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Measurments sre presented of the spectral density of contributions 
to the turbulent energy balance as a function of longitudinal wave number. 
The energy transfer through the spectrum hss been deduced, taking advantage 
of the apparent smallness of the pressure diffusion, and some of its components 
have been measured directlyz transfer in the direction of decreasiq wave 
number occurs in some parts of the flow because of the influence of the large 
eddies, which d ominate seveml of the processes observed. The overall energg 
balsnceis alsodiscussed. 
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1. Introduction 

The study of the turbulent enera balance is logically the next 
stage in the investigation of a turbulent flow after making the measurements of 
intensities, spectra and correlations which help to form one's basic ideas about 
the structure of the flow. The particular value of such a study is in 
formulating and testing hypotheses about the relation between the turbulent 
shear stress and the velocity field. It is well tiown, for instance, that the 
Prandtl mixing length relation can be given physical meaning, under highly 
restricted circumstances, by considering the enera-balance equationl, and can 
be &proved by an allowance for the effects of energy diffusionz. However, the 
ordinary enerw-balance equation, relating production, dissipation, diffusion 
and advec-tion9 makes no use of any information about the eddy structure that 
one may have gleaned from the correlation measurements mentioned above, nor 
does it tell one very much more about the eddy structure. In this paper we 
have attempted to remedy these defects by considering the energy-balance 
equation for a given wave numberand at a given position in the flow: we call 
this the "spectral energy balance". The overall energy balance expresses 
conservation of energy in a unit volume in physical space: the spectral 
energy balance expresses conservation of energy in a unit volume in physical 
space, for a given unit volume in wave number space. Roughly speaking, the 
terms in this equation are the spectral densities of the terms in the overall 
energy-balance equation together with extra terms representing energy transftzr 
to the given wave number from all other wave numbers. As used in this paper 
'Ienergy transfer" means transfer into a volume in wave-number space and not 
across a surface. Extra terms also arisebecause typicallengthand 
wave-number scales change in the ZQ direction, leading to a redistribution 
of energy among different wave nLmibers: they will be ignored in the discussion 
(though not in the calculations). 

In isoizopic turbulence, the spectral enera balance reducea to 

(- rate of decay) = gain by energy transfer - dissipation . ..(I) 

which can be further simplified, using the condition of isotropy, by 
integrating over the surface of a sphere of radius k in three-dimensional 
wave-number space (see Fig. 1) -to get tie energy balance for a given 
wave-number ma@tude. This is the well-hewn equation3 

- = T(k) - 2&E(k) . ..(2) 
at 

which is related to the Fouri= transform of the von K&&n-Howarth equation 
for the veloci$y correlations. Various theoretical forms for the energy 
transfer rate T(k) have been put forward and comparisons with experiment have 
been made by several workers, the most recent being Uberoib- who deduced T(k) 
by difference from direct measurements of E(h) behind a grid, deriving 
E(k) as -$-k(a/ah)E(kt ). We have not been able to make any measurements 
in the locally-isotropic range in the present experiment because of the 
smallness of the 5patial scales, sothatwe cannot make comparisonswith the 
theoretical predictions for T(k). 

In shear flow, the anisotropy of the energy-containing turbulence 
makes a wave-number-magnitude spectrum less suitable, and it is far eaier 

experimentally/ 
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experimentally to consider a one-dimensional spectrum (equal to the 
three-dimensional spectrum integrated over all values of the other two 
wave-number components), obtainable as the Fourier tran&orm of correlations 
with separations in one co-ordinate direction only. We have chosen the 
longitudinal slxxtrum,partlybecause the well-defined Qrge eddies" ti the 
D&&Q layer5 are strongly periodic in the stream direction and partly because 
it is possible to represent the longitudinal wave-number spectrum of scme of the 
less imprtant tams by the frequency spectrum without gross error (in the 
present experiment we have done this only for some of the spatial diffusion 
terms). It does not seem to be profitable to oonsider a speotral energy 
balance entirely in terms of frequency. 

We have measured the kue wave-number spectra of tie production and 
sdvection ixnns, and three of the nine energy-transfer terms, in the quasi-plane 
miring layer of a 2 in. diameter jet at a Reynolds number Urn X/V of 7 x I@ 
(Urn = 336 ft/sec, x = 4 in.): it was shown in Ref. 5 that the effects of 
axisymme~a1-8 negligible at this distance frwn the nozzle and that the flow is 
to a good approximation self-presdg. The experimental arrangements were 
the same as in Ref. 5 and are more fully described in the unpublished version 
of that paper, NPL A8ro Rqort 1054 (1963). The difficulties encountered in 
measuring the triple correlations are discussed in Appendix II. 

We have not tried to mwsure the pressure-velocity spectra, which 
contribute to spatial diffusion and to interchange of energy between the 
velocity components but not to energy transfer from one wave number to another, 
at least in an incomRres=le fluid. We have not been able to measure the 
dissipation, but it is worth noting that, at a sufficiently high Reynolds number 
for the energy<ontaZng and dissipating ranges of wave number not to overlap 
apFeciably, the dissipation is nearly equal to the energy transfer through a 
one-djmensional wave number at the upper end of the energy-containing range. 
!l%e dissipation could thus be deduced from a complete set of energy-transfer 
spectra without measuring correlations at sufficiently small separations to 
obtain the microscales: this would be unutterably tedious but it is possible 
with present-day hot-d teohniques, which is more than can be said for microscale 
measuraents in a small-scale mixing layer. 

!I!he stank account of spectrsl representations of turbulence is 
Batchelar's (Ref. 3, Chapter 2 and part of Chapter 3). Alessrigorous account 
which gives more of the practical details is that of Ltiey and Panofs&, and 
a useful summary of elementary results for ranti proceases is given by Goodman7. 
Tkeatises on communication theory, Brownian motion and so on provide some 
background material but care is needed to distinguish those results that are 
valid ody for processes with normal (Gaussian) probability distributions. 

2. The Cverall Energy-Etalance Equation 

2.1 Demiption 

The equation is obtained8 by taking the momentum (NavieH3tokes) 
equation for the component of velocity in the xi direction, multiplying by ui 
averaging,assuming that the density is ccmstant, and szmrningover 
i = I, 2, 3. We also multiply by two to olesr fractions: some authors 
cmittiis step. The equation ten be divided into two parts, one exprx?ssing 
thebalanceof energy in themeanflow,which isnotparticular~r.ffa~veein 
th8 present Case, andone for the turbulemtenergybalan~e~ 

latter,/ 
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latter, which add up to zero (see Fig. 2(b)), and which are by custom taken as 
positive for loss of energy and negative for gain of energy, are 

(i) the advection 

in dimensionless9 self-Rreseming form (see Notation: terms are summed over all 
values of implicitly repeated suffices) which is the net rate at which the mean 
flow convects turbulent enerm out of a unit volume fixed in space: ~II most 
psrts of the mixing layer the two terms are of the same si,gn and the same order 
of magnitude. 

(ii) the production 

5e first term is usually much the larger: if one considers the 
"energy equation " for the three components of the intensity separately before 
suming over i, it appears that this term contributes only to z9 but this is 
not a useful piece of information because pressure-velocity products 

2 p aui/axi (d ose sum is zero) immediately redistribute the energy. !Che 

production occurs because of the net extension of vortex Znes and sheets by 
the mean velocity gradient9 or, to take another point of vtew, by the working 
of mean velocity gradients agajnst Reynolds stresses. 

(iii) the diffusion 

a 

-C 
Fix-- a 

2- + u?u 
) t 

cc- 
+- 2- + uau 

k 
11 iz 

P aa P ) 

or - - 

which is the rate at which energy is transferred to the other parts of the flow 
by pressure forces and by the velocity fluctuations thmselves9 ux 
representing the t-port of I$ kinetic energy by ua fluctuations- 5e 

two terms in each pair of round brackets are of the same order of ma@itude: 
triple velocity products can be measured by ordinary hot-wire techniques9 but 
little progress has been made in measuring pressure fluctuations within the 
flow. 5e two derivatives with respect to n are of the same order of 

ma&tude/ 



magnitude but the factor n is small compared with unity, so that the first 
group of terms, representing diffusion in the ZQ direction, is much the 
larger. Ita integral across the shear layer is zeros this is a useful check 
of experimental values obtained as the difference between the other terms in 
the energy balance. 

(iv) the vzl~3cous term 

u aau. 
2v i IL 

ax ; 
. [I + O(l/Re)] = e[l + O(l/Re)] 

where e is the dissipation, cr rate of conversion of turbulent energy into 
heat (see p.29 of Ref. 8). The three-cYLhmu3ional ape&-of 

% n c-j 5~ Pj times the xpdrum of ut EO that dissipation occurs in the 
ax d 

smallest eddies. 
aui !a 

Itisextrwnelydifficulttomeasure - whichmustbe 

obtainedas 
[ 

c ) ax 
a= J 

7 uix uix+r 
ar o L J 

) 1 (see Section 3.3) 

3 r=O il 
Anoverallenergybslance for the mixingla erwas derivedby 

Townsend8from themeasurementof LiemandLaufer. 5 The advection term 

was calculatedbyassumingthat 3 = &(z+z)* !I!he dissipationwas 
dm 

obtained from measurements of - I&L(o,r,o) which showed that the microscale 
d2 

was constant from about w = - 0*07 to 7 = 0*06: it was assumed that the 
microscalewas constantrightacross the layer. !Fhe value of dissipation 
obtained seems to be too smsll., because the diffusion term (obtained by 
d3fference) does not integrate to zero: actually the advection term plotted 
in Ref. 8 appears to have the wrong si@ in the outer part of the layer 
(~e~t~i~~o~d~~a~e~~~~~~l~~~~e~ except at 
J? = 0)butthe difference doesnot account for the discrepancy in tie 
diffusion terme 

We have been unable to measure the dissipation or even to see if 
themicroscale is plausiblyconstantrightacross thelayer,because of the 
verysmall~cale~ tie flow: the length 2x(va/a)1J', which is of the order 
of the wavelength of the smallest dissipating eddies, is only 0.002 i& near 
v =Oatx=4in Thix ia about a tenth of the length of the hot wires, 
andcorresponds toafrequacyof iMc/swhich is about2Otimes the limit 
of the anmeters. !Che dissipation rate is of the order of l@ times that in 
Qberoila experiment~gridturbulence, andi. ashi&aa 2Opercentof the 
maxjmwndissipationnear thewallina~lay~with afme-stream 
velociQ equal to u l Attempts inalarger-xcale~layer inamakeshift 
opa-jet tunnel men& exchanged inadequate spatisl xesolution for excessive 
integrating time. Wehave ~~~b~nforc~~~e~e~~~~~'s 
measurments, increasedby a factordetenninedbyrequiring the diffusion 

(difference)/ 



-6- 

(difference) term to integrate to zero. 

proportional to (qa)3'2 or r3'a 
The dissipation :LS very nearly 

except at the extreme edges of the flow, 
indicating that the dissipation length parameter is roughly constant across the 
flow. In the present experiment we have found that the sum of the frequency 
spectral densities of the three intensity components, +-jiC'd'cJ J measured at 

%% = 300 and normalized by the mean square intensities (and supposed to be 
representative of (aui/ZIxL)a/u?J rises fern 54 units at n = cl-1 to 
8.2 units at 7 = - O-05: nearer the inner edge of the layer where the 
fluctuations become irrotational the value decreases again. !&is result may 
be affected by the frequency response of the apparatus and it is doubtful if 
the spectral densi% at tix/TJc = 300 has much relation to the spectral 
density kn the dissipating range at roughly ten times this frequency, so that 
the best course seems to be to use Laufer's data. 

The only other major difficulty, which for various reasons held up 
this work for several months, was our inability to measure the Us (radial) 
component of mean velocity with any assurance of accuracy, a most infuriatjng 
snag in view of the comparative simplicity of the measurements. A 
plausible T&-component profile, measured with a linearised X-probe was given 
in NFL Aero Report 1054, but it dtifered more than might have been expected 
from the theoretical profile obtained from the continuity equation on the 
assumption of exact self-preservation, so that we decided to repeat the 
measurement. However, we found that a spurious positive US component was 
induced at the wires by the asymmetrical passage of the shear flow over the 
probe body, the streamlines being more highly curved on the side where the mean 
velocity was least. Exactly the same considerations account for the 
"displacement effect" of pitot tubes. We ftially decided to use the theoretical 
profile to calculate the advection. 

2.2 Results 

The resulting energy balance is shown in Fig. 2(b). !I!he mte of 
enera loss by diffusion near the centre of the layer is now smewhat smaller 
than the dissipation instead of being twice the dissipation as in Liepmann and 
Lauf'er's work, although the distribution of diffusion across the layer is still 
not known very accurately because of the approximations made in derivjng the 
dissipation. We have measured 2 and &'u.a directly: the diffusion by 
triple correlations estimated by assuming z = g, is shown for comparison 
in Fig. 2(c). In view of the various approximations made in obtajning the 
energy balance, the most that one ought to say is that the pressure-velocity 
diffusion is fairly small compared with the triple-correlation diffusion, or 

This is a most interesttig conclusion, for which one would like to 
have stronger evidence. Unfortunately, there are no reli&ble measurements of 
pressure-velocity correlations at a point in turbulent shear flow, but it is 
possible to make an indirect estimate of their magnitude which supports the 
above conclusion. Wooldridge and Willmarth1o showed that the correlation 
coefficient between the pressure fluctuation at the surface beneath a boundary 
layer and the ua fluctuation within the flow was small compared with the 
correlation coefficient between p and aua/%: cursory measurements in the 
near field of a jet5 support this, and if the same is true for measurements of p 
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alla ua at the ssmepoint, then, since p a-/at/m G 1 
FE, Y 

neoessarily, ~/igcz xc 1. It is lmown that VP-/P qa is nearly uniQ 
in the boundary layer and in a wall jet (comparing the pressure fluctuation 
measurements of Alley and Hodgsonll with the turbulence meas'.nements of 
Bradshaw and Geel2), so it is probably near unity in a mixing layer, or even 

less because of the absence of a wall. Since cfl&i$ is of order unity 
h the mixing layer, itfollowsthat E/P 5 xx 1 to the sameorder that 

iz&px xx 1. 

a 
The longitudinal diffusion, - (2 E/P + qaut), (Fig. 2(d)) is 

a&l 
much smaller than the lateral diffusion, but the fact that it is even noticeable 
near the edges of the flow implies that the boundary-layer approximation is not 
very accurate in such a rapidly-spreading flow as the mixing layer. 

The new energy balance data presented here are qualitatively the 
same as Liepmann and Laufer's and do not warrant much extra comment. The rat&3 
of diffusion to dissipation in the central region is still extremely high and 
constitutes a useful argument against believers in local energy equilibrium of 
turbulent flows. The presence of large advection ma diffusion terms at large 
negative n, where the production and dissipation are negligible;is even more 
noticeable here than at the high-velocity edge of a boundary layer or wake. 
This implies that the irrotational field near the edges of the flow is more 
intense, compared with the turbulence proper, ti in other flows, because the 
strong, large eddies produce strong, large-scale irrotational fluctuations which 
penetrate well outside the fully-turbulent region. This argument does not 
conflict with the suggestions above that the pressure fluctuations within the 
turbulent flow are no larger, compared with the mean-square intensity, than in 
other Q-pes of shear layer. 

3. The Spectral Energy-Balance Equation 

This equation is derived from the Navier-Stokes equations in 
Appendix I and written out, almost in full at the end of that Appendix. It is 
also derived, but not discussed, by Hinze 6 The terms which correspond to the 
advection, production, diffusion and dissipation need no furlher eqlanation. 

The usual convention fm the sign of the energy transfer 'eii('I b 
that it is positive when enera is enter* 
(see equations (I) and (2)). Th&~~~iYZGZ~n~YZZ1inkC + dk 

energy-containing range and positive in the dissipating range. The physical 
significance of the lxiple correlation 

from which TJii w is derived, ma,y be explained as the net rate of extension, 

of vortex lines and sheets contributing to the ui covariance with separation g 
(eddies larger than r), by a change in u4 over the distance rG This 

extension (or contracticm) is responsible for a transfer of energy from a given 
value of & to higher or lower values. If z = rl, k = &a 

when/ 
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When 4 = 1, the one-djmensional Fourier transform of 
a 

- bl -u;)u.u = ; with respect to r converts the operator a/&+1 into a 
an 

I 

factor Ike (where symbol i denotes fl in contrast to suffix i) so that 
the spectral density Tic is simply ki t&es the Fourier sine transform of 

(Ui4)U.U!. When 8 11 = 2 or 3, however, the derivatives with respect to r4 

have to be obtained directly by measuring the correlation at a number of values 
of r-2 near ra = 0, for each of a range of values of 3 , which represents 
an unacceptable amount of work. 
zero wave number. 

In genexai9 TsC and 'Paii are non-zem at 

The experimenta results for the spectrai energy balance are shown 
in Figs. 4 - 6 and tabulated in Table 3. Further graphs and tables of the raw 
data are available from the authors. Some of the spectral densities are 
negative: although ordinary energy spectra are necessarily -positive, these are 
energy flux spectra which can have either sign. 
plotted ki $(IcI) agajnst log kl 

Because of this, we have 
instead of log $ agajnst log kI: this 

shows up the high-wave-number end of the spectra and has the additional 
advantage that equal areas represent equal. contributions to the spectra, since 
$@a)& = h #@A) d(% kd- The energy spectrum is plotted 1ogarithmicaZlly 
in Fig. 7 to aid ti the identification of the different wave-number ranges. 
In the discussion below we shall use t'diffusion", "production", etc., as 
abbreviations for "density of longitudinal wave-number spec-tm of diffusion, 
production, etc.". 

301 Froduction 

Production spectra - or at least UI& spectra - have been measured 
previously by many workers, and the ulua apec-tca in tie mixing layer were 
discussed in Ref. 5. The most noticeable feature is the peak in the spectrum 
at the large-eddy wave number. Actually the peak in the wave-number spectrum 
is less pronounced than the peak in the frequency spectrum, which suggests that 
the large eddy frequency is more nearly constant than the large eddy wavelength, 
but inhomogeneity of the flow may be partly responsible, because there is a 
considerable difference between the uii correlations with upstream and 
downstream separations. mere ti also a considerable dtiference between the 
GE and UT correlations, which is closely connected with the existence 
of large eddies in the form of mixing jets, either ingoing or outgo-. We 
have constructed arguments in favour of either direction, of which the slightly 
more plausible contradicts the deduction in Ref. 5 that the jets move outwards, 
but neither argument is very satisfactory. 

3.2 DifY'usion 

In discussjng the triple specka representing diffusion it is 
necessary to distinguish between diffusion of the enerD of a given mup of 
eddies and diffusion by a given mup of edEesO Let us consider 
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(i) the (instantaneous) amplitude of ui-omponent fluctuations 
with wave numbers between k and k + dk. 

This is written as exp(ikr) dZi(k) which may be regarded3 
as a suitable extension of the Fourier representation 
a cos ot + b sin tit: we will ab3reviate this to 11](k). It is 

the output of a "wave num3er filter" of bandwidth dk and centre 
frequency k. 

(ii) the mean energy of ui(k). 

!L!his is exp(ib) Ui(k). exp(-ikx-) dZi(-k) = 'm 

= dZi(k) dZi(-k) L 3 $ii(k). !Che minus sign may be regarded 
a~ a mathematical device to obtain the modulus aa + ba: 
(qw = d.Z&-k). 

(iii) the fluctuating wenergyw, with wave numbers between k1 and 
k' = dk', to whioh ui(k) contributes. 

IThis is exp(ik*r) dZi(k) dZi(kT - k). (ii) ia fornlally 
the mean of the integral of this over all k': this is the same as 
the i.nte& of the mean, and the mean is zero unless k' = 0. 

Wemaynowdistinguishbetween 

(iv) the diffusion, by u4 fluctuations, of the integral of (iii). 

This is the "spectral density of diffusion" that appears in 
the energy balanoe at wave number k, and can be derived rigorously 

a 
as the Fourier transform of c l-lik) l+t$ uik + ril 

8 
(see Appendix I). !T!he mean product of (iii) with u..(k") ia 

zerounless k" = lc', when it is ai dZi(k' - k) dZ4(-lc'), 

so that the finsl mean product is ai(k) d+' - k) d-7$,(-k'). 

This may be written as [exp(ikr) dZi(k)] e@(-ikr) 
[ /it 

dZi(k'-k&(-k') 
1 

!l!he second term in square braokets is seen, by analogy with (iii), to 
be the fluotuatingproduct, wi.&~ve numbers between k and dk, of 
u%(k"') and u4(kwW), integrated over all kl" and kRn (subject to 

the requirement k"' + kwn = k). !Chua it is the result of 
~tiP~Yin&z uj. b Uh and thenfilteringoutwave number k, ao 
the mean pmduot may be written ui(k) uiu.(k), and the speotral 

a 
density of diffusion is - 

ax4 
(ui(k) uiu4(k) if the shape of the 

spectrum does not alter very qu.icELy across the layer. 
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and 

(v) the diffusion, by u4(k), of the energy of u. 1 component fluctuations. 

a 
This can onlybe - 

axt3 
: it is diffusion IPJ a 

chosen group of eddies, as opposed to (iv) which is diffusion of a 
chosen group of eddies. When i = 4 (iv) and (v) become G 
same and represent self-diffusion of a chosen group of eddies. 

As is potited out on pp.l07-110 of Ref. 8, turbulent diffusion may 
be thought of as the sum of several processes. First there is diffusion by 
pressure forces, a E/axi, about which we know very little but which seems to 
be fairly small in the mixing Layer. Tke mati part of the enerG diffusion 
in the mixing layer is apparently "bulk convection" by the large eddies, with 
some contribution from "gradient diffusion" at the lower wave numbers. These 
can be contrasted as respectively convection of small eddies by larger eddies 
and diffusion of larger eddies by small eddies, and compared with the diffusion 
of momentum, which is necessarily an interaction between different velocity 
components at the same wave number. Momentum diffusion is expected to decrease 
at high wave numbers, -rather more quickly than the intensity does, because small 
eddies are less affected by the mean velocity gradient than larger eddies: by 
the simple arguments usually advanced in favour of local isotropy of the smallest 
eddies, we expect R~a(k) a l/k approximately. The measurements of Sandborn 
and Bra&b exhibit this property but the results of Ref. 5 for the mixing layer 
sre not sufficiently reliable at the higher wave numbers for any definite 
conclusion to be drawn. Gradient diffusion is expected to decrease even more 
quickly than this because the effective diffusivity depends in some way on 
the total intensity of all eddies with wave nmbers smaller than k, (like the 
neffective viscosity" in Heisenberg's expression3 for the spectral energy 
transfer), but in general bulk convection will decrease no faster than the 
intensity. The bulk convection in the high-i.nte&nsity region of the mixjng 
layer is extremely large and the diffusion exceeds the production for 
klx > 50 approximately. The implications of this for the principle of 
local isotropy are discussed below. The diffusion of the very large eddies 
has to be regarded as qadient diffusion but is still effected chiefly by the 
large eddies. Since the large eddies are so intense the diffusion at very low 
wave numbers can exceed the production, leading to negative rates of energy 
transfer in the high-intensity region of the shear layer. 

We can define the spectral equivalent of what Townsend calls the 
"bulk convection velociw" v E G/q, as v(k) E u;ua $&q $ii: 
this is not a spectral density in the-ordinary sense and the symbol v(k) is 
merely a conventional si@. v(k) is to be regarded as the 
"propensity-to-be-diffused" of Us eddies of wave number k, and not as a 

measure of the bulk convection velocity of ua eddies of wave nu&er k. 

The most interesting thing about the experimental results is that 
although the production spectrum has a noticeable peak at the large-eddy 
wave number (except in the outer part of the layer) the turbulent diffusion 
spectrum and v(k) do not: in fact v(k) (Fig. 10) has a minimum near the 
large eddy wave number except at v = 0-l where the large eddies have almost 

disappeared/ 
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disappeared from the intensity spectrum. We cannot say whether the ssme 
a a 

applies to the pressure. diffusion but as -~<<-- z it is safe 
aa a2.3 

to conclude that the energy of the large eddies is not very strongly dU?fused. 
!lJhis is to be expected, because the large eddies are stingly periodic in the 
a direction and, although it is convenient to think of them as outward-going 
"jets" followed by a large-scale backflow this is more a model of the process 
of diffusion & the large eddies than a model of the large eddy motion itself, 
which is rrore like a lightly-damped wave: the large eddies are therefore 
rather coherent structures. 

The large eddies are, it appears, responsible for much of the 
difTusion of the smaller-scale energy-containing eddies. We have not been 
able to define a quantity analogous to 'v(k) whioh would represent the 
wpower-to-diffuse " of eddies of a given wave number, but the power of the large 
eddies to d.Sfuse canbe seen qualitatively from the measurements of 
d(k) u(k) in Fig. 9. This is an example of diffusion of ty-pe (v) - see 
beginnhg of this section - which represents the diffusion of ui-cmponent 
energy by US fluctuations of wave number k: the peak at the large-eddy 
wave number ispronouncedat n = - P 05 and 00 05, but not at n = 0, 

where the mean square value d* is nearly zero, or at n = PI, where the 

large eddies have died out. G(k) m(k) belongs both to type (iv) and me (v) 
and represents self-diffusion of ua fluctuations: it has a slight peak at the 
large eddy wave number at 7~ = - 0.05 only, so that even the ua component 
of the large eddies is not greatly diffused. 

At7 =- 0.05, the gain by Gffusion is by far the largest term 
in the energy balance at low wave numbers. This is because @/ad GGl is 
veryl~~-ge 3n Ms regionand the d spectrum contains a lot of energy at 

low warn numbers. (a/an) GE i2t muoh smaI.1~ !Che approximation of ZG 

by 2 is likely to be least accurate in this region but a correction would, 
if anything, further increase the diffusion at low wave rnunbers. At n = O-l, 
on the other hand, the diffusion is much the largest term in the energy balance 
at high wave numbers, being chiefly composed of ~-component energy: possibly 

the K term would again dominate nearer the outer boundary of the turbulent 
flow. 

3.3 Dissipation and local isotropy 

In Appendix I it is shown that if the dissipating eddies are isotropic 
the one-dimensional sp$ral density of dissipation at wave numbers much less 

e 
than about 0.2 - 

c ) 
is P5 (LJcy. It is necessq, therefore, to 

v3 
distinguish between the true one-dimensional spectrxa ~LJ 

1. 
2 ~Q$ (f&l dh, 

the wave-numbepmadtude spectre 2~ l? E(k), and the one-dimensional spectrum 

15v l-3 6&l) = 15v e 
l 

a(k) dka d.h which is commonly used in discusstin 

of experimental results but which is e the true dissipation speo& although 

it/ 
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it integrates to the correct value if the dissipating eddies are isotropic 

so that e = 15u (&l,l/ax1 )2. Since in isotropic turbiLence 

E(k) = 4 f L - the factor & appearing because @II is 

dk lkl -]l&c -n 
defined for positi= wave numbers only - then if $11(ki) = k% , 

E(k) = 
&+2) mn 

k: n normally increases to high values at high ki, so E(k) 

peaks at a very much higher value than &i(h) and the representation of the 
dissipation spectrum by ZU@&~(!Q) gives a very pessimistic estimate of the 
separation between the production and dissipation ranges, In the present 
eqeriment kZhi(k~) reaches a maximum at k%x - 300 whereas Uberoi's 
results for the "universal" spectrum indicate that @E(k) should reach a 
maximum at klx - 2500. 

We can use Uberoi's results for the %.niversal" dissipation spectrum, 
together with a wave-number-magnitude spectrum of production in the mixing 
layer (calculated on the basis of isotropy to give an order-of-magnitude -d 
to show that the production is 100 times as large as the dissipation at a 
wave-number magnitude kx = 100 but that since the reduction is falling very 
rapidly the two become equal at kx c 250 or k(v3 e O-02, where 
the dissipation is still less than a tenth of its maximum value. It follows 
that the production and dissipation ranges do not overlap significantly: 
it is of course obvious from the Reynolds number independence of the flow 

1) that there is not much dissipation in the energy-producing range. 
5 U-/V (Z~U/~B)- and production e dissipation, 

- and u~m = 0*157, an almost 

universal value, we have v& = 0.15 (& Lh. Alternatively, if - e Z z 0’00&5 Y where A is the microscale 
V 

Now is essentially the same as the Reynolds 

number u&/v used by Eatchelor3 in his discussion of the Kolmogorov equilibrium 
theory. His condition for the existence of an equilibrium range is 

b << (c,v3f where kc is the centroid of the intensity spectrum and 

( E/V3 ): is the wave number at which viscous and inertial forces become 
comparable. This condition, which is weaker by about a factor of 5 than the 
condition k. CC kE where kc is the centroid of the dissipation spectrum, 

ud 314 
can be written as - 

c ) 
>> I. !'i'herefore k. C-C ke, which is the 

V 

condition for local equilibrium or "universality" of most of the dissipation 

spectrum, reduces to (V&2 >> 1 very nearly. Fatchelorls condition for 

the existence of an appreciable inertial subrange is >> 1 or 
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2 I2 310 c ) >> I. Stewart and Townsend 15 derive as the condition for an 
V 

inertial stibrange that the deoay rate (or production) at a wave-number magnitude 

of o-1 (e/v3): shall be less than l/IO of the dissipation at the same wave 
number This replaces '5~" by 5 lC0 xN. For purposes of comparison with 
other flows we note that in the outer region of a boundary layer Ui&/ve c 75 

1 ulh 
so that ve/v = -- and that in the region of maximum production in any 

75 v 
turbulent wall layer, at uq/v 2 12, v& = I by definition. Thus 

-sent experiment 

Uberoi4(@dturbulence) 

Grsnt16 (tidal channel) 

Boundary layer at 
u&/v = Iti 

Walllsyerat ug/v =I2 

Wake0 at 
Did 
- = 8400 

V 

200 30 

a 6 

0[4 x joy w&Q1 

40 13 

I 2 

47 14 

It follows tit Grsnt's is the only experiment inwhich an inertial 
rsnge exists, that the only experiment on laboratory scale in which the 
dissipation is at all accurately isotropic is the present one*, and that Laufer's 
estimate of dissipation in the.wall layer based on tie assumption that some of 
the derivatives are related as in isotropic turbulence is likely to be very 
kaccurate (in fact the energy balance results shown in Fig. 9.13 of Ref. 8 

imply a pressure-velocity correlation coefficient F&(7.3)' 0f 2-5 at 
uq/v = 10 which is absurd). The most thorough investi@tion of local 

isotzopy is Townsend's 8s'7 study in the wake at &d/v = 8400: he showed that 

the derivatives ( aui/axL )s and their flatness factors were isotropically 

related to within about 15 percent except near the exkeme edges of the flow. 
However it csn be seen from Fig. 7.20 of Ref. 8 that the dkffusion in the wake 
(obtained by difference) fails to integrate to zero, indicating that if the 
production and advection were correctly measured the dissipation (evaluated on 
the assumption of isotropy) is too low by roughly 20 percent. Also, the 
experimental "verifications" of theyll-known prediction # w s6i3 for the 
inertial range are seen to be worthless (except of course for Grant's): Sandborn 

------------------------------------------- 
*except for an experiment in a circular jet by Gibson (J.Fluid Mech.Q, 161(1963)) 
in which only spectra were measured 
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a-1~3 Braun point out that in a typical specfxmn the exponent n takes all 
values between 0 and 7, and L-t was remarked,in Ref. 5 that n ti 5/3 h the 
mixinglsyerwhere Itis (k) = $~w+daa)' is still near its maximum value. 
The various observations that &a(k) tends to zero at high k do not 
guarantee that the energy spectrum becomes isotropic at such wave n&rs, 
because the enera transfer specti only becomes isotropic some time after the 
production goes to zero. An additional complication occurs in flows such as 
the mixing layer where diffusion and advection are appreciable because both 
these terms go to zero at high wave number no more quickly than the intensity 
(see Section 3.2) and therefore much more slowly than the pro&xtLcm, The 
effect on the energy-balance spectrum at high wave numbers is to add a term 
proportional to the spectral density of intensity* Since the diffusion 
integrated across the shear layer is zero it follows that the predictions of the 
Kolmozo~v theory for the inertial subrange COLIM only be fulfilled as an 
average across the layer, although there is no tiediate reason to suppose that 
diffusion causes any difference between the speotral densities of the three 
intensity components. The effect of energy loss by diffusion in the dissipation 
range of wave numbers is very small: kf' we assume that the loss of energy is 

a 
- z E(k) - which gives the correct result for the overall diffusion - then 
h-4 3 

the ratio of this to the ma&mum 
is 20 v/umx 

dissipation 2vl?E(k) at k = O*2(e/p3)' 
near 7 = 0 in the mixing layer. 

Consideration of the energy-balanoe spectrum is of some help in 
understanding the phenomenon of "spottinessw of dissipation (see Ref. 3, 
pp34-186, and Ref. 18). &,/at and the higher derivatives (that is, the 
high-frequency fluctuations) seem to have almost an "on-off" character, being 
heavily modulated at frequencies low compared with those that contribute mo,st to 
the derivative, and this seems somehow contrary to Kolmogorov's hypothesis that 
the motion in the equilibrium range, which incLI.des the dissipation range, is 
determined statistically by the dissipation rate and the viscosiw. However 
(as Landau seems to have realizedwithout the stimulus of the experimental 
results) the short-term average energy transfer across a wave number, kf, =Y? 
at the bottom of the equilfirium range must, since it is an integral over all 
lower wave numbers, fluctuate with a specti which has an appreciable densi* 
at all wave numbers from zero up to the limit imposed artificially by whatever 
we choose as a "short-term average" , presumably a distance of the order of 
1000/k'. !JIhus the averaging distance needed to obtajn a mean value of the 
dissipation is the same as the averaging distance needed to obtajn a mean 
spectral density of the largest energy-containing eddies: this is a dif'ficule 
common to all attempts to obtain short-term averages of random processes, and 
ocours in exactly the same form In atmospheric turbulence. Kven the artificial 
"large-eddy-plus-isotropic" model, which we have used for the mixing layer, 
implies that the dissipation rate at a point ti space will vary according to the 
phase of the large eddy at that potit. Kraichnan~Y has recently remarked that 
an Eulerian representation is much inferior to a Lagrangian representation for 
considering the effect of the larger eddies on the small eddies: unfortunately 
it is not at present possible to derive much useful quantitative infomation 
from a Lagrangian representatio% OboukhovA8 has calculated the (small) 
modif'ication to Kolmogorov's form for the correlation and spectrum consequent on 
the assumption of a logarithmically-normal probability distribution for the 
dissipation averaged in x-space over a sphere of diameter equal to the 
correlation separation (the simplest possible three-dimensional average). 

Physically,/ 
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Physically, it seems that dissipation occurs most strongly in 
regions of x-space where the velocity gradients in the enera-containing 
structure are greatest. (These regions would be true vortex lines and sheets 
if it were not for the diffusive action of viscosity.) It follows once more 
that a mean value of dissipation can only be obtained by averaging over a 
distance (or volume) typical of the energy-containing eddies. 

It may be noted that the close association between patches of high 
dissipation and eddies of high intensity implies that each group of small 
eddies is convected at the same speed as the energy-containing eddy that is its 
spectral ancestor. merefore we must not invoke local isotropy to "prove" that 
the small eddies are convected at the speed of the fluid. 

3.4 Enerm transfer 

The difference term in the spectral energy balance (Fig. 6) is the 
sum of the pressure diffusion and the energy transfer: since the overall 
pressure diffusion seems to be small compared with the velocity diffusion except 
in the outermost part of the layer it is likely that the same applies to the 
spectral densities, so we may take the difference term as a fair approximation 
to the energy transfer except at n = 0.1 (where indeed the difference term 
appears implausibly large compared to the directly-measured part of the energy 
transfer). The scatter in the plotted points is s&most entirely due to the 
behaviour of the terms representing spectral transfer due to inhomogeneity 
(Fig. 5): the factor (I + d log$/d logkix) changes rapidly near &x = 10 
and is difficult to obtain accurately by graphical Derentiation. !The 
difference between the mati terms shown in Fig. 4 is well-behaved. 

!lJhe most striking feature is that the enera transfer goes positive 
at low wave numbers near q = 0, indicating that energy is being transferred 
from high wave numbers to low ones to make up for the diffusion of low-wave-number 
energy by the large eddies. !Che difference term also goes slightly negative at 
7 = O-1 ,but this is most probably a result of approximating the diffusion 
part of the spectrsl transfer due to inhomogeneie by the veloci* diffusion 
alone (Fig. 5(d)). Since the intensity increases very rapidly with wave number 
to reach a peak at the large eddy wave number it is entirely plausible that 
enera should be transferred towards low wave nmbers, although the physical 
mechanism is not tiediately clear. Another well-known example of reversed 
transfer is in the development of a continuous turbulence spectrum from a 
sinusoidal Tollmien-Schlichting wave, but ~XI general vortex stretchjng by 
diffusion processes implies enera transfer to higher wave numbers. It is 
necessary to note that we are considering only the h wave-number component so 
that we cannot rigorously prove that energy is being transferred to smaller 
wave-number magnitudes but this seems very likely a priori. Sane of the 
directly-measured components of the energy transfer also go negative near 
n 0 at low wave numbers (being necessarily zero at zero wave number) 
but=t,his may be due to inaccuracy of measurement of the triple correlations at 
large separation. The m-component energy transfer (Fig. 6(e)) is the most 
reliable; the negative region is only noticeable for n c O-05, which is 
in line with the behaviour of the "difference" ten 

!J!he peak wave number of the plotted qusntity, kx times the 
Gfference tezm, increases with inoreasing 7 because of the behaviour of the 
diffusion, which is discussed in Section 3.2: it is implied that the energy 
transferred is predominantly that of the ui component at v = - 0.05 and 

4 
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of the us a-I-Iii u components at n = 0.1, but we cannot make any deductions 
about the isotropy or otherwise of the integrated energy transfer at the top end 
of the energy-containing range, because of the pressure-velocity correlations 

P ~i/~xi which exchange enera between the components at a given wave number. 
!The directly-measured part of the enerw transfer has a proportionately greater 
density in the high wave numbers at q = 0.1 than at the other stations but 
the effect is much less noticeable than in the energy transfer obtained by 
difference, simply because the directly-measured part goes to zero at zero wave 
number. For the same reason, the general shape of the directly-measured part 
bears little resemblance to that of the difference term: this does not 
necessarily indicate a gross error in the measurement of either. 

4-. !Che Convection Velocity 

It was shown in Ref. 5 that the convection velocities of the a and 
u2 components were different from each other as well as being different from 
the mean velocity of the fluid: the former effect was ascribed to the strong 
irrotational field, which is convected at the mean speed of the fluid in the 
high-intensity region and contributes a large part of the ti fluctuation near 
the edges of the layer, but it is certain that the convection velocity of tie 
rotational fluctuations varies with wave number and, as remarked above, the 
dissipating eddies are not necessarily convected at the mean speed of the fluid. 
These effects are a considerable nuisance experimentally but do not require any 
modifications to our theoretical concepts: the most important consequences are 
in the calculation of the noise emitted by convected turbulence. 

The differences between the frequency spectra and the transforms of 
the correlations with downstream separations, when compared on scales of fdJc 
and hx where UC is the overall convection velocity, are chiefly the results 
of inhomogeneity of the flow: in a boundary layer, which grows more slowly in 
the XI direction, the differences are much less. We cannot derive any useful 
information about the variation of convection velocity with wave number from the 
comparison, and indeed any detailed discussion requires care in the definition 
of ticonvection velocity' at a given wave number, for which there are several 
plausible but slightly different choices based on various integrals of the 
@I, cd) spectrum: these are discussed by Wills20. 

We have measured complete (ki, @) spectra only for the UI cmponent 
which is much less interesting than the ~2 component. !xhe (h , Q) spectrum 

?&: = - 
O-05, (Fig. II), plotted as contours of spectral density in the 

, ki) plane to show the distribution of phase velocity u/b for each wave 
number, has a maximum at 4% Urn c 0.72, %X = 7: the overall convection 
velocity is about O-82 Urn and the mean velocity 0.92 U . m The position where 

ww~~l~~const = 0 remains near u/kLUm = O-72 until kix G 20 and 

then moves to higher values, reaching the approximate velocity of the fluid by 
klx fi 100: this shows up the division of the turbulence into a group of 
strong large eddies and a nondescript "back-" of more nearly isotropic 
turbulence (probably the peak in the (k%, (J) spectrum, and also in the kZ 
spectrum at v = - O-05, occurs at a lower h than the large eddy wave 
number - klx = 1-I - because the a component of the large eddy motion is 
superimposed on a falling spectrum like hi(klx) at v = 0.1 where the 
large eddy motion has almost disappeared). !Ee same features can be seen, 
less markedly, in the (kz, u) spectrum at n = 0 published by Wills2C. 

5./ 
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5. Conclusions 

I. The loss of energy by diffusion from the high-intensity region of a 
mixing layer is nearly equal to the loss by dissipation, showing ihat the layer 
is far from a state of local energy equilibrium. !l!he diffusion by pressure 
fluctuations, i3 GZh, is much less, in most parts of the layer, than the 
non-linear diffusion %I 2 QZ./ih. !l!he longitudinal diffusion $aui'u&& 
is as much as 10 percent of the lateral diffusion near the edges of the flow. 

2. The energy transfer through the spectrum has been obtainedby 
difference frm the wave-number spectra of the other terms in the enera balance 
equation, and some of its comwnents have been measured directly. In the 
low-wave-number range, in the high-intensity region of the shear layer, the 
transfer is towards lower wave mbers because of the large energy losses by 
diffusion, for which the "large eddies" are chiefly responsible. 

3. The diffusion spectrum goes to zero at high wave number no more 
quickly thsn the intensity spectrum, in contrast to the production spectrum: 
the concepts of local isotropy therefore require modification, but the effect 
on the dissipating eddies is very small at high Reynolds numbers. 

4-a 'Ihe condition for isotropy of dissipating eddies in a turbulent shear 

flow csnbe written as (v&; >> I where ve is the effective eddy 

viscosity. (v&f is 200 in the present experiment, 50 in the wake where 

the components of (hi/at)2 differed by up to 15 percent, 4.0 in the outer part 

of a turbulent boundary layer at G&/V = 1@ and unity in the region of 
maximum production in a turbulent wall layer (ury/~ c 12). It follows that 
assumptions of sme or all of the results of local isotropy are not very accurate 
in laboratory shear flows and become completely untenable near a wall. 
Consideration of the processes of energy transfer up the spectrum show that the 
locally isotropic part of the turbulence is necessarily convected at the 
mean speed of the fluid. 

5. 'Ihe (lateral) "bulk convection velocity" at a given wave number, 

&i&@(k) h as a noticeable minimum in the range of wave numbers occupied by 
the large eddies, indicating that they are diffused less than the rest of tie 
turbulence, although they are responsible for much of the diffusion of the rest - 
of the turbulence. 

6. !The dissipation can be inferred from measurements of the energy 
transfer through a wave number at the top of the enera-containing range. 
In principle, this avoids the wire-length and frequency-response tzoubles 
encountered in attempts to measure the microscales, but measurements of the 
complete energy transfer would be very tedious. 

7. Measurements of the pressure fluctuations within the flow would be 
of great help in understanding the turbulence structure. 
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79 Notation (infrequently-useed symbols are defined in the text) 

E(k) wave-number-magnitude enera spectrum (see p.2) 

i 47 

k wave-number vector, components k in ' = 1,2,3 

k wave-number magnitude (ls +kz +J@ 

P static pressure 

covaxiance ui~) uj (~ + ~) 

separation vector, components ri 

Fourier transform of [“~~+~) - use) l”i~+~)ui(~) 
=I 

(see Appendix I) 

uC 
convection velocity 

u. 1 xi-component of mean velocity 

'rn maximum value of a, 336 ft/sec nominal 

U. I xi-component of fluctuating velocity 

ui(kl) z eihrZdSi(kl) elementq wave: output of "wave-number filter" 
(see p. 9) 

X distance from nozzle to measurement station, 4 in. 

X position vector, components xY Origin at nozzle lip. - 
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6 shear layer thickness 

e dissipation 

?I z x2/x 

V kkematic viscosity 

P densiiq 

T shear stress 

'-JjW 
three-dimensional spectral density of U.U. 

l. J 

~ij(~) 
one-dimensional 

Suffb3s i, j, 4, m. values 1, 2, a. Rqetition denotes smtion 
except that multiple sufficz to a single variable such as 

P timeor ensemble average of F 

E vector F 

F* complex conjugate of F 

References/ 
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AFPENDIXI 

Derivation of the Spectral Enerm-Balance Equation 

Von K&CT&-I and Howarth2' first derived the equation for the rate of 
change with respect to time of the covariance ui(x) uj(z + I-) in decaying 
isotropic turbulence. !l'he derivation for general homogeneous turbulence is 
given by Batchelor (Ref. 1, p.79) and others. For x = 0 the equation 
gives the time rate of decay of kinetic enerm. In statistically stationary 
shear flow the rate of deuay is zero and the dissipation is balanced by 
production: spatial diffusion and advection terms also appear. The derivation 
of the equation for ui(x) uj(z + r~) is consequently more complicated than in 
the isotropic case. 

Following Batchelor we write down the Navier-Stokes equation for 
ui(d and for uj(s + z), multiply the first by uj(z + x) and the second by 

ui(~), and add to obtain an equation for 
a Ui(X) u& + ;) 

(this being identical 
at 

with uj(z + x) 
aui (5) ui@ &*b + ;I) 

+ )- Equating this term to zero, 
at at 

denoting 5 + x by E', ui$ by ui and ujk + IY) by u: for brevity, 
J 

and noting that since u i is independent of z' then u i can be taken inside 
q terms operated on by a/axt9 and so on, we obtain 

aK7 a a 
(-J =--AL=-- (U.&l’) - - 

a- 

at axr lj.6 
4 ax -5 ax 1. 

J 

+lJ b-l&, u; + u; v; Ui) . . . (AA’) 

where the first two terms on the right are understood to be summed over 
R = I, 2, 3 (we use suffix 4 instead of the k used by Batchelor, to avoid 

aa 
confusionwithwave number) and P = -. 

X 
It may be noted that this equation 

ax2 8 
does not irmnediately reduce to the one-point enera equation if we put j = i 
and r = 0, because a/3x; is evaluated for z = constant and not 

r = constant. If we now put j = i 

ior the covsriance ui&) uik + rL)9 

so as to obtain an energy equation 

the pressure terms simplify to 

a; 1 a pki 
-+ 

axi ax 1 i 
and the viscous term becomes 



2u 

L 
va IL(x) u&z + 2) 1 # 2vva 

=I 
ui~) ui~ + rl) 

aa 
where va = -. 

a3? 
!I!his is equal to the dissipation if the dissipating eddies 

are small compared with the width of the flow - that is, if' the Re>ynolds number 
is high. Neither the pressure term nor the viscous term has been measured 
directly in the present experiment, but the qualitative behaviour of the 
dissipation spectrum is of some interest and is discussed below. 

The triple products fall into several groups, since we see that 

a 
- u.u!u' + - 
ad 11e 

-3 
ale uiu1iu4? = [: ui"~u~x4So~tt~ + [k uiu~ue]x,~onstt 

rt#constt: 

a Z 
L- are 

(-- - UiU&) 1 
J xe=constt. 

+ 

r&=constt. 

. . . (A.14 

The first twc terms in the final expression, which may be further simplif'ied 
x a 

end reduced to dimensionless form as - - (u; - 
zl are 

ue)"iu~, represent the 

energy transfer between eddies of different sizes and are of the same form as in 
a a 

homogeneous turbulence where one can make the simplifications - = - - 
a a 

and-z- at once. 

The last term in equation (A.1.2) represents the effects of 
inhomogeneity and, remembering that u. includes the mean 1 velocity as well as 

ax e are 

the fluctuation, we can see that it includes the production, advection and 
velocity-diffusion terms. It is written out in full, but not discussed, by 
Hinze (Ref. 13, p.257). The physical si~if'icance of the various terms, and 
the approximations it is legitimate to make, are seen more clearly by discussing 
the terms separately. The transformation from the correlation equation to the 
spectral energy balance for a given one-dimensional wave number kl is now 
performed by putting z = rl and taking the one-dimensional Fourier 
transform. !Phis is slnxightforward and will not be written down explicitly. 
Because of the inhomogeneity of the flow the correlations are not exactly even 
functions of r%, so the transfom have small imaginary parts. We choose to 
consider only the real part, which would appear alone in a homogeneous flow: 
the imaginary part does not include all the effects of inhomogeneity - the 
advection spectrum, for G&nce, is nearly real. Also, slight difficulties 
arise because the correlations are non-separable functions of k~ and B so 

that/ 
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that if $(lci9 a) = .? Rh, xd cos IQ ri dri then +/ah is not exactly 

2 
7x 

equal to - 
1 

(m/hi ) co.5 k x-1 &l. The approximations used in the numerical 
7t 

calculations should not have significantly affected the overall accuracy of the 
experimental results. 

(a) Production 

The shear production term, 
X XJI m -~ 

< --g wlb +---&UAW 

a I 

in dimensionless form, is 

but an adequate linear approximation to this is 

I aut 
mm 
c a77 

(ZG-+Gz). The normal-stress production term is 

+-gi&2 to the same approximation. 

m a77 

(b) Advection 

It is simplest to deduce the advection spectrum from the overall 
advection term9 by replacing q by its spectral density, defined as 

the advection spectrum in dimensionless form i.S then 

We must write the dimensionless wave number as kia rather thsn lox because 
we require a+ii/ax : clearly x A i is the correct non-dimensionalizing length 

for all quantities, including h. The advection spectrum can now be resrranged 
to contain only derivatives with respect to tie similarity variables ~QZQ and 
v E x&a, as 

- - - 

It is convenient to write the last factor as $ti(i + a log $ii/a log kLxi). 

The second group of terms has an integral over all & of zero: physically, it 
is a transfer of energy in a given element of fluid from high wave number to low 
wave number as XI increases, but it is better thought of as part of the 
advection spectrum than as a contribution to the spectral transfer, because it 
is a consequence of inhomogeneity. Another example of the effect of 
length-scale changes on the spectral energy balance is given by Ltiey's analysis 
(Ref. 22) of wall turbulence with length scales proportional to distance fern 
the wall. 
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A further term should strictly be included to account for the 
variation of Ui/U over a typical correlation separation. 
equal to (n/U~) ?):/a~ times the second group of terms above 

It is nearly 
and is small 

everywhere except in the outermost part of the flow (Q > 0.1' say). 

(c) Diffusion 

The velocity-diffusion spectra sre the transforms of the spatial 

derivatives of ui($ u& + ri) uj(x)/fm. In order to avoid a great deal of 

exti experimental work we have approximated them by the frequency spectra, 
using the convection velocities of u. IL published in Ref. 5. This involves 
the assumption that the correlations or spectra are geometrically similar across 
the layer: actually an allowance has been made for the variation in shape. 
The over&l longitudinal diffusion was found above to be very small, and 
negligible within the likely accuracy of the spectrum measurements. However, 
there is m appreciable extra term, with an integral over all kl of zero, 
analogous to the extra advection term. It is the contribution to rate of 
bamze y in the a direction, of the spectral density of the triple products 
which arises from the change in the wave-number scale (so that the transform of 
the spatial derivative is not the spatial derivative of the transform). 
Exactly the same term arises in Lumley's analysis. In dimensional form it is 

is the spectrum of 5 and may be written uiui(k) ui(k). 

!L%is is the cosine transform of the sum of the triple correlations, the stie 
transform of whose difference occurs~ the energy-transfer spectrum, and has 
therefore been evaluated from these correlations as a matter of convenience. 
'Ihis extra term opposes the'extra advection term on the high-velocity side of 
the layer but awe&s it on the low-velocib side. 

(d) Dissipation 

The dissipation spectrum is 

We observe that the speotral density at and near k~ = 0 is 
non-zero, because a & speck is obtained by integrating over all &, b. 
Isotropy of the dissipating eddies implies that dissipation occurs uniformly 
over the surface of spherical shells in wave-number space. If the 
three-dimensjonal spectral density of dissipation is $d(k), a function of 
wave-number magnitude only, then the one-dimensional spectral density, for kl 
smallcomparedwith the values of k at which the dissipation occurs (nearly 

equatorial slices of the spherical shells), is 2 $d(k) . m dk, where 

P/ 
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1 
W 

1 

w 

@4 0 !+&?dk = e z 2vk%(k)dk. The factor 2 in front of the 
0 0 

integral arises because we are adding contributions from positive and negative k. 
This spectral density can be calculated from the universal form of the L v 2 
dissipation spectrum: according to Kolmogorovfs theory, - 

A 
v3 4 c ) k? E(k) is 

E 
a function of kl - . 

c ) 
Using Uberoi's graphs of FE(k) for convenience 

e 
since most other expertienters have presented kz #ii( which is not the 
dissipation spectrum, we find that the spectral densib at low IQ z- b5 (I$ 
or 0.55 (Um xjvj' in dimensionless units at 77 = 0, so that as far as the 
enera-contatiing range of k~ is concerned we may imagine :he dissipation to 

& ,4 
take place on the surface of a sphere of radius 0.22 - 

c ) V3 

(or 2700 on the 

k1x2 scale near V = 0) in three-dimensional wave-number space. This 
2 

compares with about 0.38 L 
4 

c J 
for the centroid of Ubero.i's wave-number 

V3 i 

magnitude spectrum of dissipation (o-5 2 for the measurements of S&wart 

and TownsendI according to Townsend8). 
c ) V3 

Since the spectral density of the 
production at kl = 0 and v = 0 is about 3 x lG3 in dimensionless units 
whereas the spectral density of the dissipation is 2-3 x m5 , we may neglect 
the effect of the dissipation on the energy balance at ILow wave numbers, 
although the effect on the integrated energy/transfer at hx = 100 is about 
five percent of the total dissipation so that an allowance would have to be made 
if the dissipation were to be calculated from the energy transfer across a 
plane ki = constant in wave-number space. The dissipation becomes equal to 
the production at about &x = I,30 near n = 0 and at a lower wave number 
near the extremities of the shear layer, but this does not imply that the 
three-dimensional spectral densities of production and dissipation are equal at 
this wave-number magnitude: it is shown in Section 3.3 that the figure is more 
like kx = 2500 

Finally we can write the real part of the spectral energy-balance 
equation for positive k~ wave number as 
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advection spectral transfer due -to inhomOgen0ity 

lateral longitudinal 
djfmion &lffusion 

spectral transfer due to inhomogeneity 

+pressure dW?usionspectrum 

+ dissipation spectrum 

kl cm (ul i uguiu; 
z- 

1 
rdn kl r1 &I 

-It -m 
% 

measured part of spectral energy transfer Tic 

1 

1 

m a (u& - u;)u~u; 
+- cos klr1 dry (4 = 2, 3) 

.x -m are 
c 

unmeasuredpart of spectral energy-f= T&U* . ..(AJ.3) 

APPmDIx1q 
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AIPPEXDIX II 

Measurement of the Triple Correlations 

The correlations ul (21 ui(~) ui(~ + rl ) a-IX3 

ulCz + rl) ui(~) ui(z + rl) for i = I were measured at the same time, with 
two hot wires normal to the flow, and the results were generally satisfactory: 
in particular the two correlations tended to very nearly the same value at 
ri = 0 and as r -+ CXJ (see Figs. 12(a) and (b), in which is plotted the 
correlation coefficient actually measured)0 The value at large r was in 
general different from zero by an amount sufficiently large to indicate some 
error of measurement (more than the likely error in the multiplier) but the 
quantity related to the enera transfer is the difference betieen the 
correlations9 the sum being the Fourier transform of thrwave-number spectrum 

T of ul, one of the diffusion terms- The difference between the correlations 
was well-behaved, tending to zero at large r9 and the Fourier transforms of the 
differences were also well-behaved except at the very low wave numbers 
corresponding to wavelengths of several times the width of the shear layer. 

The correlations with i = 2 and i = 3 were measured with two 
cross-wire probes, which were used to obtain Q.(Z) and J&(S + rl) as xell 
as the lateral components: this is a roundabout process, inherently less 
accurate than using single-wire probes for measuring UI, but was forced on us 
by lack of sufficient constant-temperature anemometer channels to operate six 
wires simultaneously and by fears of the probe interference and liability to 
accidents resulting from the juxtaposition of an X probe and a U probe. 
The chief defect of the results was the failure of the two correlations to 
coincide for rl = O0 The measurements at 77 = 0 are shown in Figs. 12(c) 
to (f): if one were interested only in the sum of the correlations, which 
transform to give M more of the spatial diffusion terms: the results would be 
quite acceptable. Even at n = 0 where uu$ and MAW are very mall the 
discrepancy is only about 0.02 in correlation coefficient, but the effect on the 
difference is considerable. Z' the effect were really a bodily displacement 
of one correlation curve it would appear in an accurate Fourier transform of the 
difference as a delta function'at the origin, which could be ignored. It is 
probable that unfaithful reproduction of the ul-component fluctuation is 
chiefly to blame since the Q(X) Q(- x + ri) product is common to both 
correlations but probe interference may have had some effect. The downstream 
probe was ali@ed along the x~ axis but the upstream probe was necessarily 
aligned along a radius with the prongs normal to the flow. The wires 
themselves were bent so that the active portions were at least 0.03 in. away 
from the plane of the longer pair of prongs, and the r.m.s. signal due to 
vibration or eddy shedding of the prongs of the radial probe was never more 
than 1 percent turbulence even at the highest speed of l&e jet, but possibly 
the prongs of the radial probe may have affected the downstream probe in some 
circumstances, although the problem is far less serious than> in the less intense 
turbulence of a boundary layer. Certainly the correlations at Q = - 0.05 
were worse behaved than those in the high-intensity region, but the peculiarities 
sometimes found at small separation were generally attributable to the small 
separations between the probes in the xz and ZQ directions, necessary for 
mechanical reasons: it was usually easy enough to extrapolate the correlations 
to zero 6eparatioa 
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Oneattemptwasmadetomeasure [m(x)-Q(z+ri)]ua(z)Qk+ri) 
by subtracting the Q signals electrically. However the probe sensitivities 
found in practice were not in the same ratio as had been calculated from the 
calibrations, and the attempt was abandoned. This merely confirms the remarks 
above. In general it was felt to be more satisfactory to measure the 
correlations separately since the source of any errors would be more apparent 
than if one were merely confronted by an ill-behaved difference signal. 

The measurements fcr i = 2 and i = 3 are therefore disappointing: 
fortunately, these terms are rather smaller than the i = I term so that a 
reasonable approximation to T 

1s 
can be obtained. It should be possible to do 

considerably better by using separate wires for a-component measurement, 
which would be possible for us if constant-current operation could be used 
without excessive distortion of the signals. It is unlikely that Taii and 
T SiLi could be measured with any accuracy because graphical differentiation of 
the correlations would be required: it is certainly not reasonable to attempt 
this in the present state of the art. 

Table I/ 
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Table 4 

Speclzal.Densities, per unit kxY normalised by Um snd x 
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FIG. 2(b) 
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