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The Spectral Energy Balance in a Turbulent Mixing Layer
- By -
P. Bradshaw and D. H. Ferriss

Measurements are presented of the spectral density of contributions
to the turbulent energy balance as a function of longitudinal wave number,
The energy transfer through the spectrum has been deduced, taking advantage

of the apparent smallness of the pressure diffusion, and some of its components

have been measured directly: transfer in the direction of decreasing wave
number occurs in some parts of the flow because of the influence of the large

eddies, which dominate several of the processes observed. The overall energy

balance is also discussed,
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1. Introduction

The study of the turbulent energy balance is logically the next
stage in the investigation of a turbulent flow after making the measurements of
intensities, spectra and correlations which help to form one's basic ideas about
the structure of the flow, The particular value of such a study is in
formulating and testing hypotheses about the relation between the turbulent
shear stress and the velocity field. It is well known, for instance, that the
Prandtl mixing length relation can be given physical meaning, under highly
restricted circumstances, by considering the energy-balance equation1, and can
be improved by an allowance for the effects of energy diffusion?. However, the
ordinary energy-balance equation, relating production, dissipation, diffusion
and advection, makes no use of any information about the eddy structure that
one may have gleaned from the correlation measurements mentioned above, nor
does it tell one very much more about the eddy structure, In this paper we
have attempted to remedy these defects by considering the energy-balance
equation for a given wave number and at a given position in the flow: we ceall
this the "spectral energy balance”, The overall energy balance expresses
conservation of energy in a unit volume in physical space: the spectral
energy balance expresses conservation of energy in a unit volume in physical
space, for a given unit volume in wave number space., Roughly speaking, the
terms in this equation are the spectral densities of the terms in the overall
energy-balance equation together with extra terms representing energy transfer
to the given wave mumber from all other wave numbers. As used in this paper
"energy transfer" means transfer into a volume in wave-mumber space and not
across a surface, Extra terms also arise because typical length end
wave-nurber scales change in the xi1 direction, leading to a redistribution
of energy among different wave numbers: +they will be ignored in the discussion
(though not in the calculations),

In isotropic turbulence, the spectral energy balance reduces to
(- rate of decay) = gain by energy trensfer - dissipation eeo(1)
which can be further simplified, using the condition of isotropy, by
integrating over the surface of a gsphere of radius k in three-dimensional
wave-number space (see Fig., 1) to get the energy balance for a given

wave-number magnitude. This is the well-known equation5

oE(k)

= T(k) - 2vKE(k) eee(2)
9t

which is related to the Fourier transform of the von Kirman-Howarth equation
for the velocity correlations., Various theoretical forms for the energy
transfer rate T(k) have been put forward and comparisons with experiment have
been made by several workers, the most recent being Uberoilt who deduced T(k)
by difference from direct measurements of E(ky ) behind a grid, deriving

E(k) as -2k(3/0k )E(k ). We have not been able to make any measurements

in the locally-isotropic range in the present experiment because of the
smallness of the spatial scales, so that we cannot make comparisons with the
theoretical predictions for T(k).

In shear flow, the anisotropy of the energy-containing turbulence
makes a wave-number-magnitude spectrum less suitable, and it is far easier

experimentally/
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experimentally to consider a one-dimensional spectrum (equal to the
three-dimensional spectrum integrated over all values of the other two
wave-number components), obtainable as the Fourier transform of correlations
with separations in one co~ordinate direction only. We have chosen the
longitudinal spectrum, partly because the well-defined "large eddies" in the
mixing layer” are strongly periodic in the stream direction and partly because
it is possible to represent the longitudinal wave-number spectrum of some of the
less important terms by the frequency spectrum without gross error (in the
present experiment we have done this only for some of the spatial diffusion
terms). It does not seem to be profitable to consider a spectral energy
balance entirely in terms of frequency.

We have measured the true wave-number spectra of the production and
advection terms, and three of the nine energy-transfer terms, in the quasi-plane
mixing layer of a 2 in, diameter jet at a Reynolds number Uy x/v of 7 x 1CP
(Up = 336 ft/sec, x = 4 in,): it was shown in Ref. 5 that the effects of
axisymmetry are negligible at this distance from the nozzle and that the flow is
to a good approximation self-preserving, The experimental arrangements were
the same as in Ref. 5 and are more fully described in the unpublished version
of that paper, NPL Aero Report 1054 (1963). The difficulties encountered in
measuring the triple correlations are discussed in Appendix II,

We have not tried to measure the pressure-velocity spectra, which
contribute to gpatial diffusion and to interchange of energy between the
velocity components but not to energy transfer from one wave mumber to another,
at least in an incompresslble fluid. We have not been able to measure the
dissipation, but it is worth noting that, at a sufficiently high Reynolds mumber
for the energy-containing and dissipating ranges of wave number not to overlap
appreciably, the dissipation is nearly equal to the energy transfer through a
one-dimensional wave mmber at the upper end of the energy-containing range.

The dissipation could thus be deduced from a complete set of energy-transfer
spectra without measuring correlations at sufficiently small separations to

obtain the microscales: this would be unutterably tedious but it is possible

with present-day hot-wire techniques, which is more than can be said for microscale
measurements in a small-scale mixing layer,

The standard account of spectral representations of turbulence is
Batchelor's (Ref. 3, Chapter 2 and part of Chapter 3). A less rigorous account
which gives more of the practical details is that of Lumley and Panofsky6, and 7
a useful summary of elementary results for random processes is given by Goodman’.
Treatises on communication theory, Brownian motion and so on provide some
background material but care is needed to distinguish those results that are
valid only for processes with normal (Gaussian) probability distributions.

2, The Overall Enerpgy-Balance Equation

2.1 Description

The equation is obtained® by teking the momentum (Navier-Stokes)
equation for the component of velocity in the x3 direction, multiplying by uy
a.veraging, agsuming that the density is constant, and summing over
i = s 3« We also multiply by two to clear fractions: some authors
omit this step. The equation can be divided into two parts, one expressing
the balance of energy in the mean flow, which is not particularly informative in
the present case, and one for the turbulent emergy balence, The terms in the

latter,/
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latter, which add up to zero (see Fig. 2(b)), and which are by custom taken ag

positive for loss of energy and negative for gain of energy, are

(i) the advection

au?‘i au‘:’.L a / U‘a
Ug — + Us —, or —_— -7 ——-)
Ixq O0xg

in dimensionless, self-preserving form (see Notation: terms are sumed over all
values of implicitly repeated suffices) which is the net rate at which the mean
flow convects turbulent energy out of a unit volume fixed in space: in most

parts of the mixing layer the two terms are of the same sign and the same order
of magnitude,

(ii) the production

dUsL Uz - -
2 mug (—-—+——>+2(u§ -u3) —
0 Ox bl
or 2 — -2y approximately.
U Uy @

The first term is usually much the larger: if one considers the
"energy equation" for the three components of the intensity separately before
summing over i, it appears that this term contributes only to u3, but this is
not a useful piece of information because pressure-velocity products

2p aui/axi (whose sum is zero) immediately redistribute the energy. The
production occurs because of the net extension of vortex lines and sheets by
the mean velocity gradient, or, to take another point of view, by the working
of mean velocity gradients against Reynolds stresses,
(iii) the diffusion

) Pus 3 Puz

———-< 2 — 4+ uviu > +— | 2 — + v¥u >
i 12

% p Oxa P

1 d . Tpug a P
or — -—-( 2 —— u%pb ) -n — ( 2 — 4 1.1":3.Lu.1 )
u’ p dn p

which is the rate at which energy is transferred to the other parts of the flow
by pressure forces and by the velocity fluctuations themselves, uwju

representing the transport of u; kinetic energy by u, fluctuations. The

two terms in each pair of round brackets are of the same order of magnitude:
triple velocity products can be measured by ordinary hot-wire techniques, but
little progress has been made in measuring pressure fluctuations within the
flow. The two derivatives with respect to n are of the same order of

magnitude/



-5 -

magnitude but the factor n is small compared with unity, so that the first
group of terms, representing diffusion in the x; direction, is much the
larger, Its integral across the shear layer is zero: +this is a useful check
of experimentel values obtained as the difference between the other terms in
the energy balance.

(iv) the viscous term

u,d%u. 2u, 2
oy A1 _ Zv(—j-') . [1+0(1/Re)] = e[1 + 0(1/Re)]

ox B ox

J J

where € is the dissipation, or rate of conversion of turbulent energy into
heat (see p.29 of Ref, 8), The three-dimensional spectrum of

du
<——i> is k’s times the mpectrum of u; s0 that dissipation occurs in the
ox e

J 2
Bu.
smallest eddies. It is extremely difficult to measure (—3 ) which must be
)
aﬂ xj
(ui(qc) wE+r )) (see Section 3.3)
ar 3 J
J r‘j=0

An overall energy balance for the mixing layer was derived by
'.T.‘t:vwnfseu:ui8 from the measurement of Liepmann and Laufer/, The advection term

was calculated by assuming that w3 = 2(ui +u3). The dissipation was
aﬂ
ohtained from measurements of :3-_13_ R (0,r,0) which showed that the microscale

obtained as

was constant from sbout n = = 0407 to n = 0-06: it was assumed that the
microscale was constant right across the layer, The value of dissipation
obtained seems to be tqo small, because the diffusion term (obtained by
difference) does not integrate to zero: actually the advection term plotted
in Ref. 8 appears to have the wrong sign in the outer part of the layer

(the intensity should increase downstream along all stresmlines except at

n = 0) but the difference does not account for the discrepancy in the
diffusion term,

We have been unable to measure the dissipation or even to see if
the microscale is plausibly constant right across the layer, because of the
very small scale of the flow: the length 2x(v*/e)*?*, which is of the order
of the wavelength of the smallest dissipating eddies, is only 0°002 in, near
n = 0 at x = L4 in, This is about a tenth of the length of the hot wires,
and corresponds to a frequency of 1 Mc/s which is about 20 times the limit
of the anemometers, The dissipation rate is of the order of 10° times that in
Uberoi's experiment on grid turbulence, and is as high as 20 percent of the
maximm dissipation near the wall in a boundary layer with a free-stream
velocity equal to U. Attempts in a larger-scale mixing layer in a makeshift
open~jet tunnel mereTy exchanged inadequate spatial resolution for excessive
integrating time. We have therefore been forced to use Liepmann and Laufer's
measurements, increased by a factor determined by requiring the diffusion

(difference)/
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(difference) term to integrate to zero. The dissipation 1s very nearly

proportional to (q’)ala or 73,2 except at the extreme edges of the flow,
indicating that the dissipation length parameter is roughly constant across the
flow. In the present experiment we have found that the sum of the frequency
spectral densities of the three intensity components, ¢ii(wx/Uc), measured at

wx/Us = 300 and normalized by the mean square intensities (and supposed to be
representative of (aui/axa)g/h;) rises from 54 units at n = 01 to
82 units at n = = 0°05: nearer the inner edge of the layer where the

fluctuations become irrotational the value decreases again, This result may
be affected by the frequency response of the apparatus and it is doubtful if
the spectral density at wx/ﬁc = 300 has much relation to the spectral
density in the dissipating range at roughly ten times this frequency, so that
the best course seems to be to use Laufer's data.

The only other major difficulty, which for various reasons held up
this work for several months, was our inability to measure the U, (radial)
component of mean velocity with any assurance of accuracy, a most infuriating
snag in view of the comparative simplicity of the measurements. A
plausible Uz-component profile, measured with a linearized X-probe was given
in NPL Aero Report 1054, but it differed more than might have been expected
from the theoretical profile obtained from the continuity equation on the
agsumption of exact self-preservation, so that we decided to repeat the
measurement, However, we found that a spurious positive U, component was
induced at the wires by the asymmetrical vassage of the shear flow over the
probe body, the streamlines being more highly curved on the side where the mean
velocity was least, Exactly the same considerations account for the
"displacement effect" of pitot tubes, We finally decided to use the theoretical
profile to calculate the advection,

2.2 Results

The resulting energy balance is shown in Fig, 2(b). The rate of
energy loss by diffusion near the centre of the layer is now somewhat smaller
than the dissipation instead of being twice the dissipation as in Liepmann and
Laufer's work, although the distribution of diffusion across the layer is still
not known very accurately because of the approximations made in deriving the
dissipation. We have measured uz® and us® Ua directly: the diffusion by

triple correlations estimated by assuming uius = ug, is shown for comparison
in Fig. 2(c). In view of the various approximations made in obtaining the
energy balance, the most that one ought to say is that the pressure-velocity
diffusion is fairly small compared with the triple-correlation diffusion, or

pua/p *us << 1.

This is a most interesting conclusion, for which one would like to
have stronger evidence, Unfortunately, there are no reliable measurements of
pressure-velocity correlations at a point in turbulent shear flow, but it is
possible to make an indirect estimate of their magnitude which supports the
above conclusion, Wooldridge and Willmerth'O showed that the correlation
coefficient between the pressure fluctuation at the surface beneath a boundary
layer end the wus fluctuation within the flow was small compared with the
correlation coefficient between p and dus/0t: cursory measurements in the
near field of a jet5 support this, and if the same is true for measurements of p

and/
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and us at the same point, then, since p oua/dtNp®. (dua/0t)® < 1

necessarily, pw/\’}-)r.lf << 1, It is known that w/?/p ¢ is nearly unity
in the boundary layer and in a wall jet (comparing the pressure fluctuation
measurements of Lilley and Hodgson!l with the turbulence measirements of
Bradshaw and Gee!2), so it is probably near unity in a mixing layer, or even

less because of the absence of a wall. Since qgua /c_f-/a' is of order unity

in the mixing lsyer, it follows thet pua/p qQ*ua << 1 to the same order that

I_DTI;/‘JPE .U:z= << 1.

0
The longitudinal diffusion, — (2 pwm/p + Pw ), (Fig. 2(d)) is
9%
much smaller than the lateral diffusion, but the fact that it is even noticeable
near the edges of the flow implies that the boundary-layer approximation is not
very accurate in such a rapidly-spreading flow as the mixing layer.

The new energy balance data presented here are qualitatively the
same as Liepmann and Laufer's and do not warrant much extra comment. The ratio
of diffusion to dissipation in the central region is still extremely high and
constitutes a useful argument against believers in local energy equilibrium of
turbulent flows. The presence of large advection and diffusion terms at large
negative 7, where the production and dissipation are negligible, -is even more
noticeable here than at the high-velocity edge of a boundary layer or weke.
This implies that the irrotational field near the edges of the flow is more
intense, compared with the turbulence proper, than in other flows, because the
strong, large eddies produce strong, large-scale irrotational fluctuations which
penetrate well outside the fully-turbulent region. This argument does not
conflict with the suggestions above that the pressure fluctuations within the
turbulent flow are no larger, compared with the mean-square intensity, than in
other types of shear layer,

3. The Spectral Energy-Balance Equation

This equation is derived from the Navier-Stokes equations in
Appendix I and written out, almost in full, at the end of that Appendix. It is
also derived, but not discussed, by Hingze' 3 The terms which correspond to the
advection, production, diffusion and dissipation need no further explanation,

The usual convention for the sign of the emergy transfer T,. i(k) is

that it is positive when energy is entering the wave number interval k, k + dk
(see equations (1) and (2)). Thus, Tosi k) is normally negative in the
energy-containing range and positive in the dissipating range. The physical
significance of the triple correlation

[u&(?&) - u&(.% + 2)] ui(,%)-ui(z + ;3,)

from which T&ii(k) is derived, may be explained as the net rate of extension,
of vortex lines and sheets contributing to the wu, covariance with separation r
(eddies larger than r), by a change in u, over the distance r. This
extension (or contraction) is responsible for a transfer of energy from a given
value of k to higher or lower values, If r = m, k = <.
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When £ = 1, the one-dimensional Fourier transform of
)
— (u -u')u,u! with respect to r converts the operator 3/or, into a
ar1 1 1 1 1 1
factor iks (where symbol i denotes V-1 in contrast to suffix i) so that
the spectral density Tiii is simply k, times the Fourier sine transform of

(ui—ui‘ )uiu:!L. When €& = 2 or 3, however, the derivatives with respect to T,

have to be obtained directly by measuring the correlation at a number of values
of r3 near rz = 0, for each of a range of values of =, which represents

an unacceptable amount of work, In generai, T .. and T .. are non-zero at
zero wave number, AL 81

The experimental results for the spectral energy balance are shown
in Figs. 4 - 6 and tabulated in Table i. Further graphs and tables of the raw
data are available from the authors, Some of the spectral densities are
negative: although ordinary energy spectra are necessarily positive, these are
energy flux spectra which can have either sign, Because of thig, we have
plotted ki ¢(ks) against log ky instead of log ¢ against log ki: this
shows up the high-wave-number end of the spectra and has the additional
advantage that equal areas represent equal contributions to the spectra, since
$(ke)dks = ks ¢(kn) d(log ku). The energy spectrum is plotted logarithmically
in Fig. 7 to aid in the identification of the different wave-number ranges.

In the discussion below we shall use "diffusion", "production", etc., as
abbreviations for "density of longitudinal wave-number spectrum of diffusion,
production, etec..

3,1 Production

Production spectra = ar at least ujus spectra - have been measured
previously by many workers, and the wus spectra in the mixing layer were
discussed in Ref., 5.  The most noticeable feature is the peak in the spectrum
at the large-eddy wave number, Actually the peak in the wave-mumber spectrum
is less pronounced than the peak in the frequency spectrum, which suggests that
the large eddy frequency is more nearly constant than the large eddy wavelength,
but inhomogeneity of the flow may be partly responsible, because there is a
considerable difference between the ujuz correlations with upstream and
downstream separations. There is also a congsiderable difference between the
usuz and Ugus correlations, which is closely connected with the existence
of large eddies in the form of mixing jets, either ingoing or outgoing. We
have constructed arguments in favour of either direction, of which the slightly
more plausible contradicts the deduction in Ref., 5 that the jets move outwards,
but neither argument is very satisfactory,

3,2 Diffusion

In discussing the triple spectra representing diffusion it is
necessary to distinguish between diffusion of the energy of a given group of
eddies and diffusion by a given group of eddies, Let us consider

(1)/
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(i) the (instantaneous) amplitude of u, ~component fluctuations
with wave nmumbers between k and k + dk.

This is written as exp(ikr) az, (k) vwhich may be regarded’

as a sultable extension of the Fourier representation
a cos wt + b sin wt: we will abbreviate this to u (k). [t is

the output of a "wave number rilter" of bandwidth dk and centre
frequency k.

(1) the mean energy of u, (k).

This is exp(L) 4Z;(K) - (i) & () = [w,(OF

= dzi(k) dzi(-k) = E’l- ¢ii(k)' The minus sign may be regarded
as a mathematical device to obtain the modulus a*® + b?:
dz;(k) = az,(=k).

(iii) the fluctuating "energy", with wave numbers between k' and
k' = dk', to which ui(k) contributes.
This is exp(ik'r) dZi(k) dZi(k' - k)e (ii) is formally
the mean of the integral of this over all k': this is the same as
the integral of the mean, and the mean is zero umless k' = O.
We may now distinguish between
(iv) the diffusion, by w, fluctuations, of the integral of (iii).

This is the "spectral density of diffusion"™ that appears in
the energy balance at wave number k, and can be derived rigorously
)
as the Fourier transform of ; ui(g) u, (%) u,(x + ri)
(7
(see Appendix I). The mean product of (iii) with ua(k") is

zero unless k" = k', when it is dzi(k) dZi(k' - k) dZ&(—k'),

so that the final mean product is  dz, (k) j dzi(k' - k) az,(-k').
kl

This may be written as [exp(ikr) d.Zi(k)]l:exp(—ilcr) /k' dZi(k'_k)dZ&(—kv)jl‘

The second term in square brackets is seen, by analogy with (iii), to
be the fluctuating product, with wave mumbers between k and dk, of
ui(k"') and u&(k“"), integrated over all k" and k"' (subject to

the requirement k™ + k"™ = k). Thus it is the result of
multiplying uy by u, and then filtering out wave number k, so

the mean product may be written ui(k) usu, (k), and the spectral
a
density of diffusion is — (ui(k) uiu&(k) if the shape of the
ox
7
spectrum does not alter very quickly across the layer.

and/
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and

(v) the diffusion, by ug(k), of the energy of wu, component fluctuations.

9

This can only be — (Fz(k) ui(k)): it is diffusion by a
axz

chosen group of eddies, as opposed to (iv) which is diffusion of a

chosen group of eddies, When i = ¢ (iv) and (v) become the
same and represent self-diffusion of a chosen group of eddies.

As is pointed out on pp,107-110 of Ref. 8, turbulent diffusion may
be thought of as the sum of several processes, First there is diffusion by

pressure forces, 0 pui/axi, about which we know very little but which seems to

be fairly small in the mixing layer, The main part of the energy diffusion

in the mixing layer is apparently "bulk convection" by the large eddies, with
some contribution from "gradient diffusion" at the lower wave numbers, These
can be contrasted as respectively convection of small eddies by larger eddies
and diffugion of larger eddies by small eddies, and compared with the diffusion
of momentum, which is necessarily an interaction between different velocity
components at the same wave number, Momentum dif fusion 1s expected to decrease
at high wave numbers, rather more quickly than the intensity does, because small
eddies are legs affeected by the mean velocity gradient than larger eddies: by
the simple arguments usually advanced in favour of local isotropy of the smallest
eddies, we expect Raa(k) « 1/k approximately. The measurements of Sandborn
and Braun'# exhibit this property but the results of Ref. 5 for the mixing layer
are not sufficiently reliable at the higher wave numbers for any definite
conclusion to be drawn. Gradient diffusion is expected to decrease even more
guickly than this because the effective diffusivity depends in some way on

the total intensity of all eddies with wave numbers smaller than k, (like the
"effective viscosity" in Heisenberg's expression) for the spectral energy
transfer), but in general bulk convection will decrease no faster than the
intensity, The bulk convection in the high-intensity region of the mixing
layer is extremely large and the diffusion exceeds the production for

kix > 50 approximately. The implications of this for the principle of

local isotropy are discussed below, The diffusion of the very large eddies

has to be regarded as gradient diffusion but is still effected chiefly by the
large eddies. Since the large eddies are so intense the diffusion at very low
wave numbers can exceed the production, leading to negative rates of energy
transfer in the high-intensity region of the shear layer.

We can define the spectral equivalent of what Townsend calls the
"bulk convection velocity" V = u%p;/ui, as V(x) = u%gh ¢i=i/u§ $i5t

this is not a spectral density in the ordinary sense and the symbol V{k) is
merely a conventional sign. ~VT{k) 1is to be regarded as the
"propensity-to-be-diffused" of uy eddies of wave number k, and not as a

measure of the bulk convection velocity of vy eddies of wave number Xk,

The most interesting thing about the experimental results is that
although the production spectrum has a noticeable peak at tne large-eddy
wave number (except in the outer part of the layer) the turbulent diffusion
spectrum and V{k) do not: in fact V{(k) (Fig. 10) has a minimum near the
large eddy wave number except at 1 = O0+1 where the large eddies have almost

disappeared/
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disappeared from the intensity spectrum. We cannot say whether the same

0 ]
applies to the pressure diffusion but as — pug << =—— qﬁug it is safe
Oxg 0Xa

to conclude that the energy of the large eddies is not very strongly diffused.
This is to be expected, because the large eddies are strongly periodic in the
x1 direction and, although it is convenient to think of them as outward-going
"jets" followed by a larger-scale backflow this is more a model of the process
of diffusion by the large eddies than a model of the large eddy motion itself,
which is more like a lightly-damped wave: the large eddies are therefore
rather coherent structures.,

The large eddies are, it appears, responsible for much of the
diffusion of the smaller-scale energy-containing eddies. We have not been
able to define a quantity analogous to “V{(k) which would represent the
"power-to-diffuse™ of eddies of a given wave number, but the power of the large
eddies to diffuse can be seen qualitatively from the measurements of

ui (k) ua (k) in Fig. 9. This is an example of diffusion of type (v) - see

beginning of this section - which represents the diffusion of w-component
energy by us fluctuations of wave nmumber k: the peak at the large-eddy
wave mumber is pronounced at n = - 0°05 and 005, but not at n = O,

where the mean square value WYu is nearly zero, or at n = 01, where the

large eddies have died out. u3(k) w (k) belongs both to type (iv) and type (v)
and represents self-diffusion of wus fluctuations: it has a slight peak at the
large eddy wave number at n = = 0-05 only, so that even the g component
of the large eddies is not greatly diffused,

At n = - 0°05, the gain by diffusion is by far the largest term
in the energy balance at low wave rumbers. This is because (8/on) (Buz) is

2

very large in this region and the ui spectrum contains a lot of energy at
low wave numbers. (3/8n) W3 is much smaller. The approximation of B ug

by Ga; is likely to be least accurate in this region but a correction would,

if anything, further increase the diffusion at low wave mumbers. At n = O0-1,
on the other hand, the diffusion is much the largest term in the energy balance
at high wave mmbers, being chiefly composed of us-component energy: possibly

the uaﬁua term would agein dominate nearer the outer boundary of the turbulent

flow,

3,3 Dissipation and local isotropy

In Appendix I it is shown that if the dissipating eddies are isotropic
the one-dimensional s%e/c‘:tral density of dissipation at wave numbers much less
€
than about 0°2 <_a> is 45 (ve)®/*. It is necessary, therefore, to
V
distinguish between the true one~dimensional spectrum 2v f K <§(1~c) dkp dka,

the wave-mmber-magnitude spectrum 2v ¥ E(k), and the one-dimensional spectrum
150 & aa(ka) = 150 & jj ¢(x) dka dks which is commonly used in discussion

of experimental results but which is not the true dissipation spectrum although

it/
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it integrates to the correct value if the dissipating eddies are isotropic

so that € = 15 (0w /93 )®. Since in isotropic turbulence
d 1 dérz
B(k) = + ¥ — |— - the factor + appearing because ¢s41 1is
dk ki dka Iy =k
defined for positive wave mnumbers only - then if ¢s11 (ki) = K,
n(n+2)
E(k) = K n normally increases to high values at high ki, so E(k)
2

peaks at a very much higher value than ¢41(ka) and the representation of the
dissipation spectrum by 2vk§¢1i(k;) gives a very pessimistic estimate of the
gseparation between the production and dissipation ranges. In the present
experiment ki ¢sa (ka) Teaches a maximum at kax ~ 300 whereas Uberoi's
results for the "universal" spectrum indicate that K°E(k) should reach a
maximum at kax ~ 2500,

We can use Uberoi's results for the "universal" dissipation spectrum,
together with a wave-number-magnitude spectrum of production in the mixing
layer (calculated on the basis of isotropy to give an order-of-magnitude answer)
to show that the production is 100 times as large as the dissipation at a
wave-number magnitude kx = 100 but that since the production is falling very
rapidly the two become equal at kx = 250 or k(va/E)i 4~ 0702, where
the dissipation is still less than a tenth of its maximum value. It follows
that the production and dissipation ranges do not overlap significantly:
it is of course obvious from the Reynolds number independence of the flow
(vg/v >> 1) that there is not much dissipation in the energy-producing range.

Actually, since ve/v = Tus/v (dw/9x) and production = dissipation,
3

vy/v =~ (Taus)?/ve. Putting e = (¢*)?/1, and uwwe = 015 q®, an almost
universal value, we have vg/v = 015 (®)? L/v.  Alternatively, if

N 2

— Ve (¢®)% »
2 2 . .
e = 5v &/, — = 00045 | ———| , where M 1is the microscale
v v

—_— 1 —_— 1
[uf/(3ua /8x)®]%  Now (®)? Le/v is essentially the same as the Reynolds

number ué/v used by Batchelor® in his discussion of the Kolmogorov equilibrium
theory, His condition for the existence of an equilibrium range is

1
<< {e/v®)* where is the centroid of the intensity spectrum and
ko

(e/v®)* is the wave mumber at which viscous and inertial forces become
comparable, This condition, which is weaker by about a factor of 5 than the
condition k, << k¢ w%sﬁe k. 1is the centroid of the dissipation spectrum,

ué
can be written as <-——-> >> 1,  Therefore k << L which is the

v
condition for local equilibrium or "universality" of most of the dissipation

3
spectrum, reduces to (vg/v)* >> 1 very nearly. Batchelor's condition for
a/s8

)
i

wl
the existence of an appreciable inertial subrange 1s < — ) >» 1 or
v

2/
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v
e
2 ( —-—) >» 1. Stewart and Townsend15 derive as the condition for an

v

inertial subrange that the decay rate (or production) at a wave-number magnitude

1
of 0+1 (e/4®)* shall be less than 1/10 of the dissipation at the same wave

number, This replaces ">>" by "> 100 x", For purposes of comparison with

other flows we note that in the outer region of a bourndary layer Uid, /ve ~ 75
1 Uy

so that v, /v = — and that in the region of maximum production in any
75 v

turbulent wall layer, at u Ty/v

~ 12, ve/v

1

by definition,

Thus

3 3
2 1 1 3 ul \z
(ve/v)* or — ( — > 2(v/v)® or < —_ )
5 v
Present experiment 200 30
Uberoi* (grid turbulence) 8 6
Grant © (tidal channel) o[4 x 10*] o[ 400]
Boundary layer at
U161/U = 104 40 13
Wall layer at uTy/v =12 1 2
g , nd
Wake at ——— = 8400 47 1
v

It follows that Grant's is the only experiment in which an inertial
range exists, that the only experiment on laboratory scale in which the
digsipation is at all accurately isotropic is the present one’, and that Laufer's
estimate of dissipation in the wall layer based on the assumption that some of
the derivatives are related as in isotropic turbulence is likely to be very
inaccurate (in fact the emergy balance results shown in Fig, 9,13 of Ref, 8

— I
imply & pressure-velocity correlation coefficient pua/(P.u3)? of 2¢5 at
The most thorough investigation of local

uTy/v =

10 which is absurd).
isotropy is Tcrwnxa.end.'sB’17 study in the wake at Tid/v

= 81-1-00 M

he showed that

the derivatives (aui/axi )* and their flatness factors were isotropically

related to within about 15 percent except near the extreme edges of the flow,
However it can be seen from Fig, 7.20 of Ref, 8 that the diffusion in the wake
(obtained by difference) fails to integrate to zero, indicating that if the
production and advection were correctly measured the dissipation (evaluated on

the assumption of isotropy) is too low by roughly 20 percent.
experimental "verifications™ of the well-known prediction ¢ ~ k
inertial range are seen to be worthless (except of course for Grant's):

Also, the
5j8

for the
Sandborn
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E ]
except for an experiment in a circular jet by Gibson (J.Fluid Mech.15, 161(1963))
in which only spectra were measured
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and Braun point out that in a typical spectrum the exponent n takes all
values between O and 7, and it was remarked1in Ref. 5 that n =~ 5/%3 in the

mixing layer where Ria(k) = ¢13/(d11¢a2)° is still near its maximum value.
The verious observations that Ria(k) tends to zero at high k do not
guarantee that the energy spectrum becomes isotropic at such wave nuﬁggfs,
because the energy transfer spectrum only becomes isotropic some time after the
production goes to zero. An additional complication occurs in flows such as
the mixing layer where diffusion and advection are appreciable because both
these terms go to zerc at high wave number no more quickly than the intensity
(see Section 3,2) and therefore much more slowly than the production. The
effect on the energy-balance spectrum at high wave numbers is to add a term
proportional to the spectral density of intensity. Since the diffusion
integrated across the shear layer is zero it follows that the predictions of the
Kolmozorov theory for the inertial subrange could only be fulfilled as an
average across the layer, although there is no immediate reason to suppose that
diffusion causesgs any difference hetween the spectral densities of the three
intensity components. The effect of energy loss by diffusion in the dissipation
range of wave mumbers is very small: if we agsume that the loss of energy is

d
—— q?uy E(k) - which gives the correct result for the overall diffusion - then

dxa 3
the ratio of this to the meximum dissipation 2v¥E(k) at k = 0-2(e/p®)*
is 20 V/Uﬁ; near 7 = 0O in the mixing layer.

Consideration of the energy-balance spectrum is of some help in
understanding the phenomenon of "spottiness" of dissipation (see Ref. 3,
pp.184-186, and Ref., 18), du/dt and the higher derivatives (that is, the
high-frequency fluctuations) seem to have almost an "on-off" character, being
heavily modulated at frequencies low compared with those that contribute most to
the derivative, and this seems somehow contrary to Kolmogorov's hypothesis that
the motion in the equilibrium range, which includes the dissipation range, is
determined statistically by the dissipation rate and the viscosity. However
(as Landau seems to have realized without the stimulus of the experimental
results) the short-term average energy transfer across a wave number, k', say,
at the bottom of the equilibrium range must, since it is an integral over all
lower wave numbers, fluctuate with a spectrum which has an appreciable density
at all wave numbers from zero up to the limit imposed artificially by whatever
we choose as a "ghort-term average", presumably a distance of the order of
1000/k'.  Thus the averaging distance needed to obtain a mean value of the
dissipation is the same as the averaging distance needed to obtain a mean
spectral density of the largest energy-containing eddies: this is a difficulty
common to all attempts to obtain shorit-term averages of random processes, and
occurs in exactly the same form in atmospheric turbulence. Even the artificial
"large-eddy-plus-isotropic” model, which we have used for the mixing layer,
implies that the dlssipation rate at a point in space will vary according to the
phase of the large eddy at that point, Kraichnenl9 has recently remarked that
an Eulerian representation is much inferior to a Lagrangian representation for
considering the effect of the larger eddies on the small eddies: unfortunately
it is not at present possible to derive much useful quantitative information
from a Lagrangian representation, Oboukhov18 has calculated the (small)
modification to Kolmogorov's form for the correlation and spectrum consequent on
the assumption of a logarithmically-normal probability distribution for the
dissipation averaged in x~space over a sphere of diameter equal to the
correlation separation (the simplest possible three-dimensional average).

Physically,/



-15 -

Physically, it seems that dissipation occurs most strongly in
regions of x-space where the velocity gradients in the energy-containing
structure are greatest, (These regions would be true vortex lines and sheets
if it were not for the diffusive action of viscosity.) It follows once more
that a mean value of dissipation can only be obtained by averaging over a
distance (or volume) typical of the energy-containing eddies.

It may be noted that the close association between patches of high
dissipation and eddies of high intensity implies that each group of small
eddies is convected at the same speed as the energy-containing eddy that is its
spectral ancestor. Therefore we must not invoke local isotropy to "prove" that
the small eddies are convected at the speed of the fluid.

2.4 Energy transfer

The difference term in the spectral energy balance (Fig. 6) is the
sum of the pressure diffusion and the energy transfer: since the overall
pressure diffusion seems to be small compared with the velocity diffusion except
in the outermost part of the layer it is likely that the same applies to the
spectral densities, so we may take the difference term as a fair approximation
to the energy transfer except at n = 01 (where indeed the difference term
appears implausibly large compared to the directly-measured part of the energy
transfer). The scatter in the plotted points is almost entirely due to the
behaviour of the terms representing spectral transfer due to inhomogeneity
(Fig. 5): the factor (1 + d logg/d logks x) changes rapidly near kx = 10
and is difficult to obtain accurately by graphical differentiation. The
difference between the main terms shown in Fig, 4 is well~behaved,

The most striking feature is that the energy transfer goes positive
at low wave mumbers near n = O, indicating that energy is being transferred
from high wave numbers to low ones to make up for the diffusion of low-wave-number
energy by the large eddies, The difference term also goes slightly negative at
n = 01 ,but this is most probably a result of approximating the diffusion
part of the spectral transfér due to inhomogeneity by the velocity diffusion
alone (Fig. 5(d)). Since the intensity increases very rapidly with wave mumber
to reach a peak at the large eddy wave number it is entirely plausible that
energy should be transferred towards low wave numbers, although the physical
mechanism is not immediately clear, Another well-known example of reversed
transfer is in the development of a continuous turbulence spectrum from a
sinusoidal Tollmien-Schlichting wave, but in general vortex stretching by
diffusion processes implies energy transfer to higher wave numbers, It is
necessary to note that we are considering only the ki wave-number component so
that we cannot rigorously prove that energy is being transferred to smaller
wave-number magnitudes but this seems very likely a priori. Some of the
directly-measured components of the energy transfer also go negative near
n = O at low wave numbers (being necessarily zero at zero wave number)
but this may be due to inaccuracy of measurement of the triple correlations at
large separation. The uy-component energy transfer (Fig. 6(e)) is the most
reliable; the negative region is only noticeable for n < 0°05, which is
in line with the behaviour of the "difference" term,

The peak wave number of the plotted quantity, kix times the
difference term, increases with increasing n because of the behaviour of the
diffusion, which is discussed in Section 3,2: it is implied that the energy
transferred is predominantly that of the uw component at n = - 005 and

of/
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of the us and us components at n = 0°1, but we cannot make any deductions
about the isotropy or otherwise of the integrated emergy transfer at the top end
of the energy-containing range, because of the pressure-velocity correlations

D aui/axi which exchange energy between the components at a given wave number.

The directly-measured part of the energy transfer has a proportionately greater
density in the high wave numbers at n = 0°1 than at the other stations but
the effect is much less noticeable than in the energy transfer obtained by
difference, simply because the directly-measured part goes to zero at zero wave
number. For the same reason, the general shape of the directly-measured part
bears little resemblance to that of the diff'erence term: this does not
necessarily indicate a gross error in the measurement of either.

L. The Convection Velocity

It was shown in Ref. 5 that the convection velocities of the wu; and
uz components were different from each other as well as being different from
the mean velocity of the fluid: the former effect was ascribed to the strong
irrotational field, which is convected at the mean speed of the fluid in the
high-intensity region and contributes a large part of the wua fluctuation near
the edges of the layer, but it is certain that the convection velocity of the
rotational fluctuations varies with wave number and, as remarked above, the
dissipating eddies are not necessarily convected at the mean speed of the fluid.
These effects are a considerable nuisance experimentally but do not require any
modifications to our theoretical concepts: the most important consequences are
in the calculation of the noise emitted by convected turbulence.,

The diff'erences between the frequency spectra and the transforms of
the correlations with downstream separations, when compared on scales of wx/ﬁc
and kix where U, is the overall convection velocity, are chiefly the results
of inhomogeneity of the flow: 1in a boundary layer, which grows more slowly in
the x3 direction, the differences are much less, We cannot derive any useful
information about the variation of convection velocity with wave number from the
comparison, and indeed any detailed discussion requires care in the definition
of "convection velocity" at a given wave number, for which there are several
plausible but slightly different choices based on various integrals of the
(ki, @) spectrum: these are discussed by WillsZO,

We have measured complete (ki , @) spectra only for the w component
which is much less interesting than the w2 component. The (ki, w) spectrum
at n = - 0°05, (Fig. 11), plotted as contours of spectral density in the
(w'ks, ks ) plane to show the distribution of phase velocity w/ky for each wave
number, has a maximum at w/k, Uy = 072, k,x = 7: the overall convection
velocity is about 0-82 Um and the mean velocity 0°92 Um. The position where

[0¢/0w/ka], _,opoy = O remains mear @/l Uy = 0°72 until kx ~ 20 and

then moves to higher values, reaching the approximate velocity of the fluid by
kax =~ 100: +this shows up the division of the turbulence into a group of
strong large eddies and a nondescript "background" of more nearly isotropic
turbulence (probably the peak in the (ki, @) spectrum, and also in the Xk
spectrum at n = -~ 0°05, occurs at a2 lower k: than the large eddy wave
number - kyx = 11 - because the w component of the large eddy motion is
superimposed on a falling spectrum like ¢u1(kax) at 7 = 0°1 where the
large eddy motion has almost disappeared). The same features can be seen,
less markedly, in the (ki, w) spectrum at n = O published by WillsZ0,

5./
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5. Conclusions

1. The loss of energy by diffusion from the high-intensity region of a
mixing layer is nearly equal to the loss by dissipation, showing that the layer
is far from a state of local energy equilibrium, The diffusion by pressure

fluctuations, @ pus/@xz, is much less, in most parts of the layer, than the

non-linear diffusion 49 ui’ua /9x3. The longitudinal diffusion <3 u,i"’ui VG
is as much as 10 percent of the lateral diffusion near the edges of the flow,

2. The energy transfer through the spectrum has been obtained by
difference from the wave-number spectra of the other terms in the energy balance
equation, and some of its components have been measured directly. 1In the
low-wave-number range, in the high-intensity region of the shear layer, the
transfer is towards lower wave mumbers because of the large energy losses by
diffusion, for which the "la.rge eddies" are chiefly responsible,

3. The diffusion spectrum goes to zero at high wave number no more
quickly than the intensity spectrum, in contrast to the production spectrum:
the concepts of local isotropy therefore require modification, but the effect
on the dissipsting eddies is very small at high Reynolds numbers,

b, The condition for isotropy of dissipating eddies in a turbulent shear

3

flow can be written as (ve/v)4 >> 1 where v, is the effective eddy

FR-}

viscosity. (vo/v)* is 200 in the present experiment, 50 in the wake where

the components of (aui/at)’ differed by up to 15 percent, 40 in the outer part

of a turbulent boundery layer at Ui 8;/v = 10* and unity in the region of
maximm production in a turbulent wall layer (uTy/v ~ 12), It follows that

assumptions of some or all of the results of local isotropy are not very accurate
in laboratory shear flows and become completely untenable near a wall,
Consideration of the processes of energy transfer up the spectrum show that the
locally isotropic part of the turbulence is not necessarily convected at the
mean speed of the fluid,

5. The (lateral) "bulk convection velocity" at a given wave mmber,

w?ua (k) A" (k) has a noticeable minimm in the range of wave numbers occupied by
the large eddies, indicating that they are diffused less than the rest of the
turbulence, although they are responsible for much of the diffusion of the rest
of the turbulence,

6. The dissipation can be inferred from measurements of the energy
transfer through a wave number at the top of the energy-containing range.
In principle, this avoids the wire-length and frequency-response troubles
encountered in attempts to measure the microscales, but measurements of the
complete energy transfer would be very tedious.,

7. Measurements of the pressure fluctuations within the flow would be
of great help in understanding the turbulence structure.

6./



- 18 -

6. Acknowledpements

We are grateful to Dr. J. Laufer of J,P.L. for a helpful discussion,
and to Dr. W. C, Reynolds of Stanford University for many useful comments on
the draft manuscript of this paper. We are indebted to Dr. J. A, B, Wills for
permission to reproduce Fig., 11, Mr. R. F. Johnson designed and maintained
much of the electronic apparatus, Mr. G. K. Knight helped in the experimental
work. Miss J. Dickerson operated the computer and Miss L., M. Esson performed
further manual calculations, cross-plotting and graphical differentiation,
of a tediousness second only to that of the experimental work.

7. DNotation (infrequently-used symbols are defined in the text)

E(k) wave-number-magnitude energy svectrum (see p.2)
i V=1
k wave-number vector, components ki, i = 1,2,53
1

k wave~number magnitude (kf + K3 + g)z
P static pressure

q2 = u_? = u2 + + ua

i 1 a a
R(g) covariance u.l(g\(') u; (x + 1)

1J

r separation vector, components T,
]
T&ii(ki) Fourier transform of —ar— [u, () - v, (x) ]ui(;y;g)ui(g)
2 r=ry
(see Appendix I)

UC convection velocity

Ui x.l—component of mean velocity

U maximum value of Ui, 336 ft/sec nominal

uy x.l—component of fluctuating velocity

a, (k) = eteTrgy (k ) elementary wave: output of "wave-mmber filter"
14 11 (see . 9)

b'd distance from nozzle to measurement station, 4 in.
X position vector, components X Origin at nozzle 1lip,

de_(k) Pourier amplitude increment: F elkiridZi(ki) = u(ri)
-0

&/
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) gshear layer thickness
€ dissipation
n = Xa/x
v kinematic viscosity
P density
T shear stress
@ij(g) three-dimensional spectral density of Tua

¢ij(k°") one-dimensional spectral demsity of uus, ui(ki) uj(ki):

j ¢ij(k1)d.k1 = 1
(o]

b33, 6m [uiuj] (k) lwpu 1(k )

w frequency

Suffices i, j, ¢, m« values 1, 2, 8. Repetition denotes summation
except that multiple suffices to a single variable such as

$,; are ignored, so that u;_ b4 = u: $,, + 11: ..t u: $ a0

F time or emsemble average of F
F vectar F
I* complex conjugate of F
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AFPENDIX I

Derivation of the Spectral Energy-Balance Equation

Von Kérmén and Howarth® first derived the equation for the rate of

change with respect to time of the covariance ui(g) uj(g +r) in decaying

isotropic turbulence. The derivation for general homogeneous turbulence is
given by Batchelor (Ref. 1, p.79) and others. For r = O the equation
gives the time rate of decay of kinetic energy. In gtatistically stationary
shear flow the rate of decay is zero and the dissipation is balanced by
production: spatial diffusion and advection terms also appear. The derivation

of the equation for ui(;\c‘) uj(;s + r) is consequently more complicated than in

the isotropic case,

Following Batchelor we write down the Navier-Stokes equation for
ui(lc) and for Uy (x + ), multiply the first by us (x + r) and the second by

2 u(;\g) uj(_gg + E)

1

ui(z) , and add to obtain an equation for (this being identical

2t

. aui(z) ui(g) aui(g + ) . .
with uj(;\g + T + ). Equating this term to zero,
ot at
- 1 .
denoting x + I by x', u.l(.g) by u, and uj(gg + 1) by u for brevity,
and noting that since u, is independent of x' then u; can be taken inside

any terms operated on by 3/8x', and so on, we obtain

3 u.ul . 9 ——— 1 ,3pul 3puy
0 = —— = ~— (uiuJ',ué) -— (u!lu'ju(/) - —( 4oy )
1] a 1
2t ax& ax{,, p axi XJ.
2 ' ' 2 LK 1.1
+v (ui Vo uf + ul v ui) (A.1.1)
where the first two terms on the right are understood to be gummed over
R = 1,2, 3 (we use suffix £ instead Of the k used by Batchelor, to avoid
3
confusion with wave number) and V¢ = . It may be noted that this equation
X axz
does not immediately reduce to the one-point emergy equation if we put j = 1
and r = 0, because a/axé is evaluated for x = constant and not
r = constant. If wenowput J = 1 =0 as to obtain an energy equation

for the covariance ui(gg) ui(;g + ri), the pressure terms simplify to

a puj'_ a '_p'ui
+

ox ax.'

i i

and the viscous term becomes

v/
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2v |V ui(;E) ui(—’S +7T) £ 2uv? uch) ui()\g + r1)
r=r
aﬁ
where V¢ = —r’—. This is equal to the dissipation if the dissipating eddies
3

are small compared with the width of the flow - that is, if the Reynolds number
is high. Neither the pressure term nor the viscous term has been measured
directly in the present experiment, but the qualitative behaviour of the
dissipation spectrum is of some interest and is discussed below,

The triple products fall into several groups, since we see that

d d 0 a
— u.u!ué + —u.,u'.u, = — u.ulul + | = u.,ulu

gyt T 1 3 i~ 1% itie i7i€
X % or,, x, =constt. 9%, x} =constt.
re;!constt.
d 0
- — t17! —~ 1 — t
- (uiuiu ; — wulu, ) + - u.uiu,
£ xezconstt. X rzzconstt.

eee(A.1.2)

The first two terms in the final expression, which may be further simplified

x 0
and reduced to dimensionless form ag — — (ué - e)uiu]!_, represent the
© or
m £
energy transfer between eddies of different sizes and are of the same form as in
] a
homogeneous turbulence where one can make the simplifications — = - —
0 a axe a:r:‘6
and — = — at once.
]
ax& 81‘&

The last term in equation (A.1.2) represents the effects of
inhomogeneity and, remembering that u, includes the mean velocity as well as

the fluctuation, we can see that it includes the production, advection and
velocity-diffusion terms. It is written out in full, but not discussed, by
Hinze (Ref. 13, p.257). The physical significance of the various terms, and
the approximations it is legitimate to make, are seen more clearly by discussing
the terms separately, The transformation from the correlation equation to the
spectral energy balance for a given one-dimensional wave number k;z 1s now
performed by putting r = n and taking the one-dimensional Fourier
transform. This is straightforward and will not be written down explicitly.
Because of the inhomogeneity of the flow the correlations are not exactly even
functions of r;, so the transforms have small imaginary parts. We choose to
consider only the real part, which would appear alone in a homogeneous flow:
the imaginary part does not include all the effects of inhomogeneity - the
advection spectrum, for instance, is nearly real, Also, slight difficulties
arise because the carrelations are non-separable functions of ki and xs3 SO

that/
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2

that if ¢(kn, x) = -— j.R(Ia, ¥a) cos kg T1 dry then 9¢/dx is not exactly
b

2
equal to — f (0R/0xa) cos ki r: dry. The approximations used in the numerical
v

calculations should not have significantly affected the overall accuracy of the
experimental results.

(a) Production

The shear production term, in dimensionless form, is

X oUy Uy
— | — wuy + — wuy but an adequate linear approximation to this is
0 | ax ax!

m 2 2

1 92U,

1

— — (wuz + wua). The normal-stress production term is
L0 an

m

-2 I
— (wu{ - uaug) n — to the same approximation.

on
m

(b) Advection

It is simplest to deduce the advection spectrum from the overall

advection term, by replacing Eg by its spectral density, defined as

_— Xa
uz ¢ii ( kixi,~—— >: the advection spectrum in dimensionless form is then
X
x a — X2 9 — Xa
—_ —u. ¢..( k — — u. ¢.. —_ .
P Y, 3 Y ¢11 < 27 ? > + 4 3 Y ¢11 ( kixi’ )
m X Xt %, X,

We must write the dimensionless wave number as ksx3 rather than kix Dbecause
we require a¢ii/ax1: clearly X, is the correct non-dimensionalizing length

for all quantities, including ki. The advection spectrum can now be rearranged
to contain only derivatives with respect to the similarity variables ki x and

n = Xh/ﬁh, as
“a a2 2
U, -y W08y Py 00Uy U 995
—_— — + + — —= ¢ii + k x .
U T on U? an U Y13k x
m m m m m i 1

It is convenient to write the last factor as ¢ii(1 + 0 log ¢ii/a log kﬁxﬁ)'

The second group of terms has an integral over all ki of zero: physically, it
is a transfer of energy in a given element of fluid from high wave number to low
wave number as Xy increases, but it is better thought of as part of the
advection spectrum than as a conftribution to the spectral transfer, because it

is a consequence of inhomogeneity.  Another example of the effect of
length-scale changes on the spectral energy balance is given by Lumley's analysis
(Ref. 22) of wall turbulence with length scales proportional to distance from
the wall,

.v4
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A further term should strictly be included to account for the
variation of U:./Um over a typical correlation separation. It is nearly

equal to (n/Uy) 0U;/3n +times the second group of terms above, and is small
everywhere except in the outermost part of the flow (n > 0¢1 say).

(c¢) Diffusion

The velocity-diffusion spectra are the transforms of the spatial

derivatives of ui(g\:') ui(gg + ri) ug (5)/U]3n. In order to avoid a great deal of

extra experimental work we have approximated them by the frequency spectra,
using the convection velocities of u, published in Ref. 5. This involves

the assumption that the correlations or spectra are geometrically similar across
the layer: actually an allowance has been made for the variation in shape.

The overall longitudinal diffusion was found above to be very small, and
negligible within the likely accuracy of the spectrum measurements. However,
there is an appreciable extra term, with an integral over all ki of zero,
analogous to the extra advection term. It is the contribution to rate of
change, in the x4 direction, of the spectral density of the triple products
which arises from the change in the wave-number scale (so that the transform of
the spatisl derivative is not the spatial derivative of the transform).

Exactly the same term arises in Lumley's analysis. In dimensional form it is

i, s 14 9 log ¢, 5
U; 141 3 log k1X1

where uaiu.1 $,,; 1is the spectrum of u?.Lu:l and may be written u.u (x) ui(k).
This is the cosine transform of the sum of the triple correlations, the sine
transform of whose difference occurs in the energy-transfer spectrum, and has
therefore been evaluated from these correlations as a matter of convenience.
This extra term opposes the extra advection term on the high-velocity side of

the layer but augments it on the low-velocity side.,

(d) Dissipation
The dissipation spectrum is

2vx — 1 poo 92 93
<k§ U;_ $13(ka) + —f — +— > ui(z) ui(;s + ) cos kiridr1>.
U';’n x J-oo ord  9rd _—
We observe that the spectral density at and near kr = 0 is

non-zero, because a ki spectrum is obtained by integrating over all ks, ks.
Isotropy of the dissipating eddies implies that dissipation occurs uniformly
over the surface of spherical shells in wave-number space. If the
three-dimensional spectral density of dissipation is ¢d(k), a function of
wave-number magnitude only, then the one-dimensional spectral density, for Ik
small compared with the values of k at which the dissipation occurs (nearly

o0
equatorial slices of the spherical shells), is 2 / ¢d(k) . 2xk dk, where

Y
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o0 [o.0]
j ¢d(k) . WkPdk = e = j vk e(k)dk. The factor 2 in front of the
[e] (o)

integral arises because we are adding contributions from positive and negative k.
This spectral density can be calculated from the universal form of the
1

v
dissipation spectrum: according to Kolmogorov's theory, (-— ) ¥ B(k) is
VP i ¢
a function of ki <-—— > . Using Uberoi's graphs of kK°E(k) for convenience
€

since most other experimenters have presented k: ¢ii(ki)’ which is not the

3
dissipation spectrum, we find that the spectral demsity at low ki is 45 (ve)*
a

or 0°55 (Um x/v)*  in dimensionless units at 7 = O, so that as far as the

energy—-containing range of ki 1s concerned we may imagine fhe dissipation to
.

take place on the surface of a sphere of radius 0-22 < —_ > (or 2700 on the
3
v

kixs scale near 7 = O0) in thfee—dimensional wave-number space, This

€ 4
compares with about 0-38 (-—— ) for the centroid of Uberoi's wave-number

v° i
€ 4
magnitude spectrum of dissipation (05 <-—; > for the measurements of Stewart
v
and Townsend15 according to Townsend8). Since the spectral density of the
production at ks = O and n = O is about 3 x 10°® in dimensionless units

whereas the spectral density of the dissipation is 2°3 x 10°°, we may neglect
the effect of the dissipation on the energy balance at low wave numbers,
although the effect on the integrated energy’transfer at kix = 100 is about
five percent of the total dissipation so that an allowance would have to be made
if the dissipation were to be calculated from the energy transfer across a
plane ki = constant 1in wave-number space. The dissipation becomes equal to
the production at about kix = 130 near n = O and at a lower wave number
near the extremities of the shear layer, but this does not imply that the
three~dimensional spectral densities of production and dissipation are equal at
this wave-number magnitude: it is shown in Section 3,3 that the figure is more
like kx = 250,

Pinally we can write the real part of the spectral energy-balance
equation for positive ki wave number as

Uy - 71
(——)



s N\, = 0 1 8\ U &
(————-——X—i. 4, ¢ii.——.——-l->+—‘.-—l¢ii (1 + 2 log ¢,./9 logkixi)
Uy G o LA
advection spectral transfer due to inhomogeneity
1 ot
+—— . UgUa (P12 + ¢aa)
U on
m
production
2 ug_u.1
o — (T 8y, - (G"‘ 6, ) + =g, (140 l0g 4, /0 logkx,)
an 10
m
lateral longitudinal
diffusion diffusion spectral transfer due to inhomogeneity

+ pressure diffusion spectrum

+ dissipation spectrum
oo (u - u')u u}
= —j sin ks my dry
m

measured part of spectral energy transfer 'l‘1 1i

1 po0 3 (u, - ul)u.u
+—f i £ 12 os kary dm (¢ = 2, 3)
X J=0 OT i)
¥/ m
unmeasured part of spectrel energy transfer T,.,. ceo (A1.3)
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APPENDIX IT

Measurement of the Triple Correlations

The correlations ui(g) ui(z) ui(z + ri) and

ui(g + ri) ui(g) ui(§ + Il) for 1 = 1 were measured at the same time, with

two hot wires normal to the flow, and the results were generally satisfactory:
in particular the two correlations tended to very nearly the same value at

s = 0 andas r - o (see Figs. 12(2) and (b), in which is plotted the
correlation coefficient actually measured), The value at large r was in
general different from zero by an amount sufficiently large to indicate some
error of measurement (more than the likely error in the multiplier) but the
quantity related to the energy transfer is the difference between the
correlations, the sum being the Fourier transform of the wave-number spectrum
of u2, one of the diffusion terms. The difference between the correlations
was well-behaved, tending to zero at large r, and the Fourier transforms of the
differences were also well-behaved except at the very low wave numbers
corresponding to wavelengths of several times the width of the shear layer.

The correlations with i = 2 and 1 = 3 were measured with two
cross-wire probes, which were used to obtain w (x) and w (x + rx) as well
as the lateral components: this is a roundabout process, inherently less
accurate than using single-wire probes for measuring i, but was forced on us
by lack of sufficient constant-temperature anemometer channels to operate six
wires simultaneously and by fears of the probe interference and liability to
accidents resulting from the juxtaposition of an X probe and a U probe,

The chief defect of the results was the failure of the two correlations to
coincide for T = 0. The measurements at 7 = O are shown in Figs., 12(c)
to (f£): if one were interested only in the sum of the correlations, which
transform to give two more of the spatial diffusion tennsg the results would be
quite acceptable, Even at 7 = O where wuwa and wus are very small the
discrepancy is only about 0°02 in correlation coefficient, but the effect on the
difference is considerable, If the effect were really a bodily displacement
of one correlation curve it would appear in an accurate Fourler transform of the
difference as a delta function'at the origin, which could be ignored, It is
probable that unfaithful reproduction of the wy-component fluctuation is
chiefly to blame since the ua(x) ua(x + T1) product is common to both
correlations but probe interference may have had some effect. The downstream
probe was aligned along the =xi axis but the upstream probe was necessarily
aligned along a radius with the prongs normal to the flow. The wires
themselves were bent so that the active portions were at least 0°03 in. away
from the plane of the longer pair of prongs, and the r.m.s., signal due to
vibration or eddy shedding of the prongs of the radial probe was never more

than 1 percent turbulence even at the highest speed of the jet, but possibly
the prongs of the radial probe may have affected the downstream probe in some
circumstances, although the problem is far less serious than in the less intense
turbulence of a boundary layer, Certainly the correlations at n = - 0°05
were worse behaved than those in the high-intensity region, but the peculiarities
sometimes found at small separation were generally attributable to the small
separations between the probes in the x. and xs directions, necessary for
mechanical reasons: it was usually easy enough to extrapolate the correlations
to zero separation,

One/



-29 -

One attempt was made to measure [w(x) - w(x + )] wa(x) wa(x + )
by subtracting the wus signals electrically, However the probe sensitivities
found in practice were not in the same ratio as had been calculated from the
calibrations, and the attempt was abandoned. This merely confirms the remarks
above, In general it was felt to be more satisfactory to measure the
correlations separately since the source of any errors would be more apparent
than if one were merely confronted by an ill-behaved difference signal.

The meagsurements for i = 2 and i1 = 3 are therefore disappointing:
fortunately, these terms are rather smaller than the i = 1 +term so that a

reasonable approximation to Ti ;4 can be obtained, It should be possible to do

considerably better by using separate wires for ui —component measurement,
which would be possible for us if constant-current operation could be used
without excessive distortion of the signals, It is unlikely that Tz i1 and
Taii could be measured with any accuracy because graphical differentiation of
the correlations would be required: it is certainly not reasonable to attempt
this in the present state of the art.

Table 1/



- 30 -

Table 1

Spectral Densities, per unit kix, normalized by Um and x

Production
k1X
n 1 2 5 10 20 50 100
-0- 05 0- 000762 0- 000872 Q- 00147 Q- 000578 0- 0000888 0- 0000153
¢] 0+ 00302 0- 00338 0- 00498 0- 00192 0+ 000210 0- 0000484
005 0- 00326 0- 00318 0- 0021 0- 000932 0- 000146 0- 0000342
0-10 0- 00147 0- 00117 0- 000666 0- 000288 0- 0000582 0- 0000122
Advection
-0-05{ 0-000L67 0- 000487 0+ 000950 0-00138 0- 000735 0- 000162 0-0000573
0 0000143 0-0000975 0+ 000532 0- 0000567 0- 0000357 0-00000790 0- 00000177
0-05| 0-00000233| 0-0000203| 0-000122 | 0-000222 0-000115 0+ 0000244 0+00000723
0-10| 0-000295 0- 000244 0- 000314 | 0-000367 0- 000183 0+ 0000436 0- 0000143
Normal-Stress Production
-0+ 05 |~0- 0000264 | =0-0000316| =0+ 0000410f 0+0000318{ 0¢0000276 0+ 00000568 0+ 000001 30
0 0 0 0 0 0 0 0
0-05| 0-000172 0+ 000148 0+ 000159 | 0-0000246| -0-00000320 | -0- 00000536 | ~0- 00000271
0+ 10| 0-000250 0- 000178 0+ 000115 | 00000239| 0-00000386 | -0-00000358 | -0-00000174
Lateral Diffusion
-0+ 05 |~0- 00337 -0- 0037} -0+ 00336 |-0-001241 | -0- 000455 -0+ 000111 -0° 0000675
0 | 0-00406 0- 00427 0+ 004 31 000275 0+ 000130 0+ 000411 0+ 000160
0+ 05| 0- 000146 ~0+ 0000003 | ~0« 0000850 0000246 0- 000284, 0+ 0000962 0-0000128
0«10 [-0- 00150 ~0- 00151 -0« 00149 -0 00111 -0- 000870 -0+ 000284 ~0- 0000904
Spectral Transfer due to Inhomogeneity: Advection
~-0. 05| 0- 000379 0. 000381 0. 000769 |+0. 00101 -0+ 000190 -0. 0000585 ~-0. 0000207
0 | 0-000723 0- 000723 0. 00104 | +40.00106 -0. 000271 -C. 0000843 -0. 0000282
0-05] 0-000503 0- 000511 0« 000446 | +0. 000376 | -0.0000489 | -0. 0000342 ~0. 0000117
0-10{ 0.000107 0. 000107 0. 0000902] +0s 0000L75 | -0- 0000143 | -0.00000756 | -0.00000233

Contd./
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Spectral Transfer due to Inhomogeneity:

Longitudinal Diffusion

-0« 05|-0- 000378 ~0- 000381 | -0 00064 | —~0° 000453 | +0- 000QL5k 0+ 0000349 0+ 0000090
0 |-0-0000771 -0+ 000200 |=0- 000950 { -0+ 000366 | +0-0000152 0 0000156 0+ 0000020
0-05| 000150 000145 0- 00100 +0- 000969 | -=0- 000417 -0+ 0000602 -0° 0000045
0-10| 0-00327 0- 00311 0-00177 +0- 000410 | ~0-000272 -0+ 000192 -0+ 000080 '
Tis1s Energy Transfer
~0° 05 | +0° DO000L00 | +0* 0000140} +0° 00000300} ~0° 000102 | ~0- 0000690 | +0° 00000900 | +0° 0000110
0 |+0-0000200 | +0° 0000360]~0* 0000310 |-0° 000203 | =-0° 00013k +0° 00000100 | +0° 0000110
0+ 05 |-0- 00000100| ~0° 0000130}~0° 000104 |=~0° 000223 | -~0° 000147 -0+ 0000170 -0+ 00000100
0.410(-0- 0000120 | =0~ 0000310|~0- 0000820 {-0- 0000970 -0+ 000082 -0~ 0000221 -0+ 00000530
T:. i1 Energy- Transfer
~0+ 05]+0-0000128 | +0° 0000404} +0° 0000480 | +0° 00000800 [-0° 0000434 | ~0° 000016 +0+ 00000650
0 {+0.0000238 | +0.0000410]+0- 0000615 | ~0- 000156  |~0° 000402 -0° 0000328 -0° 0000520
0. 05| -0-0000422 | -0+ 0000505|-0+000172 | -0+0000874 (-0-000121 +0° 0000168 +0° 0000634

D7693L/1/125875 Rk 11/66 XL
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FIG. 2(b)
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FIG. 2 (e)
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FIG. 3(b)
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FIG. 6(a)
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