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SUMMARY

After giving general information on hypersonic flows, flight
conditions and vehicles, the report reviews work on the analysis of unsteady
hypersonic flows, analytical studies of the dynamc stability of hypersonio
vehicles, and experinental and analytical work on flutter at hypersonic
speeds.  On this basis it then examnes the need for research and suggests
lines that research should follow

The chief conclusion is that the quasi-steady analysis of unsteady
hypersonic flows may be adequate for the practical purposes of dynanic
stabilaty and flutter analysis. It is suggested that research should be
directed to finding the degree of inaccuracy involved in quasi-steady estimites
of the unsteady aerodynamc forces, and the sensitivity of dynamc stability
and flutter analyses to inaccuracies in these forces.

In structure, the report consists of the general survey and
conclusions, together with a number of Appendices which review various aspects
in detail and which give the information and references on which the statenents
in the general survey are based.
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Introduction

This report is concerned with hypersonic flows around bodi es undergoing
pitching and plunging oscillations and around bodi es or parts of bodies
undergoing flutter. It brings together information on the nethods of analysis
applicable t 0 these unsteady flows, and on the practical problens of dynamc
stability and flutter of hypersonic vehicles where an understanding of such flows
my be needed. It is intended that the report should give a basis for the
planning of research and sone conclusions are drawn fromthe information presented
about the kind of work which would be of value or of interest

The report is divided into a general survey and four Appendices, which
give detailed informtion and references.  The first of the Appendices gives sone
background information on hypersonic flows, flight conditions, and vehicles, and
the other three are reviews of particular fields of work « the theoretical analysis
of unsteady hypersonic flows;  analytical studies of the dynamic stability of
hypersonic vehicles in level flight, and the oscillatory behaviour of vehicles
in re-entry or exit trajectories; and information from experimental and analytica
studies of flutter at hypersonic speeds.

The general survey, which forms the first part of the document,
summarises the information given in the Appendices, and presents genera
conclusions about the kinds of research work that should be considered. | 1
detailed information, and evidence for the conclusions are not required, only
the first part needs to be read (i.e., pp. 3=9).
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Ceneral Survey and Concl usi ons

Theoretical and experimental investigations of unsteady flows have
formed an inportant part of aerodynam c research at subsonic and supersonic
speeds ~ principally because of the need to calculate the forces due to
unsteady flows around bodies or parts of bodies for anal yses of the dynamc
stability or flutter of aircraft. Vehicles are already flying at hypersonic
speeds for short periods on re-entering the atmosphere fromballistic or orbita
flights, and there are possible extensionstomore controllable re-entry vehicles
and to aircraft which will cruise at hypersonic speeds. These devel opments have
already led to sone investigations of unsteady flow at hypersonic speeds; but
changes in the fluid dynamc characteristics, together with differences in the
flight conditions and the forms of the vehicles fromthose designed for flight
at lower speeds make it difficult to decide what kinds of investigation would
be most relevant or fruitful. Because of this, when it was decided that the
Hel i um Tunnel at the National Physical Laboratory would be suitable for the
study of unsteady flows at hypersonic speeds, it seemed inportant to review the
information at present available to provide a basis for the planning of a
research programme,

1. Hyper soni ¢ Fli ght Conditions

There is no clear boundary marking the change fromflow at high

supersonic speeds to flow at hypersonic speeds; instead there 13 a growth in
the inportance of certain features of the flow which are of negligible i nportance
or are absent at supersonic speeds. Some ofthese features arise fromthe "fluid

dynam c¢" behaviour of the gas and are related to the high Mach nunber, and others
arise fromthe fact that the gas has a high velocity and |arge energy.

A Mach nunber of about five is usually taken as marking the | ower
boundary of the hypersonic flow regime. As the Mach nunber increases above
five different approxi mate solutions of the flow equations becone necessary
because, in general, linearisation of the equations is no |onger possible,
potential flow can no longer be assuned, and the thickness and rate of change
of thickness of boundary layers lead to problens arising fromthe interaction
of the boundary layer with the external flow \Wen the flow velocity is large
(10000 fps), because of the large energy of the flow, high tenmperatures are
generated at stagnation points Or when the gas is decelerated in passing through
shock waves, and problens arise from the excitation of vibrational nodes of
polyatomic gas nol ecul es, di ssociation and ienisation, and the ideal gas
con%tions no longer apply.

The forns of vehicle used for flight at hypersonic speed bring new
theoretical problens throughout the speed range but these problenms can be nost
acute for hypersonic conditions. There are two main kinds of flight operation =
re-entry fromorbit or fromspace and cruising flight at hypersonic speeds, and
different types of vehicle are used for each. In re-entry flight the vehicle
must dissipate the |arge amunt of energy which it has when it first enters the
atnosphere and, at present,it seens likely to have the formof a bluff body,
or a slender blunted body with a large drag and a lift/drag ratio around unity.
For cruising conditions the vehicle can be designed for efficient lifting flight,
and it nmay have the formof a very slender w ng/body combination or a slender
lifting body. Analysis nust deal, then, with-the flow around bluff bodies and
with interaction effects between surfaces on the wing/body conbinations. It nust
also deal with slender bodies with blunted noses and lifting surfaces of thin
section with blunt leading edges, because noses or |eading edges that are

effectivelyl/
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effectively sharp at hypersonic Mach nunbers are difficult to mke and give
rise to very severe heating problens.

2. The Analysis of Unsteady Hypersonic Fl ows

Al analyses of unsteady hypersonic flows assune that the physical
and chem cal effects of high temperatures in real gases and the flow changes
that result fromthem can be calculated on a quasi~steady basis after the
unsteady flow for an ideal gas has been found. The anal yses al so assune, in the
usual way, that the flow can be considered as separable into a boundary |ayer,
in which viscous effects are important, and an external flow, in whach they
can be neglected = though corrections nust be made to cal cul ations of the inyiseid
flow to allow for the thickness of the boundary layer. The first assumption is
Justified, for the types of unsteady flow being considered here, by conparisons
between the characteristic tines of such processes as dissociation and ionisation
and those of any flow unsteadiness that is likely to occur in practice. It seens
possible that the second assunption nmay need some investigation: although analyses
a sinple flows simlar to boundary layers with a fluctuating external velocity
suggest that boundary |ayers can be anaslysed as if they respond in a quasi-steady
manner for fluctuations having the characteristic times likely in practice,
avai | abl e experinental evidence suggests that this may not be true.

. The met hods available for the analysis of unsteady inviseid flows can
be divided into three groups

(i) First there are third order piston theory and Newtonian impact theory:
so far these have been the nethods nost widely used. Al though there are flow
conditions i N which either Of these theories can be physically sound, in many
oases their use is enpirical or sem-enpirical. They are attractive because they
give sinple relations between the pressure and downwash at a point on a body
surface

(i) In the second group hypersonic small disturbance theory provides a
basis (a), at small incidences, for the use of a variational nethod to find
unsteady flows around pointed slender three-dimensional bodies for val ues of
the paraneter ¥ 8 (where & is the thickness ratio) up to a limt near umity;
and (b) for applying the shook expansion nethod to the cal cul ation of unsteady
flows around thin, sharp, two-dinensional sections and, when M® exceeds a
minimum val ue near unity, around pointed, slender, three-dinensional bodies.

(The limts on the values of M, $ for slender bodies are not exact but are
related to the error that 1s acceptable in the calculation = this 15 the sense
in which 5 > 1, and %5 < 1 wll be used in the rest of thas section).

(iii) Thirdly, there are nmethods of analysis in which an unsteady flowis
considered asa small perturbation of a known steady flow such as the solution
of a bluff body flow or a characteristics solution for a nore general body
shape.  These nethods have been applied to some simple flows and, in principle
they could be used for any flows where a suitable steady flow solution was
aval | abl e. In practice, their use may be limted because of the conplexity of
the analysis or the length of time necessary for computation, but they may be
the only nethods for dealing with many important kinds of flow and they need
to be investigated nore extensively.

_ Judged on the basis of the assunptions and aspproximations made in
their devel opment, the first two groups of nmethods seem to be adequate to deal
with a nunber of sinple flows. Piston theory (at |ower hypersonic Mach nunbers,

and/
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and values of M& < 1) and shock expansion theory seem adequate for
two-dimensional sections and for wings with supersonic |eading edges. Shock
expansion theory and the variational nmethod should, in principle, geal
satisfactorily with slender bodies whose cross-sections are everywhere gonvex
though, in practice, there can be difficulties if the conditions at the nose
are not given by a known solution, andif the cross-section is not gircular
and the incidence is not small. At sufficiently high Mach nunbers Newt oni an
theory will give good results for surfaces that are convex, but it is liable

to be considerably in error on surfaces that are concave, and on contro
surfaces or flared sections lying within the shock layer of the body.

For steady conditions, experimental evidence supports these concl usions,
For unsteady conditions the evidence 1g nore limted. since very few direct
measurements of derivatives have been nmade, and the results which have been
obtained from flutter tests are inconclusive because of the experinmental

uncertainties. It would seemlikely fromthe nature of the theories that, when
used within their liniting conditions, they would agree quite well with
experiments: but the size of the differences between neasured aerodynamc

danping derivatives and calculated values suggest (as has been nentioned above)
that it may not be possible to assune a quasi-steady response of the boundary
layer to fluctuations of the external flow.

But these conparatively sinple nethods of analysis cannot be used,
at present, for many of the kinds of flows which are likely to ooour in
practice. In particular, they cannot be used for two-dinensional sections,
swept wings, or slender bodies, above the incidence for shook detachnment; for
sl ender bodies where Mb < 1, at large incidences; for blunted, thin
t wo- di mensi onal sections and bl unted sl ender bodies; for bluff bodies; and for
bodies on which it isS necessary to consider interaction effects between surfaces,
It is possible that a satisfactory sem-enpirical nethod of analysis can be
devel oped for the blunted thin section and blunted sl ender bedy by using a
suitable bluff body solution for the nose region conbined with the shock
expansi on nethod downstream but, in general, for nost of these flows, it wll
probably be necessary to use a small perturbation method for small anplitude
notions and a quasi-steady analysis for large anplitudes. Because of this,
there will necessarily be a very close relationship between the devel opnent of
unst eady anal yses and the devel opnent of suitable steady analyses. It is likely
that, even when a satisfactory unsteady analysis has been developed, the need
to develop the results in a form suitable for use in flutter calculations wil
remain a najor problem espeoially as flutter may involve |ongitudinal bending
distortions of vehicles.

3, The Dynamic Stability of Hypersonie Vehicles

The practical importance of unsteady flows is to be found in the
investigation of dynamc stability and flutter of vehicles and, in order to
assess the need for accuracy in the analysis of unsteady hypersonic flows, it
IS necessary to have information on the stability and flutter characteristics
of the vehioles.

Dynamc stability has been investigated by extending the classica
analysis of aircraft stability to flaght at wvery high speeds and constant
altitude, and by examning the oscillatory behaviour of vehicles in re-entry
flight. It appears that the formof the vehicle and its aerodynamic
characteristics at hypersonic speeds only effect the stability characteristics
ip details, the qualitative behaviour being determned by the high speed of

f1ight/
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flight and the altitude at which it takes pae FOr example, although @

full analysisthattillgive the correct behaviour at extrene altitudes requires
t he inclusionoftermswaccount for changes in the air density, gravity

force, and other factors with altitude, and takes account Of the effective rate
O pitch due to the curvature of the flight path, the behaviour of the vehicle
is domnated by the large values of the ratio of vehicle density to air density
at which flight is possible. The longitudinal motion of the vehicle stil

exhibits two oscillatory normal nmodes, as at |ower speeds. ne mode invol ves,
predom nantly, changes of speed and altitude, and the other involves

predom nantly, pitching oscillations. The second node has a conparatively

short period at the lower altitudes of hypersonmic flight, and, under these
conditions, it might involve unsteady fléw effects. Because of the large values
O relative density characteristic of hypersonic flight, the frequency paranmeters
of normal nodes are small and the rates of decay of the Oscillations are |ow.
Qualitatively, the changes in the lateral behaviour O vehicles at hypersonic
speeds are simlar to the changes in the longitudinal behavicur. The frequency
paraneters involved are likely to be rather higher than for the |ongitudina
motion, but they will still be considerably smaller than those at |ower speeds.

Anal yses of the longitudinal oscillatory behaviour of vehicles in
re-entry flight show no essential differences fromthe behaviour in the case
of level flight. At a given point in the trajectory, the frequency of the
oscillatory pitching motion is the sane as it would be for level flight at the
Sane speed and altitude, and the criteria for convergence of the notion can be
shown to be the sane in the two oases apart fromthe inclusion in the re-entry
case of terns that are dependent on the drag of the vehicle, and the rate of
increase of air density.

It is possible to set an approximate upper linmt of 0*0f on the
val ues of frequency parameter likely to be found in hypersonic stability analyses.
For values of the parameter in this range it should be possible to treat the
flow as quasi-steady, although accurate estimates of the aerodynam c danpi ng may
need rather careful exanmination of the boundary |ayer behaviour., The results
O stability investigations do not show any conditions in which a very accurate
know edge of unsteady aerodynam ¢ forces woul d be of critical importance for
normal Stability analyses, especially as artificial control O the stability
woul d prgbably be used in normal conditions. Nevertheless, if vehicles are
designed for ‘energency manual control, or if it is required to analyse the
uncontrolled notion of a re-entry vehicle, accurate values of aerodynamc
forces mght be inportant.

4, Flutter of Hypersonic_Vehicles

The kinds of flutter likely to occur at hypersonic speeds are
determned chiefly by the formof the vehicles. From general technica
considerations, it seens that the nost likely formO flutter involving the
whole Vehicle structure will be either that of a slender body in bending modes,
or OF a slender ywing/body conbination involving flexure, torsion, and canber
modes O the wing, and bending nodes of the body. Panel flutter could, also,
be a problem Over those areas of the body surfaces where dynam c pressures can
be high but the sinple, conventional flexure/torsion flutter of lifting surfaces
is only |ikely to be encountered on certain kinds of Control surface.

There have been Some anal ytical and experimental investigationsof
the flutter of low aspect ratio wings with chordwise flexibilaty, and Of rigid
cones With pitching and plunging flexibilities, but the mejority of investigations

have/
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have been concerned wath the flutter of two-dinensional sections with pitching
and plunging freedonms, and the closely allied problemof cantilever wings wth
root flexibilities an pitching and flapping. The studies Of flutter of

two- di mensi onal sections have shown the effects of an altitude paraneter pM,,

a thickness paraneter M6, and a nean incidence parameter M gs, Wwhere p

is the mass ratio of the section, § is the thickness ratio, and ag is the
mean incidence. For sharp sections with simlar profiles, the same pitching
axis position, and the same density and mass distributions, and ratios of the
natural frequency in plunge to that in pitch of Iess than one (which is the
usual condition), flutter speed is approxinmately proportional to v for

K05 and M., constant;  decreases with increasing M for M, and A
constant, and it can decrease with increasing M5 for M, and 45 constant.
The profile shape of a sharp-nosed section only has a large effect if it causes
a large change in the centre of pressure position (e.g., a change froma double
wedge to a single wedge section), but blunting the nose of a section at constant
LM, increases the flutter speed up to a limt of blunting that depends on the
Mach  nunber;  further bluntang reduces the flutter speed or causes divergence
before the section flutters. It seems possible that the effects of strong nose
shock waves, the entropy variations that result fromthese, and real gas effects
may increase the flutter speed over the value which it would have if these
effects were absent.  Finally, when aerodynanmic non-linearities are significant,
theoretical investigations have shown that there exists a range of speeds within
which flutter can be started by disturbances of a finite size - the larger the
disturbance the lower the flutter speed

The limted investigations of the effects of chordw se bendi ng nodes
on the flutter of |ow aspect ratio wings serve to show that these can be
i nportant (though the effeetsdepend on the characteristics of the particular
structure) and that flutter of a slender wing involving only |ongitudinal bending
nodes 1s possible. The flutter analysis and experinent on a rigid cone with
pitching and plunging flexibilities suggest that the flutter speed/altitude
paranmeter for a given cone is independent of Mach nunber

There do not seemto have been any investigations of panel flutter at
hypersoni ¢ speeds, but, sinoe structural limtations ensure that the
di spl acements are very small so that the hypersonic paraneter M6 (where & is
a measure of the displacement) renmins small, sone deductions about panel flutter
behaviocur can be made fromthe results of investigations at |ower Mch numbers.
On this basis, panel flutter seems unlikely to be influenced by fluid dynamc
effects of high Mach nunbers, except by those arising fromthe thickness of the
boundary layers; but critical conditions could arise in practice because strong
shock waves will increase the values of |ocal dynam c pressures above those for
the free stream and the stiffness and end | oadings of panels will increase as
a result of aerodynamc heating of the structure

The investigations of flutter that have been examned are all concerned
with rather special cases; neverthel ess, they all suggest that purely fluid
dynam c effects at high Mach nunbers will not have a large Influence on the
likelihood of flutter. For exanple, for a two-dimensional section, although
| eadi ng edge blunting and a |arge mean incidence can cause reductions in the
flutter margin at high Mach nunbers, present information suggests that, for flight
at constant pressure, and when the effect of aerodynam ¢ heating on structura
stiffness 15 ignored, the transonic flight regime remains as the nost critical
On the other hand, flutter could be a danger at hypersonic speeds because
aerodynam ¢ heating could alter the stiffness of a structure and for some f|ight

paths, particularly during re-entry, high dynanic pressures occur when the heating

rate/
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rate is also high, and because for acme parts of the structure |ocal dynamc
pressures can be several times greater than free stream values.

The frequency parameter at which flutter will ogceur IS determned to a
| arge extent by the natural frequencies of the vehicle structure and by the
flight speed at which flutter oceurs, An upper limat of 0°5, baaed on body
| ength, has been suggested as probable for PPutter invol ving slender body
bendaing modes and. the limt for other forma of flutter 2s likely to be of the
same order. Far frequency Paraneters near this upper limit 1t would be
necessary to take account of unsteady effects in calculation of the aerodynamic
danping forces if accurate values of these were required. The flutter
investigations for hypersonic speeds that have been reviewed do not examne the
need for accurate values of aerodynamic forces, but acme studies for |ower
speeds have suggested that, under certain conditions, if aerodynam c danping
terms are small, they have very little influence on flutter speeds and
f requenci es.

5. Discussion and Concl usi ons

The essential point to emerge fromthis reviewis the need to establish
whet her or not quasi - steady anal yses of unsteady flows will be adequate for the
practical problenms of vehicle dynamic stability and flutter at hyperacni o speeds.
Fromthe evidence available 1t seems |ikely that auoh analyses will be adequate,
but a definite answer to the question will depend, first, on the sensitivaty cf
anal yses O dynami ¢ stabilaty and flutter to small errors in the aerodynamic
forces, especially to errors in the aerodynam c danping; and, secondly, on the
size of errcra in the estimates of unsteady aerodynanm c forces due to the
assunption of quasi-steadiness at the frequency parameters to be met in practice
These points suggest two lines for further research:

(1) Investigations of the sensitivity of dynamc stability and flutter
analyses to errcra in the estimations of the aerodynamc forces involved

(ii) Investigations of the errors involved in quasi-steady estimates of
unst eady aerodynam ¢ forces at hypersonic speeds.

A nunber of steps would be involved in the second investigation. In
the first place, in those sinPIe cases where an adequat e unsteady anal ysis
already exists it would be a fairly straightforward natter to find the error
involved in assuming quasi-steady conditions. Secondl'y, it would be possible to
I nvestigate more complex flows experimentally by camparing unsteady measurenents
W th quasi-steady predictions derived either fromsteady anal yses, or from
suitable steady-state neasurements.  But,finally, it would be necessary to
develeop Methods of unsteady analysis to deal with more conpl ex shapes, sothat
it moﬁfd be possible to establish the limts of quasi-steady analyses with
greater generality

There 13 a second general point to be made. Studies of unsteady flows
should, in the main, be carried cut as part of more general studies either of
met hods of theoretical analysis or of the flow field around a body for both
steady and unsteady conditions. At hypersonic speeds, nethods for the theoretical

analysis Of unsteady flows are closely related to those for steady flows, and
their limitations are likely to be similarly related; an understanding of the
full flowfield - in partzcular, of the behaviour of the boundary layer and the
effect of more bluntness - will be Inportant for the application of theories

and the interpretation of results.

Recomrendations for specifaic research projects are given in
Sections 2.4 and 4.3 in the Appendices.
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APPENDI CES

Det ai | ed Revi ews

APPENDI XI : Revi ew of Hypersonic Flight Conditions

1.1 Characteristics of Hypersonic Fl ows 1525354

The term 'hypersonic' is used of flows above about ¥ = 5, when
certain features of the flow, which are uninportant at |ower Mach nunbers, begin
to grow in significance.  These characteristic features are separable into
changes in the fluid dynamcs of a gas which result from the high Mach nunber,
and physical and chem cal effects which result from the high speed and. consequent
hi?h energy of the flow. Because of the high energy of the flow, high tenperature
w [l be generated where the gas is brought to rest at stagnation points and where
it is decelerated in boundary layers and in passing through shock waves =
particularly if these are strong. These tenperatures can be high enough to cause
excitation of vibrational degrees of freedomof polyatomic gas nol ecul es,
di ssoci ation and ionisation. The hydrodynamic properties of the flow are affected
by the resultant changes in the ratio Oof specific heats of the gas, in the
specific heats thenselves, and by the relaxation phenomena involved.  Wen still
hi gher tenperatures are generated, radiation fromthe hot gas provides an
additional means of energy transfer

Because of the high Mch number, certain sinplifications can be made
in the fluid dynamic analysis of flowin ¢comparison With analysis at |ower Mach
nunbers but certain conplications nust be net as well. The principa
sinplifications are that, for slender bodies, longitudinal disturbances of the
flow can be neglected in conparison with lateral disturbances and certain flows,
particularly those over bluff bodies, become independent of the Mach number when
this i s high enough.

The principal conplications are that the range of thickness ratios far
whi ch anal yses based on linearization of the equations of notion of the fluid can
be applied becomes very small, that strong, curved shock waves can be present,
causing entropy variations in the flow so that potential flow theory cannot be
applied, and that, because of the thickness and rate of growth of the boundary
| ayer and the sensitivity of the external flow to snmall changes of direction
interactions between the boundary |ayer and the external flow can be inportant.

Further conplications are found in the analysis of flows that ocour
in practice because of the finite thickness of nomnally sharp |eading edges
and the use of blunt |eading edges to reduce heat transfer. The analysis of
hypersonic flow past a bluff shape is, itself, very conplex, involving al
flow regi mes - subsonic, transonic, supersonic and hypersonic. Downstream of &
blunt leading edge, the gas which has passed. through the very strong, highly
curved, shock set up by the Ieadin%_edge, forms a layer of high entropy and
vorticity adjacent to the body. he analysis of the flowin the entropy |ayer
and the analysis of the interactions between the body shape, the flowin this
| ayer and the external flow have not yet been carried out in a conpletely
satisfactory way.

1.2 Hypersonic Vehicles

Hyper soni ¢ vehicles can be separated into two nain groups: those
vehicles intended to fly efficiently within the atnmosphere at hypersonic speeds,

and/
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and those vehicles intended for re-entry flight fpom orbit or from gpace.
General discussigns of the design problens involved are given in Refs, 5 to 8,

The first group of vehicles includes the hypersonic cruise vehicles,
for which the useful Mach nunber range may be 5 < M < 7, the re-usable booster
for space vehlcles, for which the Mach nunber range may extend to ¥ = 13, and
the one-stage-to-orbit vehicle. Al of these vehicles seemlikely to be of
slender form with |eading edges highly swept to reduce both shock wave drag
and gerodynami ¢ heating of the |eading edges, either aslender-body/slender-wing
configuration using favourable interference effects between wing and bedy tO
gi ve maximum gerodynami c efficiency (Fig.l(a) and Ref. 8) or a devel opnent of
the caret wing. The latter, in its sinplest form is a body which has a concave
lower surface with an inverted V cross-section: the lower surface is designed
to support & plane shock between its edges = nost of the lift is generated on

“the | ower surface and the upper surfaces can be shielded fromthe flow in the
cruise attitude (Fig. I(b) and Refs, 9 and 40),

The comon characteristics of the re-entry group of vehicles are that
they are unpowered and nust dissipate large amounts of kinetic energy during the
period of re-entry. The formof the vehicle depends on the way in which it is
designed to dissipate this energy, and the degree of control of the trajectory
that is required. The sinplest formis a blunt body designed to follow a
ballistic trajectory. For such a body, most of? the energy is transferred to the
gas in the shook layer ahead of the body and is dissipated in the wake. Peak
body surface tenperatures are high, but the heating period is short. As speeds
increase above escape speed, a ballistio re-entry trajectory rapidly becomes
unaccept abl e because decel eration rates becone too hi?h, re-entry nust be
initiated with very great accuracy, and there is little centrol of the |anding
point after re-entry has started. In consequence, lifting bodies with a high
drag and noderate lift/drag ratio (in the range between 0-5-1-0)offer
significant inprovements in the control of deceleration rates and of the

trajectory. For these vehicles, peak tenperatures will be lower than for the
ballistic vehicle, but heating times will be |onger and a greater amount of
heat will be absorbed by the structure. Suitable vehicles would either be bluff

bodies nodified to produce small amounts of |ift or slender bodies which could
be operated at high incidence at the start of re-entry, (Fig. 2(a) and (b),
Refs, 7 and 8). A third possible re-entry vehicle is represented by the Rogallo

mﬁn?, whi ch would be a lightweight inflatable structure of heat resistant material
cooled by radiation (Fig. 2(c), Refs, 5 and 1

1.3 Flight Envel opes for Hypersonie Vehi cl es

For any particular hypersonic vehicle there is a flight corridor of
altitudes and speeds within which flight is possible. For flight at a given
speed the lower altitude band of this eorridor is determned by the maximum
values of dynamc pressure and stagnation or recovery tenperature that the
structure can withstand, and the upper altitude band is set by the wing loading
of the vehiale and the maxinum|lift cqefficient that it can attain. At
conparatively Low speeds (5000 ft/sec) the wing loading and |ift coefficient
define a dynamic pressure bel ow which flight is not possible, but for speeds
that are g significant fraction of orbit81 speed, account must be taken of the
centrifugal lift devel oped on the vehicle. W then have

Uﬂ
w<1 _.__> = o0 SC, e (1.0)
gR

where,
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where Wis the weight of the vehicle; 8§ is the lifting area; R is the
radius of the flight path from the earth's centre. Thus when the speed is
high flight is possible at |ower values of dynam c pressure than when the speed
is lcw

The actual limts of the flight corridor depend on the design of the
vehicle, but Fig. 3 has been prepared to indicate the range of flight conditions
wi thin which hypersonic vehicles may nornally be expected to operate. The
m ni mum val ue of the paraneter w/scL has been taken to be 15 1b/ft?; only
vehicles involving light weight Iifting structures are likely to give values .
of less than this; gnd the maxinmum value of dynamc pressure has been taken as
1000 1p/ft?. The lines in Fig. 3representing the altitudes and speeds for
these constant paraneters define a flight corridor in terns of minimum |ift
and maxi num dynanic pressure. Two bands are shown representing the speeds and
altitudes at which the-stagnation tenperature will be 2000°R and ALOQO®R, A
limt on stagnation tenperature of 2000°R Wi ll permt flight inonly a restricted
region, a limt of LOOO®R permits a flight corridor extending to orbital speed.

Superinposed on the flight corridors defined by dynamicpressure,
stagnation tenperatures and lift in Fig. 3 are shown lines of constant Reynol ds
nunber and constant values of the viscous interaction paraneters, ¥x. The
val ues of Reynol ds number per foot that are likely to be met suggest that, at
the higher speeds and altitudes, |amnar boundary |ayers will extend over nuch
of the vehicle surface, and flow separations will be nmore easily provoked than
at lower speeds, where much of the boundary layer is turbulent. The parameter
¥ indioates the inportance cf interactions between the boundary |ayer and the
external flow and is defined by the equation

o=

oo (1.2)

X = ¥ (ao/Rey)

where ©_ is the constant in the viscosity relation

M T

— = [+ ——
o]

My To

and is usually close to unity. The value of ¢, has been taken as unity in
Fig. 3. Values ¢of yx of 0(0-5) and greater suggest that these interactions

wi Il have significant effects on pressure distributions for sharp-nosed bodies
(Appendix Il, Seotion 2.2).

Fig. 4 shows some possible trajectories for super-circular ballistic
re-entry {(re~entry velocity is greater than circular orbital velocity), super
circular lifting re-entry, lifting exit, and expandable structure lifting
re-entry (W/sCp, < 15): these are superinposed on the flight corridors defined
in Fig. 3. The ballistic trajectory shows very high values of dynamic pressure
and stagnation tenperature illustrating the severity of the conditions far this
form of re-entry which was nmentioned before. The super circular lifting re-entry
trajectory shows a condition of high dynami c pressure and stagnation tenperature
inthe early stages of re-entry, when the Mach nunber is very high, but the
lifting exit trajectory shows a maxi mum dynam ¢ pressure bel ow t he hypersonic
speed range

APPENDIX I
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APPENDI X 1 | Revi ew of Theoretical Analysis of Unsteady Hypersonic Fl ows

o Despite the conplexity of the real flow situation outlined, in Section 4,
it is assuned that real gas effects and boundary |ayer behaviour cause

modifications to the flow for an inviseid perfect gas which can be estinmated
when that flow is known.  This assunption is inherent in all the nethods of
analysis that are available; it appears justified in the conditions which are
considered here, but 1t will be discussed later in this section.

2.1 Methods of Analysas

The methods used for the analysas of inviseid unsteady hypersonic flows
fall into three groups. In the first group there are two nethods used widely on
a sem-enpirical basis because of their simplicity, One of these is based on
Lighthill's piston theory, and the otheron Newtonian theory. In the second there
are nethods based on the application of hypersonic small disturbance theory =
the variational nethod, and the shook-expansion nethod. And, in the third there
are two nethods based on anal yses which consider the unsteady flow quantities
8s smal| perturbations of the steady flow field: these nethods have not, as yet,
been much used.

2.1.1 Piston theory and Newtoni an impact theory

Piston theory and Newtonian inpact theory have been used fairly wdely:
piston theory for flutter analysis on wngs, inpact theory for the estimation of
pressures and overall forces on bodies. The nethods are attractive because, in
the sinple forms in whach they are usually enployed, they give direct relationships
between the | ocal downwash and pressure on a body surface.

Piston theory is closely related to hypersonic small disturbance theory
which is cansidered in 2.1.2, but it 15 discussed separately here since the term
has been used mainly to deseribe a particular relationship between the downwash
and the pressure on a surface and thas relationship has been extended, on a
sem -enpirical basis, to high Mach nunbers.

Piston theory in its original form applies on surfaces with small
lateral curvature and supersonic edges, for M? >»> 1 and M§ << 1, where §
is a measure of the maxinmum surface slope and is usually taken to be the |argest
of the thickness ratio, Mean incidence, and dimensionless anplitude of tune
dependent  notion. In practice M » 2.5 appears to be the | ower Mach nunber
limt for reasonable accuracy.

According to the theory, the pressure at a point on the surface can be
related to the streamwi se slope and normal velocity of the surface z{(x,y,t)
by the expression

Y
y-1 W 7
p = paw =<&| - - - o (2.1)
2 g, >
d i)
where w = U -‘,j—i-+ F% , and p, p and a are the local pressure, density and speed

of sound, and Pe, P 8P4 8, are their free stream values, Equation (2.1)
gives the pressure act’ ng on a piston noving wath a velocity w anto a gas in

a one-di mensi onal channel, uUnder isentropic conditions (r.e., for w/a,, << 1).

In/
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| n practice, equation (21)is replaced by the approxi mtion given
by the leading ternms In the binomal expansion of the bracket. Expressed in

non-di mensi onal terns, this expansion is

28 (y+1) (y+1) s s
C, = — W + W+ M& wo + ... ... (2,2)
M 2 6
p - Poo LJ .
wher e c = y W = ~—, and & is the neasure of
P ZYRM Ud ngxinun1surface sl ope defined
above.

When equation #2. 2) is used to calculate the Iift distrabution On an
aerofoi | it shows the effects both of thickness and mean incidence. Fig,3g
from Ref. s7,shows that the predicted thickness effect agrees well with that’
found by experinment, and by the nore exact theorg of Van Dyke,

Appendi x 1V shows that changes in lift distribution due to thickness and
mean inci dence can have an inportant influence on the flutter of an aerofoil

section.

From its derivation, equation (21)only applies for isentrcpio
conditions, and, for a compr?ﬂsion, this requires that w/a, << 1 (or ¥§ << 1).
But it is shown by Lighthill that equation (2.2) gives a good approximation
to the one-dinensional piston pressure up to w/s, = 1 and, on this basis
piston theory has been used for flutter studieswell into the hypersenic Mach
number range considered in this report (e.g., Ref. 61),

For values of M5 > 1, Mles'?, Raynond® and east!” have suggested
that piston theory be extended on a sem-enpirical basis by substituting shock-
wave relationships for equation (1) for conpression surfaces. The nethods
suggested are based on the expressions for one-di nensional -shock flow in front
of a piston moving at a speed w > &, These expressions are:

z

- - (2) )
8, Poo P
P=Foo
—_— = s ess (2.3)
Poo
p 1+ [(y+1)/2y]u

b 1+ [(y=1)/2y]u

)T T

Miles15 suggests two ways in which these relationships could be used:

1]

m

(1) Where the shock wave novenment due to the unsteady disturbances is
smal |, equations (23)shoul d be used tocalculatet he [ ocal flow conditions
due to the steady state surface slope, and the values of p and a fromthis
calculation should then be used in (2.1) wth the unsteady disturbance w' to

calculate the unsteady pressure disturbance.
(2)/
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(2) Where the shock wave novement is likely to be significant, it would
be necessary to perturb the first of equations (2.3).

The second nmethod is essentially that followed by East!’ and Ra ond16‘
Al though the relationships suggested by Raynond are devel oped in a way di??%rent
from that used by East and Mles the results can be shown to be equivalent. I'n
Ref. 15 expressions are given which are derived for the second nethod when 14 is
assuned that a strong shock wave exists (30 that p/p, »>» 1). For a strong shock
wave equation3 (2,3) reduce to

2

P yly+1) ,w

Poo ) 2 (;)

P (y+1)

P (¥-1) e (2

Boo i 2 ( %u,)
and, from equations (2,4), the perturbation pressure 1s given by:

Po= (y#)py, 8o MOW' .. .(2.5)
where w' is the perturbation downwash and 8 s the mean inclination of the
surface to the free streamdirection (8 is still smal|, though M8 i s large,

o that tan o = @),

This form of shock wave piston theory issoundly baaed in that it can
still be assuned that flow disturbances in the x- and y-directions are small in
conparison with those in the s-direction and that the action of the surface on the
flow at a point can be given by the flowin front of a piston moving in a
one-di mensi onal channel, but 1t assunes that the shock wave strength is al ways
directly related to the piston speed by equation (2.3). In fact, equation (2.3)
is derived with the assunption of a uniform piston speed and. the relationships
shoul d be nodified to take account of the compression and expansi on waves set
up by the accelerations and decel erations of the piston corres¥8nding to the
shape of the surface profile. These effects could be included*® but the point
relation between the pressure and the surface slope and normal velocity would
be |ost.

The first method suggested by Miles15, that the strong shock relations
shoul d be used to calculate the local flow conditions in which equation (2.1)
is applied, is simlar to the suggestion in Ref. 57that account could be taken
of steady state entropy gradients and even real gas effects by applying sinple
piston theory in the local conditions established by a steady state calculation
Strictly, the method is applicable only where the flow conditions are little

effected by the unsteady disturbance (e.g., for panel flutter calculations).
For this case, the method seens to be soundly baaed if the local Mch nunber
is still high enough but its use in such ccnditions suggests the need for an

investigation Of the pressure on a piston noving in a one-dimensional channel
in a fluid with large entropy gradients.

Unst eady/
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8nsteady Newt oni an theory is diBSussed by Hayes and Probstein', by
Zartarian'’ and by Zartarian and Seurwein“~. The theory can be shown to apply
inthe [imts M 0, y -1, Wien e >, Where g 1isthe density ratio
aoross the shook at the body surface. The theory assunes that there are no
interactions between fluid particles, that the only change in the velocity of a
particle inpinging on a body surface takes place normal to the surface, and
that, after inpact, the particle follows the surface of the body within an
infinitesimlly thin shock layer.  The pressure at a point at the surface of
the shock layer can be found directly from the change in the conponent of the
fluid monentum nornal to the body surface, so that the pressure coefficient at
the surface of the shook layer is given by:

2

P~ Do Uph - 4

Cy = 2( n—’i> ... (2.6)
3Ped! u

where @, is the normal velocity of the body surface point arising from any

motion of the body, and any time-dependent distortion of the surface, and uj,

is the component of the free-streamvelocity normal to the surface. It is clear

fromthe assunptions in the theory that it can be applied only where the flow

inpinges directly on the surface: it can give no information about surfaces

shielded from the flow and the pressures on such surfaces are assuned to be
negligible

A fully rational theo:y1’20 requires a calculation of the pressure

differences across the shock layer necessary to account for the accelerations

of the fluid particles followi ng the body surface. This would involve an analysis
of the structure of the shock layer, and a consideration of the conplications that
can occur in the bshaviour of the layer. But, since corrections for these effects
would introduce very great conplications, the theory, as it has been enpirically
applied, assumes that the pressure at the body surface is the same as that at the
surface of the shock layer and, in this form it 13 sometimes known as New oni an
impact theory.

Under steady conditions the sinple theory has been found to give
reasonably satisfactory results on convex surfaces where the Mach nunber is high
enough for the shook to be close to the surface, provided that the expression (2.6)
is factored to give the correct value of the €, at the stagnation point or the
leading edge of the body.  The accuracy of i mpalt theory in these circunstances
is, apparently, due in part to the oancelling of opposing errors: the pressure
behind the shook is higher than the inpact theory value, but the pressure
difference across the shock, layer due to the centrifugal effect compensates for
this (Ref. 2).

Exampl es of the use of Newtonian inpact theory for unsteady flow
anal ysis are to be found in Befs. 21, 22 and 23. In Ref. 21 Tobak and Wehrend
compare the results of impact theory analysis for a cone with first and second
order potential flow solutions and, for the stiffness derivative, wth exact
val ues over the Mach nunber range from 30 to 50, The inpact theory val ues
appear to be a limt which the exact val ues approach wth increasing Mach
number, but the cone is an especially favourable case for the application of
Newtonian theory. East!f/ has shown that, in the linits M o, y » 1, the
expressions from Newtoni an inpact theory and from strong shook piston theory are
t he same,

The/
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The sinplicity of the theory nakes it attractive for practical
applications but it has serious limitations Which may not always be ghvigus
in advance. It has already been pointed cut that it gives no information about
pressures on surfaces shielded fromthe mainstream flow; it is found 4o be
seriously in error on concave surfaces; and it is unrelable wherever the
effects of a finite shock |ayer thickness nay be inportant, e.g., over nuch
of a slender body at small incidence (Figs. 11, 12 & 13) and on control surfaces
and flared sections on slender bodi es which operate within the nose shock.

2.1.2 Hypersonic snal | di sturbance theory

The second group of methods nakes use of the result from Snal
di sturbance theory that, for slender bodies at high enough Mach number, the
flowin a lamina of fluid normal to the body axis can be considered as
i ndependent of flowin adjacent laminse. This result is implicit in the
assunptions of piston theory, but it has been established fornally, and with
more general applicability, in hypersonic small disturbance theory. Since the
theory brings out inportant characteristics of hypersonic flow, it wll be
di scussed first, before considering howits results are applied to the
calculation of unsteady flows.

Smal | disturbance theory is concerned with flows involving velocity
disturbances which are small relative to the free-stream velocity, i.e., wth
the flows past slender bodies in two dimensions or three dinensions, or with
pl anar bodies with supersonic | eading edges and small |ateral curvature. -At
| ow enough Mach nunbers, linearisation of the equations of notion is possible
for the flow around such bodies, but at hypersonic Mach nunbers the velocity
di sturbances are not small in comparison With the speed of sound and the pressure
disturbances are not small in conparison with the free-stream static pressure,
so that the flow equations cannot be |inearised. Despite the fact that the
equations are essentially non-linear, some val uable information on the flow
conditions can be obtained and the equations themselves can be si rrFI ified by
maki ng use of the fact that the velocity disturbances are small ative to
the free-stream velocity, and the pressure disturbances are small relative to
the free-stream dynamc pressure.

As full discussions of the theory are given by Van Dyke and Hayes
and Probstei.n1 it will only be briefly gutlined here and illustrated by the
general flow equat| ons.

Consider a slender, pointed body in a thersonic stream at only a
smll angle to the free-stream direction. The shock waves make only small
angles with the free-streamdirection and, because of this, it can be assuned
that velocity disturbances in this direction are small 1n conparison with those
normal to it and the lateral extent of the flowfieldis small in conparison
with the body length.  The scale of smallness involved is, in general, of the
same order as the thickness ratio or the angle of incidence of the body.

Take an axis systemw th erigin at the nose of the body, and the
x-axis in the direction of the free stream let U be the free-stream velocity
and u, v and w be the disturbance velocity conponents in the x, y and z

di rect i ons. Let the larger of the thickness ratio and the angle of " i'nci dence
be denoted by 6, and apply the transformations:
u = bu'
\ o (2.7)
x = &'x'3

Then/
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Then the transforned velocity component uw' Will be of the sane
order of magnitude as the conponents v and w, and gradients of flow
quantities in terms of x' will be of the same order of magnitude as those

in the y and z directions. Substituting these transformed quantities into
the equations of continuity, nmomentum and entropy (with isentropic conditions

along the streanlines) we obtain

ap p  opv)  a(pw) a(pu')

— 4+ Ub + + P = —62 s Vo (2.8)
at dx" oy 9z ad

du' du' du' du' op du'

—t US ~—— + ¥ + W + = =6%u' — Lo (2.9)
at ox' ay iz pax' ax!

av av av v 1 dp av

— tUS — 4V — $W— == = by e

at dx' oy dz  p Oy ax' ? - - (210
ow ow ow ow 1 dp ow

o U ——t ¥V — +W—+ — — =z =8P — N )
dt ox* ay 3z p 3z ax'

and

as as as as as

—_— + 08 e b ¥V — + W — = ~5*u! — - ves (2.12)
at ox" ay dz ox'

where 58 is the entropy, and is given by 8 = C_ log.(p/py) + constant, where
Cy s the specific heat at constant volune. If "The right-hand sides of these
equations are neglected as they are of second order of smallness, the equations
for v, w, p and p are decoupled fromthat for w', The significance of this

hs _sgenfrmr_efcl early if the equations are now transformed to axes fixed in the
uid, for i

T =t
_ C L (13)
x' = x' = U&_t}
a a A
and —_— = —
ax' ax!
7 C(2.40)
a d a
- = 70 =
at at ax'
then equations (2.8) to (2.12) became:
o a(pv)  a(pw)
— + + = s (2-15)
at ay 0z
u' ' ' 1 p
— + V7V — 4+ W—+~-— = 0 .. (2.16)
at ay a2 p ox

2

ot
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v ov ov. 1 dp
~— 4t V—+ W—t% —=— =0 ... QA
at dy dz  p dy

aw an aw 1 dp

—+V—4+W—+--— = 0 <. (2.28)
ot 3y dz p 0z

as as as

—_—+ Y — + W — =0 - (2.19)
at ay dz

It can be seen that the equations (2.15) and (2-17) to (2-19) are the
equations for the unsteady flow of a fluid in two di nmensions.

Since the boundary conditions at the shock wave and the body transform
an a simlar way to the equation3 of nmotion, the flow around a slender
t wo- di mensi onal body becomes the probl emof flow around an expandingand
contracting piston in motion in tw dinensions, and the flow past a thin
two~dimensional section becormes that of a piston moving in one dimension. The
link with piston theory in the twc~dimensional case is obvious, but the actual
piston theory relations and the point relationship between piston velocity and
pressure do not follow unless isentropic flowis assuned in front of the piston.

A simlar argument to that just used justifies the use of strip theory
on surfaces at hypersonic speeds 1f the flowis attached at the |eading edge of

the surface'. It can be shown that the transformations
y = 6‘1.Ay'
and } (2.20)
v = BA-:" V'

where A is the aspect ratio of the surface, make spanwilse disturbances and
gradients in the flow of the same order as those normal to the surface. 1If
these tranaformations are applied in equations (2.15) to (2.19), and terns of
order &°A"? are nesglected, one-dinensional piston theory is shown, formally,
to be applicable on such surfaces.

It can be seen that no assumptions about the time-dependent terns
have been made 1n the devel opnent of the theory. There are two limtations that
must be observed. The first is that the downwash conponents due to the
unst eadi ness nust remain small, of O[8] 8o that, for a sinusoidal unsteadiness
giving a non-dinensional displacenment & = h/{’, at a point, it is necessary that

wldo
e ] o (2.2D)
U
wher e w = 2xf.

The second limitation is that the wavelength of the unsteady disturbance
should be large in conparison with spacial extent of propagation of a point
disturbance in the time that it takes the body to pass any point in the fluid.
Since &, which is @ measure of the surface slope of the body, 18 O the same
order as the Mich angle, Ud isof order 'a' where 'a' 13 the speed of sound
in the fluid. Then, at the tail of the body the maxi mum extent O propagati on

of /
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of a disturbance is of order &&(= a¢/U). Consequently, the second linitation
can be expressed by

A o>> B2
or

Ae >> 6 . (2.22)
where- A is the wavel ength of the disturbance.

Sychev has shown, in Ref. 25, that a form of small disturbance theory
can be developed for bodies at large incidence in hypersonic flow, provided that
the flow on the | eeward side of the body can be neglected. Fromthis devel opment
of the theory it can be shown that on the w ndward side of the body the flowin
a lamina of fluid normal to the axis of the body can be considered as i ndependent
of the flow i n adjacent laminae, The form that the equations take wll be
illustrated, as before, by considering the general equations of notion of the
fluid.  The equations are presented this time in non-dinensional form as, for
this case, the devel opment can be seen more clearly.

The axes &, m, &, are taken with origin at the nose of the body and
the E-axis in the mean direction of the principal body axis and the Z-axis in
the plane of the & axis and the flow direction (Fig. 6). The independent
variabl es are nade non-dimensional by the transformations:

2 S | _ Z _ tUcosa
‘t')‘, m == " & = —, t = —

&b &b b

g = Y <)

where b is the body length, & is aratio representing the maximum surface
slope, a is the angle of incidence of the body and Uis the flow velocity
of the free stream

The dependent variables are mde non-dinmensional by the transformations:

U cos @ + U _ _ v - w
— = {14+, vV = —, W= ———
ucos a Usin a Usin a

P - P
P = and p = = o (2228
Poo U? sin® a Poo

where w, v, w are the velocity perturbations in the g, n, % directions.
Then the general equations of fluid notion becone

P U COS @ @ Po UCOS @ dp PV sina 3(pv) p, U sin a a(pw)
S +

—+ ———— — ¢ =
b ot b o b6 o b8 ad
P U €03 a 3(pu)
- - - ] e (2.25)
b i/

UPoosa
h
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U2cos”a du  U%cos®x du  U%sin @ cos @ 4u U’sin @cosa _ au
- =t =" vV—+ W —
b ot b aE bs m bS a7
P UPsin’a 9p U?cos’e _ du
e = e §—, (2.26)
Pod 9E b %
U%sin @ cos @ v UPcos @ sin g v U’sin’a _ v  U’sin’a _ av
-— + -+ v—+ w —
b it b 0E s oy b3 a7
P U?sin®a dp Ucos @ sin o av
b— = = - 0 —, (2.27)
pbS  an b 3
U?sin @ cos « dw Ucos a sin @ aw  U?sin®a _ 9w  Ulsin®a _ aw
— + — t v—_ ¢+ W —
3% b o b8 an b6 a7
P, UPsin’a dp U%cos a Sin a ow
+ = - u -, (2.28)
P P8 b 13
UcosaadS Ucesaga U gin ¢ @8 Usina a S
- — + - + Vv — + W o
b at b dE, bd an bd 0z
U cos a_as
= - u —: 1] L ] (2.29)
b &
these equations reduce to
¥ i o) o) (%)
§cota —+ docotg —+ ——+— = =6cCOta , «es (2.30)
ot € am oz 3
éu d _du _ du ap _ aii
boota-—+bcota—+v—+w—+btane — = -Scotau-—, (2.31)
ot 3E an iz OE 3
6V év v “ov  ép _av
beota —+bcota —+v—+w-—+— = =6cotau—, ... (2.32)
gt g an az  dn dE
ow o _dw _aw  dp _aw
boota—+bcota—+vV—+WwW—+— = -~8cotau—, e {(2.33)
T 9 an ¥ o 9
as as _as _ a&s _as
Boota —+dcota —+v—+w— = -fcotau—, (2.34)
at % an z %

But /



- 22 =

But
_ ucot a

uecote = ——— ... (2.35)
ucosa

and, on the windward side of the body, the disturbances are confined between the
body and the shock wave, which lies close to the body, and consequently u is

of order &v or 8w, and UcOta is of order & {cot a is of order Uf;ﬂ

The right-hand gsides of equatizons (230)to (234)are, then, of order & and can
be neglected if 6 is small. |f the equations are now transfornmed to axes parallel
to the original axes and movaing in the +ve £ direction with velocity V_ cos a,
and t he substitutions:

a a
EE
... (2.36)
a a a
ot 9E"
are nade, equations (230) to (2,34) transform to
o apv) a(pw)
bcot @ — + ——t —— =0, . (2.37)
at’ o a
du @ & ap
6 COt @ ~=m + VvV —+W—+ 06 tana — = 0, ... (2.38)
at' an o og'
v 8V _ v dp
500ta-—+v—:+w:-+—:=0, (239)
at! am 2
ow 9w dw  dp
6cot @ mmt V—s+w—+— =0, (2.40)
at' an % A
as _as _as
6cota e +v —+w— = 0, L. (2.41)

aT! am az

and the problem reduces to that of an expanding, contracting and translating piston
I N twodimensions,

In the original derivation by Sychev, he states that the equations are
valid only for a body with all transverse dimensions Smal| in comparison with its
length. In fact, there seenms no reason why the results should not apply in
two~dimensional flow and for swept wings on a strip basis, provided the flow
remains attached at the leadang edge. But, clearly, there 1s a range of bodies
which have significant [ateral dinensions on which the flow detaches at the
leading edge at moderate angles of attack, Or is never attached, and in these
cases the theory will not apply.

It/



- 23 -

It was pointed cut at the beginning of the discussion of Sychev's
extension of small disturbance theory that the theory only applied for the
windward side of “hodies. It can be shown for two-dimensional bodies that the
pressures on the leeward side are small enough in conparison with those on the
windward side for their neglect to introduce errors of the sane size as the
other terns neglected in the theory.

2.1.3 The variational nethod

Some special steady flow problems are solved according t0O smell-
di sturbance theory in Ref. 24, but there does not appear to have been any attenpt
to solve equations (2.15) and (2.17) to (2.19) directly for unsteady conditions.
Neverthel ess, general conclusions about the nature of the hﬁpersonic fl ow around
sl ender bodi es derived froam smal |l -di sturbance theory have been used as a basis
for applying a variational method to the solution of sone unsteady problenms and
t he shock-expansi on method to the solution of others. The fullest account of
this work is given in Refs, 19, 20 and 26, and there are shorter accounts in
Refs. 13 and 27.

The results of the small-disturbance theory analysis have shown that
the flow around a slender three-dinmensional body becones the probl em of flow
around an expanding, contracting and translating piston in two di mensions, and
the flow around a thin two-dimensional Section simplifies, in the same way, to
a one-dimensional problem In Ref. 19 it is suggested that a varzational method
shoul d be used to solve the equivalent two-di nensional flow problemfor a slender
body (the method coul d al so be used for the equival ent one-dinensional flow for
a thin section, but the interest in this case is trivial). The nethod assunes
that the flow can be considered as isentropic, but this is considered to be a
reasonabl e approxination for values of M6 < 1. This conclusion i s based on the
fact that anal yses which assume isentropic conditions (e.g., 3rd order piston
theory) give satisfactory results on twc-dimensional sections up to the value
M5 & Q+7 (corresponding to M8y =0'7 for a double wedge and M8y « 1+k for a
biconvex Section} and the entropy rise across the nose shock from a wedge is
considerably greater than that for a cone with the sane val ue of Moy.

For general flow under isentropic conditions the variational method
starts from a consideration of the integra

ta &
dep
By f‘é p[-;-qﬂ__-E(p)ldv at = ff p aV at Q)
t at L

(t) t)

applied to the conditions set up in the stationary fluid by the motion of the
body. The integral is taken over the disturbed volune of the fluid between two
fixed times % and t, at which conditions are known. p is the fluid

density, qis the fluid velocity, ¢ is the fluid velocity potential function

. , . d a a @ 2
E(p) is the internal energy per unit vol ume, Frar T fugzty Iy W o3

and Q; is the fluid pressure. (Clearly, the first integral in (2.42) reduces
o . ,
to [a _P[&g+__+mﬂlav&tmrtmsc%& but the form given is nore
% V() 3

closely related to the formused in nore general fornulations of the variationa
principle for fluids). The conditions for the first integral in (2.42) to be a

minimum/
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mninmumare that its variations for small variations in the values of p, q
and ¢ should be zero. These conditions can be shown to lead to the equations
of continuity, dirrotationality and monentumfor the flow, so that the problem
of finding the flow by solving the equations of motion for the fluid can be

change& into that of finding a function for p which makes the integral in
equation (2.42) a mninum

_ For isentropic conditions, p can be expressed in terms of the
velocity potential, ¢, in the form
y/(y-1)

i=|—1(.y_1)_(_ﬁ+32-q2\—| ( 2 . 4 3 )
B = &£ Nat

where a, is the free-stream speed of sound. Using this expression, equation (2.42)
c¢an be witten in the form

T Ef[ p AV at =[£ pm[1-——2 (—-+-12-q_3>:| av dt, (2. 44)
ty V(t) & V(t) T Ot
and the problem becones that of finding a function for ¢ such that the variation
inl is zero for small variations in ¢, This problem can be solved in an

appraximate manner by assuming a finite series for ¢ which satisfies the boundary
conditions (including the known conditions at t, and t,) and in which the
coefficients are determned by the condition that the variationin |l for small
variations in each coefficient nust be zero,

When this general method is applied to the case of flow around a
two-di mensional piston in Ref. 49 it is shown that the statenent of the variational
principle nust be nodified slightly to take account of the fact that the conditions
at time t; are not known. The nodified statement has the form

t,
Af[ p dv dt ‘J [pagl, , &V = O .. .(2.45)
t V(t) t2)
ta
wher e Af{ p gV dt is the small variation in the integral for a small variation
£ V(%)

in p (or ¢), and A is the corresponding small variation in ¢. The variations
nmust be taken so that Ap = ¢ at the outer wave from the piston, the boundary
conditions at the piston are unaltered, and at tinme & the disturbed volune is
zerg O the f1ow 1S known everywhere and the variations are correspondingly
restrained. When both p and p are expressed in terns of the velocity potential
equation (2.45) can be witten as:

ts (y=1) 1 = 2_y/(y-1)
S 2o s (T e
(_) 1 3 \ 2 1 ¢ 21/()"‘1)
0 T

(2. 46)

where S(t) is the disturbed area in the two-dinensional problem 19
Zartarian /
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Zartarian19 gi ves exanpl es of solutions usang this method for sinple
shapes for which known sclutions are available (e.g., flow past cylindrical and
el liptic cones and ogival shapes), and shows that good agreenent with more
exact solutions 1s obtained even for small nunbers of terms in the series for
¢. It is shown in Ref. 26that some nore conpl ex cross-section shapes can be
dealt with by using suitable co-ordinate transformations to give sinpler forns.
Because of the limitation to approxinmately isentropic conditions, the variational
method is limted to bodies at small angles of Incidence although the gmajl-

di sturbance theory still applies up to |arge ancidences,

214 The shock-expansi on nethod

The shock-expansion method for calculating the flow field around
bodi es in high-speed flow was devel oped for steady flow conditions?8,29,30,31
Its use for the calculation of unsteady flows is based on the fact that the
results of the small-disturbance theory analysis can be interpreted as neaning
that the flowin any given lanmina of fluid whose plane is (approximately) normal,
to the longitudinal axis of a body (or to the nean chord Of a wing section) is
i ndependent of the flow in adjacent laminae., Because of this independence, the
flow at a given station along the body depends only on the body shape that has
been'seen' by the lamina at that station. In general, the lamna 'sees' the body
shape as an expanding and contracting piston with translational velocity, and the
anal ysis of the flowis independent of the fact that the translational velocity
my be the result of incidence and canber on a body in steady notion, or the
pitching and translation of a body in unsteady notion. Consequently,  according
to smal|l disturbance theory, the flow at a given station on a body in unsteady
nmotion is the sane as that for a body of the sane cross-section, with an
appropriate axial distortion; and the flow at a series of points along a body
in unsteady motion can be found by a series of appropriate steady flow
cal cul ations. The shock expansion method is suitable for carrying out these
equi val ent steady flow calculations, for small-amplitude notions at Mach
numbers for which real gas effects are not inportant, gives closed form expressions
for the overall force and pitching noment.

In the sinplest form,the shock-expansi on methed for two-dinensional flow,
the oblique shock relations are applied to the wedge flow at the |eading edge of
the section to give the conditions just behind the shook wave and the conditions
on the surface downstreamare considered as given by applying the Prandtl-Meyer

expansion relation along the surface from the leading edge “condition. The
Prandt|-Meyer relation in this case is given by
ap 2yp a9
— = . T v (2.47)
as sin ZBL as

where S is the distance measured along the body surface, p and gy are the

local values of pressure and of the paraneter g = vW’°-1, and 6 is the |ocal
inclination of the surface to the free-streamdirection, For a thin section this'

can be integrated to give the expression:

p(x) _ {1 . (Zi) w508 - o] }2‘//(3/-1), L (2u8)

Py 2

where the subscript N denotes conditions at the leading edge.
Thi s/
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This sinple formof the method ignores the effect of the reflection of
di sturbances from the body surface at the shock wave and from regi ons of entropy
gradient in the flow and. the picture of the flow as consisting of a straight
shock wave ftrom the nose followed by a sinple expansion is not in general
adequate for the whole field. The significance of these reflections has been
examned. in Ref. 28 and it is found that, at the body surface, the reflected
di sturbances tend to cancel each other for the condition y » 1-3. Since this
condition holds for nost flows of practical interest, the sinple theory is
adequate to give surface pressure information.

For thin two-dinensional sections undergoing small-anplitude sinuscidal
distortions about zero mean incidence in flow3 of sufficiently high Mach nunbers,
the expressions for the nose shock conditions and for the Prandt|-Meyer relation
can be sinplified and, as a result, a closed-formexpression for the lift
distribution can be developed For a symretrical section the expression is19

- 2y/(y-1)
PgPy ikt (¥ - (y=1) _ _ Y
= 2 —_— 2_1 1 ¥
Poo ’ [(y#‘l) Haw) T+ ][ ' v 4x) ] g
-~ dg(0)
X (C'q ] 5 + ikg(O)]. o 1FE |
- d ik dg
+ yly [ma( x) —11[ + ikg(O)] o +[____ +ikgl] ... (249
dx

where g(x) is the conplex anplitude of the time-dependent motion; mn and m
are the rates-of change of pressure and Mach nunber at the nose with change of
noge angl e; Is the value of the Mach number at the nose for zero distortion;
g is the valué of the shock inclination angle for zero distortion; and A(x)
Is the turning angle of the flow fromthe nose due to thickness al one.

For conditions where the sinplified expressions for the nose conditions
and the expansion could not be applied, where the anplitude was not snall, or
when real gas effect3 became inportant, numerical methods would have t. be

empl oyed.

The shock-expansi on method can be applied to slender three-di mensiona
bodies for which M8 is greater than a limt around unity (the limt is not
rigid, errors becone greater as unity is approached) because it can be shown
for such bodies that the flow on the body surface is locally two-d' gngéogal 1n
pl anes nornal to the body surface and tangential to the streanlines
as a consequence of this, the Prandtl-Myer relation can be applied al ong the
surface streantines. The surface streanlines can be shown to follow closely the
surface geodesics through the nose. A geodesic is a line on a surface such that
at any point its projection on the tangent plane at that point has zero curvature;
it is determned by the geonetry of the surface so that once the initial direction
of the surface streanlines is known the expansion conditions can, in principle,
be determned fromthe geonetry of the surface. The condition3 at the nose of
the body must, of course, be found fromthe flow over a cone hating the same
cross-section as the body at the nose. ~ This presents a limtation for the
application of the nethod since the flowis known only for cones with certain
sinple cross-sections at small angles of yaw.

For/



- 27 =

For bodies of revolution at small incidence and anplitudes of notion
it can be assumed that the surface streamines remain the neridian lines throughout
the motion and a closed form expression can be developed for the surface pressure
distribution. But for bodies of other cross-sections, or for large anplitudes
of motion, both the nose shock conditions and the surface geodesics become
difficult to determne,

Because of the Sychev extension of small-disturbance theory to large
incidences, unsteady shock expansion theory can be applied, for two- and three-
di mensi onal bodies, to oscillations about a |arge mean incidence, and, in a
step-wi se manner, to large anplitude oscillations « provided the shock remains
attached throughout the notion.

2.1.5 Small perturbation analyses

The last nethods of analysis that will be discussed both assume, as a
starting point, that,the steady flowis known an a suitable formand that the
unsteady nmotion of the body is small enough for the disturbances set up by 1t to
be small in conparison with the steady flow quantities.

The first method, put forward by Kennett>> considers the case of flow

b

in the neighbourhood of the stagnation point of a bluff body of revolution.

The equations of the flow are derived in ternms of a curvilinear
co-ordinate system based on the body surface, as shown in Fig. 7. It is assuned
that the density in the shock layer is constant, that the body notion does not
produce any density changes, and that the flow perturbations caused by the
unsteady notion are small in conparison with the steady flow quantities. The
flow equations are re-expressed in terns of the steady flow quantities and the
unst eady perturbations, and. they are then linearised in the perturbations. The
following set of equations is obtained:

du' l ou' du, du' dug 1 ap"
+ (uo—-—-+u'——>+vo—-—+v'——+—_.
at 1+ Ky ax ax oy ay po(‘|+Kby) dx
+ i (wov' + wu') = 0(q'?), v« s (2.50)
1 + Kb
ov' 1 av' dvo av! v, 1 Jp'
-—-+—uo——+u'——>+vo— +v -+ - -
at 1+ Kby Ix ax ay ay PO 9y
2
—Kbuou' = 0(q'?), ... (2.51)
1+ K'by
ow' uw o ow' ow' 1 ap uw' ar w'v, dr
— t— — 4+ Vg —— —t —— — + -- = 0(q'?), (2.52)
at 1+ Ky ox dy rpy A (1+Kby)r ax r dy
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u’ dr av'’ ar ow' .
and r —+u' — + (1+K.by)r — + V'EHKby) — 4+ er]+ (1+KbY) — = 0(q'?},
ax dx ay y a¢
... (2.53)
where u, + u* is velocity component in X-direction (see Fig. 7)
Vo + v' is velocity conponent in y-direction
w' is velocitycamponent i n¢-direction

Ppo IS the steady flow density
K is the body surface curvature in the neridianal (x,y)-plane
q' isu'yv', or w',6 whichever is the greater.

~The terms in equations (2.50) - (2.53) are next subjected to an order
of magnitude analysis starting fromthe assumption that for hypersonic flow

PO
€ = = > 1
Poo
and using the results of steady flow analyses to concl ude that
U _ T h
—-— = O(l)’ T —ru—— = ()(l)l
u po U2 L
[N ] (2.5&.)
Vo A
~ = 0(e5t), and — = 0et),
U Bo >

where A is the shock stand-off distance and R, is the nose radius of curvature.

It is also established that if

u' v’ p' w'
— = oK <« 1 , — <1 : — << Md = <1, . . . (2.55)
U Yo PO Up

where K is a neasure of the order of nagnitude of the perturbations, then
! K p' w .
_=0(—>, “——z0(K), and e==0(K). ... (2.56)
U Eo pooUJ U

Wien the equations (2.52) = (2.55) are non-dinensionalised. and terms of
order K/eo are neglected then the following dinensional equations are obtained:

a 0 duo . dup \ K
[110_+v0—+<iw+-—-)]u+<———>v = O(a§)+0(——),.. (2.57)
ax ay ax ay €p

ap K
— 2p0uoKbﬁ = 0(ed) + O(——-) , ... (2.58)

€p
8
W ~—
ax
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E Oa'+voi+(iw+u—iffh):|; = 0(e2) + o(f-) , ... (2.59)

ory, N v aw K
and (-—+b'c'. — Justrn + - = 0(eg) +0(—> ... (2.60)
ax 0x dy d¢ €

where r, is the body radius of revolution, and sinple harnonic notion has been
assumed W th

u'(x,y,p;t) = ﬁ(x,y,q&)eth,

v'(x,y,¢;t) = %(st;‘ﬁ)eth,

W (x,y,05t) = w(xy,g)e ™, (2.61)
and  p'(x,7,65t) = B(x,y,)e .

From the equations (2.57) = (2.60) it can be seen that (2,57), (2.59) and
(260) can be conbined to give a single equation for u, Wsen u is known p can
be found by integrating equation (2.58).

The boundary conditions at the body and shock are analysed and sinplified
ina simlar way. Five boundary conditions are obtained because another unknown,
the shock wave position, must be introduced

To illustrate the application of the analysis, Kennett considers the
case of a spherical cap in plunging sinusoidal motion. He takes as a basis an
approximate flow field and relations originally derived by Hayes, and is able to
find a solution for uin the formof a series iny, the co-ordinate norm
to the body surface with coefficients dependent on the frequency parameter = so
that, for small frequercy paraneters, only a few terms are required. The sol ution
"is considered to be valid within 40% up to the point where the surface slope is
45" and this corresponds to the range of applicability of the constant density
assunption

Kennettregards the results of his analysis as a first-order correction
to the results fromquasi-steady Newtonian theory in which it is assumed that the
shook and body move together, and the perturbation pressure behind the shook is
the perturbation pressure on the body.  Hefinds that the shock anplitude is
given by

¥, ik E - sinE cos E
¥ = — = Yb|:1 +(—-)( ):], ... (2.62)
8 Ro 5 sin®g
where & = %%—, R, = radius of spherical cap
and Yb - L is the dinmensionless anplitude of the body
Ro surface displacenent.

The pressure is given by

_ P _ . 2, Ib
B, = - = Poy, [4|k cos € + 4 sin°E —
ZPoV” T

oTo

singﬁjfs. (28
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The cut-of-phase conponent of ¥g is plotted in Fig. 8 and the
cut - of - phase conponent of is plotted in Fig. 9 1n conparison with the
quasi -steady Newtonian result. At practical values of kk where % = ¥R
i's the non-di mensional anplitude of the cap plunging motion, it is clear that the
cut - of - phase conponent of the shock wave notion will be negligible over the
range of applicability of the analysis.  The cut-of-phase conponent of the
pressure is small for quasi-steady Newtonian theory;, the present theory provides
a correction of the order of 5% at the linmt of its application.

The anal ysis by Holt33 can be applied to those parts of the flow
around a body where supersonic conditions exist, and a characteristic analysis
has been carried cut. Starting froman established flow field and known
characteristic directions, Holt expresses the flow equations in terms of a
cc-ordinate system based on the given characteristic directions and introduces
small perturbations of the flow quantities. If squares and products of the
perturbation quantities are neglected, the equations become |inear equations
for the perturbations wth coefficients determned by the steady flow solution
Holt applied this analysis to the sinple case of isentropic flow over an
axi symetric conical afterbody in Ref. 33. Mre recently, Kewamura and Tsien*
applied the nethod of analysis to an axisymetric body to determne the stability
derivatives, but this is for, effectively, steady state conditions.

The snal | perturbation methods of solution can be valid only when the
conditions are such that the hypersonic simlarity parameter for the body nmotion
M6 (where & is the chan?e in surface slope due to the notion), is small, so
that disturbances to the tlow quantities are sufficiently small. In general
nunerical solutions will be necessary, but this is unlikely to be an inportant
drawback since a numerical solution of the steady flow held will usually have
been necessary in the conditions for which the methods are best used.

2.2 The Influence of Real Gas Effects and Viscosity

It was pointed cut in Appendix I that, in nmany hypersonic flows,
tenperatures will be generated in the gas which are sufficient to cause excitation
of wvibrational degrees of freedom of pclyatcmic gas nolecules, dissociation
and ionisation; and that these effects can give rise to significant modifications
to the flow Fortunately, the characteristic times involved in these reactions
will usually be very short in conparison with the characteristic time of any flow
unsteadiness likely to be net in practice. For exanple, the relaxation tine
for dissociation of oxygen for flowin the stagnation region of a blunt body at
M = 15at 200 000 £t is of the order of 2 x 40°* seconds, whereas the maximm
frequency for any unsteady motion involving the structure of a vehicle is unlikely
to be as high as 10cycles per second, and wll, usually, be very nuch less than
this. Consequently, although the effects of these changes in the gas can conplicate
analysis, they can usually be dealt with on a quasi-steady basis.

The effects of viscosity are not as clearly defined. The first effects
that nust be considered exist already in steady flow and arise fromthe fact
that boundary layers are in general very much thicker than at |ower Mach nunbers
because of the rise in the tenperature of the gas as a result of its deceleration
inthe layer, and the smaller unit Reynolds nunmbers associated with high altitude
flight.  The thickness of the boundary I|ayer can be such that it exerts a
significant influence on the external 'inviscid' flow. A neasure of this influence
is usually given by the size of the parameter 1y defined by:

Y = hf’(coo/Rex)% (264)
wher e/
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where ¢, is the constant in the viscosity relation:

T T

— m-

& Teo
and can often be taken as unity; and Be, is the Reynolds number based on the
di stance fromthe leading edge.

= C

For x »> 4, a condition which can occur close to a sharp nose O
| eading edge, the streamine inclination induced by the beundary |ayer can ve
|arger than that due to the body surface inclination: this is termed a 'strong
Interaction. But, over nost Of the body and especially when the nose is not
very sharp, the effect Of the boundary layer can usually be considered as being
a smal| perturbation of the inviseid flow.

_ The boundary | ayer on an oscillating body does not seemto have been
examned directly, and Ege only analytical evidence ON 1ts behaviour appears to
be a study by Lighthill”?, for an inconpressible fluid»of the response O a
boundary-| layer-4/pe flow to fluctuations O velocity in the external flow and a
study by Moore?® of the conpressible boundar% layer on an accelerated plate.

The scale Of unsteadiness can be measured by a frequency paraneter ,x/v,, Where
we = 2rfy and f, 1is the frequency of the fluctuations vo IS the nean
external velocity, and x is the distance from the leading edge of the surface.
Lighthill's analysis suggests that the boundary |ayer can be treated by a

quasi -steady Or first order unsteady theory for wyx/vs << 0°6,

Moore's anelysis shows that the scale of unsteadiness can be neasured

X dVo X2 da'Vo

by parameters of the form — —, —
v2 at v at?

variation, the first parameter in this sequence would be equivalent to the

frequency paraneter in Lighthill's work. Moore concludes that the flow can be

analysed on a first-order unsteady basis for small values of the unsteadiness

par anet ers.

for a sinusoidal Velocity

These results suggest that, for most conditions where unsteady hypersonic
flows are likely to occur, the thickness of the boundary |ayer and, consequently,
its effect on unsteady aerodynamc forces, can be found by assumng that it
responds in a quasi-steady manner to changes in the external flow conditions,
since the frequency parameters will be considerably | ess than the 1limting val ue
proposed by Laighthill, This conclusion obviously requires investigation,
especially in view of sone anonalies in experimental results which are mentioned
in (2,3) and there are sone oases (for exanple, panel flutter) where frequency
paraneters could be higher than the Iinmt suggested.

2.3 Experimental Verification of Theoretical Analyses

There have been very few reports of experimental measurementsOf
unsteady forces at hypersonic speeds. Those reports which show conparisons with
theoretical calculations are References 17, 37, 38 and 39. In the report by
Maas39 the comparisons are not very informative because of the uncertainties
in the measurenents and. the lack of clarity about what theoretical nethods are
bei ng used. The conparisons in the other reports are clearer, but there are
only scanty results. Because Of this situation it is necessary to Consider
the accuracy of the methods of analysis under steady conditions to get some

i ndi cation/
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indication of their reliability, even thou?h results of their use under steady
condi tions cannot be conclusive evidence of their value when the fiow 1s

unsteady.

In Figs. 10 and 11 third order piston theory predictions for the
pressure distribution on a biconvex parabolic arc section aerofoil are shown

compared with the distribution froma characteristics solution, which should

be accurate for the inyiscid flow. For a two-dinensional section the correction
for boundary layer growth shoul d be straightforward and need not be considered
in this conparison. At M = 3"5, in Fig. 10, the agreenent is quite close,
though third-order piston values are consistently low, at M = 10, in Fig. 11,
the errors are rmuch greater. The departures from the characteristics result are
greatest in the regions of the nose and trailing edge over which Me » 1&6 i's
the surface slope).  The error in the prediction of the oentre of pressure for
a single surface would be quite large, but this does not necessarily nean that

the oentre of pressure for the sectionis simlarly an error, since this depends

on the increment of pressure difference with incidence and not the overall distribution.

Cal culations by Newtonian inpact theory are conpared with characteristic
results for the same biconvex section at M = 10 and « for zero incidence, and
at M = 10 for an incidence of 19.9°in Figs. 11, 12 and 13. Results are shown
for equation (6) and for this expression nodified to give the correct pressure
at the leading edge.  The unnodified equation always gives val ues of pressure
that are considerably |ower than the accurate velues. The nodified equation is
i nadequate at M= 10, a = 0° (Fig. 11); even at M = oo it 2s considerably
in error beyond the one third chord point (Fig. 12). For the section at an
i nci dence of 19:9°, the theory is being tested under very favourable conditions,
since there should be only a thin shook |ayer over the | ower surface of the
section.  Even for this case (Fig. 13), there are appreciable errors in the
pressure distribution given by the modified expression

Results for two-dimensional shook-expansion theory are given in
Figs. 14 and 15. In Fig. 14, pressure distributions on the same 1% aerofoi
section as before are given for the characteristics calculation, for the shock
expansi on nethod, and for a sinplified version of the shook expansion method
applicable to slender bodies at high Mach nunber (this slender aerofoil method
corresponds to the expressions used to derive equation (2.49)). There is close
agreement of the nethods. In Fig. 15, the effect of real gas thermodynam cs
on the pressure distributions are shown. Wen caloric and thermal inperfections
of the gas are fully considered in the shock expansion nethod, the results differ
very little from the characteristics result, consequently the characteristics
results have not been included in Fig. 15. The results fromthe slender aerof oi
met hod use an average value of y throughout the field.  Above an incidence of
about 10° it is clear that the departures fromperfect gas behaviour becone
significant, especially for the' sl ender aerofoil nethod.

Figs. 16 and 17 illustrate the use of generalised shock expansion
theory on an ogival body of revolution. In Fig. 16 comparison i s nade with both
characteristics results and with experinent. At adequate val ues of M§ = Md/e
agreement with the characteristics results is seen to be good, and Fig. 17 shows
that the agreement with experinment is also good if account s taken of the
boundary layer. (In Ref. 29 a1t is argued on physical grounds that, provided the
boundary |ayer flowis largely hypersonic, and the conditions governing the
application of two-dimensional shock expansion theory to a three-dimensiona
body are satisfied; the boundary I|ayer flow al ong geodesics can al so be
cal cul ated using two-dimensional relationships). In Figs. 19-23 results are
given for the application of shock expansion theory to nore complex s|ender
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bod1952§ The shape of these bodles (Fig. 18) is such that there are no direct
solutions for the conical shock at the nose and conditions have t0 be determined
by perturbing the solution for a circular cone; calculation of the general
geodetics Of the surface is too conplex to be practicable and pressure distributions
are found by the shock expansion nethod only along top, bottom and side geodesics;
the distribution on the rest of the surface is found by assumng that the
distribution at a given section is the same as for a cone which is locally
tangent to the body (this distribution is known fromthe solution found for

the nose). Two bodies are considered. They have identical cross-sections

but one is straight and the other canbered so that it is equivalent, according
to small disturbance theory, to the straight body undergoing a uniform rate

of pitch. For the straight body, the pressures predicted are found to be
consistently lower than those measured, though the shape of the distribution is
predicted, Fig. 19. About half the difference between theory and neasurenent

can be accounted for by the effect of the boundary layer (Fig. 20), The.
incremental pressure distributions with incidence are found to be quits ¢losely
predicted except on the | eeward side of the body when separation, or a thickening
of the boundary layer, appears to take place (Fig. 21). Simlar results are

found for the canbered body. The difference in the calculated and measured basic
pressure distributions are of the same order as those for the straight nmode

(Fig. 22) and the incremental pressure distributions wth incidence are, again,
wel | predicted (Fig. 23). It was not possible to assess the accuracy of the
incremental pressures due to canber because this would have involved conparisons

of pressures measured on the two models and slight differences between the nodels
and in the tunnel conditions neant that this was not possible.

Figs. 24 and 25, from Reference 19, show conparisons between flutter
derivatives for two-dimensional sections calculated by second-order piston
theory, third-order piston theory, and by shock expansion theory. Fromthe
steady state comparisons it is to be expected that third-order piston theory
will be increasingly in error as M8y increases beyond unity, and this is
shown by these figures. But the figures also show that the errors for sone
sections (the biconvex section) need not be very large either in the derivatives
or in the oentre of pressure position, up to quite high values of the Faranﬁter
M6y, and consequently piston theory may remain valuable for flutter calculations
we§1 beyond the theoretical limts for its application

Results of unsteady nmeasurenents are shown in Figs. 26 to 29, Figs. 26
and 27, from Ref. 17,show results of neasurements on a 93% seni-angl e, single-
wedge section in a gun tunnel in air at M = 9-7. The aerodynamic danping and
stiffness were found from neasurenents of the change due to the air flowin the
rate of decay and in the frequency of oscillations in pitch of the nodel, which
was nounted on a spring support. Fig. 26shows the results of the stiffness
measur enent s. The results are compared with calculation by strong shock piston
theory with an enpirical correction for nose bluntness effects. The theory gives
good agreenent wxth experiment for the sharp |eading edge model, though there
IS some deterioration for axes positions at the nose and trailing edge. The
bl unt ness correction makes agreement worse, on the whole, for the blunt |eading
edge nodels. There is a significant change in stiffness with the bluntness
for nmost axis positions, Fig. 27 shows the results for aerodynanic danping and
simlar oomparisons With theory. The differences between theory and experinent
vary greatly with axis position and it seenms clear that there nust be large
effects occurring which are not accounted for by the theory. The effeot Of
blunting also varies greatly with axis position,

Fig, 28 shows the results reported in Ref. 37 Of similar experiments
on a doubl e-wedge aerofoil in a helium tunnel, Again, the large difference
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between theory and. experiment is to be noted, though it should be understood
that for high Mach numbers the actual aerodynam ¢ danpi ng respresented by

these values is low  The result for a sharp-nosed single wedge oscillating
about the trailing edge is included fromRef. 17: because, at high Mach
nunbers, pressures on the rear half of a double wedge are very low, the results
can be conpared with those of Ref. 37. There seens to be agreement between the
results from the two sets of experinents.

The results of Refs. 17 and 37 are too few i N number, and there are
too many uncertainties about experinental conditions and Interferences in the
flow (e.g., it is pointed out in Ref.17 that the shock waves fromthe node
support are likely to have a large influence on the flow over the nodel for
forward axis positions) for definite conclusions to be drawn. It appears that
the influence of bluntness is nuch greater than is predicted by s%?ple .
corrections based on induced pressure neasurements on flat plates'!. The influence
of the boundary layer may be greater than is predicted on the assunption that it
behaves in a quasi-steady manner, for it appears that a correction based on this
assunption woul d account for less than half the difference between theory and
experinent shown in Fig. 28

Fig. 29, from Ref. 38, shows a conparison between the aerodynamic.
danping on a bluff body found by experiment, and the velue predicted by Newtonian
inpact theory.  The experinmental results were found fromfree oscillation
measur enents. The theoretical and experinental values do not agree closely, but
the theoretical values are of the right order of magnitude and have the right sign.

2.4 Discussion and Concl usi ons

The nethods that have been described provide for the analysis of
only a small part of the unsteady hypersonic flows that may be met in practice.
This fact becomes evident when the attenpt is made to set down what practica
flow problens can be dealt with, and what work remains to be done

Piston theory, shock expansion theory, and the variational method
provide neans that are physically and analytically valid for caloulating surface
pressures in a range of sinple inviscid flows. For wings of thin sharp section
whi ch are two-dinensional or have only noderate sweep (the condition §A™% <¢ 1
is satisfied) third-order piston theory can be applied for Mach nunbers and
incidences such that M5 or Ma < about 0-9, and & or a »» 1/¥#¥, and shock
exPansion theory can be applied for M8 > 1+0 and for incidenoes up to the
val ue for shock detachment, though nunerical computation My become necessary
for large values of flow turning angle at the nose.

For |ow aspect ratio wings of thin, sharp section, for M and
Mcos Ag 1l (where A = sweep angle of the |eading edge), the variationa
met hod shoul d be applicable, though its use for the flow round such a ecross-
section has not been exanined. Only small incidences could be considered
because the nethod depends on the fact that the flowin a fluid lamina can be
considered as isentropic.

For pointed glender bodies, the variational method can be applied for
Md <1 and for small incidenoes, and the generalized shook expansion nethod can
be applied for M5 > 1 and for |large incidences. There may, however, be
limtations on application of the methods arising fromthe shape of the body
cross-se& on, or fromthe difficulty of determning the nose starting conditions

for the shock expansion nethod.
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During panel flutter the surface displacements remsin Very small
because of the physical constraints involved,and pi ston theory applied in the
flow conditions set up by the body should remain valid.

Al though these methods are valid for inviseid flows, the accuracy
with which surface pressures could be found in a real flow would depend on the
accuracy WM t h whach corrections for the boundary layer influence could be found,
and the degree of interaction between the boundary layer and the external flow

There remain a large range of flows for which these nethods are not
valid.  In fact, wing sections with sharp leading edges and pointed sl ender
bodi es are not likely to be used at high Mach numbers because of the large
heating rates which a pointed | eading edge or nose woul d experience, and the
high structure tenperatures that would occur. The flows around sl ender w ng
sections and bodies with | eading edge or nose blunting, which would be
enployed to reduce tenperatures and heating rates in these regions, present a
range of new problens because, at high Mch nunbers, the flow around a body is
significantly affected by even small degrees of blunting, and the assumptions
of small disturbance theory are not necessarily any |onger applicable.

Beside the leading edge blunting problem there remain the problens
of two-dimensional and swept sections at incidences greater than that for shock
detachment; the problens of |ow aspect ratio wings for M cos A » 1, and at
| ar ge incadence; the problens of slender bodies at nmoderate Incidence for M§ < 1,
and for incidences above shock detachment for M§ < 1 and M5 > 1; the problem
of-bluff body shapes; and the problens presented by the conplex flows with
interaction effects that will occur round real vehicle shapes.

There have been attenpts to deal with the nose bluntness problem
empirically or seni-empirically. East!? obtained a correction for nose bluntness
to apply to the wedge pressures calculated by strong shock piston theory, from
experimental measurenents of the overpressure generated on a flat plate by
bl unti ng. Fromthe results in Ref. 17 of comparisons W th experiment, the
correction does not seem to be a satisfactory one. In Ref. 57, it 1s suggested
that the effects of nose blunting mght be allowed for by using Newt onian theory
to find the pressures on the blunt nose of an aerofoil, and piston theory where

the surface slope became small enough. This proposal does not seemvery sound
since it ignores, for exanple, the effect of the nose blunting and strong nose

shock on the flow downstream  When used in a flutter test to calculate flutter
speeds for conparison with experimental results (Section 4.2.1 and Ref. 60),
the method gives results which correspond qualitatively to the experinental
results, but which are in error by 15-20%.

It seems probable that the problemof leading edge bl untness on sl ender
bodies will split into two parts with a rather undefined boundary between them

On the one hand there will be the problemof slender bodies with small amounts
of blunting. This one might hope to deal with by modifications of the shock

expansi on and variational nethods since the departures fromthe basic sharp
leading edge flow can be expected to be small. The modifications would involve
some treatnment of the overpressure due to the blunt leading edge, perhaps through
devel opnents of the blast wave anal ogy (Cherny:2), and of the effect of the
entropy layer from the nose.

On the other hand, there will be the problem of slender bodies with a
| arge degree of blunting: for such bodies it may be necessary to know the
details of the flow over the nose, and the results of small-disturbance theory

will/
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wi Il no Ionger apply and a sinple expansion from conditions downstream of the

nose would not exist. In this case, it will be necessary to apply Kennett's

smal | -perturbation analysis to a suitable bluff body flow solution to find the
nose conditions, and apply Holt's small perturbation analysis to a characteristics
solution of the steady flow downstream of the nose. Such analysis wll apply,

of course, only for small anplitude nmotions of the body.

The results of small-disturbance theory will still apply for |ow aspect
ratio wings with sharp sections for which M cos A » 1, and for pointed slender
bodies for which M& < 1 at noderate incidence, and consequently, unsteady flows
around such bodi es can be found from cal cul ation of an equival ent series of
steady flows. But the only way of calculating the equivalent steady flows would
seemto be the characteristics nethod = though some simplification of the proceﬁg
may be brought about by applying the linearized characteristics method of Perri

Newt oni an i npact theory provides a sinple method for estimating the
aerodynam ¢ forces on wings and bodies at incidences above those far shook
detachment, but the predictions made are necessarily unreliable. A satisfactory
nmethod of dealing with these flows, for small anplitude notions of the bodies,
seens likely to involve the application of a snall-perturbation analysis to a
satisfactory steady flow solution. Simlar conclusions apply to the problenms
of bluff bodies, and real vehicle shapes: in both cases anal yses have been
made using Newtonian inpact theory but these, obviously, have only limted val ue
and a smal | -perturbation analysis is required - if an adequate steady sol ution
exists

In those oases where it has been suggested that a small-perturbation
anal ysis applied to a steady solution is likely to be the only way in which a
satisfactory unsteady flow analysis can be made, it has been made clear that the
net hod can only be applied for small-anplitude disturbances. There seems to be
no alternative to a quasi-steady analysis of the flow around a body is undergoing
large anplitude displacenments. In practical oases this wll certainly be
adequat e for nmost cases since such nmotions are unlikely to involve |arge frequency
parameters.
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APPENDIX | || Revi ew of the Dynamic Stability of Hypersonic Vehicles

_ For the purpose of this review, information i S required on the changes
in the dynamic behavi our of vehicles at very high speeds resulting from the
changed fl1ght conditions, and on the likely order of magnitude of frequency
paranmeters characterising the unsteady notions. Sufficient information gapn be
obtained on these points fromgeneralized studies without entering into details
of the behaviour of particular configurations and, in consequence, this section
is concerned, in the main, only with such generalized studies.

The equations expressing the dynam ¢ behaviour of a flight vehicle are
changed both by the high speed and altitude, and by the kind of m ssion being
flown, since re-entry or exit flight differs from steady flight at constant
altitude.  The high speed and altitude of flight modify the equations of notion
firstly by the introduction of new terns. It may be necessary to take account
of the curvature of the flight path and the rotation of the axis system by
introducing terns for the ‘centrifugal lift' and a constant rate of pitch, and,
in level flight at high altitude, variations in altitude due to oscillatory notions
can be large enough to make 1t necessary to introduce terns expressing changes
in the air density, gravity force, 'centrifugal lift', and rate of pitch. Second
the equations need nodification because of changes in the relative magnitudes
of the terms involved, and because the aerodynamic forces may be non-linear with
changes of attitude even for noderate anplitudes, so that the aerodynamc
coefficients cannot be considered as constant.

»

For vehicles in re-entry or exit trajectories changes 1n speed and
flight path angle along the 'steady’ trajectory nust be considered. The changes
in speed could involve changes in the aerodynanm c coefficients as well as in the
dynam ¢ pressure, and. the rates of change could be |arge enough, in the time
scale of the motions involved, for this to be Inportant.

Al'so, large anplitude notions both for re-entry and for level flight,
and flight at large angles of attack, as in the case of a slender body flying
a high drag lifting re-entry trajectory (Appendix | Section 2), may require snalysis.

In nost of the anal yses which have been nade 1t has been assuned that
the aerodynamc forces are |inear with displacements, Conparison of the results

of these analyses with the results of the few which include non-linear effects
indicates that the qualitatave picture is not greatly affected by non-linearities.

The | ongitudinal behaviour has been studied nost intensively, but there is no
reason to expect that the effects of the flight conditions on the lateral
behaviour wll be very different.

3.1  Longitudinal Behaviour of Hypersonic Vehicl es

3,1.1 Steady flight at constant altitude

Nonweiler?? di scusses the changes in the equations of motion
necessary in considering very high speed flight. He shows that the major
distinguishing feature of flight in these conditions which affects the solution
of the Stability equations is the high value of the relative density of the

aircraft,
il
(p = —'—') L] (3-1)
£Sh
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where m is vehicle mass; pisair density, § and b are representative
areas and |l engths of the vehicle,

If wis very large, then the terms C D and E in the stability
guartic (Duncan, Ref. 41, Chapter 5):

AY+ B+ N+ A+ E=0Q ... (2
are very nuch larger than the terms A and B and it is possible to give
fairly sinple expressions for the roots of the quartic in terms of the
coefficients:

1
D + (D~4EC)?

M,z = -
2C

1
D B C 2
C A A

which, if the domnant terns only are retained, become

M,z o -[CD * 1(8112 - c;)%]

1
VP l[-—*—(c . c >+_2¢1[--i"£ (—-—)]] ve (3.4)
4 ] 2 D LC! N iBKL gb

B

ver (3.3)

wher e CD is the drag coefficient;

GLa is the rate of change of |ift coefficient with angle of attack:
(3c;/ o) ;

C._is the rate of .nange of pitching moment coefficient with angle
of attack: (20 /3a);

Cn_ is the rate of change-of pitching moment coefficient with pitching

6b aCy
velocity paraneter = : ( - ) ;
% 30v /v

iy is the non-dimensional formof the pitching nonent of inertia
about the centre of gravity, IB: IB/pS.b“;
CL m
K‘L = — +—~— and Ris the radius of the flight path.
2 pSR

The first pair of roots represent the usual phugoid type of oscillation
and the second pair represent the usual predom nantly pitching oscillation,
provided the aircraft 1g statically stable, i.e., provided that

Cp, < ©- ... (3.5)
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The real and imaginary parts of the first patir of roots in
equation (3.3) are both of order unity so that the period ang the time constant
of the rate of decay of the phugoid oscillation are both of the same order of
magni tude as the natural unit of tine

2 b E oy
w2 (2)(5) 60
which is large at high speed;g, frovided that X, ias not very small, because
of the size of the term (;)2, the Froude nunmber. |n the second pair of

roots, representing the pitching oscillation, the real part is again of order
unity, but the inaginary part is, usually, large. The period of the pitching
oscillation is given by:

I_I.

L
b Z SN 2%

2n
Bt s(0) (5 e
(3]

zx(ifzﬁf e

& Cma

so that it depends on KL, and becones large only at high altitudes where K
is large, and does not becone very small because of the limt on the value of
KL Set by structural limitations on speed at | ow altatudes, The tinme constant
of the, rate of decay of the pitching oscillation becones, then, very long in
comparison W th the period, And the oscillation i S poorly danped. Assunming
likely values of Cyp, and iy, Nonweiler estinmates that, for K; of order
0+01, which he considers a likely lower limt, the period of the pilfchi ng
oscillation will be 2 or 3 seconds, and the time to half anplitude will occupy
a few periods; for KL of order unity, the period will be 20 to 30 seconds,
and the tine to half amplitude would be several mnutes; and for Xl arge,
which would correspond to conditions close to a high altitude orbit, the tine

to half anplitude could be an hour.

The phugoid notion is very lightly danped and, in the time occupied by
a few cycles of the pitching motion, s equivalent to the motion of a system wth
two degrees of freedom in neutral equilibrium This characteristic of the phugoid
notion, coupled with the small damping of the pitohing notion, could present novel
control problems since pilot or automatic action to control the pitching notion
could cause drift in the speed and altitude.

The quéliitative conclusions of Nemweiler are confirned by the detailed
anal ysis of Etkin 5 and. Rangi** for a vehicle with hypothetical characteristics
flying at a constant altitude. The analysis takes account of the effects of using

a rotating axis system and of changes in the radius of the flight path, which
are neglected by Nonweiler.  Because of the additional terms which these factors

introduce, the stability equation is a quintie, giving three normal nodes, two
oscillatory and one non-oscillatory. The characteristics of the oscillatory modes

are ghown in Figs. 30(a}, (b) and (c) with some particulars of the hypothetical

vehicle./
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vehicle. (The difference between the danping curves for the phugoid motion for
the vehicle with air-breathing engine, and for the vehicle with rocket engine,

is aresult of the assuned variation of thrust with altitude for the sirbreathing
vehicle.)

The val ues of frequency paraneter given by Etkin's analysis can be used
to estimate the order of magnitude of the maxi num frequericy paraneters that are
likely to be met in practice, except for vehicles with very low wng |oadings.

This result arises fromthe fact that 1t can be shown, by a dinmensional argunent,
that the frequency paraneter of the pitching oscillations of a vehicle is

i ndependent of vehicle size and speed, and 1s dependent only on the aerodynam c
characteristics, the altitude, the weight |oading, and the inertia properties.
The hypot hetical vehicle 13 sufficiently representative in these respects.

In general terms, the frequency of the pitching oscillations of a

vehicle is given by:
M
£ oo ’—“ oo (3.8)
T

B

where M, 1s the aerodynamc stiffness an pitch and Iy is the vehicle noment
of inertia.

Then, if the aerodynam c coefficients are independent of speed,

’ pU>Shb
f o 2
me

wher e Ky is the radius of gyration of the vehicle, and the frequency parameter

2xib pSb
k = — o . . i3.9)
U il 4y

Y

From equation (39)it can be concluded that the frequency parameter is
independent of the velocity of the vehicle, and depends only on the vehicle
characteristics and the altitude. It decreases with altitude.

For geonetrically and inertially simlar bodies, since

S « B?,
m o ob Wwhere ¢ is the vehicle density,
and ISI « b,

it follows from equation (3.9)that

k cc vp/lo - .. (3.10)

From equation (3,10), it can be concluded that the frequency paraneter
is independent of the vehicle size, and inversely proportional to the square root

of/
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of the vehicle density or density ratio, or for bodies of the same size it varies
inversely as the square root of the weight |oading. The vehicle considered

by Etkin has g weight |oading of 30 1b/ft®; this is rather low for practical
vehicles so that, by this criterion, the frequency paraneters in Ref. 43 are
probably higher than woul d usually be found except for vehicles using |ightweight
lifting structures. An estimate from Etkin's results of the frequency paraneters
for vehicles using a |ightweight surface is conplicated by the change in the form
of the vehicle, but one would expect fromequation (3.10) that it would be of the
order of the square root of the ratio of the weight [oading of the lifting
surfaces in the two cases, and this ratio would be of the order of three to one

The argunent in the preceding paragraphs sets an upper linmt {(from
Ref. 43) of 0+01for the frequency paraneter of the pitching oscillations of
nost vehicles at hypersonic flight speeds, rising to 0-03 or nore for a vehicle
using a lightweight lifting structure

3.1.2 Re-entry flight

A general analysis of the stability of a vehicle nmoving in a steady
re-entry or exit trajectory, conparable to that of Etkin for the case of steady
orbital flight, has not yet been carried out. Such an analysis would be
difficult because of the time dependence of U, p and y (the flight path
angle) in the steady tragectory, and the dependence of the aerodynam c coefficients
on Mch nunber

Refs. 45 to 4.8 give analyses, of increasing generality, of the problem
of the pitching oscillations of a vehicle about a mean re-entry trajectory. The
papers are chieflytconcerned Wi th the history of the pitching oscillations
following re-entry wath an initial angle of incidence and/or pitching rate,but_,
in the course of the anal yses, the ¢endition which governs whether the oscillation
grows Oor decays is derived. The equations are Sinplified by the onmi ssion of
terms which are small or have a small effect on the pitching oscillations, and
they are expressed in terns of wind axeg since this makes it sinpler to handle
a large, changing nean angle of attack.

It is assumed that the equations of motion of the vehicle can be
separated into a set representing notion along the steady trajectory and a set
representingpitchingoscillations about this trajectory. 'This assunption is
confirmed in the paper by Fine 42 in which the full equations are solved
numerically, and it is shown that pitching oscillations up to anplitudes of 10°
have a very small effect on the nmean flight path and speed of the vehicle if
its static margin is large.

Anong the analyses available, the nmost general solution of the
oscillation equations i S given by Sommer and Tobak in Ref. 48, The solution
which they obtain enables the history of the oscillation to be calculated for
an arbitrary trajectory under the assunptions that the drag is independent of
the angle of attack, but the other aerodynamc forces very linearly with angle
of attack, and all the aerodynamc coefficients are independent of Mach nunber
except the pitching noment coefficient.

The equation describing the pitching oscillations derivedin Ref. 4B is
Ei‘l' pl(t)&+f3(t)a=0 0 (3.11)

where a is the oscillatory angle of attack and
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where Cp. is the rate of change of pitching monment coefficient Cy with time
rate of gﬁange of angle-of-attack paraneter,  ab/U.

Comparison of this equation with that for the short period notion of
an aircraft in level flight (Ref. 42: Section 6.7) shows that the equations are
the same, apart from the time dependence of U and  and the factor

a us d pUS
— (cLa —_— ) in the stiffness term f5(t). The factor — (CLa —-_‘> can be
dt 2m at N . e T

shown to be negligible in conparison with the other terns (Refs, 47 and 49) SO
thaet 1% 1S to be expected that the frequency at a given altitude will be close
to that for level flight., This is confirmed by Kistler and Capalongan in

Ref. 51 where they give the results of analogue studies of the notion of
hypervelocity vehicles.

From the solution of equation (3,11),it can be shown that the
requirement for convergence of the oscillations i s that

1 b 2 mg 1 B 1 Gy (s)
K = —|-Cp +(—>(Cm+0-):l<-1+(——>siny[-—+--+
(1] q Dg -
CD o CDS q gp gp sin vy C’ma( S)
wher e q is the free-stream dynamc pressure 3p U?, coo (3.12)

s is distance along the flight path,
B is density paraneter in p = p,e”FR,
y flight path angle to local horizontal

5(Ca,)

as .

The paraneter K occurs also in the equation for the short period

motion of an aircraft in level flight (Ref. 42: Section 6.7). The convergence
criterion is then

Cﬁa

K < 0. . (3.13)

It can be shown from equation (3.12) that the conditions of re-entry
flight introduce a destebilising influence from decelerating effect of the drag
of the vehicle, and a stabilizing effect from the rate of increase of air density.

After they have established the equations of motion of a vehicle and
the convergence criterion, equation (3,12), Sommer and Tobak exanine the
oscillation histories of a range of lifting and non-lifting vehicles for a

range of entry conditions to give exanples of the significance of the danping
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criterion. Figs. 31 and 32 are taken fromthe report to show the behaviour of
non-lifting vehicles:  although the report is principally concerned with manned
vehicles for which the peak acceleration is 11+5g, which limts the initial
flight path angle to a maximumof 4°, one case of an unmanned trajectory with
y3 = 22° and the peak deceleration reaching 60g, i s included for conparison.

The conditions assumed for calculating the steady trajectories are

(a) constant aerodynanic coefficients

_
(b) U, = —= = 1 corresponding to entry from circular orbit at about
VR 80 miles. U =initial speed: vgRs = circular

orbital speed.

(¢) h; =400 000 ft =initial altitude
1
ik

(a) p = p(,e"ﬁh po = 00027 slugs/f+? g =
23 500

(e) WCDS = 30 1b/ft?.

Fig. 31 shows graphs of critical values of the paraneter K

W B 1
Kerit., = ‘1+<—)Siny —+-(1-3) |, N AT
where u = ratio of horizontal conponent of flight velocity to circular orbital

speed. Equation (3.14) is the formin which the convergence criterion is obtained
for the condition of constant aerodynanmic coefficients. The significance of

the curves can be seen froman examnation of one of them= the y; = 22°
trajectory. Di vergent oscillations occur when the value of K for the vehicle

is greater than ¥, , thus for a vehicle with K = =04, this trajectory

shows stable Oscilla.%lons down to 110 000 £+, divergent oscillations from

110 000 £+ to 70 000 £t and then convergent oscﬂlatlons agai n.

The condition of small y; differs fromthe condition of yi = 22°
since it does not need as large a negative value of K to prevent divergent
oscillations, and a region of divergence is |ikely to start at a greater
al titude and, for small negative values of k, to persist for a [onger time.

Fig. 32 shows graphs of the growth of oscillations along a re-entry
trajectory h decreasing, «, being the anplitude of the oscillation and
@; the initial anplitude of oscillation. For K = -2 convergence is found
for large and small ys; for K = 0 a region of divergence is found, as
indicated in Fig. 31, but the rate of growth 1s so snall that the final
anplitudes remain snall fractions of the initial anplitude; for K = +2
there is a region of rapid divergence for all values of w; and, because of
the greater altitude range over ich divergence occurs, }1{3 vehi cl es operating
at small entry angles reach an anplitude ratio of 1at a significantly greater
altitude than for the case of y; = 22°,

Figs. 33 and 34 show the effects of small amounts of lift. It was
mentioned in Appendix | that the use of |ift in re-entry can reduce the maximum
rate of deceleration considerably and Fig. 33 shows that the effect of lift
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is to reduce further the range of values of X for which divergence occurs, but
to increase the altitude at which divergence starts when 2t does occur. Fig. 34

shows that, as in the non-iifting case, K = 0 does not show serious divergence
but K = +2 does.

Confirmation of the qualitative validity of the sinplified anal yses of
re-entry which have been discussed is provided in Ref. 53 ,where the results are
presented of a 6-degree of freedom numerical analysis, using experinmentally
determned aerodynamic forces, of the re-entry motion of a blunt uncontrolled
vehicle, This analysis shows; an particular,-that provaided the lift-curve slope
Cr,, of the body 1s positive, the notion converges even for zero value of

(Cmq + Cm&).

3,1.3The ef fect of aerodynam C non-linearities

In Ref. 51, Kistler and Capal ongan give the results of studies, using
analogue conputers, in which they considered the effects of aerodynamc
non-linearities on the longitudinal dynamic notions of hypervelocity, high-
altitude vehicles. They found that reasonable accuracies coul d be obtained
using linear aerodynamcs if the coeffacients were determined at the trim point
of the vehicle, and provided the perturbations were small. For large perturbations
accuraci es began to drop rapidly, The study included |evel flight and shal |l ow
re-entry conditions and one of the conclusions of the report was that artificia
danpi ng of the vehiecles would be necessary, and this might well overshadow any
non-linear aerodynamc danping characteristics.

Laitone and Coakley, in Ref. 50, examine the effect of aerodynamc
non-linearities on the pitching oscillations of a vehicle flying in a re-entry
tragectory, The results do not affect the conclusions that have been drawn
about snall anplitude notions, but they show that a steady lamat cycle oscillation
can exist and that conditions are possible in which oseillations will grow af
the initial disturbance exceeds a certain amplitude.

3.2 The Lateral Behaviour Of the Hypersonic Vehicle

In Ref. 52 Nonweiler has al so examined, qualitatively, the lateral
dynam ¢ behaviour of a hypersonic vehicle, The analysis is carried out in the
sane way as for the longitudinal behaviour: the approxamate roots for the
stability equation are found under the assunption that terns involving the
relative density, u, are large. The roots show the usual nodes: normally,
two non-oscillatory nodes and one oscillatory, the 'duteh roll'. An exam nation
of the factors governing the nodes shows that it should not be difficult to
ensure convergence of the non-oscillatory modes and danping of the dutch roll
even for slender bodies at high ineidences. But the period of the lateral
oscillation is likely to be rather shorter than that of the pitching oscillation
for slender bodies at high incidence - typically 3 seconds for a value of KL
of unity, but since such bodies are not likely to be oFerating at large incidences
for low values of K, at lowaltitude, the maxinum values of frequency paraneter
will probably remain~of the sane order as those for the longitudinal pitching
oscillation.

The | ongi tudinal behaviour of a hypersonic vehicle flying a re-entry
path has been found to be not essentially different fromthat of the same vehicle
In level flight and it is reasonable to suppose that the same result would be
found for the lateral behaviour. The rate of decay of the lateral oseillation

will/
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will be affected by a stabilisaing influence fromthe rate of increase of air
density and a destabilising influence fromthe drag of the vehicle, as is the
case for the longitudinal pitching motion

3.3 Discussion and Concl usions

For hypersonic venicles in level flight maximum frequency parameters
are likely, in general, to be small, with values of the order 0+<04,The rate of
deoay of the pitching oscillation due to aerodynam ¢ danping is | ow and artificial
augmentation of the danping is likely to be necessary and, as a result of this,
the aerodynani ¢ danmping of a vehicle is not likely to be a significant design
criterion for normal operation

For re-entry flight the position is simlar. The frequencies of
pitching oscillation at a given altitude are the same as those for level flight
at that altitude. The rate of decay can be greater or smaller, depending on the
specific case, since additional factors are brought into play, but for practica
vehicles it is small. The convergence factor K is unlikely to be negative
and the worst case ocecurs when 1t is close to zero and CD 1s large = for thas
case davergence Of the notion occur towards the end of the trajectory but the
final anplitude is small (Figs. 32 and 34),

There are sone cases for which fairly accurate val ues of aerodynamic
damping m ght be inportant. The nost likely oases are when it 1s necessary to
know accurately the notion of an uncontrolled re-entry vehicle because of
requi rements of heat shielding or parachute deployment, and when it a1s necess%ﬁy
to design for emergency manual control of a vehicle. Since it has been shown
that oscillatory motions With low or even negative danping can be manual |y
control | ed, energency manual control appears to be a feasible design objective.

APPENDIX | V/
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APPENDI X IV Review of Flutter of Hypersonic Vehicles

Differences between the flutter behaviour of vehicles flying at
hypersoni ¢ speeds and the behaviour at |ower speeds will be due to changes in
the nature of the air flow at hypersonic speeds and the changes in the
stiffnesses O the vehicle structure which result fromheating of the structure.
This report is mainly concerned with the effects of changes in the nature of
the flow but the inportance of the second factor should be borne in mnd and
1s illustrated an a general way by Fig. 32(3), (b) and (c) fromRef. 55,

In Fig. 35(c)the lower line repréesents fhe value of the speed paraneter U/bma
along the flight profile, and the upper line represents the val ues of U/%ma

at which flutter could occur, Its inportance i s enphasised by the fact that
for somefl|ight profiles the maxi mumheating rate can be conbined with the
maximum valueof dynam c pressure on the trajectory - as in the case of the
supercircularl|ifting re-entry trajectory shown in Fig. &4,

4.1 Types of Flutter and Values of Flutter Frequency Paraneter

The types of flutter than can te expected on hypersonic vehicles are
discussed in Refs. s5and 6. These discussions and the concl usions presented
here can, of course, only be deductions from the likely structures of the
vehicles based on general technical considerations. On this basis, flutter
involving vibration nodes of the main structure 1glikely to be met only on
slender vehicles for hypersonic cruise, and lifting re-entry vehicles having
high L/D and, if it occurs, it seenms |ikely to be of a forminvolving the
| ongi tudi nal bending nodes of the body, even for the w nged vehicles. The
sl enderness of the wing, and the degree of integration of wi ng and body, nmake
it unlikely that vibration of the wing can be considered in isolation fromthe
response of the body. Sinpl e bending-torsion flutter could occur for certain
types of control surface. Panel flutter could occur on lifting surfaces, heat
shields, and in inlet and propul sion ducts for power units, where panels are
heavily | oaded, aerodynamcally and thermally. Menbrane flutter and | arge
anpl itude distortions could be met if |ightweight structures are used to give
lift or drag in re-entry. It is suggested in Ref. 12 that, for slender bodies,
using representative values of the overall structural frequencies, an upper
linmt of 3000 rad.ft/sec can be set on the product wb where w = 2nf, b is
a representative length and f is a frequency, so that at ¥ = 5,

U = 5000 ft/sec, the maxinmumvalue of frequency parameter will be about 046,
but values are likely to be much |ower than this an nost practical cases.

For bending-torsion flutter of control surfaces it seens |ikely,
again using representative frequencies, that the maxi mum value of b will be
around 600 rad,ft/sec, giving maxi num frequency paraneters around O<4. And, in
a simlar way, it can be deduced for panel flutter that frequency paraneters
based on a representative length of the order of the wavel ength of the pane
mode, will be in the range of values up to 0-5.

4.2 Flutter Investigations

Most of the reports of analytical and experinental work on flutter

at hypersoni ¢ speeds that have been published have been concerned with the
standard basic gage of flutter of a two-dimensional section with pitching and
ﬂtmging flexibilities, or the closely comparable case of flutter of a rigid

alf sing wth root flexibility in pitching and plunging or flapping, both of
which are related to the bending/torsion flutter O wings. There has been a
nmuch smal | er anount of work on flutter of |ow aspect ratio wings with chordwise-
bending as well as torsional and spanw se-bending modes of vibration, and with
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flutter of slender bodies.  No information has been found on panel flutter at
hypersonic speeds, but it seens reasonable to assume that, because the
deflections involved will renain very snall, the values of the hypersonic
similarity paraneter MO will be small and, consequently, tentative conclusions
about hypersonic panel can be drawn on the basis of extrapolations from results

?E | ower Mach nunbers. Norel evant information has been found on nenbrane
utter.

, 4.2.1 Bending-torsion flutter of wngs

Chaw1a56 has used piston theory to third-order ternms in the steady
displacements and tofirst-order terns in flutter disturbances tO carry out a
parametric survey of the flutter of the typical section al supersonic Speeds.
He presents the solutions of the flutter determ nant in a way which enabl es
the effects of a nunber of parameters to be distinguished. The results are for
Mach nunbers less than 5, but the trends shown should continue to apply up to
Mach nunbers at which piston theory becomes invalid.

Morgan, Runyan and Hucke157 start with a general discussion of the
nethods for predieting unsteady airloads in flutter calculations at high Mach
nunbers.  They investigate the effect of thickness in Some detail through
conparisons between |inear and nonlinear theories, and show the effects of
frequency ratio, centre of gravity and elastic axis positions, and aerofoil
shape.  Finally, they consider refinements to the aerodynamic analyses to allow
for strong shook waves, changes in specific heats and other rcal gas effects,
andto provide a neans to deal with blunt-nosed bodies.

Runyan and Nbrgm158 give conparisons between theoreticel and experimental
flutter results for two rigid rectangular wings with a root nDuntin? givin
pitching and fl appi ng flexibilities, and some results showing the effect o
aerodynam ¢ heating on the flutter of a solid wing.

Zartarian and Fbu26 have used third-order piston theory to investigate
the flutter of the typical section about a non-zero mean incidence, and the
effects of aserodynamic nonlinearities on flutter of the section at zero mean
i nci dence

Hanson59 gives the results of an extensive experimental investigation
of thickness and nose bluntness effects. Many of the results are for Mch
numbers below those considered in this report, but they are useful here because
they show the trend of the flutter altitude paranmeter with Mach nunber, and
enabl e the values at high Mach number to be compared with the values in the
critical transonic flutter condition. The thickness effects are conpared with
piston theory results

GoetZGO extends the experimental investigation of bluntness effects

in Hanson's report to a Mach nunber of 45, andconpares the results wth
predictions by Newtonian piston theory54 and Newt oni an theory.

Young61 gives the results of an experinmental investigation of the
effects of thickness and nean incidence, These investigations show that there
are a pumber Of aerodynamic paranmeters affecting the flutter Of the section.

Chaw1a56 deraves the followi ng expressions for the flutter speed and
frequency using piston theory:
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For sinple harnonic motion, and piston theory aerodynanics
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where & is the thickness ratio of the section, and ag is the nean incidence.
These results show three aerodynamc paranmeters: uM, an altitude paraneter;

M&, a thickness paraneter, and Mxg, a mean incidence parameter. This result
is specifically for a double-wedge section, but Chaw a shows that the results

are the same for nmore general sections, though the thickness paraneter applies
only within a famly of shapes, of course. The significance of M§ and M,

Is in agreement with the results of hypersonic small-disturbance theory (Appendix I1)
and of experinent, which show that these are simlarity paraneters for hypersonic
flows.

Besi des the paraneters from Chawla's analysis, other factors have been
found to be significant. These are profile shape, the effeet of strong leading-
edge shock waves, |eading-edge bluntness, and aerodynamic nonlinearities., The
effects of changes of M, Md, Mag and these other paraneters on flutter of the
section will now be discussed.

(1)/
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(i) Altatude paranmeter. uM

Figs. 36 and 37, reproduced from Ref. 56, show the relatienships
between flutter speed, frequency ratio and altitude paraneter (pM) for a
flat plate, twe-dinensional section. The dependence of flutter speed on
altitude is obscured in some degree by the formof the paraneter uM, since
M is dependent on V.. The relationship is a little clearer if the ;M is
re-expressed as

m Vf

= T, T . (47)
4b?  Yypp

Then, fromthe graphs, it is clear that, for & given altitude (P and p
fixed) and frequency ratio, there will be a unique flutter speed and, since
uM 1nereases Wi th al titude independently of any change in the flutter speed
(because of the changes in p and p), the flutter speed itself nust also
increase wath altitude. The relationship of flutter speed and altitude can
be expressed nore explicitly,in an approxinmate form by making use of the
fact that, in Pig, 36, V¢ can be.shown t0 vary approximately as (uM)=*,
Using this relationship 1% 1s possible to wite, for the flutter speeds at

t wo altitudes

Vf2 ()2 ]15

- = 1 (4.8)
vf1 (P—M)z
and, if equation (4.8) 13 squared, and the follow ng substitutzons are nade:
vf Po Ho
¥ = —35 p = L. (4.9)
a P
where suffix o refers to a reference altitude,
Ve (s Pi)
then 2 = veo (4.10)
Vf1 (a2p2)
Me (a2 P1) %]
and 2 = = — , vee (4.10)
My (a3 p2) 12

If, then, the changes of p and a wath altitude are known, curves
of flutter speed and Mach nunber against altitude can be plotted. Such curves
are shown in Fig. 38(a) and {b). In Fig. 38(b) use is made of the fact that,
for 35330 ft ¢« h < 105 000 ft, ay/a = 1, and

v M

TT A cor (4.12)
v M

£, £, P2

- - - e wm em mr mm Er w e ar S mm e e M Em e Er W E e e ve T o W W M = E m oam m w w W=
- -

*Phag result can al so be seen fromequation (4.1) since
wifox Ty - T,(1-¢)] » (KL +T4) for M large.
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The theorectical deduction that uM 1s a paraneter affectang flutter
has not been directly investigated, but sone confirmatigs of it can be found
in the results of the experiments by Hanson59 and Goetz®V These results are
grven in Figs. 42and 51. They show that, far a given aerofoil at a given Mach
number, the results at wdely different values of u and a show the sane
values of the parameter bwy//a at flutter. Since -

bwafﬁ bmaJE.Mf
= ... (4.13)
a Vf
the constancy of this paraneter is equivalent, for a fixed Mach nunber, to the
relation

Vo o Vi L (4.14)
found by Chawla (equation (4.8)).

Fig. 44, derived fromthe results of both Hanson and CGoetz, for
pointed |eading-edge sections, shows that the use of the paraneter
vV
£ - correlates results fromnodel s of different thickness at different
bo,, A
Mach nunbers, but havaing the same val ue of M&, provided M > 2, which is a
normal |ower limt for the use of piston theory, in any case. This figure will
be discussed again in a | ater seection, but 2t seens to support quite well the
theoretical result for the significance of uM.

(i1) Thickness paranmeter M5

The paper by Mrgan, Runyan and Hucke157 glves a comparison bet ween
measurenments of the Iift and centre of pressure position on a 5% thick double-
wedge aerofoil in steady flowat M = 686 and calculations by linear theory,
whi ch does not include thickness effects, and by third-order piston theory and
a second-order solution due to Van Dyke for flow round an oscillating
two~dimensional aerofoil, whach do include these effects. The results are
reproduced in Fig. 39. There is little difference in the |ift coefficient up
to an incidence of about 12 degrees, but there is a considerable error in the
prediction of the centre of pressure position by linear theory. Since the
centre of pressure position is an important flutter paraneter (see, for exanple,
Ref. 62, Section ¢,5¢)it 15 to be expected that the thickness of an aerofoil
may have an inportant influence on its flutter behaviour at high Mach nunbers.

The effect of thickness is shown by the theoretical flutter boundaries
of Fig. 40, taken from Ref. 57,from which a conparison can be made between
those theories that take account of thickness and linear theory which does not.

For the particul ar val ue of bendin?-pitching frequency ratio the influence of
thickness | S destabilising, The effect of thickness depends, to sone extent,
on frequency ratio and on the positions of the elastic axis and centre of
gravity positions - this 1s shown in Fig. 41(a)-(d), also fromRef. 57, but, in
general, for wy/w, <561 the influence of thackness 1s found to be
destabilising. Chawla’® gives sinmilar results.

These theorgtlcal predictions are supported by the experinental results
of Hanson39 and Young®!, which are shown in Fag. 42, The two sets of results are
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plotted together only for convenience; strictly, the results of Young are not
conparable with those of Hanson since Young's neasurenents were nade On a wing

of aspect ratio 29 with pitching and plunging freedons, whereas Hanson's
measurements were on a wing of aspect ratio 1.owth pitching and. flapping

freedons, and parameters |ike frequency ratio and axis position were significantly
different for the two sets.

Runyan and I\/brgan58 give experinental evidence of the inadequacy of
linear theory in results for the flutter of a doubl e-wedge wing and a thin plate
wing wth root flexibilaty. The results are given in Fig, 43. They show
clearly that three-dimensional |inear theory, which takes account of tip effects,
I's quite inadequate to predict the experinental results.

Al'l of these results show the destabilising effect of increasing
thickness for particular conditions. Chawla's anal ysi s suggested a genera
relationship between flutter speed, Mach nunber, and thickness since the result
of his analysis using piston theory showed that, af other paraneters in the
problemwere the same, the flutter speed depended directly on the product Mé.
This conclusion _can be suppgaied experimentally for M » 2 by the results
given by Hanson”? and Goetz The models in these tests were constructed so
that they mere identical in mass and mass distribution. and in axis position

v 1
only the wedge thickness varieda. In Fig. L4 the parameter e S is

buw uM
plotted against M&, Since Chaw a has shown that V. 1s propSrtional to VM,
the effect of this variable should be elimnated fron1Fhe flutter speed paraneter
used. It can be seen that the results do collapse quite well on to a single
curve, confirmng the significance of both paraneters MS and uM.

(iii1) Incidence

Chawla56 investigates theoretically the effect of the incidence
paraneter M, on flutter of a double-wedge section. Seme results are given
in Fig. 45. Under the conditions given in the figure, with M6 = 0+25, an
Initial angle of attack giving Ma, = 0+25 has a small stabilising effect for
0 < wp/w, < 1+0 and a smal | destabilising effect for wp/we > 1+0. For a zero
thi ckness aercfoil, Chawl a found that an initial angle of attack reduces the
flutter speed by a constant anount: for My, = 0-25 the multiplying factor
18 0+982,

Zartarian and FBUZG investigate theoretically the effect of initia
incidence at considerably greater values of May fOr a wing wth § = 0.05.
The result is shown in Fig. 46. Up to Mu, = 0:25, the value of the flutter
velocity parameter is reduced by a factor of about ©-99; for My, = 0+50, whaich
represents only a noderate incidence even at ¥ = 5, there is a reduction by a
factor of 0+95,

These results recei veconfarmation fromt he experamental investigation
of Young61, from which Fig. 47 is reproduced. Both theory and experinment show a
decrease in the flutter speed parameter with incidence and show agreenent on
the amount. The results indicate sone effect of thickness: for Ma, = 0+10and
M& = 4+1. the theoretical reduction factor is about 0-93; for Mag = 0<10 and
Mb= 1-5,fhe factor is 095,

The good agreenment on the effect of incadence on flutter speed between
theory and experiment in Ref. 61, is not repeated for the effect on flutter
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frequency. Theoretical calculations show slight increases with Mag, but
experimental results show slight reductions

(iv) Profile

The effects of profile shape were investigated in Ref. 57 by
calculating the stability boundaries at M = 5for four aerofoils: a &% thick
symetrical double wedge; a L% thick NACA 6500k profile; a flat plate;
and a 4% thick single wedge. The results are reproduced in Fig. 48. The first
two profiles have al nbst coincident boundaries at high values of frequency
ratio, but they diverge bel ow wp/wy = 4°0: thickness in these oases 1s
destabilising i N conparison with the flat plate except above wp/w, =~ 1-2. The
single wedge is |ess stable than the flat plate throughout the wy/wy range but
the boundary curve 1s very simlar to that for the flat plate.

(v) Local flow conditions

The third-order piston theory, and Van Dyke's second-order theory
used in Ref. 57,assume isentropic conditions. They do not take account of the
presence of strong shock waves, of entropy variations, and of effects of high
tenperature such as the reduction of the ratio of specific heats. It is
suggested in Ref. 57and by Miles!® that, for a small displacenent notion |ike
flutter, account could be taken of these effects by applying piston theory for
the unsteady displacements in the local flow conditions found by a steady flow
anal ysi s. The effect of trying to take local flow conditions into account in
this way s not clear fromthe evidence available. In Ref. 57the flutter of
a 4% thick doubl e-wedge aerofoil is considered, using standard shock wave
relations to calculate the local Mach nunber, density, and veloecity: the
results are shown 1n Fig, 49, In this case, the effect of the |local flow
conditions is stabilising; the size of the effect depends on the val ues of
wy/wy, and increases with Mach nunber. On the other hand, a simlar calculation
carried out for the conditions of the experiments of Ref. 61, showed no
significant differences fromthird-order piston theory results. There is no

obvious explanation for this difference. The frequency ratios in Ref. 61 are
close to Q+«4, and a ratio of o<k in Fig. 45shows large differences between
"local flow' "and third-order piston calculations; the only difference in the

conditions lies in the axis position which, for Ref. 58, 1s at md-ohord, and
for Fig. 451s at 40% chord.

(vi) Bluntness

It was pointed out in Appendix Il that, under hypersonic flow conditions,
even snal |l degrees of blunting can have significant effects on the flow over a
body and that |arge degrees of blunting are likely to be used on the noses of
vehicles and the | eading edges of l[ifting surfaces to reduce the rate of heating.
In Ref. 57an attenpt is made to assess the effect of nose blunting on the
flutter of an aerofoil by using Newtonian inpact theory to calcul ate pressures
over the blunt nose region ug to the point where the surface slope becomes smal
enough for piston theory to be applicable, and using piston theory over the
remai nder of the surface. The results are shown in Fig. 50, where they are
conpared with a calculation by,piston theory. It 1s seen that Newtonian piston
theory usually predicts greater stability than does piston theory alone. Piston
theory is inapplicable, strictly, +to-the blunt nose region of the section, and
this result indicates that it is |iable to give conservative results when used
on au empiracal basis for cal cul ations on blunt-nosed bodies.

Experi nent s/
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Experiments indicate that, up to certain limts of bluntness and Mach
nunber, nose blunting can have a stabilising effect on a ﬁimﬁlg section. Results
on the effect of 'nose blunting are given in Hanson9 and Goetsz 0, Fig, 5
summarises the results fromboth papers for one set of models. The significant
thickness effect in these tests is assumed to be related to the thickness/chora
ratio of the basic pointed wedge section, which has been subjected to blunting.
Al'l the sections used 1n the tests have the sane chord, so that the thickness
and chord of the wedge section on which the section is based increase with
blunting (see sketch, Fig. 51}, Up to about 10, nose blunting is stabilising
up to a nose radius of at least 3% chord, For a nose radius of 6% of the chord
divergence was met at values of the altitude paraneter greater than the flutter
values for the 3 aerofoil. There is a marked increase in the altitude parameter
when the blunting is increased from 1% to 3% at M = 154,

Goetz gives theoretical calculations by Newtonian theory, and by
Newt oni an-pi ston theory, for flutter at M = 45-4,Both calculations predict
satisfactorily the increased stabality for a nose radius of 1% as conpared with
a sharp edge, and the decrease of stability when the radius 1s further increased
to ¥, The theoretical calculations are shown conpared with the experinmenta
results in Fig. 52. The greater measure of agreement of the Newtonian theory
calculation with experiment for nose radii of 1% and 3% seems likely to be
fortuitous, sance the error that the caleculation shows for a nose radius of zero
indicates that it does not satisfactorily predict the pressure distribution on
the flat surfaces of the aerofoil.

The experiments al so show a reduction in the flutter frequency wth
ancreasing nose radius. This 1s small for the increase to 1%, but large for
the increase from41% to . This effect is not found in any marked degree in

the theoretical results.

(vii) Aerodynamic_non-linearities

Most of the flutter anal yses that have been discussed so far have
used piston theory to third order in the steady displacenents, but only to first
order in the unsteady displacements, so that the flutter equations were |inear
This means that allowance is nmade for the effects of mean incidence and thickness,
but that it 13 assumed that body surface slopes due to the oscillatory motions
are much less than those due to thickness and nmean incadence, and that May << 1.
Since, at large Mach nunbers, the econdition Mz, <¢ 1 may not apply even for @

very Small, it ag inportant to investigate how the flutter of a section is altered
when aerodynam ¢ nonlinearities are considered for the oscillatory displacements.
26

 Zartarien and Hsu“" investigate the effect of aerodynamic non-linearities
by carrying out a flutter analysis on a two~dimensional section w th third-order

piston theory applied to the flutter displacements, It 1s assunmed that the
actual displacements are still small, SO that structural non-linearities do not

appear, 1he flutter equations are then obtained in the form (terns allow ng for
non-zero NMean incadence are included.):

' 1 t - - 12 oyt t
éhl‘l+é2h;1+éahu+;4au+§5au+éau = {g-,hu +Zehla! + Lhla,
12 ] ] a2 h'a hcz [} h'Ea +éi h' 12
+C¢o°’u +§11auau+3§12u+éau +;“uau+z"15u u sh &,

tot 1,2 13 12 [
+ Liohlala + Gohled + L0l + Zooai a + Zaiolor + Zead ... (4.15)
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where h, and ay are the flutter displacenents in plunge and pitch, and the
1 a
primes denote the operator — —, The ¢oefficients Zy i nvol ve the characteristics
w, at
of the section, the nean inc:d ence, Mach nunber, and frequency parameter: there
are two sets of coefficients,one for the plunge equation, the other for the
pitch equation. These non-linear equations are first sinplified under the
assunption that, if the non-linearities are smll , information on the orders of
magni tude of terms can be obtained fromthe seolution Of the |inearized problem
and certain terns in the non-linear equations can then be neglected because of
their smallness. It is also assuned that the mean incidence IS zero. An
approxi mate analysis of the sinplified equations is then carried out. |t js
assumed, first, that if the section is flying at a speed close to the flutter
speed predicted by a linearized analysis, and is subjected to a disturbance,
1t Wil stabilize to a finite periodic motion and that this nmotion can be
represented. by

o .¢]
_ inwt - _ *
h = hne hh = O; h_n—h
N==00
. vee (4.15)
a:va elm)t a, = 0; a_ = a*
1 L n -n n
N==-co
where L* and q% are the conplex conjugates of hn and g.. rhb and g, are
allowed to be conplex so that it is possible to pliow phase angles between the
degrecs of freedom, but h, and a, can be shown to be real. For simple
harmonic notion (single frequency) |h,] and eyl are equal to one half of

t he corresponding amplitudes.

It is then assunmed that the fundamental harnonic of the two conponent
notions domnant in the flutter notion, and. the equations are found which ensure
that these conponents are balanced. Finally, if it is further assumed, on the

basis of a linearized analysis, that the phase angle between the h, and ay
motions is very small, the equations for the notion becone

w? iw w? iw
w(-a )= @ s @)« @] wl(-5 <) — G+ )
%‘ w mz w

24

+ (% + 305 éza)} = 0 cee (4.18)

where the coefficients £ are given below.
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A "flutter" speed and frequency can then be found fromthese equations

1n the usual wa
equations (4.16§ _
| arge nmean incidence ag if @

if a value is assuned for a,.
are the same as the linearized equations for flutter about a

is replaced by ag.

[t can be shown that

Since ¢ is, in fact,

one half of the amplitude of the notion, it follows fromthis analysis that the
flutter speed and frequency for an oscillation of |arge anplitude are the same
as for the linearized flutter about a nean angle of attack ag = ay. Fig. 46,
then, shows a boundary for the non-linear flutter case, es well as for the |arge



mean incidence case; but, for the non-linear case, it rePresents not a speed
above which smal |l disturbances will grow, but the size of the « conponent of
an unstable limt cycle oscillation for the corresponding speed. |[f the section
is flying at a speed corresponding to sone horizontal |ine of the figure and

i's subjected to a disturbance, the resultant notion of the wing will grow if the
anplitude of the initial disturbance is greater than the value of a given by
the curve (and h ), but it will decay if it is less

There has been no direct experimental investigation of the results of
this non-linear analysis. In Ref. 61, where the values of Mach nunmber woul d
make non-linear effects likely, some cases of limted-anplitude flutter after
a slow initial growh were experienced, and there were other oases where
finite-amplitude initial di sturbances were necessary before flutter occurred, but
this behaviour could be the result of friction or structural non-linearities.

Comparison Of Theory and Experinent

The results available suggest that piston theory for sharp-nosed
sections may give predictions of flutter as adequate as other nethods up to
quite high values of Mb and Ma; this is suggested especially by the results
in Young's report®! where MSp,y ~ 1°5 and Mg, ~ 1+7,

For blunt nose sections, it can be concluded fromGoetz's results 60
that Newtonian theory may be adequate to predict flutter speed, but it can be
used only on an enpirical basis; and that the Newtonian-piston theory, suggested
in Ref. 57,is likely to be no nore adequate than Newtonian theory in the
sinple form proposed = possibly this is because it does not take account of the
effects of the strong shock wave set up by the blunt nose, since attenpts to
take account of such effects (Ref. 57 and. Fig. 49) suggest that they reduce the
flutter speed. Both theories are conservative in their predictions.

One point energes fromthis review which is not strictly relevant to
its purpose, but which it may be useful to mske, This is, that it is difficult
to assess the adequacy of aerodynamc theories for flutter analyses from
conparisons between experimental results and theoretical. predictions of flutter
speed and frequency, because of the structural uncertainties in the experinenta
conditions. greater attention needs to be paid to defining these conditions.
Such uncertainties are shown nost clearly in Hanson's report?d, where the choice
of structural nodes to be used in the analysis has a considerable effect on the
agreenent between theory and experiment, but it is noz clear which choice is
more appropriate structurally; and in Young's report ®1, where the level of
structural danping assumed in the analysis made & very large difference to the
agreenent of theory and experiment on flutter frequency.

4.2,2 The flutter of slender configurations

It was pointed out earlier that flutter of the main structure of a
hypersonic vehicle was likely to involve chordwise bending nodes of the wings,
and bending modes of the body. Information on flutter of these kinds is meagre,
The general forns of the equations involved are established in Ref. 62: for
sl ender bodies they are considered in Chapter 7 and for |ow aspect ratio lifting
surface flutter with chordwise bendin%%nodes in Chapter 8. But the aerodynanic
problems involved tare not exani ned. at can.be established. fromthe available
references is that chordw se bending nodes can be inportant in the flutter of
low aspect ratio surfaces, so that aerod ¢ theories must provide adequate
pictures of the pressure distribution®®s95 and that the free-free flutter of a
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sl ender delta invelvang predom nantly |engthw se nodes, is possible65. And sone
i nformation can be found on the adequacy of available theories giving the
aerodynam c | oad's on slender bodies for flutter analysis from experinents on
the flutter of slender rigid cones on pitching and plunging flexible suppor s63

(i) Low aspect ratio Wi ngs

. ~ Ref. 65 examines the flutter of rectangular |ow aspect ratio cantilever
wings with bending and torsion modes, and one chordwise deformation node of
vibration, using piston theory.  The report considers the cases of a solid
biconvex section and a section of the same shape built up to have a uniform mass
distribution. The results of the anal yses are summarised in Figs. 53 and 54 -
they show clearly the inportance of the chordwise node. For the built-up wng
the critical value of the flutter speed parameter, and the adequacy of an analysis
using only bending and torsion nodes, depend very much on the chordwise frequency
ratio fa/fy. The two-node analysis is markedly unconservative for val ues of
the frequency ratio less than 1-4; for values of the ratio between 4.4 and 2.5
the two-node analysis is conservative. For the solid section W ng the variation
of the speed parameter with frequency ratio 1s |l ess marked, and an anal ysis
using only bending and torsion nodes is unconservative throughout the range of
chordwise frequency ratios.

Ref. 64 describes a nethod for the flutter analysis of a | ow aspect
ratio wng which includes canber deflections. The nethod uses piston theory. |,
In Fig. 55 (Ref. 58) results using this nethod are conpared with theoretica
predictions neglecting canber deflections, and with experinent. As mght be
expected from the results of Ref. 65, the comparison suggests that the
i mport ance of including camber nodes of deflection depends on the particul ar
condi tions; for the 60° | eadi ng-edge sweep nodel the accuracy of the theoretica
prediction using camber nodes is no greater than for a two-node anal ysis; but
for the 45" nodel, the two-node analysis shows much larger errors.

Ref. 65 also gives a much sinplified analysis of a slender delta w ng
in free-free flutter: the delta wing was a flat plate with uniform nass
distribution and only | ongitudinal bending nodes were included. The anal ysis
was generalised to include a range of apex angles using piston theory and
slender body theory:  piston theory was assumed to apply in the range 2 < M < 7
for supersonic |eading edges for which M 2 cosec €, where a IS the semiapex
angle of the delta; and slender body theory was applied for semiapex angles up
to ME < 05, There was no sinple theory that could be applied for the range
0.5 ¢« Me ¢ 1. The first three longitudinal elastic nodes were used in the
anal ysi s. The fact that the mass distribution was uniformneant, in the piston
theory analysis, that there was no coupling between the rigid body modes of
pitching and plunging and the el astic modes; and for the slender body theory
anal ysis, that coupling occurred only in the virtual inertia terns, which were
negligible for large enough values of the density ratio paraneter. Throughout
the range of the enalysis by slender body theory, divergence was found to occur
before flutter: for the piston theory analyses flutter was found in all cases,
and the predomnant node in the instability depended on the density ratio. For
sma1l values of density ratio the predom nant node was the fifth node (the third
elastic node); for large values of the density ratio, it was the fourth node
(the second elastic node). The results of the anal yses are sunmarized in Fig. 56
for large values of density ratio. E, is an effective stiffness based on the
frequency of the second erastic mode and the mass per unit area of the plate.
The piston theory anal yses show val ues of eritical dynamc pressure parameter
that are constant with apex angle at a given Mach nunber dewn to an apex angle
given by M sin g = 1; and values of critical pressure parameter that increase
with Mich nunber.  The slender body anal yses show val ues of eritical dynamic
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pressure both for divergence and for flutter (if it could occur) that decrease
with apex angle. The marks on the curves show the limts of application of
sl ender body theory at the Mach nunber shown, fromthe criterion k¢ 0+5.

Ref. 65 goes on to discuss the extension of the analyses to cases with
spanwise deformations, and to wing body conbinations. It points cut that, for
these cases, the nodes and frequencies will be dependent on the semiapex angle

e and that, for low values of e, the node frequencies will be ¢lose toget her,
whi ch woul d make 1t necessary to include a greater number of modes in the
anal ysi s

(ii) The flutter of slender bodies

It has been shown in Refs. 66 and 78 that a feasible technique can be
devel oped for measuring the aerodynami ¢ stiffness and danping on flexible slender
model s oscillating in |ongitudinal bending nmodes, and it is shown in Ref. 67
that flutter tests on such nodels are al so possible using adnmttance techniques.
The tests in these references were all carried out at Mach numbers |ess than 3,
and consequent|y do not provide information relevant to this review, but they
are noted because the techniques are relevant to the flutter problens being
di scussed

The only information related to the flutter of slender bodies at
hypersoni ¢ speeds comes from anal yses and experinental results on a support
giving flexibilaty in plunging and patching, These results have direct, relevance
to the possible use of slender cones as control devices mounted at the wing tips
of hypersomic vehicles, and also provide a sinple test of the use of available
aerodynamc theories

Ref. 57 considers the flutter of a 45° conical shell wth pitching and
pl ungi ngflexibilities, The aerodynanic forces for the analysis are found
assum ng quasi -steady conditions and using a theory due to von Karman . The
forces on each section of the cone are assuned to be those on the corresponding
section of a continuous cone with overall downwash, w, equal to the downwash
at the section, and the forces on this corresponding cone are found by the
von Karman theory. Since the theory is only valid for w/a < 1, where a is
the speed of sound, the calculation iS limited to M¢ 7°5. The results are
shown in Fig. 57.

Ref. 63 gives the results of experiments on a series cf nodels of a
7-5° semiangle conical shell. The nodels had variations of axis position, c.g.
position, and frequency ratio, and neasurenents were made over the range
M= 146 w0154, The mpjority of the results are for Mach numbers of 4:62-0
and. 3-0, but the experinental and theoretical results suggest that this kind of
flutter may be relatively independent of Mach nunber. This conclusion is
suggested nost clearly by Fig. 58, which shows the results of tests on one
model and. a comparisen Of the results with theoretical predictions. The
experimental results for the | ow Mach nunber tests are seen to group quite
closely together and the single result at M = 15-4 falls in closely with
them (the fact that the test mediumag heliumfor the high Mach nunber shoul d
not be very significant for this conparison, as the pressure distrabution is
likely to be the sane as for air. The theoretical curves from Van Dyke's second-
order slender body theory68, and for Newtonian theory, also agree closely.
Van Dyke's theory nust be applied in a quasi-steady manner, but it appears to
give closer agreement with experiment than other theories used in the report,
for the low Mach nunber tests;  Newtonian theory should give satisfactory
results on a cone shape at M = 15.
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The conclusion drawn fromFig. 58 is supported by the results shown
in Fig, 59 for a geometrically simlar cone wath different axis Position ana
C.8e position, at M =2, 3 and 683, There is rather more scatter of the
experimental points, but there is still a strong suggestion that the flutter of
the cone is not greatly affected by Mach nunber. Calculations by Newt onian
theory and by shock expansion theory were made for the M = €483 case, but only
poor agreenent was cbtained. The shock expansion result is not shown in Fig. 58

The failure of the analysis using shock expansion theory in Ref. 63
may pe related to the fact that the flowis predomnantly conical, despite the
unst eady components, and such flows violate a condition for the use of shock
expansion theory for three-dinmensional bodies.

For the flutter cases in both Figs. 58 and 59 the analysis was found
to be affected by the inclusion of a factor fromthe arag of the cone, The
qualitative effect of this is shown by one curve in each Figure.

The large variations of flutter parameter shown in Fig. 57 for axes
around the md-length are not shown in Figs. 58 and 59. This may be rel ated
to the particular theory used since the results of applying von Karman s theory
in Ref. 63 also showed a dependence of critical flutter parameter on Mach nunber.
But direct conparisons are not possible because of the different characteristics
of the cones used: the frequency ratio of wp/wy = 0*5, used in the investigations
for Fig. 57, was not investigated in Ref. 63 and, in fact, Figs. 58 and 59 suggest
that flutter would not have been possible at a frequency ratio of 05 for the
model s used in those investigations.

4.2.3 Panel flutter

There appear to be no published results of investigations of panel
flutter at hypersonic speeds but, since it can be assumed from structural
considerations that displacements will remain very small, the hypersonic
simlarity paraneter for the displacements, M5, wll remain small, and
consequently a1t is reasonable to draw tentative conclusions about panel flutter
at hypersonic speeds by extrapolation from experiments and piston theory analyses
for lower Mch nunbers.  This is the basis on which this section has been
witten.  Surveys of information on panel flutter at |ower Mach nunbers are given
in Refs, 74 and 76.

(i) Flat panels

Anal yses for Mach nunbers between 2 and 5indicate that the effects
of changes in the fluid dynamcs of a perfect gas due to increased Mach nunber

do not cause a significant change in the critical thickness ratio for flutter

This is illustrated by Figs. 60 and 61, from Refs. 69 and 70, for a buckl ed
two- di mensi onal panel clanped front and rear, and for & rectangular panel sinply
supported on all four edges. These results show, for Mch numbers greater than
about 1+2, a small increase in critical thickness with increasing Mach nunber.
But there are two effects occurring in real flight situstions which could make
panel flutter s significant problem at hypersonic speeds. These effects are the
| arge increases of dynam c pressure which can occur in the local flow conditions
on vehicles, especially on the lifting surfaces of vehicles at |arge angles of
attack and in intake ducts: and aerodynamc heating effects, which would [ower
the elastic stiffness and could set up compressive stresses in panels, or even
cause buckling. Typical local fl ow conditions which coul d occur are shown in
Fig. 62 fromRef. 71. The significance Of the conditions can be gauged fromthe
critical dynamic Pressure parameter A found by Hedgepeth in Ref. 70:
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2g6°  12(1-17)
A= : SN (S
Vi - Et®

where, for a panel of given shape and |o0ading conditions, A has a fixed val ue.
It follows that:

t? t?

q q
— oc , or —_ e« — for M large. ... (4.18)
w7
¢ crit Vi1 ¢ erit ¥

Then from Fig. 62, at M = 20 and a = 27° (as an exanple) it can be
seen that the local g/Mcan be as nmuch as 20 times the free-stream val ue
Theoretical predictions of the effect of conpressive stress on the flutter of
panel s confirma reduction in flutter dyna$§c gressure with conpressive stress
up to the point at which the panel buckles 205

At |ow supersonic Mach nunbers above M= 41-4 the boundary |ayer does
not appear to have very much effect on the flutter characteristics75 but the
very thick boundary |ayers at hypersonic Mach numbers may have a greater
i nfl uence.

(ii) Cylindrical shells

Early anal yses had suggeste§6that | arge thicknesses were needed to
prevent flutter of cylindrical shells and that the flutter critical thickness
increased quite rapidly with Mch nunber.

Practical experience has suggested that these results were pessimistic
and this has been confirmed by recent theoretical and experinental work. Early
theoretical investigations, which had not included the effects of materia
dampi ng or of danping effects fromthe boundary |ayer, had found that the
critical node of flutter of a finite cylinder was one with no circunferentia
nodes. But nore recent results published in Ref. 74 show that this node of
flutter is strongly affected by both material danping and aerodynami ¢ danpi ng and,
as a result, the critical node becomes one with circunferential nodes and the
critical thickness and dependence on Mach nunber are considerably reduced. These
results are illustrated by Figs. 64 and 65. The results were confirmed by the
results of experinents reported in Ref. 7,

It can be concluded, then, that for cylindrical shells, as for flat
panel s, the perfect fluid dynam c effects of high Mach nunber are not likely to
cause any inportant changes in the flutter conditions, but there will be
inportant effects in practice fromheating of the structure causing reductions
in material properties and conpressive stresses, fromthe local flow conditions,
and from the influence of the thick boundary Iayers. It seems likely that the
effect of the thick hypersonic boundary layers will still be stabilising but
some investigation of this is needed.

4.3 Discussion and Concl usions

Fromthe information which has been collected in this review, it seens
l'ikely that the principal causes of any degradation of flutter behaviour on
vehi cl es operating at hypersonic speeds will be the degradation of the stiffness
properties of the structure and the high local values of dynam c pressure, rather
than any |arge changes in fluid dynam c behaviour.

Most /
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Mst of the information relates to the pirtehing and plunging flutter
of a twec-dinmensional section, or the similar problem of fthe bending-torsion
flutter of a cantilever Wing. There is still a need, an this field, to
investigate the use of theories applicable to Mch nunbers higher than the
piston theory range, and to find an adequate method for estimating the
aerodynam ¢ forces on a section With a blunt |eading edge; experimentally,
there is a need for studies that explicitly take account of possible non-li'near
behaviour, and for further studies on the effects of incidence. But this kind
of flutter is likely to be of conparatively minor inportance for hypersonic

vehicles, and there is a great need for nore analytical and experimental work
onthe flutter of |ow aspect ratio wings and slender bodies, on panel flutter,

and on nenbrane behaviour.

Wrk onslender bodies and | ow aspect ratio wings is likely to be
analytically conplex.  For pointed slender bodies and wings wth supersonic
leading edges, shock expansion theory should give suitable estinmates of the
aerodynamc forces but 2ts use in flutter analyses may be complicated. For
bl unted nose bodi es an adequate aerodynamic anal ysis does not exist (Appendix |1I),
Experimental work on these bodies and wings could include tests on rigad bodies
flexibly mounted to give a sinple check on theories, but would need to be
extended to the use of flexible podels.

In the case of panel flutter, a theoretical investigation of the use
of piston theory in a steady flow field with large entropy gradients would be
useful since these are the conditions which usually apply downstream of the
strong nose shock on a hypersonic vehicle, and experinents would need to be
carefully planned to show what fluid dynamc effects, if any, require special
investigation,

Al the experinental results which have been reviewed show clearly
the need in future experinental flutter studies for very careful control of the
experimental conditions if reliable and precise information is to be obtained

on the nerits of aerodynamc theories used in flutter analyses.

Finally, the point should be made that the values of aerodynamc

danpi ng coefficrents at hypersonic speeds tend to be low, flutter frequency
paraneters tend to be small, and the density raties at which flight takes place

are high. In these conditions the inportance of aerodynamc danping in flutter

analyses may becone negligible (Ref. 62, Section 6-6) "and it would then be
possible to use quasi-static air forces and the calculation of these forces

woul d be correspondingly simplified., Cearly, this is a mtter which should be
i nvestigated.
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Nomencl at ure

(Some ternms are not included in this index if
they are used only locally)
local speed of sound
free-stream val ue of speed of sound

aspect ratio of wing (span/nean chord)

representative length of a body (3¢ for a wing, ¢ for a body)

mean chord of a w ng
drag coefficient of a body [Drag/%pU®s]

lift coefficient of a body [Lift/3pU?S]

rate of change of lift coefficient with angle of attack: 2Cy/da

pitching monent coefficient

rate of change of pitching nonent coefficient with angle of
attack:  aC /9

rate of change of pitching nonent coefficient With tine

ab aC,
rate of change of angle of attack parameter, —: ———
U  a(ab/U)
rate of change of pitching nmonent coefficient With pitching
. 6b aCy,
velocity parameter, we : ———
v a(év/m)
P~ Py
pressurecoefficient
1 2
2P

maxi num body di amet er

Young' s Modul us

effective stiffness based on frequency of second elastic node
frequency of oscillation

frequency of natural mode : i = itfor first mode, etc.
gravitational  constant

structural danping factor

altitude



Xcrit
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displacenent of section in plunge (flutter)

| '

non-di mensi onal form of B :
3
pr

pitching monent of inertia of a body about its centre Of gravity
2xfb
frequency parameter ——e— ‘
U

convergence factor for pitching oscillations of a vehicle flying
on a re-entry path defined by equation (3.12)

critical value of X in equation (3.14)

2 pSR
pitching radius of gyration of a body about its oentre of gravity
body length

panel length = in flutter studies

ratio of |ift to drag

see definitions of derivatives (i =1to 4)

mass of vehicle = Appendix |11

nmass per unit span of two-dimensional section

mass of wing or cone Appendix 1V
mass/unit area O panel

free streamor flight Mach nunber U/a

flutter Mach number

Mach nunber of boundary layer in approximate calculation of
boundary | ayer danping in Figs. 64 to 65.

see definitions of derivatives (i=1 to 4)

number of circunferential nodes in the flutter of a cylindrical
shel

md-plane stress in panel (Fig. 63)
| ocal pressure .

free-stream static pressure
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- P
non- di nensi onal pressure: p = —— (equation (2.24))
poJJ“’sinza
amplitude of oscillatory non-dimensional pressure at body
P
surface: b (Fig. 9 and equation (2.63))
1 M
2PY%o0

incremental  pressure

fluid velocity in variational method (equation (2,42))

dynamic pressure q = %p ®
radial cc-ordinate (Fig. 7

| ocal radius of body (Fig. 7)

radius of gyration of a wing section in sem-chords: E; =
radius of flight path fromoentre of earth _
initial value of radius in re-entry problen11 Fopendix 111
cylindrical shell radius = Appendix IV

radius of spherical cap nose = Fig. 7

Reynol ds number based on U and ¢

Reynol ds nunber based on distance from|eading edge
distance along flight path in re-entry problem

entropy = Appendix |1

representative area of vehicle = Appendices Il and IV
tinme

transformed quantity (equation (2.13))

non-di nensi onal value of t, (equation (2.23)) Appendi x

transformed quantity (equation (2.36))

t hi ckness of panel or shell = Appendix IV
| ocal tenperature (°R)

free-stream tenperature

streamtenperature i medi ately behind shook wave

I
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di sturbance velocity in x-direction or in E-direction
transformed quantity (equation (2.7))

non-di nensional value of u (equation (2.24))

hori zontal conponent of vehicle velocity in re-entry problem
ratio of uto -JEEI, the circular orbital speed at radius R,
free-streamvelocity or flight speed

v/(en)?

initial flight speed at re-entry

u/( gRi)%’

di sturbance velocity eamponent in y-direction or in ~direction
non-dimensional value of v (equation (2.24))

disturbed volume of fluid in variational problem (equation (2.42))
flutter speed

downwash velocity at surface

di sturbance velocity conponent in z-direction or in &g-direction
non-di nensi onal value of w (equation (2.24))

wei ght of vehicle

co-ordinate axes (Fig. 5)

transformed quantity (equation (2.7))

transformed quantity (equation (2.13))

normalised CO-ordinate x/¢ or x/c

normalised co-ordinate x/(nose |ength)

distance,in chord lengths, that the elastic axis of a section
lies behind the | eading edge

value of x at eentre Of pressure

distance, in chord lengths, that the ¢.g. of a section |ies
behind the el astic axis

di mensi onl ess amplitude of shock di spl acement Ts/Ro

¢ amplitude Of displacenent 4 curvilinear co-ordinates
(Rig. 7 and equation (2.64))
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instantaneous angle of attack

anplitude of oscillatory angle of attack

mean angl e of attack

VT

ratio of specific heats

flight path angle to local horizontal Appendi x 11

flight path angle at start of re-entry

quantity specified by the largest of the thickness ratio, nean
i nci dence of body or surface, and the dimensionless anplitude
of the time-dependent notion = Appendix |

the thickness ratio of aerofoil section - Appendix IV

apparent boundary |ayer thickness - wall to 99% free-stream
velocity point (Figs. 64 and 65)

prefix denoting a small variation of a quantity in the variationa
probl em (Appendix V)

sem -apex angle of delta wing
density ratio across shock wave
cc-ordinate axis (Fig. 6)

. . _ } Appendi x ||
non-di mensi onal value of & (equation (2.23))

= wh/wf (Appendix 1V)

co-ordinate axis (Fig. 6)

non-di mensi onal value of 7 (equation (2.23))

steady surface slope neasured fram chordline or body axis
value of & at the nose

order of magnitude of perturbations

relative density of vehicle (equation (3.1))

mass ratio of wng

= m/4b%p for tnc-dinensional section; mis nmass per
unit span b = ¢/2

=n/lb*spfor a wings m is mass of wing b = ¢/2
3 = span of wing

local viscosity

viscosity of free stream



- 67 =

v Poi sson's ratio « Appendix IV

g co-ordinate axis (Fig. 6)

g non- di mensi onal val ue of E (equation 2.23))
E' transformed value of E (equation(2.36))

P density
Poo free-streamdensity

P non-di mensi onal value of p (equation (2.24))
c vehicle density

T natural unit of time (equation(j.9))

¢ velocity potential

¢ angular co-ordinate in Figs. 7 and 18

X viscous interaction parameter in equation (1.2)
w circular frequency radians/ses = 2xf
w0y circular frequency of the ith node
Wp circular flutter frequency
o /0,
@, oiroular bending or plunging frequency
W, circular torsional frequency

Definitions of flutter parameters

Vf

— di mensionl ess flutter speed

bw

a
b Vi .
flutter altitude paraneter
a
Ve
— flutter speed/altitude parameter

bwaJp

Definitions/



Definitions Of derivatives

£
L, = -2
2k
(£y = 4i3gy)
Iy = :
2k®
Lz = Kig for piston theory
Ly = -B
k
me
My = - 2
2k
(m, = h.kgm.)
My - - D ]
k2
Mg = kg for piston theory
2m
M = -9
k

. h =
where Lift = kp U2 b kgelmt[— (Lo + iIm) + oo(Ls + in)J
. b

h |
and pitching nonent = -@Ui bgk"’ei“’t[b— (M + iMy) + 2o(My + :LM.,)]

The quantities L4, Li, M/, Mz, My, M{ refer to the |eading-edge axis (x = 0).
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FIG 2

(a) Bluff reentry shapes :
L/D=I1/2 (Ref. 6)

(b) Bilunted slender reentry shape:
L/ID = | (Ref. 6)
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From Fig.3.8 of Ref. 26
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From Fig. 3.13 of Ref. 26
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From Fig. 3.18 of Ref.26
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FIG. 23

From Fig. 3.26 of Ref. 26
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From Fig. 28 of Ref. I7
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From Fig. 2 of Ref. 48
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From Ref.48
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From Fig. 6 of Ref.48
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From Ref. 55
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FIG 35(c)

From Ref. 55
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From Fig.8 of Ref. 56
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FIG. 39

From Fig.2 in Ref. 57

0-24 o) I [
0. Van DYkQ and
5% thick o linear theory
0-20 / 7
0-16 A
CL
012
’ 0 Experimernt
Van Dyke
0-08 3 - ——- 3rd order piston theory
——-- 2nd order piston theory
- - - - Linear theory
0-04
0 4 8 12 16 20 24 28
05 - --- -
xp
0-4 -
o)
0% % 8 12 16 20 2 28

Anglo of attack, a

Experimental and theoretical lift and center of pressure in two-dimensional

steady flow at M = 6'86




FIG. 40

Froa Ref 57
5 %o = 04 [-0-42 FOle
Xq = 0-1 CG.
7
Piston
——— — Van Dyke Y/
—-———-=- Linear /
6
5
bwq
g
4
3
2
0 2 4 6

Fluttar boundarias for a 6 par cant biconvax airfoil (g = 250,

Tal = 0:25, wyfwy = 05)




FIG. 41 (a)

From Ref 57
0'7 6
— 0
- - - 3%
—  — 60
06 o
0 §i
f/-\
0-4 ’// i o -\§\
bm“ ! /
- //
03 _ /’ / / N\

VA
\ h
\
AN
<<
//I
w4
VY
/7

Unstable

of—/

0 04 0-8 1.2 16 2
Wp [0g

(a) xo = 04, Xy = 0

Flutter boundaries showing thickness effects on biconvex
aerofoils (M = 5, g = 150, fo° = 0-25)




FIG. 41 (b)

From Ref. 57
0'7 6
A
_____ o
—— 6%
06
| - -
0.5.___.___
,"'\\
P4 /,-\§
. VA BV
04 #— X
s /
buwg /
0-3 p="
7
N/
. /
Unstable
ol
0 0 08 “h/“"a -2 -6 2:0

(b) Xo= 0-5, X4 = 01

Flutter boundartes showing thickness affects on biconvex

aarofoils (M= 5. 4 = 150, l;.f2 = 025




FIG.41 (¢)

From Ref. 57
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FIG. 46

From Fig. 5.1 of Ref. 26

1-60
Result from
linear solution:

1'55:/ “sso

ﬁ —]
150 h‘"““\
|'45 \-n
‘[ I-40
1-35
M
bmaﬁ 1-30 N
M =200
-25 X, = 045
X, =010
1-20 “z
reé = 030
.15 Qh’“o: = 0-50
é = 0-05
{-10
1-05
1-00
0 0-02  0-04 0-06  0-08 0-0

o:l(or as) rodianr —

Flutter boundary for a typical wing section. Flutter
index V¢ [ bw, fp vs steady mean angle of attack a,
or semi-amplitude of torsional oscillations a,




FIG. 47

From Fig. 5 of Ref.61
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FIG. 48

From Ref. 57
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From Ret. 57
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From Ref. 57
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FIG. 51

From Refs 59 & 60
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FIG. 52

From Raf 60
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FIG. 53

From Ref. 65
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FIG. 54

From Ref. 65
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From Fig.5 of Ref 58
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FIG. 56
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FIG .57

From Ref .57
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FIG. 58

Data taken from Ref. 63
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FIG. 59

Data taken tram Ref

. 63
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FIG. 60

From Fig. 12 of Ref. 69
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Thickness ratio, t

FIG. 6l

From Ref. 70
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FIG. 62

From Ref.71
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FIG.63

From Ref. 70

2
..le,z 18 12{1-v )
Panel parameter = —2(—- where D= 3
72D b Et
1400
— prid)
1200 -— -
4-mode VA —
surface theory AL »
oo BAb
l / 4 )
800 \4 / /S
gD
600
400
200
0 \
-5 -4 -3 ~2 -1 0 [ 2 3 4

Ponel parameter

Variation of the ratio of critical dynamic pressure to bending rigidity
with the parameter—N, 12/(n? D)-2z(L/b?)




FIG. 64
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Atter giving general Information on hypersonic flows, flight conditions
and vehicles, the report reviews work on the analysis of unsteady hypersonic
flows, analytical gtudies of the dynamic stablllty of hypersonic vehicles,
and experimental and analytical work on flutter at hypersonle speeds. 0
this basis it then examines the need for research and suggests 1ines that
research should follow.
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hypersonic flows may be adequate for the practical purposes of dynamlc
stablllty and flutter analysis. .It is suggested that research should be
directed to finding the degree or inaccuracy Involved |~ quasi-steady
estimates of the unsteady aerodynamic forces, and the gensitivity or
dynamic stablllty and flutter analyses 10 lnaceuracles |I” these forces.
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In structure, the report consists of the general survey and In strueture, the report cons ists of the general survey and

conclusions, together with & number Of Appendices whieh review various eonclus Ions, together with a number of Appendices which review various
aspects in detail end which give the Information and references on which aspects in detail and which give the information gnd references on which
Lhe statements in the general survey are based. the statements in the general survey are pased.
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sspects in detail end which give the information and references on which
the statements in the generzl survey are based.
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