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Suamery

Hinged flaps on serofoils are of interest not onlyas,
control surfaces, but -aleo as devices for introducing variable
camber on 1ow—dragiwings to extend the range-of lift'coéfficients -
at which low drag 'is obteined and to decrease the moment coefficient
at high-epeeds,

A usual notation in the aerodynamics of control surfaces,
namely GL = 8g T 8" + agn, lends to confusxon, since in

ordinary aerofoil theory ao ‘is genernlly used for the slope of
. the (CL,M) curve, All confusion ig avoided by writing ~

Cb' = -0 + cs00! + cgny we then have ¢y ‘= ‘hb; but there scems
no objection to such a relationship,
:; A simplo thoory‘is developed; for determining the velocity

at the surfnce and other aerodynamic properties of Curnemefpil with
n hinged flap. Formulae are obtained for aAB/n, m = —ﬂCM#/n,

(/80 + 1/2) ACy /n,h opt/Mr" Ca/ca (oans.(9) = (12), (50))
and Vﬂlueq of theqa qunntitics are tabulated in Tablo 1, .
(mx 17/'-n for ny = 2n onLy) for £ = 0 4y, 0*3, 0'25, 0°2,.0° 15,

0° 1,_0'98; n .is: the dowaward doflection of the flap:and” E the
flap chord as a fraction of the acrofoll chord. The reduction of
CMo by the .use of n flap on a low-drag wing ie discussed, If the

wing is originally cambered for a high design _CL, denoted by

¢ » with a centre line for which —C /c v .= K {for vnlues
Lo pt Mo’ "Ly
of K for modern centre lincs, sece Ref,4, $10 and Table 1), and if,
at high speeds, the flap is raised so that. C + AC ' becomes
: I’op‘c: Lopt ’

the,K low-speed” equivalent of the top—qpeed Cp» then —-(C + ACM )
is less than _CMb‘ would have been if the ‘wing had ‘been originnlly

cambered for Cp  + ACp without a flnp by —(% — 4% — K)AC
opt . opt
(Wote that AC 18 negotive.)
0

ot 0t/

Lopt'

®0f the Aerodynamics Division; N.P.L. This peper is published with the
permisgion of the Dircctor, N,.P.L, :
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Of the quantities required to find the velocity at the
surface of the aerofoil by the methods of Ref. 2, g, ¥,y £g eé,

G, &are unaltered by the deflection of the flap; ZLormulae are
found for Agi/h (eon, 31), and for r, 8 and +t, where ch = TN,

Ale, ~B) = sn, Ael = tn, (eans. (36) — (38)); these quantities

ere tabulated sgainst x in Table 2 for the same values of I as
before, Explicit formulae ere set out for the change in the velocity
due to the deflection of the flap (eans. {(40) ~ (46)).

~ A very rough calculation is given of the limiting value
of the flap deflection 1 <Zfor which the position of maximum suoction
at C;, = ¢C + AC on the upper surface of a low—drag

L. Loptv Lopt
aerofoil with the flap up (or on the lower surface with the flap
down) is 1likely to be at the design position for C, = C '

: L Lopt
n 4 o0, If this pogition is at x = X, tho limiting deflection
ig likely to be nearly proportional to 1 —E — X3 for a2 20 por cent
flap, for exnample, it is likely to be nenrly twice as large for
X = 0+4 rg for X = 0°'6, Only a gradunl ihcrense of drag at
¢y = ¢C + AC is to be anticipanted when 1 1is incrensed
L L L
opt opt

beyond the limit considercd.

Formulae are found for the cnlculation of hinge moments,
In these chlculations a, 18 given its theoretical 'Kutte—Joukowski!
volue, since for any other vnlue of ny the large values of the
velocity ot the trailing edge, which result from theory ond are not
realized in practice, completely falsify tho calculoation of the
hinge moment, For cusped or nearly cusped acrofoils there is some
renson to beliuve thot ealeulotrons with the !'Hutto~Joukowski!
volue of np give fairly satisfactory volues of the normal lording
on the flap nnd of the hinge moment; for nerofoils with large
traniling—edge angles empirical corrections must be sought to the
velues g0 calculated; these empiricel corrcetions will probably
depend on the position of the transition to turbulence in the
boundary layer, on the Reynolds number nnd, in wind—tunncls, on the
turbulence of the stream., The present methond of correlnting
experimental data for aerofoils which nre not cusped nlso requires
theoretical crlculntions with the ‘*Kuttn—~Joukowski' value of a,.

With the hinge moment coofficient expanded in the form

bl bl
CH = bO + blm' + bg'ﬂ ] bo = = Cp o CIJ — bn,
Cix Cq

equations are obtained for the determination of by, bi, b, bs.
Approximation I of Ref, 2 lends to the same values as the 'flat—plrte!
theory (Ref, 3) for by, b and b,, [Eans, (66) — (69) and Table 12
This ie equally true of the vnlues of m and cg/ci, but wheres
toose vrlues are algo correct on more exnct theories, the snme 1ise

not true of by, b, by, The 'flot—plate’ volues of by, b, by &are,
in fnct, not sufficicntly correct for most purposes; formulae are
given for obiaining them (ond also b°2 by numerical integration

on Approximation III (eqns, (61) ~ (63}, (70) — (72)); wuse of

these formulne will usunlly be more correct nnd more convenient than
the actunl integration of the pressures to find the hinge moment
with selected valuca of «!(or Cr) ~nd n, '

In/
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In the simple theory in the body of the report squares of
n and products of 1n and the aerofoil ordinates are neglected,

More accurate calculations will be very rarely wented; it is shown
in' the Appendixz how a theory way be constructed in which the
products of 1 and the aserofoil ordinates are not neglected, .-

For wings of similar thickness distribution whose thicknesses
are not exceptionally large, the corrections to be applied to the
values of by, by, by and b found. from Approximetion I ere all
approximately proportional to the thicknecs; the value of by-
according to Approximation I is proportional to the camber, The
effect produced by & local modification to the thickness distribution
is proportional to its acele. , .

For an aileron of 25 per cent chord on a certaein suction
aerofoil the following values have been computed,

be by be b Method

-

'

07046 |=0*386{—0°725 10°490 | Approx, III: eans, (61)~(63),(70)—(72).

0°049 |—0°565|—0°944 10°599 | Approx.Ij eans, (66) —~ (69).

07046 |=0"383 Approx,I1I, ao=2ﬂec°ﬂ Direct integration
‘ (=7°044) for Cg from
values of ¢@/U at

0*050{—0°570 Approx.I, ag=2mn ‘ PCL=0 and C,=0°5
with = ¥
0+052|+0°029 Approx,III, ag=27 ‘ii(Eqn. ?55)).

For the 15 per cent thick low—drag aerofoil with a -
20 per cent flap which is to be tested in the 13 £, by g5 £t,
wind-—tunnel at the N,P,L., values of M/n, A(e — B)/n, Ac'/n
have been computed by the theory of the Appendix for comparison with
the results -of the simple theory in the body of the report .
[Table 43 values are to be_compared with those hended v, s,
under E ,= 0°2 in Table 2], For the same nerofoil the Ffollowing
values of by, — by, by and b have been computed; the fnctors
causing the differences between the last two lines are discussed.

b | —bs ~by | b Mothod

0 }0°489,10°92510°648 Approximation I .

0 |0°349 '0'739 0547 Approximation III, Simple Theory,
Eans, (61) — (63), (70) — (72).

0 [0*364 10°774|0C*574 Approximation IIL. Theory in Appendizx.

Introduction/ .



1, Introduction

. The calculntion of tho velocity at the surface and of other
nerodynamic properties, especially the hinge moment, of an aerofoil
with & hinged flap is considered, on & simple theory, in this report;
it is shown in an appendix how more accurnte results mpy be obtained.

Hinged flaps on aerofoils are of interest not only'as control
surfaces, but also a8 devices for introducing variable camber on
low—drag wings to extend the range of 1lift coefficients at which low
drag is obtained and to decrease the moment coefficient at high
speedst,

The theory may be expected to lead to values of the
velocity in reasonable agreement with experiment except near the
trniling edge nnd the hinge, and at large flap deflections. Boundary-
layer effects near the trniilng edge make predictions of hinge
mpments difficult; there is some reason to hope, however, that
fairly sertisfacltory results may be obinined for cusped or nearly
cusped acrofoils, It is planned to test the theory and to make &
beginning of assessing its limitations by pressure—plotting
experiments in the 13 f£t, X ¢9- £t, wind tunnel at the N.P,L.

2, Notntion

The chord of the aeroféil, by definition, joins the
lending and trailing .edges, and is normal to the aerofoil contour at-
the leading edge and also at a rounded trailing edge, T

X, V¢ x is the distance from the leading edge measured along .
: the chord and y - the nerofoil ordinate, both in fractions -
of the chord, nnd both for zero flap deflection (Fig., 1).

u! * —the flap deflection, mensured in rndians and counted as C e
positive when the flap is deflected dowvmwards. (Pig. 2),

Xy,¥12 the coordinates with respect to the axes of x and vy,
for o flap deflection 1, of that point on the surfoce '
of the flap which is at (x, y) for zero deflection. '

Xz,¥a2! the distance from the leading edge measured along the
new chord, and the aerofoil ordinate normal to the
new chord, respectively, both in froctions of the ]
chord, and both for a flap deflection 7. (Fig, 3). -

h ¢ the contour of the flnp, when undeflected, meets the
upper and lower surfaces of the merofoil a2t x = h.

B ¢ E = 1=-h, and E nay be taken as the flap chord
. (expre§aed oe v fragtion of the original chord of-the
aerofoil), (Fig., 1).

6 ¢ for zero flap deflection
X = 8in® 30 = 4(1 — cos 6),

nnd for a.flap deflection q
Xz = 8in?%6 = %(1 — cos 9),

B, ¢ 01 = 2 s8inr ¥h = 2 cog™t VE,

‘ Figs., 1/
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ha, kit the coordinates of the hinge with respect to the original
exes of x =and y, TFor s11l but the most accurate
calculationg (which are very seldom reguired), hy mey
be teken equal to &, and the value of ky is largely
immateriel as long as it 1s not greater, numerically,
then each of the ordinates of the top end boitom surfeces
Bt 2 = h,

o« ¢+ the incidence, for & flap deflection n, with respect
to the new chord (Fig. 3).

! :+ the incidence with respect to the original chord — i.e, the
incidence of the front part of- the wing, or the incidence
at zero flap deflection (Fig. 3).

U ! the undisturbed velocity of the air relative to the
aerofoil,

p - ¢ the air density. '

Q : the felocity of the air at the surface of the aerofoil,

relative to the aerofoil

Bgr &47 By CLopt’:x?PF' CNb’ %, £ B'f Co, Yot See Ref. 2.

The symbols ere used here to denote values for zZero flap

deflection, —B, rthe no—lift angle, and « y the
incidence for the optimum CL’ are both meBQﬁred from

the chord for zoro flap deflection. e! decnotes de/de.
Agy, AC; 4 AB, etc.: Values for a flap deflection n (to the
opt

firet order in 1) are denoted by g, + Agy,

CL + ACL s B t+ 4B, etc, Those quantitieas which
opt opt . C
are functions of position, such &s gy + bgy, vefer

to & value of xp equal to the value of x +to which
gy vrefers; l.e., g; ond Agy refer to the same.value

of ©. Also —(B + AB), Copt T A%,y 8TE memsured

from the new chord line -~ i,e, they are the valucs of - «,

and not of «' (sée Fig, 3) when Cp = ¢ and when
'CL~ = CL s Trespectively, - ,
opt ' !

L,M4,N: When /U is expanded in powers of Cr, and 7 the first
terms nre ’ '

Suffixes w, £, B, ¢r the suffix u denotes values on the upper
surface and the suffix £ vnrlues on the lowor surfnces
the suffix 8 refers to values for the corresponding
symmetrical aerofoil and the suffix ¢ to values for
the camber . or centre line.

I":S!t;iﬂ/



Ty8,t,me r = M’c/n!
t = Aeé/n,
m = —-ACMO/T;.

8, r G = & sin(o + B8 + AB).

Coy C1y Cat When CL is expanded in powers of ¢! and n the
first terms® are

Gy = Co * cut! + cam,
80 Cc1 = Qg,

CH ; the hinge-moment coefficient, suoch that the hinge
moment is FpUPE2c®Cy for an aerofoil chord of
length ¢,

by, bi,y ba, b: When GH ie expanded in powers of o' eand n

CH = bo + bl(x' + bgn,
and when C is expnnded in powvers of C end n,

H L
bl bi

¢ = by — ==y + — C; — by ;

H oy cs L
< - Cso
g0 b + bg = - bl .

C1

3, The Simple Theory of an Aerofoil with o Hinged Tlnp

We suppose that the contour of the flap in its !zero!
position mceets the upper and lower surfrces of the nerofoil at
X h (Pig. 1), nnd thot the coordinates of the hinge, with
respect to the axes of x and y, are (hi, ky;). For all but
the most nccurate calculations (which are very celdom required)
we may take hy = h, and the value of k; is immaterial so

long as it does not exceed, numerically, the ordinate of either
surfance at x h.

—

Tet/

*The notation here differs from that usunlly adopted in the

co

Cg

(C
it
of
WO

nsideration of aerofoils with control {laps, according to which
= 85 + 8,' + a,n, The use of a, for the slope of the

IH“) curve, however, is now well established; in particular,
is so0 used by Glauert and has been 2o used in preceding reports
this series, Adoption of the usunl notation for control flaps
uld therefore lemd to confusion between &8, and a,;, All

confusion is avoided by the simple expedient of using cg, Ci1y Caz
for ARy, 81, B3 835 in the text. We then have ¢y 8oy there
seems to be no objection to such a relationship.

=
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Tet the point on the contour of the flap whose coordinantes
for zero deflection nre (x, y) (with polar coordinates (r, ¢) relative
to the hinge) bacome (X1, yl¥“for n flap deflection 1n, Then

.
§

X = hy + 7T dbs ¢, ¥ = ki + r sin ¢,

and
£3 = by +rcos (¢~n) .=, hy+ (x—hy) cosn+ (y=—ki) sinn

- ...(1))

¢

.y = kn+zrein (p—1n) = ky + (y—ky) cosn—(x=hy) sin n,
Lee(2)

Tf n ise smnll, ond squares of n and products’ of 1
and the aerofoil ordinntes are neglocted, then approximntely

le = JI, -’ yi = y""i’}(X"h). 000(3)\

The troiling edge 1& at the point' (14, — n(1 — h)), aond to the
first order in n the chord is still of unit length.

% For the most part we shnll be content with thie simple
theory”, but the axes must be changed so that the new axis of x 1is
nlong the new chord, joilning the loading edge to the new position
of the trailing edge 8Fig.b3)a To the first order in n the axes
must be rotated through en angle En, - whererE .= 1 —~h, i .
the length of tho chord of the flap as a fraction of the total chord
of the wing. Tho new coordinates, with n flap deflection n, are
denoted by (xg, ¥z). To the first order in 1, with products of
n and the aerofoil ordinates neglected, .

‘X.g = X, = X’, "'(4:)
. ya = y+Enx. .(0< x<h) 5)
LN ] 5
= yy +Enx = y+ bn(1=-x)(h<x<£1)

Since tho ordinatce of both the top and bottom surfnaces
are altered by the same amount, the half—thickness yg 1e unaltereds

the change in the ordinnte of the centre line is
J Ay, = Enx (0 € x &.b)

hn(1 = x) (h € x < 1) . -+ e {6)

It}

710, The incidence with respect to the new.chord is denoted
by &§ we denote by «!' the incidence with respect to the 0ld
chord — i,e,, the incidence of the front part of the wing (Fig., 3).
Since the new chord mnkee &n engle En with the old chord ,

L o« = o' + En. , cen ()
- oo . The/

*Por a more accurate, and much more complicated, theory, see the
Appendix, ]
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The quantities we wish to calculate are, in addition to the
hinge moment, the no—lift angle —B, the moment coefficient at zero
lift C the optimum 1lift ococefficient .C and incidence « y

Mo’ - Ilop,t Opt
and the velocity at the surface., In connection with the calculation
of the velocity at the surface, we require g, Py, € eé, Co » 841

Yor Eqr B4 (Ref. 2. &' denotes dg/d0).

On the simple theory above, ¥y, hes the same value as
for zero flap deflection, and so therefore have g, Vg €4 aé, Co.

According to (6) Ay, is represented by two streight lines,

and the determination of the chenges produced by the deflection of the
flap in all the other. quantities required (except the hinge moment)
is mercly e special case of the example in §9 of Ref. 2, where Yo

was represented by two quartics in x, All we need to do is 1o make
the following substitutions in +the values obtained in that example,

&g = En, b = by, by = —hm, c1 = 8 —Dby = 1,
Bg = 8z = 8, = bg = ba = b4 = C:a = Cp = (a4 = 0,
Xy = h, 8, = 2 8in™ vh = 2 cog I, ...{8)

4. The No—=Lift Angle, Moment Coefficient at Zero Lift, Qptimum
‘Lift Coefficient and Incidence

We use @B, CMb’ GLopt’ mopt to denote valucs at zoro

flap deflection,and supposc these values calculated by the theory of
Ref, 2, Tor the changes due to a flap deflection 1 we find thet

Aﬁ . 91 Sil’l 61_
—— [—1 h—-—"l' .l.(g)
N T T
ACHo
m = - = h Sin 81’ po)(10)
]
AC
i 1 L
— "‘-—-—~R-O % = 2 sin 81, o-'(11)
8¢ 2 N
A 9. 21 — By \ 8in 6,
_(m = -—-—h+ N  J 'll(12)
T T 2t + 85 T
where
Cp, = & sin (¢ + B + AB), ..o f1%)

Formulae (1) and (12) do not allow for any change in 8, as the
flap is deflected., It is easy to calculate the effect of any ochange
whose magnitude is known or can be inferredj but such cffects will
usually be negligible for the purposes for which the formulame will
be required,

y Values/
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Velues of 8./m," (sin 6.)/w, (8p)/n, .m, end (ACL t}/ﬂ,
op

(Nxopt)/q for @, = 2m, are tabulated in Table 1 for E = o0°4,
0‘3', 0.25"0.2, 0'15, or* 1’ 0+08. . \
The formula for m is in egreement with the formula given
by Glauert in Ref, 3, ‘ AR
The values of AR} L - in (9) and (12) refer to the
new chord:. ive., ~(B + AB),.-xopt.+ A,y @Te the values of «

when - GL =- 0. &and when CL = (.-, ,.respectively. The velue of
opt '
—-! at zero lift im

81 gin 91

B+ n |1t~—+ : ceo(14)

T T

the value of «! when- CL = CL is
opt
\ 64 2T — 85 Sil’l' 01 ( )
“ - n | o —— - . ¢ 15 -7
Op..t TE 2n + T
We note aleo that, for @, = 27, ,

'—AC = -Lhﬁ r N ' ‘ ’E. . 16
MO 2% CI'op-t ( )

Consider the application to reduce the moment coefficient
of a low—drag wing at high speede, Suppose the wing is cambered
for a fairly high design C,, appropriate to the cruising speed or
to the climb, and that at h&gh sepeeds the flap is up, so that n and

AC are negative, Lot -C (the design C.), for example,
LOPt‘ Lopt L

be 0+5% 1f the low—speed equivalent of the top speed GL is o-2,

we want C. + ACy = 02, sgo for a, = 2n we should make

opt opt
n = =—0-3/(2 sin 6,) rediensy for a 20 per cent flap, for example,
we should make -m = 10 deg 44% min,

Further, if, for the particular type of .oentre line on the
original aerofeil,

-CMO/GIIopt = K ’ .

then t

(0, + AC, ) = KO + 4hAC
Yo o Lopt Lopt’

end is less, with the flap up, than if the merofoil had been
originally combered for CLb + AGL‘ without a flap by

~(4h —K) ACy

Suppose/



Suppose, for example, that —ﬁCL = 0*3, as above; that
opt
K = 0°25 (the value appropriate to a centre—line designed for
congtant approximate loading over the whole chord: see Ref, 4, $9);
end that h = 0°+8, so that we have a 20 per cent flap as before,
Then —-CNIO is reduced, by the use of the flap, by -
0°3 [0*4 — 0°25] = 0r045; in fact, with Cg = 0-5 as above,
opt

—C would ‘be 0+125, 8nd with the flap up, so that AC,. is

Mo ¥ N Ilop.t

-—0°*3, --ﬁcmo = —0*4 X 0°3' = —0°*12, 60 —(CMO +ACMO) = 0°005%
without & flap and with a value of 'CL equal to 0-2, —CM.o would

opt

heve been 0+*05,

5. The Velocity et the Surface and the Lift Coefficient

To find the velocity distribution at the surface we use
the methods and notation of Ref. 2, Two methods may be of interest —
Approximation I, based on a very rough linear theoxry, to give rapidly
a8 rough idea of the changes produced by the deflection of the flap
away from the nose of the aerofoil (where Approximation I fails
entirely), ond Approximntion III for more nccurate work,

According to Approximation I, for zero flap deflection

1/1 :
WU = 1+ gy kl|g +~|—+—](C ~Cy ) ocotie
2 \ng 2m opt
1 /1 1 ‘
— — ...._.—..-_- ‘CL ‘tan-iz-‘e . -00(17)
2 \a, 21 :

(the upper elgn applying to the upper surface and the lower sign
to the lower surfnce¥, where

x = #(1—-coe9) = a@in® %0, o0<0<&7n, ...(18)°

and

0f = 0o (e + B). ... (19)

The theoretical value of f,, if the Kutte—Joukowski
relation is satisfied, is 2m on this theory,

According to Approximation ITI, for the upper surfnce
' 1

4y LY L
—;J-— = 1 — ;o;' F'L'l sin (8 + au —_— B) s "a—'o— Fu co8 (e + Su -— B)
OL *
+ 2ﬁ660 LN o | ...(20)

where/



.._‘.11..-.
whafe
e?o (1 + el)

u (2 + sinse)é oo (21)

and for the lower surface

/ 1
c2 C
£ = 1~L) B, ein (0 —c,+B)~—RF, cons (8 —¢, +p)
U ag , Bo
¢
- I F’e ...(22)
211‘6
where
e¥o (1 + sé) .
P, = ~— x . ... (23)
(¥7 + sin® 6)®
e! denotes de/88. In both (20) and (22)
C;, = 8 sin (< + B); .. {24)
in (20) — (23), 6 1o defined as in (13)}
Yo = Co +[el bgl + [ef %], veo(25)
where . K
1 % B
(el ¥g] = ={ = (8) ¢4 (0) 89, .o« (26)
and similarly with the suffix oj also
By = bc tegr €5 = By T Egy o ..;.(271
a& = gl + eé, ep = e — €}

The theoretical value of &5, when the Kutite—Joukowskl condition ia

patisfied, is 2ne®®, To find the veloclty ‘for a flap déflection 17,
in Approx1matioq I we change 8gr 40 cLopt into g +“¢gs, 8y +‘¢gi,
Lopt + ACLopt; in Approximetion IIT we chenge ¥, &, B, €' inteo:
Y+ AP, £ + Ae, B+ AB, €' + Ac', (In eddition we should meke any
change in ap, which we can infér from experiment or which
experience has led us to expect; for small flap deflectiona we
should not expect any apprecieble change,) The resulting value of
/U +then applies to & value of b 4 equal to the velue of x 8t
which the original value of ?fo = 0) applied, — i,e, if
we write

C

Xa/
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xg = #(1 —cos 8) = sin® 9 o0 (28)

for & flap deflection of 1n, the calculated values of /U apply
to the same values of © a8 before,

Ap end AOL were found in $43 end, as explained at
opt -
the end of §3, since Ay, = O, _
hgg = Mg = Beg = Ael = 8Co = O ..'.(29)

ConseqQuently
M, = D, = Awpcﬂ
Asu = Aeg = ABO, > . |-l(30)
Aea = —-Aeé = Aeé

Bgys By Aeg, Aeé are then immediatély found from $9 of Ref. 2,
a8 explaired at the end of §3, We find that®

n  ein %(6 + 0;) . ,
Agi = — /n ’ c-0(31)
Cm sin %6 — 0.
2Ay 2En sin® 40 _ ) A
Ky, = —2 g = En ten 40 (= Apy, cay) for odx<h,
sin 9 gin 8
b

2hn cos? 46

cot 39" (= A5, say) for hix<1,

...(32{

1 sin 4(0 + 03) Q4 )
Ae, = — [Ap;~Ays] £n +n|bh—-—], ... {33)
T

i

U

o
.3

gin 9

¢ sin %[0 — 0] i
end . ‘
1 . ein &(8 + 8,) gin 64 B
CAel = ~ CApl—ap3] 4n -1 e—— 0860 O,
7 ‘ ein ¥|6 ~0,] . T
where _ Mo 05.(34)
AMpl = 4Bn sec® 49, . AMPL = -— %hn cosec® 9

Since we are concerned only with e theory linear in upP 'h¢c, Aec,
Asé are proportional to 7., 1In the expression for g/U, g, occurs
in the combination e - B. (and AB, of course, is elso
proporticnal to _n). It‘is yperefore convenient to write

&(#tc r= rn, éec "'"AB = En, ABé ? tn_’ lli(35)

- ]

From/

*m is used for log,.



From (32), (33) and (34) we then find (substituting for E and h
in terms of ©, in 8 and t) that

r = Etan 50 for o0 x < h
' o : ’ ...(36).
= h cot %0 for h ¢ x <1 :
1 fcos @, — co8 B gin 5(60 + 6,) s1n B84
! S = ot Ign - ] 1
T gin © sin %0 — 8, T
| oo (37)
1 {1 — cos 8, co8 9§ gin »(8'+ 6.) ©in 8,
t =3 - in - cosec 6,
T 8in? @ gin ${6 -~ 04| m
0.!(38)
where
cog 81 = -ZE - 1. -al(’g)
t vanishes et 6 = 0 &eand © = 7y e vanishesat © = %, and
et 6 =, .0

8 = =—(2/n) sin 8,.

At & = 0,, 7T i8 continuous and equal to & sin 8,3 .6 i8
continuous BAd equal to —(sin @,)/m; but t .is logarithmically
infinite, Consequently the velocity is logarithmically infinite

gt x = h according to this simple theory, If this infinity 1is to
be avoided, the details of the way in which the surface is rounded
0off near x = h- must be studied, and some such theory used as

thet expounded in the Appendix, This logarithmic infinity ic a defect
of our simple theory, but it is not to be considered & very serious
defect. TFor the effect ie purely localy it 1s correct thet the
velocity will vary rapidly near x = hj and the exact values
reached will depend critically on the way in whaich the surface is
rounded off, details of manufacture included.

Tebles of (Ag.)/n, T, 8 and +t ageainst x foxr
E = o0*4, 03, 0°25, 0¢%, 0°15, 0*1, 07008 are to bo found in
Table 2,

If, in Approximation III, we wish to includec the cffect of
the change in 1y, due to the flap deflection, we note that

S ye)/m = Dty 0%+ [z oells

this change is, in any c¢nse, very snall,

It/
*Although t is lognritamically infinite at © = 8,,
gﬁ t wo(e) 80 converges, and for small values of §
0,46 26 &
f t mc(e) e = ~— (84) fn ~—————— + O (63 fn 8).

0840 g 2 8in 04



It may be convenient to have available explicit formulae for
the chemge in g due to the flap deflection., On Approximastion I

/U = 1+g_ *{g. +—{—+—1} (C, —C ) cot 36
® + 2 \ 8y 27 L Lopt
1 1 1 n gin #(6 + 84)
—— ] ——— CLtan%;e-i-— in — gin 8, ocot 40
2 \s, 2m T sin %[0 — 9]
.. (40)
For Approximation III we write
AR .
G = Y 001(41)
ng
8o that
A'Yo t Ir 'l!)u j
Gu = + - ,
2 LR~
n t4+el Y5+ ein® o
X ) | > cee(42)
Ty
L3 £ 3
n 1+ Ep Wy + sin”~ © ]
Then
Q, ’ g2 & C
L L -
— = 1——=] P _8in (6 +¢_=~B) + =P _ coe (8 + e — B)
U- ag) n u ag u u B
C A
+ Lc Fu+-—-?-'-“—- cee(43)
21 6”9 U
and
Q c2 ¥ C
e A - L . - L
5 1 o F£_81n (0 e, + B) o F, cos (0 ey + B)
CL Ag
- F +‘H-—‘ L A
2 ego £ . ’ (44)
where ‘



1A c2y C
oYy | 1——=2) g —-Lol P oin (6 + 5, —B)
n U ag 8o
3 q Cy,
+ {1 —=2) 8 +~2G 3} F_oos (6 +&. —B)
02 o, B u u
c
L
+
— eco Gu Fu o-'(45)
and
%
1 Aq Cf C
-t P G,ﬁ—-—lis ngin(8—€£+5)
n U ag Bg
: 2 3 ¢ '
~4ls L) g+ hEO F, cos (8 —e, + B)
p P Y/ y/
0 Q
¢
L _
—~—L ¢ F,. -o0 (46
27 ec° £ 4 e

The value of Ag; (8) in (31) enables us to determine if,

in any perticular case, the position of maximum suction for

c = 0 + AC on the upper surface of & low—drag aerofoil

L Lopt Lopt

with the flap up (or on the lewer surface with the flap down) ie et

the design position for CL = CL y, T o 9, If this position
opt ‘

ie at x = X, and if, as is usual, g](8) = o0 for 0¢ xT <X

(where the dash denotes differentiation with respect to €), then
very roughly, we require® .

] ( )] ]n[ sin 0, (8) cos @ . <
Agl (o = < gl(e) + 2p for 0 € x X,
1 ox  h—x L ginsg

Normelly, but not necessarily always, the least value of the right—
hand side occurs at x = X, Then we require, roughly,

n L

l—L gin 6, < (h —~ X) a4 (2 sin™r X=)¥,
27

For example, if h = 0+8, sin 6; = o©0°8; and if dg_/sdx is
constant and equal to s for o0 < x < X, with X = U¥-6,
s = 0°12, then |n| muet not exceed about 5% deg,

1/

* , kY
gl(2 sin™ Xé) is the value of gé(e) at 6 = 2 sin* X=,
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If 8 is kept conctent and X varies betwecn, say, 06
and 0+4, then gé(z ein™ X¥) varies very little, o the limiting

value of |[n| ie nearly proportional to h — X, With kb = 0°+8; this
limiting value will therefore be about half as large again for
X = 0°5 as for X = ©0'63 for X = 0+4 it will be twice ag

large, In any case when 1 eXceeds the values considered here, the
position of maximum suction will move forward gradually, and only e
gradual rise of drag at C; = O (rather faster for flap up

, opt \
than for flap down) i8 to be anticipated,

Finally we note that

041 sin 041
= np slnjdt + B+ (|1 ~—F~——],
i1 7
so if, when CL is expanded in.powers of o«!' and 1n the firet
terms are

CL = 9o + cd' + can, oo (4T)
we hove

Co = &, sin @, oo (48)

Ci = By CO8 B ¥ By, ...(49)

Ca 81 Sin 81

—_—m | e —— ———, ...(50)

Cx T T

The theoretical value ofc By, for the Kutta-Joukowski
condition to be sntisfied, is 27me”°, but the value of c%/cl

is independent of the value of a,. Values of c¢z/c, are tabulated
in Table 1 for the same values of E as before, It iy cleanr thot
the formula for ca/cl le the same ns on the rough linear theory
leading to Approximation I, and 18 in agreement with the formula
given by Glauert in Ref., 3.

On the simple theory here presented, in the celculation of
the effect of the flep deflection on the velocity distribution
producte of 1 and the aerofoil ordinates are neglected, It is
ghown in the Appendix how, by complicnted cnlculations, these
products mny be taken into mccounty and it is worth remarking that
1f, for exanmple, products of n and the square of the thickness
nre neglected, the corrections to the simple theory will, for
geometrically samiloar thickness distributiona, be proportional to
the thickness, Except for very thick nerofoils such an
approximation is nlways justified (except perhaps at the nose of
the nerofoil), 1In fact, away from the nose of the aerofoil, the
velocity on the surface nt a given incidence and flap deflection
ie nearly a lincar function of the thickness for nerofoile having
R given centre line and geometrically similar thickness distributions,
BO long aB the thickness is not exceptionelly large.

Hinge/



6, Hinge Moments

. It ¢ is the hinge-moment coeflicient, such that, for
unit chord, '%pggEac is the moment about the hinge of the normal
pressure p on unitHwidth of the flap, then

‘ ‘Jz‘PUzEgCH = PE(X.Q ~ hg)dxs + (y2 — kg) 'dygj,...(‘ﬂ)

the exes of X, and y, being used, (hs, kz) being the coordinates
of the hinge relative to those axes, and'the integral being taken
round the contour of the flap in the negative sense, Now if H is
the total head, assumed constent, -

p = H=-%pa?, ...(52)

end
H [(xz — hg)dxy + (yz — kz)de] = 0, ere(53)

80

,EQQH = (a/U)® [(xe — ho)dxs + (ya — ko)dya]. ...(54)

It is usual to neglect the contribution to the integral-
in (54) from the part of the contour of the flap forwerd of X = h.
If this part of the contour is a cirole with its centre on the hinge,
80 that the lines of action of the normal pressures on the surface
forward of x = h all interscect the hinge, this contribution is
ldenticelly zeros otherwise it should be specifically noted that the
effects of tihe difference from the total head of the normal pressures
on this part of the surface of the flap have beecn neglected; moroover
thes? cffects could not be theoretically calculated in mnany cases
when there is no senl; idenl fluid theory would provide no guide.,

' It should also be specifically stoted: that, since this
investigation. is a theoretical one on the basis of potential flow,
nll effects of ckin friction are neglected. Morcover, the pressures
are pgsumed to have their theoretical values, Now boundary-layer
effects nre greatest nt the trailing cdge, and the contribution to
the hinge moment of the pressures near the trailing cdge is considerable,
8o boundary—layer effects mny be cexpected to have a cong2idernble
influence ‘on the hinge moment, There 18 some ovidence, however, that
Tor cusped or nearly cusped aerofoils, hinge moments calculated by
potential theory will provide a good guide, especially at large
Reynolds numbers in streams of low turbulence or in flight, providead
that ap 18 given its theoretical 'Kutta—Joukowskit! value, This
gtatement-does not imply that the actuel pressures on the surface
near the trailing edge will be at nll accurately found in this monner,
but 1t does seem that the difference between the prassures on the’
upper and lower surfaces — the normnl loading — may be feirly well
reproduced, For acrofoils with large traniling—edge angles the hinge
moment appears to be moro dependent on the position of the transition
to turbulence in the boundary layer, on Reynolds number and on ‘
turbulence in the stream than for cusped nerofoilsy at the present
time our' only hope of being able to forecnst hinge moments on
acrofoils with large tailing—edpe angles teems to be to' find empirical
correotions to valuee calculated in the manner described above, In

'y 1 oy

S . : o , . eny/
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sny oase it seems valueless to calculate hinge moments with eny
value of 8, other than the theore tical 'Kulte—Joukowski! values,
gince even 1f the trailing edge is rounded, it will be only slightly
rounded, and with any such,value of :8p, the velocity q  will,
eccording to potential theory, reach large values which will not

be obtained in experiment or in practices these large values will
entirely falsify the calculation of the hing moment, We shall
therefore give 8, ite 'Kutte—Joukowski'! value. :

, If we now neglect the sccond term in (54), and use the .
simple approximation (5), we may writo

q2... 2
E? Oy = 4 :u [x — k] ax. ...(55)
- £

Now euppose that, when /U 1is expanded in powers of ’CL and n,
the first termse are

Q/U = L.+ MCp + Nn. ' .o.(56)

When the hinge—moment coefficient is expanded in powers
of «!' and n it is usual to write, for the first terms,

Cg = bo + baa' + bem: .o (57)
If the first terms in the expansion of GL in powers of o' and 1n
are, as before, : : )

CL = Qo + cm_OC' + Cafe -oq(S?)

then the first terms in the expansion of CH in powers of GL .
and n are )
O/

*It is found experimentally® that, for cusped or ncarly cusped
rerofoils, b; and by (see ean,(57)) are very close to their
thooretical values bascd on the Kutta—Joukowski cireculation, Thus

b (sge eans. (59).and (60)}) will be near to ite theoretical value'
only if o0g/cy (sce eqn.(58)) hag its theoreticnl value, At

present the experimentnl-cvidence is that cgz/cy noy be slightly
less than ite theoreticel valueo, but this small departure may perhaps
be lessened by an increase of Reynolds number and a decrense of free—
stream turbulence, and by ensuring smoothness of the aerofoil surface
with the flap deflected, )

¥or nerofoils with large troniling—edge ongles the most
succegsful method at present of correlating experimental data is to
PlO? the ratio of the mensured value of by to'its theoretical value
agninst the ratio of the measured value of bg - to ite theoretical
value, and similarly for ¢, and oz, PFor nny given value of E
1t appears that the pointe thus plotted lie on straight lines .

}ndependent of shgpe or of the position of the transition to turbulence
in the boundary layer, Hence bp and . o - moy be estimnted from a
knowledge of b; and c¢;. and the theoretical values of by, c¢i,

b3, C2. These theoretical values are those found with the Kutta—
Joukowski circulationy we therefore require to be able to calculate
these theore?ioal values even for nerofoils which are not cusped, It
secems well within fhe bounds of possibility that it will prove possible
to calculgte 03 with sufficient nccurncy by allowing for boundary
layers, with scele and transition effeccts included; and it is hoped
ultimately to be able to compute by £s well,



bl ’ b:l.
c o]
.1 1
where
Cx
b = = by ~ ba. ... (60)
01 '
Hence, from (55),
by a
Ea bQ “-_-CQ = (I’E _L-n-)(:x-“h)dx’ -vu(61)
Cia
bs
T2 — = (2 LJMQ — zLuMu)(X -~ h) dx,
Ci
h
‘l-.(sz)‘
A

~E?p = (2L,N, —~ 2LuNu)(x — n)ax.,..(63)

h .
On Approximation I it follows from (20) (with @y = =2n) that

1

1 =~ — ra— ..J
Lu 1 gg t gy - cLopt cot 0,

o1
L, = 1+4+¢g, ~pg; t-—20 cat %9,
¢ . 1 oom Lopt

1 P

M, = M, = — cot #9

27
1 gin #(6 + 61) .
Ny = N, = — £n —~ gin 0, cot %9
7 sin%]@-—@;l
» ' . o
.. (64)
Hence, if we keep only the most important terms, . ~
by 1 o
E?{ by — — oo = -y g, ~ — Cp, cot 40 ) (x ~ h)ax,
' c1 h an  “opt
by 2 OF
B2 e = == \ (x =~ h) cot 30 dx, ‘ F.
Ca T
4 sin (6 + 8;)
B2y = =~ In —~ gin 8y oot %8} (x—h)dx
T sin £[6 = 0. -
olt(65)

Since/



Since

x = %(1 — cos 8),

ta
il

%‘(1 -~ C08 (‘31),

it follows that

1 ]
4 (x — h) cot $0dx = (cos 85 — cos Q) sin 6 cot 4 .4
el
= g {(cos 85 ~ cos B)(1 + cos @) as
1. 0
= (n = 01)(cos 8y — %) + (1 — 7 cos 8;) sin 8,4,
and
. T
sin 5(0+04) ain %(6+0:)
4\ in - (x~h)dx = in (cos 94 — cos 6)ein 046
sin #]6-9 | )6, ein #|6~64|
h
‘ sin 5(6 + 01)
s {%(c0s 04 — co8 0)2 /n z
ein (8 — 01
T
+ % 8in 6,(6 co8 By — sin 8)
1
T~ 01 gin® 84
= - eeeeee gin 205 + .
4 2
Hence
by 1
_—e—= {(1“'%’005 91) sin 81"'(7{2"'61)(008 81-%-}
&1 2nE#
1
= ——— {{(# —E) sin 8y — (%~ 2E)(n — €3)}, oo (66)
2nE?
1 I
4 oco 1
bo = —— \g(x—h)dx + 2L {(F - E) sin 6, — (% — 2E)(n ~ 0,)}
B? B
Uh
vee(6T)
(since on Approximation I with a, = 21,
cog = 278
and
OLopt‘- Cop = 2n(m°pt + B) — 2B = 2mx0pt},

and/



and

h sin 64
b = e (1 =0, — 5in 8,). ...168)
AT

It follows thet

. Ca
- bg = b i 'b1
.01

= 2 {2Eh + (n — ©,) sin 04 — (% — 2B} (n — 01}3}.
TEEB ' :
' ...(69)

These velues agree with those found by Glauert, by 'flat-
plate! theory and summation of infinite series, in Ref, 3, The same
is true of the values previously found in this report for m and
cs/ca (eans, (10) end (50)}), but whereas those values are also
correct on more exact non—~linear theories, eans. (66) — (69) are not
go correct. 1In fact, the values found from these equations are not
sufficiently accurate for most purposes, and values should be
calculated on Approximation III, Nevertheless the values of —bi/c,,
b and -~bg <from the formulae abové are tabulated, for what they sre
worth, in Teble 1 for E = 0+4, 0*3, 0°25, 0*2, 0*15, 0*1, 0°08,

en.Approximaéion IIT it follows from eqns., (43) — (46), with
8, = 2ne %, that '

L, = ¥, ein (8 + £ _~B),
L, = Fﬂ sin (9"55+B)!

eee(70)

T

F
ubo [1+ cos (6 + ¢, —8)],

27e
. hN oo (7T1)
gco [7 + co® (8_8£+ﬁ)]!

Mum

Mz =~

27e
-
N, = G, B,  sin (o + €, — B) + €F, cos (e + e, —~ B)y
: va(72)
N, = G, F, 8in (6 — ¢, + §) — sF, cos (6 ~ €, + 8),

»

where G, G, &are given by (42), and r, s,ﬁ% by (36), (37), (38).

(See also Table 2),

. More accurate values of Ly, by &nd b are to be found.
from eqng. (61) — (63) by numerical integration, with the above
values of I, M, N.

) Por more accurate calculations still, in which the second
term in (54) is included, see §$3 of the Appendix,

We/
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We may remarlk alsc that, for winge of similar t:ickness
distribution whose thicknesses ave not ezceptionnlly large, by,
b, and b are approximately linear functions of the thickness,
ané the corrections to the results found by Approximation I
(eqns. (66), (68), (69)) are approxzimntely proportionsl to the
thickness, Similarly if a local modificoation’is made to the
thickness distribution, e.g. by 'convexing' a conirol surface to
change the balance, then the effect produced is pronoirtional to
the scale of the local modification,

The cosrection to be epplied to the value of by givon
by (67) is also approximalely proportional to the thickness; the
value given by (67) is itoelf proportional +to the cember.

7. Numerical Iillustrations.

Our first numerical 1llustration reletcs to a control
surface on & suction wing designed for a flight test., The fairing
was designed from Approxination I with gg es shewn in Fig. 4748

\

b-¢

ot

(e " ———i

T v

- oI5 - 1t
JL_“_,,,J
Fig 4.
8 = 0°1448964, b = 0°2321126, 4 = -—0°+0937799,
b—¢ = 0°'3550309 and x = 0°75, The centre line was designed
from Anproximation I sith g4 ap shewn in Pig. 5 (sec Ref., 4 $12),
k = o0r073, k' = o0°02, X = o0°75, The design CL i o0-+2,

Cy, 18 —0-015 end the aerofoil is 16 per cent thicky a sketeh

of it ile shewn in Fig, 6, The arlcron ic & 25 per cent flap -
i.e. 1t consists of the whole of the wing aft of the suction slot.

Tag. 5/
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Values of by, bis b, by have been worked out from
equations (61) — (63), with I, M, N, given by (70), (71), and
(72), with the following resulte:

bo = 0°046, by = ""'0'386, by, = ~0*725, b = 0+4%0,

These are probably the most satisfactory values 1t is possible.to
obtain without, empirical correcctions, The -values according t
Approximation I are given below for comparison. - L

bo = 9-049, by = —0°565, by = —0°944, b = 0°599.

These values -of by, by, ,b are the same as those obtained on &
'flat—plate! theory®; the differences from the more accurate
values given above are considerable,

Average values of by, and by from CL = 7 to
CL = 0°*5 ere also found by computing OH for these .two
Ci—values (with m = o) Cdirectly by integration of the right—
hand side of (55). On Approximation III, with a, = 27eC0
(which for thas agrofoil is 7°0440), it was thue found that’
bg = 0.046 and by = <—0°3833 on Approximation I, with
a = 21y, by = 0°+050, by = ~—0°570, These values conmpare

qlite satisfactorily with those given above, especially asg this
last computation is not very accurste., In order to exhibit the
large change in b; produced by a small change in &g,, average

values of b, and by between CL = 0 and CL* = 0°5 were
nlso computed on Approximotion III with a9 = 2713 the values
obtained were. by = 0°052, by = +0°029. The change in the

value of by, from —0°383 to +0+029 when a, 1is changed from
2nel® to 2m, is quite striking.

Our second numericnl illustirntion concerns certain
computations which have alrerdy been carried out for the
aerofoil on which pressure-plotting experiments are plaomnned in the
13 ft. x 9 £+, wind tunnel at the N.P.L. The nerofoil is n
symmetrical low—drag nerofoil of the so~called *roof—top! vnriét§
designed from Approx, T with g, as chown in Pig. 7 (see Ref.736),

Fig. 7/
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8 = (0°1336€624, b = 07206,119, ¢ = —0r1817961 oxnd x = 0¢63 it is
15 per cent thick, with a cusp, and a sketeh of it is shown in

Pig. 8, The flap is to be 2 23 per cent flap, with the hinge

at the intersection of thenomals to the upper and lower surfaces
at x = 0°+'8, i.e., on the chord line at x = h, = 0°793534.

In the first place, values of the aerofoil ordinates

are given in Table 3, and of b, ey, £f in Table 4. Co 18

0*10696, and the theoretical value of 8a4,(= 2neC°) i8
6°9925,

It was considered that this aerofoil would be &
suitable one for which to compute the difference between the
simple theory of the preceding paragraphs and the more accurate
theory of the Appendix. Since the original aerofoil is
gymeetrical, Mgy, Abeg, ABé are zero, even on the theory in

the Appendix; values of (&4,)/m, Ale, ~— B)/n, bel/n,

calculated by the theory in the Appendix, are reproduced in
Table 43 these values should be compared with those headed

r, 8, t, respectively under E = 0+2 in Table 2, The value

of Ael/n at x = 0+8 has not becen computed, since it depends
criticdlly on the amount of rounding—off on the surface near

that value of x., Apart from values at x = 0+8, the biggest
difference between the entries in the two tables for Aeé/n

is 00166 (at x = 0+85); it appears from the calculations
that this difference may rise to 0°038 near x = 0°+8, Tor
A‘g/h, the biggest difference is 0+0084 (8t x = 0°+8);: for
A% c — B)/n it is 0°0063 at x = o, The more accurate value

of Af/m; however, ies 0°3560, compared with 0+3498 on the
simple theory; when allowance is made for the change in AB/m,
it appears that for Qe /m the biggest .difference would be
0°0099 (8t X = 0-9).

At/



At this gstage it seems best to leave detairled sample
calculations of velocity distributions until the experiments are
performed, so that the calculations may be made for the same
circumstances as the experiments, We mey say in a general. way,
however, that whereas thc correction terms introduced in the Appendix
may make a&.difference of as much as 7 in the third decimal place *

in /U near x = 0°8 for a flap deflegtion of 10 deg., they are
unlikely to make a bigger difference than about 5 or 6 in the fourth
decimnl place near x° = 0°¢5, for exnmple, L

The hinge—moment coefficients of this acrofoil and flap
have been worked out on Approximation I, and nccording to
Approximntion IIT both.foxr the simple theory in §6 (eans. (61), (62),
(63), (70), (71), (72& etc.) and from the complicated theory of the
Appendixz, The results are set out below.

L

b ! Method

Eo —ba s —bg

0 0'4995 0*g923 *648 Approximation I,

| . .
. . oy Approximation III, Simple Theory,
0 {0*349 0*T739 1 €547 Eans. (61)~(63), (70)=(72).

0 |0*364 0* 774 §0-574 Approximation ITI, Theory in Appendix,

i

There is a fnir difference between the vnlues in the last
two lines, and something may be snid about the vnrious effects, and
their mognitude,, which are taken into account in the third line and
not in the second, The coefficients computcd by integration are
—=bs and b, In the computation of —b, account is tnken, in the
more exnct theory, (i) of the exnct location of the hinge, (ii) of
the effect of the thickness on the moment in so far as the moment
of the pressure component pnrallel to the chord is included (the
sccond term in eqn. (51)). In the computation of —b, these are
the only extra effects, In the computation of b these effects aleo
enter, together with (1i%) the effect of the thickness on the
velocity change produced by a deflection of the flap, and (iv) the
effect of the product of the thickness nnd the flap deflection on
the geometry of the system, a8 cxpressed by the terms in X3 in
eqn, (254) in the Appendix.

No exact computation of thesc separate effects has been
modes o judgment of their signs and relative mngnitudes has been
attempted from an inspection of the work necessary to*obtain the
, finished results sct out in the ‘table above, In the computation of

—bi, the largest effect is due to (1) (the location of the hinge)s;
the effect of (4i) is.of the opposite sign and about one—third ns
big., In the computation of b, (iii) and (ivg separately are quite
large — about 2 and. 24 times the effect of (1), respectively, . (i) is
again positive, (31) negntive and about one—third ns laxge,

(1i1) negative and {4iv) positive,.and the combined effect of (iil) .
and { iv) is positive and just over helf as big as the effect of (1),
It will therefore be seen that if accurnte results are required, the
location of the hinge 1s of considerable importnnce,
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Appendix
i, Additional Neotation
Y ¢+ the aerofoil ordinete &8t =x = h.
b :+ the slope of the aerofoil surface, — i.e. the values of

dy/dx ~ at x = h,

£(x), F(x): y = £(x) is the equation of the contour of the
serofoil-for x < hy y = P(x) is the equation of the
contour of the flap for zero deflection.

Prs Py Apys bppi pg end pp are the radii of curvature at the

original leading and trailing edges (zero deflection),
respectively; pp + ApL, Pps + Bpp  the radii of curvature

at the new leading and trailing edges for a flap deflection

.
ha, ks ¢ the coordinetes of the hinge with respect to the axes of
Xz and ya.
X, X3 : See eqns, 23A and 244,
£, 41 t Near x = 0
£f(x) = v(sz)x% +4x+ ... 8
near x = 1

}

L
P(x) v(sz)(1 - x)% + LU(1 —-x) + .,..
The values of £ and 4! are those appropriate to the
upper or the lower surface according as the new leading
and trailaing cdges, respectively lie on the original uppex
or lower surface. '

2, Geometrical Considerationg, The JDetermination of %, and of
the Velocity at the Surface. '

If more accurate calculations are desired than those of the
simple theory in the body of the report, the position of the hinge
and the contour of the flap near and forwnrd of x = h must be
given exactly. Calculntions nay then be made for any flap deflection,
but the questions at issue are sufficiently illustrated if we
restrict our attention to smmll values of 1n, neglecting ite square,
but retaining its products with the nerofoil ordinates, Even for such
cnlculations, the exact position of the hinge is of importance., In
the very rare cnses when such cnlculntions are necessrry and justified,
it will probably be legitimate to nssume thnt care hns been sexercised
in designing the flap so as to preserve, nt any rate for small vnlues
of n, as& fair an external surface to the nerofoil ns possibles one
way of achieving this aim is to locate the hinge at the intersection
of the normals to the upper and lower surfhces at x = h, and to
nmoke the portions of the contour of the flap near x = h on both
surfaces circular arcs with their centres on the hinge, ITet (hi, ki)
be the coordinates of the hinge, as thus determined, relative to the
originnl axes of x and yj denote by Y and Y' the ordinate and
slope of the nerofoil surface — i,e, the values of y ond dx/dx,
respectively — at x = h, and use subscripts u and £ for

values/



values on the upper and lower gurfaces, respectively, (The
subscripts will be omitted when the analysis is the same for both
gurfaces,) Then since (h,,sks) 1lies on both normals

hy —h = "Ya(kl_Yu)r
_ oo (1)
hy —h = =¥i(ky — Y '
1 }( b 3),,;
whence
' v YL(Y. - 7Y,)
hy = h~— -2 £ u' £ .
| -
Yﬁ YE
?.._. ..,(2A)
. . Yﬁfu-— Yk YE '
X
Yl-—-Yl
u £ »
Since

and similarly for Y', where Y., £ ie the ordinate of the centre
line and Y, the half—thickness®at x = h,

h - 71! 1) YB/Yé

1 t
Y, + T} Y&/Ys

If now in equations (1) and (2) of §3 we neglect squares of n,
we have )

by

il

. » 04-(4A)
ky

-

X2 = x*n(y—ki), ya = y—n{x—hy). ..(54)

The point which was at the trsiling edge for nn = 0 ie now at
(1 ='kymy, =~ n(1 ~ hs)).

f the equetion of the contour of the flap for zero
deflection” is y = P(x), then

ya = F(x) —n(x — hy)
= F(xa) —n{xs = by + F(x2)[P(x:) — ka]} ...(64)
to the firet order in mn (except perhape very near the trailing

edge), Eaqn, (6A) is the equation of the contour of the flap for a
deflection 1, with %, and y, &g current coordinates,

By/

*Phis use of P is not to be confuscd with the use of F, and F,
in (20) end (22) gt seq,



By definition the leading and trailing edges are at the
ends of the chord, and the chord is normal to the aerofoil contour
at the leading edge, and also at the trailing edge if the trailing
edge is rounded. Consequently, when the flap is deflected, the
position of the leading edge is slightly altered, and if the trailing
edge is rounded, the position of the trailing edge is slightly ‘
different from the new posaition of the o0ld trailing cdge, A shori
analysis shows that the new leanding edge is et

(1 ~ hy = pmlp
x = o(n?), y = n L ()
1= P = Pr

and the new trailing edge at

(hy — PL)PT

X = 1 -kln! y = "ﬂ(" —hl) + n ? ,,,(BA)

LS A

to the first order in n, where Py, and pp arc the radii of
curvature at the leading and trailing edges, respectively.

The new chord is of length 1 = kin, to the first order
in n.

We now take the new lending edge as a ncw origin, and the
new chord ns the new axis of x, The axes are therefore rotated
through an.angle

|
T —hy —p
=~ Ly era(94)
PP T P

we nlso divide the coordinntes by 1 — kym, =0 thet the new chord
moy be of unit length, We agrin denote the new coordinates, with a
tlap deflection 7, by (xz, ¥ys). Then to the first order in n

T_hl"'p h
X2 =[x — 1y L)/ [1 = xun]
VTP T P
1 —hi —p -1
= X+T] k.lx"“1 - TyJ ’
TPy T Pp
. ? eua.(104)
=, —p
¥Ya = |7+ n(x = pp) L1/ 01 = kan)
VTP T P
i~ hy —p
= ¥y n {ky+ a (x = pg)
V=P T Py )

Hence/



Hence if y = £(x) 4is the equation, for o0 € x < h, of the
contour of the aerofoil in the original coordinates (x, y), its
equation in the new coordinates is, to the first order in 1,

1 =~hy —p
va = f(x) ¥+ nlkiyas + L (xa - py,)
LS
Ty Py 1
= 2(xa3) + 1 l:xz"PI,'*'f (®)E(xa )]+ ka[£(m2) = xa2'(x3)]
T =P~ Pp
1=hy —p
for X5 <-4 4+ 7 - | kh— L vy N CETY
. ) 1 pI’ pT

¥

except very near the leading edge,

Referred to the 0ld axes the equation of the contour of the
flap, for a deflection n, is given by (6A) with =, and y, as
current coordinates, We must therefore write x; eand for
x and y “in (108) (or x end y for x; and y, in ?GA )) in
order to find the equation of the contour of the flap in the new
coordinates, We find thet the new equation is

hl'—?L

TP, T P

ya = B(xa) +n (1 — xa = P'(xa) P(xa) — o]

~+ Ky [F(xa) + (1 — x3) P'(x5)]
1= hy = pT

for x5 2 h + n | kah — Y|, ... (12A)

LS |
except very near the trailing edpe.

It is now not difficult to verify that yz; and yé are
continuous, It is necessary only to remark that f?x) ) eand
ft{x) = P'(x) et x = h, and that, since y = F(x) is,
near x = h, part of a circle with ite centre at (hi, ki),

(x —hy )2 + [F(x) —ky]® = constent
and .
X = hy *+ F'(X)[F(X) - ki] = 0,
in the neighbourhood of x = h on both surfaces, Since y; and

y4: are now both continuous, the logerithmic infinity in e!, <found
on the simple theory in the body of the report, does not now occur,.

Equations (114) and (128) are valid for both the upper
and lower surfaces, and provide equations for the contour of the

acrofoil/



aerofoil with the flap deflected referred to axes suitable for the
caelculatien of the velocity distribution., With x; = %(1 — cos 8),
es before, Y is determined from the equation

$ = 2y cosec 8, v (134)

where yga is given by (11A; and (424), We may compare (114} end
(124) with the equations (5), §3, of the simple theory, which, in
the present notation, ars

and
ys = PF(xz) + nh(1 —x3) for h<x <€ 1 ...(154)

The simplest method of carrying out the calculations would
appeer to be to find ¢, £, ¢! on the simple theory, as explained
in §5, end then, from 13A5, to find the alteration necessary to
to allow for the difference between eqns, (11A) and (12A) on the one
hend and equns, (144) end (154) on the othery from thesa values of
the necessary changes in ¢ the necessary changes in € and &!
would then be found numerically, except that the value of e! at
x = h, 1f regquired, would need & special computationg ite value
depende critically on the amount of fairing—off near x = h,

Equation (114) docs not hold nt the leading odge (6 = o),
nor equation (124) at the trailing edge (6 = =), Specinl methods
are necessary, therefore, to find the new values of ¢, with the
flap doflected, 0t ® = e and 6 = 5, The npproprinte
approximntion to Y(0) is 2v(pL + apL), where p; 1s the rndius

of curvature at the originanl leading edge, and P, + ApL the
radius of curvature ot the new lending edge. If, near x = 0,

L
2(x) = v2pg) x* + 4x+ ..., ... (164)

we find, mnking due allownnce for the change of the length of the
chord, that the value of {(c) is now

-

3 1= b1 —pg

p(0) = V(2pp) {1+ m By +— ¢ oo (178)
2 1= pp Py
to the‘first order in 7, Similarly if, near zx = 1,
F(x) = v(sz)(1 —-x)% + g'(1 - Xy + ..., ...(184)
then the new value of ¥ {m) is
p(r) = v{zpg) <1+ %:k1+-3-£' e ! veo(194)

2 1"'"pI""pT

The/



The values of £ and £!' are those appropriate to the
upper or the lower surface according as the new leading and trailing
cdges, respectively, lis on the original upper or lower surface,

Finally, we may note that since the angle between the old
and new chords 18 given by (94),

1 = hy = p )
« = o' + 79 - L, ... (204)
TP T Py

It should be mentioned that, on an secrofoil specially
designed for suction, with the velocity at the surface decreasing
discontinuously at one chordwise position on cach surface, where a
slot 18 cut and suction applied, the theory o6f this appendix will not
be mapplicable if the suction slot iz 8t x = h ~— i.e, if the wing
aft of the suction slot is to be used as & flep, The hingecannot then
be loceted at the intersection of the nommals to the upper and lower
surfaces at x = hy theoreticnlly there is a singularity in the
equation of the aerofoil contour there and practically the position
of the hinge is largely determined by mechanicnl and other geometrical
considerntions, arising from tho necocsity of leaving the slot frce
for all values of n without cutting awny too much of the surface nt
and near the slot,

3. Hinge Momonts

We return to oQuation (54) of $6 and retain the second term,
using eqn, (124) for y.. Note first thnt it follows from eqns, (104)
. that

'\‘
' 1"-111“"'pT
g = hy ~ nk, -~ hy ¥ ,
e T Py
> ., . (214)
1"?11-“,0 1
k:a=k1+'ﬂ T(h:L"PL)'{'k%,
L~ Po J,

From (12A) end (21A) it follows, after some reduction, that, to the
firet order in n

dyg 1 d
Xz — hgy + (ya — ka) | = (%2 — hg)? + (Ya_ka)a}
dx; 2 dxs
‘ ‘ = X+ n(¥p + 2k;X), ... (224)
where
14 .
X = = {[xa — hy]? + [F(xs) — k3 ]?}
2 ng
= Xg — by + P'(xg) [P(xp) = ka], .. (234)

Xa/



da hy =~ p
X = X |ky(1 = %) —~ - L F(Xz)l
dXg 1= P, Pp J
) By = p h, —
= =X |k + - = Pt{xg)| + ({ka(t = x3) — = F(xa)
T= P~ fp LS A
X {1+ F'(xg) [F(xa) — k1] + [B(xs)]?}. .o {248)

Since y = P¥(x) is, near x = h, part of a circle with its
centre at (hg, ki), it follows that X and Xy both venish
identically in the neighbourhood of =xz; = k.

E?C, 18 given by eqn. (54) of §6, but that equation was

obtained with the length of the new chord ss unity, whereas,
gtrictly speaking, CH should be defined s¢ that the hinge moment

is #pU”E®c®0y, where ¢ 1is the original aserofoil chord. With

the new chord of unit length, the length of the orignal chord,
to the first order in n, i® 1 + kin. Oonsequently the right—nand
gide of (54) should be multiplied by 1 — 2kin, B&nd

2 7] 4G
E20, = - (X, + nX1£)'~jE;-(Xu + X, 4 dxa. ... (254)
We have taken the lower limit of integration ms h _because, although
the flap extendes from X = h + n[kih ~ (1 — hy)Y], +the integrand
vanishes identically in the neighbourhood of x; = h.

With L, M, N as in (70), (71) and (72) (but with r, 8, t
replaced, on the upper surface, by %he more anccurate values of
&p/ny b(e, = B)/n, As!l/n derived from euns, (114) and (124),

and on the lower surface by the more mccurate values of ~ﬁ¢ﬂ/n,
(e, = B)/n, —Ael/n similarly derived), the following equntions
are obtained from (25A) for by, by, b, ba.

1
by
E?.. bo _—— 00\. = (L§X£ b L'fl}g,]_) dxgy e (26A)
¢ ./ Jn
by
B2 o= (ZLszxﬁ'_'zLuMuXu) dxg, Le.(274)
Ci
1
Ca
~E%b = EB| by — ~— by = (2L,N,X, — 2L N X+ L;X, , — LéX, )axa.
Ca
.ee{280)
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Teble 1 %Wé?;;‘m

E h 8./n sin 8,/x AB/ m

04 0:6 0¢564004 0°311879 C"3478 0*5879

03 0*7 0*630990 0°291736 0* 3607 0*6416

0°25 07 0*666667 0*275664 0°3590 0°6495

g0~ G€

02 08 0°704833 0°254648 0°*3498 0*6400

0°15% 0+ 85 0+ 746817 04227319 0" 3405 0*6070

0°10 0°9 0+795167 0190986 0°2358 0°5400

008 0rgz2 0+817445 0r172711 0*2753 0°4992

B AoLopt/n At pt/n ca/01 —bs/es b by

04 19596 —~0°9359 07478 0*1185 04557 100127
03 128330 —0* 0690 0-66075 0°0999 05508 0°*9654
pe25 17321 —0*0833 06090 0°0900 0*5993 079436
0°2 126000 —Q0-*0952 0°5498 0*0795 9*6483 0v9229
0*15 1°4283 —0*1032 0‘480‘5 0*Q680 76978 0*5031
0190 P2 —0*1048 03558 0°0549 07477 0° 8042
0+08 1+ 0852 —0*1026 0*3553 0° 0489 0*7678 0°8769
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Table 2.
E = 04 "E = 0°3
b -
dgy/n T s | % Age /M r 8 t
0 0 0 ~0*5238 o -0 . 0 —0°5835. 0
0*00% | 0°0369 | 0°0284 |—0*62311{0°0099 [0°0296 |0°0213 -0'58305 0* 0059
0*0075[ 0*045% | 0°0%348 [—0*6227 [0°0122 (0’0363 |0+0261 [—0°5828” {00073
Q0* 0125 0'05865' 0*0450 |[—0*6220 (0°0158 0*0470 -0'03375 —0*5824 0'0095
0°025 | 0°0837 0'06405 ~0*6202 [0°0229 [0°0670 |0"0480”|—0*5813 ][0°0137
0*05 | 01207 | 0°0918” |=0°5564 1020340 1070963 | 070688 |—0°5791 |0+0203
0°075 | 071508 | 0°1139 |=0°6124 |07 0436 [[0°1201 |0-0854 |—0°5767. {00260
01 | 091777, 0°1333 |—0°6081 /070529 }0°1412 |0°1000 |~0°5747 1070315
0*15 | 0°2276°|.0°1680 [—0°5987[0°0720 {0°1797- {0*1260 |[—0*5685 [0°0425
0*z 0#2760 | 0°2000 [—0*587G {0°0931 [0°2163 |0°1500 |[|—0¢5622, {0*0545
0*25 0°3259 | 0°2309 {—0°5753 (01178 {0%2532 |0°1732 {—0°*5548 |0°0682
03 0°3797 [ 092619 {—0°5605 |0°1479 {02917 [0*1964 [—0°5463. |[0°0845
0*35 | 094404 | 0°2935 |—0’5427|0°1861 |0°*3333 (072201 |[~0°5363. |0°1043
0*4 [ 0°5125°| 003266 [—0+5210[0°2367 [[0*3797T 0°2449,[—0°5243 [0°1294
0*45 10°6031 ; 0°3618 |—0°4937]0°3079 §0°4335 [0r2714")~0*5096 |0*1622
'0*5 047297 L 0°4000'|—0*4578 |0°4178 04987 [0°3000 |—0"4912 |0-2070
0°55 0°9463 | 074422 [—0°4070|0°6233 l0°5828 023397 |—0"4675 |0°2719
046 o "' | 0+4899' {~0*3119 o 0*7026 |0°3674 |=0°4351_|{0°*3755
0+65 1079536 |10°4403|~0-2141{0+6368 0°9118,|0"4088 —0+3873°|0-5760
0*7 " | 047026 | 03928 |—0*1586 |044292" o0 0%4583 |—0"2917 0,
0°7% 0°5611 | 03464 [—0*1175 (03132 (08813 004041, —0*1900 [0+6032
o~ 8 0"453%7 | 0*3000" |=0*0850 (072340 0°6393 |0*3500"|=0*1318 [0"3952
0+85 {0-3621 072520, |~0°0583 [0°1739 094845 0°29471 |—0°Q882 | 02755
0°9 02760 ! 0%2000” |—0+0359 [0*1242 ||0°3575 |0°2333.|—0°0534,/0+1891
0°925 | 0°2317 0'17085 —0*0259 {0°* 1011 [{0°2967 |0°1993 |—0°0383 | 01518
095 0°1038 0-13765 —~0*0167 |0*0778-]/0°2330 |0*1606-|—0*0245 | 0°1154
0"975 0D¢1265 0+0961° [—0*0081 (00520 [[0*9589_ {0*1121.|—0*0118.{0°0764
0*9375)0°0883 | 0°0675 |—0*0040{0*0353 ||0°1105 [0*0788 |—0*0058 | 0*0523
1 e o’ 0" 0. o TR 0 0 0
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Table 2 Contd,

E = Dp-25 E = o0-2

X

0 0 00 —-0*5515 0 ) 0 —0*509% 0
0*005 [0*0261 1070177 |=0°5510 |0%0C44 j 0* 0226 |0°0142 |{—0°5091 |[0°0030
0*0075 |0*0320 {0°0217 |—0°5509 [0°0054 || 0°0277 [ 0°0174 |~0*5090 [0°0037
0*0125 [0°0414 {0°0281 —0-55055 00070 0-03585 0*0225 |~0*5088 |0°0048
0*025 [0*0590 [0°0400 |=0*5498” (00101 | 0°0511°|0°0320 |[—-5-5282 {0°007650
0*05 0°0848 0° 0573, —0+*5481 |0*0149 0-07335 0*0459 |—0*5071 |0°0103
0*075 |0*1056 |0°*0712°|—0+*5463 |0*0191 [[070913 0-05695 —-0*5058 (040132
0*1 0*1241 |0°0833 [—0°5445 [070230 | 0*1071 | 0°0667 -—0350455 0°0159
0*15 0+*2¢475 10°1050 | —0+*5404 |0°0310 § 01357 1070840 |—0*5017" (0-0214
0°2 0'18915 0*1250 *0'53475 00396 || 0*1626 [0°1000 —0'49855 0*0272
0*25 0*2206” [0°1443 | —0°5304° |0*0494 [ 0°1891_|0°1155 |—0°4949” {0°0338
03 02532 |0°1637 | —0°5243 |0°0609 | 0°2163°[0°1309 |—0°4907 |0-0415
0°35 0°2878 [0+1834_|—0°*5171 |0°0748 || 0°2450 |0*1468 |—0*4858 |0°0507
0*4 0*3259 |0°2041° —0*5085 [0°0920 [|0°2760 {0°16%3 |—0+4800 |0°0621
0° 45 0°3689 |0°2261 [—07498% [0°1142 [[0°3104 {0°1809 [~0*4T30 [0-0764
0°5 0°4192 [0*2500 | —~0*4853 [0°1435 | 0°3497 | 072000 |[—0*4645 |[0°0951
0°*55 054808 |0*2764 |—0*4690 [0°1843 [ 0°3962 |0°2211 —ov45375 01203
0*6 05611 |0°3062 |=0°4475 |0°2447 {0°4537 072449, =0 4399 0*1560
0*65 06767 1073407 | —0°4175 [0*3431 | 0°5295 -] 0°2725,[—0*4212 (0*2102
07 0°8813 |0¢3819 | —~0+3718 |0°5386 | 0°6%99 |'0°3055° |—0°3943 |0°3011
0°*75 oo 0*4330 | =0*2757 "0 0+8384 |0°3464 [—0°3515 |0°4885
0°-8 08384 (023750 | =0"1709 |0°5724 o 0°4000 [—0*2546 o0
085 |0°5880 [0+3151 |—0°1110 |0°3634 |0°7778 |03361 |=0%1457° [0°5280
0°g 04192 {0*2500 |—0"0661 [0°2392 | 0*5123 [0*2667 |~0°0839 [0°3156
07925 10°3439,10°2136 | ~0°0471 |0°1894 0°4117, 0*2278 |=0*0592 [0°2437
Q+* g5 Q*2677 g=1721 —=Q*03Q0 01425 0+3457 Q0*18385 |—0-Q%74 Q*18Q0
0*975 [0*1813 [0*1201 |~0°0144 |0°0935 [ 0°2113 |0*1281 [—0"0178 |0*1164
0°987510*1257 |0°0844 | —0*0070 |0+0638 [j0o*1457 [0* 0900 |—0+0087 |[#+0790

1 0 0 0 0 0 0 0 0
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Table 2 Continued

E = o0+15 E = o0-1
X
Ags/m T 8 t Ags/m T g %

0 0 0 —0° 4546 0 0 0 —0*3820 0
0*005 | 0°0190 | 0°0406 | —0*4545 {00019 0¢0150,10°0071 |—~0*3819 100010
0*0075} 0*0233 | 0°0130 | —0*4544 |0%0023 0‘01845 0°0087 [—0%*3819 |0°0012
0¢0125] 0° 0301 | 0°0169 | —=0°454% |0%0030 || 0°0239” [0°0112_|—0*3818 |0°0016
07025 | 0°0429 |0°0240 | —0°4530_{0°0044 | 0°0340 |0°0160°|—0°3816 |0°0023
0° 05 0°0615 | 0°0344 | —0°4532°|0°0065 | 0° 0488 |0°0229 [—~0°3812 |0-0034
0*075 | 0*0T65 | 0°0427 | —0"4525 |0°0083 || 0*0606 |0*0285 [—0*3808 [0°0044
0*1 ¢*0897 | 0°0500 |--074516 {0+0100 {| 0°0710 |0+0333 |—~0%3804 |[0°0053
0*15 0°1135 | 00630 | —04499 |0°0134 || 0°0897 |0°0420 [—0%3795 |0°0070
02 Q*1387 [0 0750 { —0* 4479 10*0170 { 0*1071 |0*0500 |=~0*3784 [(0°0Q089
0+25 0*1575 | 020866 | ~0*4456 |0°0211 || 0*1241 |0°0577 |=—0*3772 [0°0111
03 0*1797 | 0°0982.j—0*4430 | 070258 || 0¥1412 {00655 -—0-37585 0°0135
0+35 0+2028 101101 | —0+4389_10°0314 || 01589 |[0°0734 |=0*37437]0°0164
04 042276 | 0°1225 | —0¢4364°{0°0382 || 001777 10°0816._|—0+3724 |0°0199
0745 0*2547 {01357 | —0%4%21 [0°0468 || 01981 |0-09042|—~0*3702 |0+0242
0°5 072851 | 0°1500 | —0<4268 [0°0578 || 0°2206 [0°1000°|—0"%675 |0-0296
0°5%§ 0°3202 [ 0°1658 | —0*4204 [0°0723 || 0°2462 01105, —0+3642 |[0°0368
06 0*3621 | 0*1837 [—0+4121 [0+*0924 || 0*2760 |0*1225°{—0°3600 [0*0466
0°65 | 04146 | 02044 ~044011, 01216 1 0*3120 |0°1363 |—0*3545 |0°0603
07 0*4845 | 0+2281 |—0*3859°[0*1673 || 0°3575 0715271023470 0°0811
0175 0°5880 {02598 [ —0*3631 jo*2471 || 0°4192 |0°1732"|~0°*3362 | 071148
0*8 0*7778 {0°3000 | ~0°3245 |0*4207 [[0*5123 [0¢2000 [=0°3191 |[0*1775
0°85 o0 0*3571 | —0°2273 0o 076880, 0-23805 —~0*287% |0°3262
09 0-68805 0°283%3 | —0*1126 |0*4621 o9 0*3000” |—0*1910 oo
0925 | 0*5253710%2420 —0'0’1’7']’5 0*3351 0'80‘5‘55 0°25673 "‘0'114'15 0*5710
0rgs 0*3901 |0%1950 | —0*0483" 02382 H0*5377  10°2065 |—0*06767 03542
0°975 { 02556 021361 | —0+0227 |0*1501 || 043333 l0<1441 [~0°0309 |0°2087
0°9875| 0°1748 |0+0956 |—0*0110 {0-1008 || 0*2236 ;0°1013 |—0°0148_{0*1370

1 0 0 0 0 0 0 o ° 0
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Tehle 2 Continued

E = 0°08
X 7

g/ T 8 t

0 0 0 —0*3454 0
0°* 005 0°0133 0°0057 —0°3454 0*0007
0°0075 0*0163 o-oosg5 -0-34535 0+0009
0*125 00211 0° 0090 —0¢3453 0° 0011
0°025 0* 0301 0°0128 —0*3452 0°0016
0°*05 0*0431 001083 —~C*3449 0°0024
0*075 0*0536 0302285 —0¥3446 0°0031
041 0* 0628 0°0267 —0%3443 00037
015 0°0793% 0°0336 ~0*3436 0°0050
0°2 01945, 0° 0400 —0%3429° 0r0063
025 0-10945 0* 0462 ~0%3421 00078
03 0*1245 0* 0524 ~0%3411 0°0095
0935 0°1400 0* 0587 —~0°3400 0*0115
0°4 0-15635 0% 06573 —0+3387 00140
0°*45 01740 0*0724 —0* 3371 0*0170
0°5 0*1935 0+080¢9 ~0%3352 0°0208
0°55 0*2154 00884 —~0*3329 0°0257
0°*6 0°2408 0*0980 —0*3300 0*0324
0°65 0¢2711 0°1090 —0¥3262 0°0418
07 0*3089 0=1222 —0%*3210 0* 0558
075 0*3589 0°1386 - —0*3136 "0*0781
0*8 0*4312 0°1600 —0*3021 0*1183
0-8s 0°5546 01904 —0*2814 0°2062
0¢9 058892 02400 —0*2320 05223
0%925 1°287¢ 072620 —0*1483 0°9995
0°953 0*+6622 02911 —0* 0895 04542
0°975 03873 0* 1473 ~e0* 05630 0°22%94
0°9875 0*2558 0* 1035 —0*2173 0*1606

1 0 0 0 0

Teble 3/



Table 3
cent Thick Aerofaill

Qrdinatgs for 15 ner

X = 0°6

8 = 0°1336624 b = 0°'2064419 c =

X Y X ¥
Y 0°35 070724356
0%001 00045298 0*3¢ 0*0729000
0°002 0*0064046 0*38 0* 0736830
0°003 0° 0078422 04 0°0743030
0*004 0° 0090532 0r42 0*0747260
0% 005 0°0701194 0°44 070749564
0*006 0*014032¢€ 0r45 0*0749971
0°007 0*0119678 0746 0°0749866
00075 0°0123863 0*48 0* Q748065
0°008 0*0127910 0*s 0*0744030
0* 009 0*0135637 0*52 0°0737593
001 0°0142939 054 0°0728527
0012 0+0156506 0"55 0*0T722912
0*0125 00159714 0*56 0*0716517
0*014 0°0168963 058 00701054
0*016 0*0180540C 0%6 0*0681156
0°018 0°0191396 0*62 0°0654984
0*02 0*0201649 064 0*0624562
0*025 0" 0225165 0*65 0-0608156
003 0* 0246338 0*66 0*0531083
0°035 0*0265726 0%68 0* 0555237
0*04 0*0283692 0% 7 0°0517543
0°05 0*0316306 072 0°0478436
0°06 0°0345508 0574 0°0438300
0°07 0*0372090 0*75 0*0417959
0°*075 00384565 076 00397491
08 0*03%96565 0%78 0*0356351
0*09 0°0419289 0%8 0*0315212
01 0°0440521 0732 0* 02744192
.12 0*0479245 084 070234297
C*14 0*0513836 0%85 0*0214610
0*15 00529812 0*86 070195235
G*16 0*0544999 0788 cr0157625
0+18 0°0573215 0+9 0*0121920
0+2 040598821 0*92 0*0088651
022 00522064 0*925 0° 00807388
0424 0°0643125 0°94 0*0058481
0+25 0* 0652881 0%¥95 0* 0044827
0*26 0°0662138 0%96 0*0032316
0+28 070679200 0%975 070016143
0*3 0°0694380 0°98 0°001159%
0*32 0°0707726 0+9875 0*0005759

0*34 0°0719263% 1 0

—0°*18317961

——a

Table 4/



Table 4
A
._.E. — 0-3550
M
& Ae —AB Ae!
X —= . _ ¢s s aé
n n 1
¢ 0 —0°5156 0 0*143278 0 0°013%4
0*005 00146 | —0*5153 020034 01473469 0*0019 0*01%9
0*0075 0°0179 —0*5152 0°0042 0143564 0*0024 0*0141
0*C125 0-0232 —0°5149 C* 0054 0°143754 00031 0+0747
0*025 0°0331 —0*514% 0*0079 0* 144221 0* 0045 00160
0*05 0*C4a73 —~(*5130 0*0116 0*145131 0°0068 0*0187
0*075 0°0587 —0*5116 0*0149 0*146005 0+ 0089 0°0214
0*1 0* 0687 —~Q 15302 0*0176 0*146840 0*0109 00243
0+15 0-0865 ~0*5071 0*0236 0°148377 | 070150 0° 0302
or2 01028 —0°*5036 0*0296 0°149705 0* 0194 0°0%64
or*25 0*1185 —~0*4998 0*Q3%65 0*150776 0r 0242 0°0431
0°3 01341 —0*4952 0*0446 0*151526 0+ 0294 0* 0503
0*35 01501 —0* 4898 0-0538 0*151866 0* 0352 g+0581
04 0*1668 —0* 4837 0* 0655 2*151670 0*0416 0*0667
0*45 D*1845 | ~0* 4764 0°0798 0*150750 0°0488 0°0764
0% 0°*2036 ~0* 4675 0°0984 0148806 0*0570 D*0874
0*55 0*2245 ~Q* 2564 0*1228 0°145311 0* 0664 0*1001
0o+8 0*2478 ~0* 4426 0*F1516 0139040 0*0773 0*1153
g+65 9*2754 | —0*4247 | 092008 | 0°127504 | 0+0873 0-0784
37 0*3095 —0*3984 02989 0* 112937 0+0937 0* 0433
Q075 0+3523 —0*355%5 04966 0°096523 00967 +0°0097
58 0°4084 | ~0*2556 % 0* 078803 0* 0958 |—0+0228
0¢85 073420 —0r1423% 0°5446 0*060103 0°0907 —0*0542
09 0*2694 —0* 0802 0+3138 0+040640 0+0801 —~0* 0849
0°425 0*2292 | ~0*0557 0+2384 0* 030672 0¢0719 {—0*10090
095 01837 —0* 0346 0*1720 0°020%68 0*' 0607 —0* 1149
0*975 0*1276 —0*0162 0*1082 0°010340 00443 —0%41297
0°*9875 0«08p4 | —0<0077 0°0724 0*005184 0*0318 |—0*1371
1 0 0 0 0 s} —~0*1444

*See remarks in S7,

AH,
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