a first approximation the 
equations governing the flow are uncoupled from the rate- 
equation. In the present paper no assumption is made regarding 
the magnitude of 0’ and in general the i’low uquu:rtionu 
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and the rate equation ~111 be coupled. It will, however, be 
assumed that the rate parameter A, based on initial conditions 
where the flow 1s assumed to boin equillbrlum, 1s large. It 
can then be expected that a near--equilibrlun perturbation 
solution (expansion In lnversc powers of A) vtillbe valid in 
some region. This solution may need modification, in the 
manner outlined by aloom and Tin; (IpGCj, near the initial 
equilibrium station. As noted above thlP~ 13 i>erturbation solution 
~111 also break clown suff~~lently far downstream. It follows 
for A >> 1 that this will be a "large" distance donnstre,om. 
In fact the rate equation again exhibits the turning point 
behaviour found in the uncoupled case. In addition, for A >> 1, 
it follows that immediately upstream of this transition region 
0' 1s "small" a d 

( 

"near" 
1'1 

to its equilibrium.value o' 
oy;,-1 

is @ d r 
and far downstream G'/ H:, << 1. Consequently 

in the vicinity of the turning pcint. and domnskream of it ' 
the 210:: equations and the rate equation are again uncoupled 
to a first approximation. &n'ce, within and downstream of this 
region the approach used in the uncoupled case (Elythe 1963) 
should be valid. The technique used there was to obtain 
valid solutions (of equation (1.1)) applicable to each of the 
regionsof interest, i.e. the region upstream of the turning 
point, the region In the vicinity of the turning point, and 
finally the region downstream of the turning point (from which 
the asymptotic frozen level was determined). Boundary 
conditions for the solutions in the various regions were 
determined by means of appropriate matching procedures. As 
is well known matching or patching techniques form a very useful 
tool for dealing with turning point problems of this type which 
involve a large parameter. 

Similar techniques are again used here. In the present 
case the solution valid immediately upstream of the turning 
point must be matched, at its upstream "edge", to the behaviour 
of the near-equilibrium solution far downstream: Essentially 
there are no maJor differences in the overall pictures for 

ol,r arbitrary with A >> 1 and for a' 
HA K5 

small: the . 
effectofthe coupling in the former case enters via the upstream 
matching conditions for the solution in the vicznity of the 
turning point. Various types of rate equation can be treated 
and solutions of these equations which have been obtained 
previously for the uncoupled case can be carried over by 
utilising this modiflcatlon on the matching conditions. The 
asymptotic levels of o so determined are influenced by the 
coupling in the perturbation region. Considerable interest 
centres on these asymptotic levels and even though they are 
influenced by the coupling, it again follows, as in the uncoupled 
case, that these values are not in a reement with those derived 
by the %udden-freeze" approximation f Bray, 1959). 

The analysis is carried out in detail for a vibrationally 
relaxing gas. It 1s assumed that the gas can be represented by 
a system of harmonic oscillations and that the Landau-Teller 
rate equation is valid (Landau and Teller (1~36)~ Shuler (1959)). 
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2. Basic equations 

2.1 ' Thermodynamic model 

It is assumed that the translation and rotational mpdes of 
the gas are fully exc:ted, that the vibrational mode can be 
represented by a system oi" harmonic oscillators, and that 
dissociation, ionisation and similar phenomena are negligible. 

Par a system-of harmonic oscillators the equilibrium 
energy content cs' 1s given by 

R6" 
a' = --T----- 

e IT" -1 : , e 

. . . (2.1) 

where 0' is the characteristic temperature of vibration, T' 
is the translational temperature, and R the gas constant. 
The rate equation governing-the variation of the vibrational 

is assumed to have the form (see e.g. Landau and 
%%% (:;36), ,Shuler (1359) Herzfeld and Litovitz (1959)) 

DO' 1 
--I = ; --__-__- 
Dt'- ,c'(p',T') 1 . . . (2.2) 

D 
Here 1557 denotes-the usual convective operator, p",' is the 
density, and 37' is-the local relaxation time. In gelieral 

..: (2.3) 

(see e.g. Johannesen (1961)). 
have been derived, 

Several expressions for fi"(T',) 
each of which shows some measure of 

ualitative 
s 

agreement with the available ex erimental data 
Herzfeld and Litovitz (1959), viidom (1957) 7. In an example 

prezdidin sdction 5 it is ascumcd tiiat 

There is.some theoretical justification Por'this choic,e 
(Ifidom (1957))"' However, it should at best be regarded as an 
empirical fit to the experlmental data (Stollery and Park (1963)). 
It 1s more convenient to re-write the above expression in the 
form 

flf(T1) = k exp . . . (2.4) 
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where b is now dimensionless and is assumed to be O(1). [For 

i2A 
for w;;;h $2.4L fit2s the experimental data very well, 

3 6 These values were derived using 
Blac&aA's (19567 exp%imental data.] 

The assumption that the rate equation has the form (2.2) is 
open-to question. In general, it can be shown that (2.2) is 
valid for a system of harmonic oscillators when only small a 
fraction of the oscillators is excited (Shuler, 1959). In the 
present analysis this latter assumption is certainly violated. 
However, no suitable alternative equation has yet been proposed 
and, in fact, it is usual to assume that (2.2) remainevalid 
(Stollery and park (1963)) though some evidence does exist to 
the contrary (Johannesen and Zienkiewicz (1963)). Modifications 
to the form of (2.2) can easily be included in the analysis 
provided that the characteristic feature of the rate equation, 
namely that the rate of change of vibrational energy is 
proportional to the looal departure from equilibrium, remains 
unchanged. It can be shown that any such modification wpuld be 
of direct importance only in the coupled near-equilibrium 
region (seesection 3): far downstream the rate equation would 
again reduce to the form (2.2) (for A >> I.), since there the 
fraction of excited oscillators would be small, though the 
boundary conditions (matching conditions) for the solution far 
downstream would be influenced by the-form of the rate equation 
upstream. 

2.2 Flou couctionc 

The equations governing the quasi-one-dimensional flow Of 
a vibrationally relaxing gas can be written 

Continuity 

pvA = m . . . (2.5) 

Momentum 
dv 1 dP 

V -- = - -- -- 
dx YP ax 

. . . (2.6) 

Energy 
Y P Y Y Y 

-me -+l-J+M = --- + E 
Y-1 P 2 Y-1 

e + - ve2 
2 

a.. (2.7) 

State 

P = pT . . . (2.8) 
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The variables have been non-dlmensionalized by putting 

P' P' T? V' 
P = --, p = --, T = --, v = --T 

p: p:: TL a*e 

rs' A' 
. . . (2.9) 

m' X’ 
CJ = ---, A = --, m = -------, x = -- 

RT; AC PA +,A; 4' 

where p' is the pressure, v' the velocity, AS(x9) the 
cross-sectional area at any station x', 4 1s some 
characteristic length associated with the nozzle, y is the 
ratlo of s eciflc heats neglecting vibration (frozen specific 
heat ratio P and "h is the frozen speed of sound. The suffix 
t denotes conditions at the cross-section of mlnlmum area and 
the suffix 'e denotes conditions at the initial equilibrium 
station. All flows considered here will start from equilibrium 
conditions. These conditions may or may not coincide with 
stagnation conditions. 

2.3 Transformed equations 

The rate equation and the equation governing the 
distribution of cr' can be recast in non-dimensional form as 

do 
-- 
dx V 

. . . (2.10) 

. . . (2.11) 

where 
at 0' 

a = ---, e = --, n = 
l-l' (T') 
_----_- 

RT; 
$1. (2.12) 

T' e -Q;(T,$ 

and 
.ep’R’ 

A = --E-E 

“r:, 
. . . (2.13) 

A is termed the rate parameter and represents some initial ratio 
of the flow time scale to the time scale of the rate process 
(for ve finite it may be better to use v' rather than 

as the scaling velocity). A e: is the lot% value of this 

af' e 

ratio. For A >> 1 It can be expected that, initially, the 
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energy distribution will follow, in some sense, the equilibrium 
distribution. This near-equilibrium behaviour can bc expected 

4s to break down where -v- becomes O(l.), i.e. where the time 

scale of the rate process becomes of the same order of magnitude 
as the time scale of the flow. A << 1 implies that near-frozen 
conditions will hold everywhere. It is assumed that A >> I for 
all initial conditions considered here, 

The exponential temperature dependence of z makes it more 
convenient to use a new independent variable 

1 
2 = - 

T 
. . . (2.14) 

rather than the dimensionless distance (Blythe 196B). Equations 
(2.5), (2.6). (2.7), (2.10) and (2.11) become 

pzvA = m 

dv 1 I. dp 
v - - = - - - - - 

dz Yz P dz 

Y 1 Y Y Y --- - + cl + -v* = --- + ze +-v* 
y-l z 2 y-l 2 e 

da 
-- = AF(z,o) [qz)-ol 
dz 

where 

F(z,o) = 
zpR(z) d-x ------ -- 

V dz . 

0 
Z(z) = ----- 

e'"-1 

The equation of state 
P 

p = - 

Z 

has been used to eliminate p. 

A more meaningful dependent variable than o 
relative departure from equilibrium s, defined by 

04 
S = --- 

a 

. . ..(2.15) 

. . . (2.16) 

. . . (2.17) 

. ..'(2.18) 

. . . (2.19) 

. . . . (2.20) 

. . . (2.21) 

is the 

. . . (2.22) 
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In terms of s equation (2.18) becomes 

as 
-- + + 1 _"t s = - ‘1 _d? 
dz 1 s dz 5 dZ . . . (2.23) 

The structure of this equation should b It can be seen 
that for A >> 1, 2 finite, s is However, as z --f m 
F-9 and this perturbation solution is singular at infinity. 
In fact the term in square brackets passes through a zero for 
large z. This zero is termed a tu.rning point, or transition 
point of the differential equation and associated with it is 
a rapid growth in the relative departure from equilibrium s. 
In the neighbourhood of this zero the perturbation solution 
will become invalid. 

The solution for finite z also exhibits a further type 
of singular behaviour namely that usually associated with the 
behaviour of perturbation solutions of this type (for which the 
order of the equation 1s reduced by one) near som; toydary along 
which conditions are speclfled, i.e. s=O on 
z=l the perturbation solution gives 

for v # 0, is in general non zero. 
startifig from equilibrium sta&nation 
that no modification near z = I is necessary. The necessary 
modification to this type of solution in the neighbourhood of 
z = I has been considered previously by Bloom and Ting (1960) 
and Napolitano (1962). The solution appropriate here 1s brlefly 
outlined in the appendix. 

It 1s convenient to write down here two relationships which, 
in principle, together with equation (2.5) determine P as a 
function of 2 and s. From equations (2.16) and (2.17) it can 
be shown that 

p = . . . (2.24) 

V = [Ve2 + ;.;(d) + f(& - Gcl+sl)j" . . . (2.25) 

where y is a dummy variable. x = x(z,s) then follows from 
(2.l5), for any specified A(x), 
obtalned from equation (2.19). 

and hence F(z,s), can be 



3. Perturbation solution 

3.1 ve # 0: Bloom and 

9- 

Ting’s approach 

For v # 0 the foregoing’system of equations can be 
reduced to fwo first order dlffcrential equations of the form 

1 do 
- -- 
A dz 

= f(z, 0, ..P) 

dp 
. . . (3.1) 

-- = . .z(z, 0, P) 
dz I 

with p = 1, o = ‘Se’ at z = I, vihere f(l, a,, I ) = 0 Bloom 
and Ting (1960) and Napolitano (1962) have presented techniques 
for obtalnlng the solution to a similar system of equations. A 
solution of the type 

0 = A-i Oi(Z) . . . (3.2) 

i=o 
etc. 
1s sought. The degenerate case obtained by putting i = 0 gives 

the equilibrium solution. Such a solution is 

where the boundary conditions ,gives dQ 
dz = O + 4 

Eylar at z = 1, 

Fizajz=l 
The necessary rnodlflcntlon to the perturbation solution 
is found by considering the in a layer near 

z=l whose thickness is A solution of the form 

0 = 

c 

A -l OpJ) 

i=O 

. . . (3.3) 

etc. 

with 
* 

00 = 0 e' O"i 
= O(i>l) at 2 = I, 

where v = A(z-I ) is sought in this region. A uniformly valid 
solution can then’be written down via the usual technique 
associated with inner and outer expansions. The solution near 
z = I, in terms of the independent variable s, is outlined ’ 
In the appendix. The solution for s (z > 1) is presented 
in detail in cc&ion 3.3. It is sufficient to note here that a 
solution of the type (3.2) forms a valid outer limit of the 
solution (3.3) which 1s valid near z = 1. 
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3.2 VP = 0: convergent-divergent nozzle 

This is an important exception when the system of equation 
cannot be reduced to the form (3.1). In ththls case the mass flow 
is not icnown a prslori: In general it is a function of A (see 
below) and the equationsreduce to the form 

1 do 1 
- -- = f" z, 0, p, - 
A dz ( ) A 

. . . (3.4) 
dP -- = dz9 0, P) 
dZ 1 

with o = a,, p=l at z=l. 

Thevalueof f*l,~e,l,~ 
( ) 

is indeterminate ab lnitio. 

However it can be shown that 

and It follows that a formal perturbation solution of the type 
(3.2) is not singular, in this case, at z = 1. 

The perturbation solution is not so readily found as for 
v, #O. It is necessary to determine the appropriate value of 
the mass flow at each stage of the approximation. Details of 
the actual determination are given In action 3.3. Lath costs 
be # 0, v, = 0) are treated, but special emphasis is placed 
on the latter since the former case (ve # 0) has been dealt with at 

lengthby NapoLrtano (1962). The solutions are presented using s, 
rather than c, as the independent variable; this 1s more 
convenient with regard to the behaviour for large z. 

3.3 Solution for finite z 

A formal solution of the type 

9 = q)(Z) + 1 s,(z) + . . . 

1 

. . . (3.5) 

P = PO(Z) + i p,(z) + . . . 

etc. 
is sought. In accordance with these expansions the function 
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P(z,s) will have an expansion of the form 

1 
F(z, s) = F,(Z) + - F,(z) + . . . 

A 
.a. (3.6) 

From equations (3.5)) (3.6) and (2.23) 

i>2 . 

I 11 do 

I 

as, -4 
si = -;- ---s,, .+--f-l. 

0 6 dz 
-1-1 & 

*.* (5.0 

Fksi-k 
k=l 

Note that si depends only on the Timk (k > 1) which can be 

assumed known insofar as computing s, 1s concerned (so = 0). 
From equations (2.24), (2.25) and (3.7) 

etc. 
(y is a dwmy variable) 

[ 

2 
vo = 

ve2 
t --- 

4 . y-1 

1 a.2 
Y, = ----- -- 

Povo dz 

etc. 

In order to complete the 

I . . . (3.5) 

i 

. * . (3.9) 

determination of the 
the s~+~) it is necessary to compute the Ai 

FIHhi;;d hence 
r 

1 
A = A,(z) + - A,(z)+ . . . . . . (3.10) 

A 
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The A 
known.' 

are easily found from (2.15) 12 the mass flow m is 
For ve # 0 m follows lmnedlately from the boundary 

conditions at z=l, l.e.m=vA e e9 and 

m 
A, = ----- 

PO =-Jo 
. . . (3.11) 

etc. 

Pi Vl\ 
A, = -A, -- f -- 

PO vo / 

Hence for any given A(x) the Pi(z) fOllOW (equation (3.11) 
gives x = X(Z,h)). 

For ve.= 0 the mass flow cannot be determined from 
conditions at 2 = 1 (for any non-zero mass flow (A)Z,, is 
infinite). In this case the mass flow can be found from 
conditions at the throat. From the continuity, momentum and 
ener,g? equation it can be shotqn that 

-I- (v*z-I ) 
1 do ~222 Ch 

I: za v=z-- 
! ) 

-- + ---_ -- . . . . (3.12) 
Y-1 ydz A a2 

dA At the throat 3~ = 0 and thus ' i 

'1. 

there*. It is assumed that the throat lies in the region of . 
validity of the perturbation solution Consequently the position 
of the throat z=z t 1s given by an expression of the form 

1 . 
Zt = z. i-h z, + . . . . . . (3.14) 

where z. is given, from (3.13), (3.9) and (3.7) as the root of 

-I (zv,” s-e (z) - ?) = z= (Voqz) - ;) ; . . . (3.15) 
Y-l 

-_-----__-------------e-e---------- 

*The usual results for frozen and equllibrlum flow follows 
from equation (3.13), i.e. 'the velocity at the throat 1s equal 
to the appropriate sound speed. 
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etc. . . . (3.16) 

It is expected that the mass flow m sill be given by an 
expansion of the form 

1 
m = m, +-m, +... *.. (3.17) 

A 

Equations (2.15) and (3.17) give 

m, 
A, = ----- 

po=vo 

ml 
A, = *, -- .- P: - "1. , 

m. PO vo 
etc. 

I . . . (3.18) 

The m, are now found by considering the conditions on the Ai 
.I. 

at the throat. At the throat 

A(zt) = Ao(zo 
1 1 + - c A,(z,) + z, 
h 

But at the throat 

A(zJ = 

and it follows that 

Ao(zo) = 1 

*.. (3.20) 

A,(zo) = 0 . . . (3.21) 

etc. 
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From which 

m. = Po(zo)zov,(z,) . 

Pl(Z,) vt (zo! 
ml 

= m, L -----_ + --_--- 
o(%) vo(zo) I 

. . . (3.2:) 

etc. 

Hence, for any given A(x), the Pi(z) follow. 

near 
For v, # 0 the perturbation solution needs modification, 

z = I for the reason outlined in ocction 3.1. This 
modification is derived in the appendix. 

4. Solution for lar,e z 

4.1 Outline of approach 

The class of functions F(z,s) considered l,-re are such 
that for large z Fi+ 0. 
(near-equilibrium 

j 

It follows that the perturbation 
solution is 

of equation (2.23 
singular at infinity. Examination 

shows the manner of this breakdown. Since 
1 do 3 a;. < 0 and approaches -0 as z + m, then at some point in 
the &flow 

1 ati 
AF(z,s) + - -- = 0 

(I dz 
. . . (4.1) 

Let the value of z satisfying this equation be 0. 
(4.1) defines the order of magnitude of 

Xquation 

ii;?, F(z,s) 
Cp with respect to A. 

. 
is a decreasing function of z and A >> 1, then 

m. the neighbourhood of this zero, which is a turning point 
of the differential equation, the relative departure from 
equilibrium grows rapidly and it is no longer valid to assume_ 
that s is "small". 
is o(1) for large 2 

However, upstream of this region c = 0(1-1-s) 
since c(z) becomes exponentially small 

increases. 
ZncEion of 

Hence, as o 
z (equation 2.18), 

is a monotonically decreasing 
o << 1 within and downstream 

of the region near z = us. If terms of O(o,o) etc. are neglected 
for large z the 111~~1 cquitioiz,; Sov+r,Gizn ti-17 cis;t: i3UtiOil 
of pressure, velocity etc. are of closed form and can be solved 
independently of the rate equation. (This solution 1s of course, 
influenced by the known coupled solution for z O(l).) The 
distribution of o and s is then found from the rate equation 
utilising this basic solution for the i'lo:, variLbltiL;, 
Solutions of a similar system of equations have been, given in 
;l~ghy (1963a,b). These papers were concerned with the case 

for all z. The techniques used there can be extended 
to the present case where a << 1 only for z >> I. 
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4.2 Solution for the 210~ vnrie.blc3 

l?rom equation (2.24). 

p = z -& exp f y ; (+..) jdy 
-'Xl 

= 2 Y-1 exp i: y5Jy 
J, dY 

The integral in this expression is re-wr.ttten 

J 

2 do ZQ 
z -- = 

s 
Y 

1 dz 1 

where z* is large, 
the near-eqgilibrium 

but is assumed to be in the~domain where 
solution 1s valid, i.e. z:r < ml For 

large 2, os, where s 1s given by equation (3.7), becomes 
exponentially small and the upper limit in the first term in the 
above expression can be replaced by lnl"lnity (neglecting terms 
which are exponentially small). The second term contains the 
contrlbutlon from the region in the nelghbourhood of and down- 
stream of the turnin@r point, where the near-equilibrium 
perturbation solution is no longer valid. This term is negligible 

do if ZZJ, approaches zero "quickly enough" for large z. Such a 
requirement is somewhat more restrictive than merely asking that 
terms O(o) be negligible. However. this assumption can be 
Justified, a posteriori, when the precise orders of magnitude of 
the various terms can be wrltten down. [It turns out to be 
necessary to assume that terms O(o lo?; CJ) 
this region]. 

are negligible .in 
It then follows that 

where 

- Xl 
P = P(A) z y-' . . . (4.2) 

P(A) = exp {/yz;; [~~l+d]dz~, 

s 1s given by (3.2), and 
1 

. . . (4.3) 

. . . (4.4) P(A) = P, +-P, + .,. 
A 
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where 

P, = exp' 

etc. 

From equation (2.25) for 2 >> 1, neglecting terms O(a) 

. . . (4.6) 

Note that this expression 1s independent of A, though it does 
depend on condit!ons at 
x = x(2,h) follows from 
Similarly the asymptotic 

1 
Ft-4, s) = FOA(z) + - F 

A '* 
(z) + . . . . . . (4.7) 

where the FL(Z) are the asymptotic expansions of the F,(z) 
(negledingterms O(o) etc.). 

The retention of terms O(h-i),, thouih neglecting terms 
o(0) etc., can also be justified a posteriori, since it is 
shown that for 2 >> 1 o is exponentially small with respect 
to A. 

4.3 Form of rate equation for 2 large 

Under similar assumptions the rate equation becomes 

dS 7 
-- ~, -.- \.. , 
a2 

els = e . . . Ill.8‘) 

where FA(z,h) is given by equation (4.7). A new independent 

*It is assumed that x = x(z,h) has a valid expansion of 
the type x'= 2 -?, Xi(Z) 

A1 
for large z, which e.g. requires that 

xi+1 (z) -."--_.-.- 
x&4 

is at dost C(1) for ld.r,rre z. 
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variable E; = '/a is defined, where @ is now to be interpreted 
as the root of 

AF&J) -0 = 0 . . . (4.9) 

In terms of c equation (4.8) can be written 

where 

and 

1 as 
- -- + 
N’ dE; 

G(&,N,h) - I s = 1 
I 

N = cm . . . (4.11) 

. . . (Lc.12) 

Note for A >> I, N >> 1. Equation (4.10) is simply a first 
order linear differential equation and the general solution can 
be written down in terms of the appropriate integral (Blythe 1963a). 
The solution in any region can then be obtained via suitable 
expansions, for Ii >> 1, of this integral. A second approach 
is to consider the behaviour of the differential equation rather 
than the integral, 
1963b). 

in the various regions of interest (Blythe, 
This latter approach probably yields more insight into 

the structure of the solution and the technique can be applied 
to equations of greater complexity than (4:i<) (e.g. the non- 
linear asymptotic form of the rate equations governing 
dissociation and ionization Blythe 1963b). The second approach 
will be described here because of this greater generality. As 
already noted this technique has previously been applied to the 
solution of aGs;ii:ara$pe_of equation (Blyze 1963b), though 
in thatcase O(l). 0 is O(1) but 
P >> I. 30th cases satisfr N""?> 1. 

In general 

G(E,N,h) = A-' Gi(W) 

1=0 

. . . (4.13) 

where Go(l,N) = I and Gi(l,N) = 0, i > I [The remarks on 
the validity of the expansion of x = x(z,A 

I 
ior large z 

ensure the validity of the expansion for G . In order to 
proceed further it is necessary to know the expansions of the 
G&N) for N >> I. In fact the exact details of the approach 

depend completely on the form of the Gi(E;,N). As an example, 
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the class of functions 
form 

Gi(g,ilT) which have expansions of the 

G1(C,N) 
1 

= GiO(C) + i Gil (E) + ;; G&J) . . . (4.14) 

[where GiR 
when G,,(l 
class of fu 

,(S;,N) is O(l), 

1 = II 
Gij(l) = 0, save for i=j=O, 

will be considered. This is a fairly general 
nctions and includes, for a suitable temperature 

dependence of the relaxation frequency, flows in which A-X" 
for large z (provided y < 3/2). Types of temperature 
dependence permissible include, for example, the exponential 
form given in (2.l+), any power law dependence, an$ also 
combinations of both these forms, i.e. R - T-reb . Note 
tha; if A - xn for large z it follows that N is 

1. 
0 Am 0 where 

Associated with equation (4.10) arc three regions of interest. 
Firstly the region 5 < 1 where G(c,N) - 1 is C,(l). It 
appears that in this 

1 

case some suitable perturbation solution 
expansion in inverse powers of 
4.14) is valid) is applicable. 

N for the leading terms, if 
The system of equations in this 

region is again of lower order than (4.10). The region g c 1, 
where G(C,lJ) - 1 is now "small", is a transition rcglon in 
which s can be expected to increase rapidly. Finally, for 
E.> 1, it can be shown that 
though ijs 

s becomes exponentially large, 
remains finite. The solutions applicable to each 

of these three regions are derived below. 

4.4 Solution for E < 1 

In the region e < 1 a perturbation solution of the type 

S = E,,(E) + ; E,,(E) + 6. 

+ 1. (&o(5) + 
1 
- E,,(C) + . . 

A N 

‘(.....) + -- 
A2 

. . . (4.15) 

is sought. [This form of expansion may only be applicable to 
the leading terms, see equation (4.14). The &eneral term 
depends on the form of GiR(S,N)]. It follows from (4.10) 
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and (4.14) that 

1 
-------- , 
Go, (<)-I 

E,,(C) 

-G,,(C) 
----------5 
[Goow] 

= 
GA,(t) _ --------- 

pm W-ljZ 
. . . (4.16) 

etc. * 
. . 

bJhi.le it is convenient to derive the solution in this form it 
is necessary to know the relative orders of magnitude of N 
and A in order to write down the error involved in stopping 
at any given term, i.e. if one use 
(4.16) thc'crror term is tither op~T'"o~oo(~~" g;;;; in 

relationship is supplied by equation (4.9) for a given Qb). 

By consid-ring the behaviour of this solution for small 5, 
where G becomes large, and the behaviour of the near 
equilibrium perturbation solution of section 3 I’010 lnrge z j.t 
can readily be shown that the two solutions match provided 
terms O(o) etc. are neglected in the near equilibrium solution 
for large 2. Thus (4.16) represents a valid outer limit of 
the near equilibrium solution. 

4.5 Solution near C = 1 

As c-1 the perturbation solution breaks down, since 
Go,(l) = 1, and in this region the derivative term becomes 
important. It is appropriate to seek a solution of the form 
(Blythe, 19631,) 

S = Nb,,(u) + Sor[u) + O(N-&) 

+ ; (&,c, (u) + Sl,(U) + . . .) 

+ *... a.. (4.17) 

where 

u 

In the neighbourhood 

G,(C,N) = 1 

= &(c-,) . . . (4.18) 

of E=l 

U 

+ i- GA,(l) + 3 “” G;,(i) + . . . 

N 

I u 

+- 
( 

-T GA,(l) + . . . ) 

N NT 

+ . . . . . . . (4.19) 
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and for i> 1 

Gi(E;,N) = ;; Gio(l) & 
+&UIG';O(I) + . . . 

N 

Gi,(l) + . . . 

+ . . . . . . . (4.20) 

From equations (4.10) and (4.17) through (4.20) it follow that 

a!3 
--00 + G&,(l) uSs,, = 1 

dU 

aso 1 
. . . (4.21) 

---- + G;,(i) US,,. = -3 G;,(l) u*Soo 
au 

---- + G;,(l) US,, = 

au 
-G:,(l) us,, a... (4.22) 

etc. 

The solutions of these equations can be written 

so, = B,, exp -&GA,(l)u* 
c 

2 
------ S 
Gb’o (1) 

o, = (B,, - +J~BOO ) exp[-4 GAO (l)u*] 
I 

-$ 
exp{-$G:,,(l)u*] 

u3 

u* I 
+ 3 ------ - - 

GA,(l) b --------s 
b%, (1 )I 
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1 
--- s 
Gio ” 

= (B, o-$-~*B,, ) exp 1-4 G&,(l)u2] 

1 
-& 

expl-$G;,(l)u2] 
u2 + ------ 

G;,(l) --L----- 

etc. 

u 
- --v-v-- ..* (4.24) 

2’%,(l) 

The undetermined constants Bij are found by considering 
conditions at the upstream edge of this layer. From equations 
(4.22) and (4 ,.24), as u + -oo 

S 00 - B,, cxp 

2 
------ s 
G;,(l) " 

- (B,,-$u3B,, )exp)+G;,(1 )$ I.- . . . 

1 
-----_ S 10 
G;,(l) . 

- (B,,,-~u2BOo)exp~-+G&,(l)u2] - 

. . . (4.25) ’ 
However, by considering the behaviour of the solution given by 
(4.16) as .5 3 1 it follows that the solutions match only if the 
B. 

J-J 
= 0. Thus within the transition layer the solution can be 

written 

* 2/3 
S = &L(U) + __--_- e--e-- - --------c 

[ II Go’,(l) 

+ O(& 

G:,(l) + ------ 
A 

. . . (4.26) 
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where 

4.6 Solution for C > 1 

As E Increases s becomes exponentially large and 
including only the dominant terms the rate equation reduces to 

- -- + A -i G=(E;,N) - 1 s = 0 . . . (4.28) 

The next term In the asymptotic solution for c > 1 could 
apparently be derived by a I"orma1 expansion of the type 

S = s.4o + OS*, + . . . 

but the higher order terms cannot justifiably be found from 
(4.10) since terms which are exponentially small have already 
been neglected in derlvlng this equation. 

From eouatlon (4.28) r 

S A-iGi($,N) . . . (4.29) 

where $ is a durmny variable. In order to determine K 
consider the behaviour of (4.29) as t; + 1. It is seen that, 
in terms of the independent variable u 

c j[ 

US 

s c K exp -$ G;o(1)u2 1 - --T . G&',(l) + . . . 
~NF 

. . . (4.30) 

By comparison with the behaviour of bhe transit?on layer 
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solution as U-rrn it follows that the expressions Fatch if 

. . . (4.31) 

where 'the error term is either O(N--) or 0 : Note that 

not contain a term O(&/*), but it does contain a term 

It .fo~~owS from (4.31), and (4.29) that the asymptotic 
frozen level of A 1s given by 

. . . (4.32) ’ 
where zr 1s the value of 5 at & = 1, i.e. 

I 

% = 0,-N 

4.7 Summary 

. . . (4.33) 

The results of the foregoing analysis are summarized in the 
table given below 

Domain Independent Dependent 
variable variable Solution 

z-l v=n(z-1) s = See Appendix 

i=o 

z>l z S = h-isi(z) . See section 3.3 

t 
i=o 

s= Equation 4.16 

i=J=o 

s = N+ A-iN-+kG(u) Equations 4.25 

i=j& 

s is exponentially Equations (4.29) 
large and (4.31) 
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5. Example: asymptotic frozen levels for flow through a 

hvpcrbollc nozzle 

The specific case of flow through the hyperbolic nozzle 

A = 1 + x2 . . . (5.1) 

(v 
th%t 

= O), 1s used to Illustrate the approach. It is assumed 
the relaxation frequency is 

form (2.4), i.e. 
given by an expression of the 

n(z) = cxp [z (i - ~j 
It follows that 

and G10 = G. 11 = Gi2 = 0 i>,l 

Prom equation (4.32) it is seen that the asymptotic limiting 
values are given by 

0 -- = 
% 

co N+,+ O(N--+) oxp[-c, N-c,. . . . (5.4) 

where 

Cl = 2(y-1) 

2(Y-1) 3-2~ 

c2 = ------ -2(y-1) b + 2y-1 ---------- 3 4(1+~-&) 
Y 

> . . . (5.5) 
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and 

ef = Oexp.-N 

Also, using equation 4,9 

. . . (5.6) 

where 

c 

(3-2~)0 1 1 
I- b+ LcT;;~fI~~) I o] N + O N; . . . (5.7) 

Y 

2(W) e b’e e- - I-- 27y-11 + + _‘fe_ 2 
L Y 1 Qo = ---------______-_-__ r------------- 

(Porn,)" 
.*. (5.8) 

Note that N is O(A":Et'), i.e. N is on ( "') for 

y = 715. This fairly weak dependence of N on A implies 
that the asymptotic series will only converge rapidly for 
values of A that are numerically very large indeed. 

In general, for nozzles which grow asymptotically as 
powers of x similar expressions holcl*(though it is necessary 
to know the shape of the nozzle for x O(1 
determine the constants Pi and mi (i 2 I 1 

in order to 
etc.). It 1s 

interesting to note that for a nozzle which is asymptotically 
wedge shaped, with the relaxation frequency given by (5.2), 
a-10 asymptotically, though it does depart from the 
equilibrium distribution for large z. This result is a 
consequence of the assumed temperature dependence of R. Any 
deviation from this dependence of the type 

R - zcs exp - (5 - 1) 
I 
b 1 

3 
s>o 

0 

would invalidate this conclusion. 

6. - Concluding remarks co 
The error in neglecting 

i 
y ;1” {C(l+s) 

da 
;* 

y;i;dy in equation (4.2), where s in these 

. . . (5.9) 

1 dy and 

expressions is 

given by 'rho nbaar-,:quflibrium solution an1 a by the solution 
for 2 >> 1, can be shown to be O(N exp -cNj I vrhere 

________-_-_---__-__------------------- 
z 

Vrovi&od Ydfl rcmoins smdl for large a. 



o = o(&*) is O(l), for the hyperbolic nozzle defined by (5.1). It follows 
that all the error terms in the various asymptotic solutions are exponentially 
small with respect to N and it is correct to retain terms O(d ,N-i) eto. 

The solution has been presented foi, a specific form of the 
Gi(C,N). The extension to other cases, where n(z) I and A(x) 

are such that the Gi( &,N) are not given by expansions of this 
form, can easily be carried out via similar matching procedures. 

The asymptotic approach of o to some constant non-zero 
value, or freezing of the energy in the lagging mode, has been 
the subject of much discussion. &!any approximate methods exist 
for determining this asymptotic value, the most common of which 
is that due to Bray (I 959). This approach, the sudden-freeze 
approach, is based on the prediction, by means of a qualitative 
argument of a “freezing point”. Upstream of this point the flow 
is assumed to rem&n in equilibrium while downstream of it o 
remains constant at its equilibrium value at the freezing point. 
It is interesting to note, that the position of Bray’s freezing 
point is given by a criterion of the form which defines the 
turning point of the rate % uation. 

hf 
However the analysis 

presented here shows that is, not O(1) as 2 + a, (see 
equations (4.29) and (4.31) for the present case. Cxtension to 
other cases e.g. the flow of a disoociating gas, also shows that 
CJ- 

4 is not asymptotically of O(1). Insofar as the flow of a 

dzssociating gas is concerned it would appear that the sudden 
freeze approach gave good agreement with exact numerical 
calculations. This agreement, which is perhaps fortuitous, 
can probably be accounted for by the slow convergence of the 
asymptotic series in some practical cases. 
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Appendix Solution near 2 = 1 

At z=l s=O, and for all finite P(4,O) the 
perturbation solution is singular there. Hokcver, for the 
class of flows in which v, = 0 (convcrgcnt-divergent nozzle) 
F(1,O) is infinite (as z 3 1 F - apart from some 

numerical factor) and the perturbation solution is valid up 
to and including z = 1. 

When F is finite at z = 1 it is necessary to modify 
the perturbation solution near s = 1. In this region the 
derivative term is important and the appropriate inde cndent 
variable is (Bloom and.Ting (1960), Napolitano (f96S)p 

V = A(,-1) . . . . (A.1) 

and a solution of the form 

1 1 
S = ; z,(v) h2 + -- g,(v) + .t.. 

is sought. 
of the form 

The function F(z,s) will still have an expansion . . 

F(z,s) = F,(z) + 0 . . . (A.31 

where F,, as for z> I, is given by the equilibrium solution. 
Consequently, in terms of v 

F(z,s) = 

and neglecting terms in the rata equation gives 

9.. (A.51 

. . . (~.6) 

using the boundary condition that s=O on v = 0. It then 
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follows that as V-r02 

s - 
F,(l) 

I 
+o - 

0 A 

which is in a reement with the first term of the outer solution 
(equation 3.7 7 a 

s 

z + 1. It can be shown in similar fashion 
that terms of 1\ 0 -- 

Id 
etc. match and it follows that (3.7) 

represents a valid outer limit of the solution valid near 
z = 1. 

A uniformly valid solution for z > 1 can be written down 
using the usual technique. i.e. 

Uniformly valid solution = Outer solution + Inner solution 

-Inner expansion (Outer solution). 

Thus, neglecting terms a uniformly valid solution is 

The solutions for v,, p, etc. follow, as before, from equations 
(2.24) and (2.25). 
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