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Summary

1. We may find the positions of maximum velocity on the upper surface
with sufficient precision for practic~l purposes by the following rules.
When I CL - GL optl , 1s not large, soive the equation

OL = {2@p cot € + sinziv}[gé () + g] (v})]
4 {1 1 ) 1 cos B (1)
+ = ==t ] Op ot (1 + cos€ — o m——— YT &
2\a, 21/ % a, 271

by plotting the right-hand side against @ and reading off the values of €
for which it 1s equal to specified values of Cj; or, if 8, = 27(, solve
the equation

0 - C cot O

L L opt .

it e e S el ol - 2 (} v ——— 1 - 0S8 @] [ g' ( t’) ) + g! ( (,a‘ )]
29r L 1 + cos?} [ 8 +

ceees (2)

similarly by plotting the right-hand side and reading off the values of €
for vhich it is equal to (Cy - O opt)/27. If the right-hand side stays
practically constant over a considerable range of values of © , then for the
corresponding value of Cp we have a 'flat! maximum, which we do not attempt
to locale wath any precision. As Cj, increases, after a certain stage
becomes smaller. When A, defined by

1 1
A = —— i ‘.CL‘C ,9 ’ ves e (3)
ay 27 \ L op

is large compared with ' 2(7, and W large compared with

/
2 2
. (ZPL)?' g4 -—f’-\-}-'-i-g:{ \—%E‘ ’ cones (W)

¥ is given simply by
6 = 2 PI/?\ 1 (X NES (5)
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If, however, we proceed to very large values of CL - OL opt and very small
values of @, we must change the definition of A to

N ERE DAY “
b E D e e\ )
for c\c\antre lines without singularities at & = 0 (gs(0) = 0), § is then
given by
~ 0 = 201/2-(2pL)Y1(0); vereereees (7)

for centrc lines with singulorities at Q= 0 (gi(0) # 0) Bis given by
substituting 291/h for © in the right~hand side of the cquation

_ w2(9) =y (8) y (D) ®)
Ay (0)Y(0)

and then procecding by successive approximation if necessary, In these last
cascs, however, unless boundary laycr suction i1s employed, restricted boundary
layer separation will probably modify the theoretical pressure distribution very
considerably even if the aerofoil is not stalled, so the results will not have
much practical significance at present.

The cquations above also apply to the lower suwrface if we rcmember that
8 is negative, Bsr Vg 8l 1|j('3 cven functions of ¢, and g Wir &5
Ya odd functions of ¢ . It is, however, convenicnt always to consiier Jcl-‘chse
functions in the range 05 © < 1‘(’5 and we may do so if we make the follov

chonges in the equations. In (1) change the signs of 2py cot B and sing(}g;( &),
In (2) change the signs of Cp, - Cp, opy and of gl (). Change the sign of
Cp, = O, opt in the dofinition of A in (3) and the sign of g! in (4). Then

(5) is wnoltcred, Change the sign of the right-hend side of equation (6),
defining %; then (7) and (8) are wmaltered, but, whereas on the upper surface,

Vo= Ws(f) +y(€),  pr o= wi(0) + pi(6), veres (9)
for the lower surface we must take ) ' .
1;’ = wS(e) "Wo(@): 1"” = 1?;(@) - wé(@)- sesne (10)

These approximate methods have been tested by M. E. J. R:’LchardsL", who has
applied them to N.A.C.A. 16 serics and Clark Y acrofoils, with satisfactory results
for practical purposes.

2. A discussion is given of possiblc. definitions of GC;-ranges for

low~drag acrofoils. The "theoretical" Cr~rango is defined as the range of valucs
of Cy, for which the velocity continually increases, on both the upper and lower
surface, from the stagnation point to the dosigned position of maximum velocity at
the design OCr. (This definition applies strictly only when the slopes of the
graphs of gg %t g; earc discontinuous at the design position of maximum velocity,
which is the case for low-drag aerofoils as now designed; if the graphs of gg & g4
are rounded off, wc should require the velocity to increase only up to the begimming

the Tounding-off).

To obtain a COr~range of any practicnlly significant size, gé( € ), which
is smell comparcd with 1, must be positive and large comparcd with 207, except
perhaps for smn'l values of (., For a, = 27(, best rosults arc cbtoined by
taking g! (&) = 0, and for practical velues of &g, this thcorem remains
practicaliy correct. ‘

1t/
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If, at the rolevant value of €, gé(@) L gl(Q) are large enough comparcd
with 2 Py, for

201,
¢

to have minime for small velucs of y» then the Ci~range is given-, quite
generally, by

+ €2 (gL £ gl)

2('-‘L 5 . 1 1 )
20
L 2
L Mn{ emem + & (g + gl , eenes (M1

!

except that, for highly cambered thin aerofoils it seems worth while, having
found the positions of the maximum and minimum of the expressions above, to
substatute the valucs of lpz at those positions for 2071 in order to find the

values. More gencrally, ond with no very, great accuracy, 1f a, = 27 we have
. 1
the conditions that 2 ~~- (CL = O, opt | must not excced the minimum volues of
271
cot €
201, ——wmmmm— + (1 = cos b)(gsigi) eeees (12)
1+ cos{

respectively; for a, £ 277, we have the morc elsborate conditions (15) of
the text.

E}

If g} # 0, the middle of the Cyp~range is displaced from
CL = GL op-bo

For the 'roof-top! acrofoils of BB6 and 7 of Ref.5 (dgg/dx = s = constont
for 0¢ x£X), with centre-lines deaigned for constant approximatc loading for
0gx <X ( (3gs/dx = O for O g x g X), the Cr-range is given by

11 .,
b V] Op =0 e | € 10756 (2p ) Feh weens (13)
B 271

Wc supposc the position of max:n.rmun velocity, X, fixed, and also n/ (2pq) fixed.

[ Por a cusped aerofo:Ll g = 05 it will in any case be small, 0.0
would be a large valuo. in additlon the maximum veloelity is given (theomt:.cal
critical,lhch number given), or the thickness for a given valuc of x, or the
maximum thickness, then there is a value of s which makes the Cr~range a

maximmm, (For the cases when the maximum velocity is given, or the thickness for

a given x, sce the oxamples in the text.) In particular, when the mnximum
thickness—chord ratio, %, is given, the value of s may be found from the
formulac

s = 125t = 0.25/(2¢) for X = 0. h
= 0,9818 t -~ 0,25: J(20p) for X =0.5!.. ()
= 0.8095 t - 0,172 [ (20q) for X = 0.6

With/
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With normal values of ¢ and ./(2Qq), the values of s so found are probably
large enough for a stage to have been reached when any practicsble ircrease in

3 would not, in any case, make any practical difference to the tolerance for
waviness of the surface. (An increase of the velocity gradieat by a large factor
would probably meke a difference, which is why we expect the tolerance to be
greater near the nose than elsewhera)

Oorrcsponding to the above formulae for s, we have the following formulae
for the peramcters a, b, ¢ needed 1o find the ordinates of the fairingd,

For X = Oo}-}-,

a = 1,0125 £ = 0.3 ./{2Cqp), D
-0

it u

1,5125 4 = Oy ~/ (20 ),
0.9085 t = 1,87/ 52(: 53,

for X = 0!5:

a = 0,953 t =~ 0.208./(2¢n), b = 1.4362 ¢t = 0,335 ./ Ez p,,_,g,
-~ = 1,0319 t+ - 2,00 ,\/ 2PT ;
for‘x = 0.6,
B = 0,8908 t = 0,156 ./ (204), b = 1.3765 t = 0,259 ,JEsz;,
~c = 1,292% ¢ = 2.1? ,J 2(:’:11 N

Tables of the meximm C;-ranges of these aerofoils are given for thicknesses
between 8 and 22 per cent, for J(ZPT) = 0 and 0,02, Forx ,J(2VT) = 0,
the OppFrange is nearly proportional o §7/k,

1. Introduction

To calculate the theoretical critical compressibility speed for a given
acrofoil section at a given O, we first compute the greatest velocity on the
acrofoil contour, This greatest velocity moy be found by graphical or numerical
methods from a greph or table of the velocity distribution, but when we require the
answers for a number of acrofoils over a range of Cr~-values, such a method is
long and laborious, and has becn found in practice in some cases to be prohibitively
long, Some simplificasion is, therefore, necessary. Tt appears that it is |
possible to find suple formulae for the positions of the velocity mexima; such
formulae, though rather crude, scem to be sufficicntly accurate for practical |
puwrpases.  The actial maximum values of the velocity arc then easily computed,
by Approxamation III, for the values of ,x and 'O so found¥ and for those values
only., If there are two maxima for amy OCp, both must be computed and the larger
chosen (unless we krow beforchand which will be the larger). b

To comptie the maximum valucs of the velocity no great accuracy is
necessary in caloulating their positions, since a smell error in the position -
produces a seconi~order error in the value, As |Cp] increases, however, a peak
in the velocity graph develops near the leading edge of the acrofoil - on the
upper surface for positivo and on the lower surfacc for Oy negative - and
the sbsolute error in the calculated valuc of ) at the maximum must be small if
we are to avoid the possibality of fairly large crrors in the calculated maximum
value, (The percentage error need not be very small, since ¢ itself is small).
Iy gther words, special attention must be paid to the nose of the acrofoil
( b@‘ small),

The/

*x is the distance, parallel to the chord, of a point on the acrofoil surface,
measured as a fraction of the length of the chord, and x = (1 = cos ),
0< € L 71 on the wpper surface, 03 § 3~ on the lowor surface.
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The positions of, the maxima being calculated from an approximete formuls,
if dg/d6 (where q is the velocity) remains small over a large renge of ©
in the neighbourhood of the meximum, our determination of its position will be
subject to guite considerablc error., This error, however, will not be important
in the calculation of the maxdmum value of q, since the graph of. q will vary
slowly over the whole range of € in question. .

The determination of the position of the maximum velocity may also be
considered to give some information on the probable position of transition to
turbulence in the boundary layer. Care will be needed, however, in using this
information. Other factors in addition to the velocity distribution (waviness
and roughness of the surface, turbulence in the air, Reynolds number) affect the
position of transition, and the effect of the velocity distribution, and its
interaction with the other factors, do not depend solely on the position of the
meximum velocity., We do know that if the velocity falls off steadily and not
too slowly after the meximum, then in practice, at high Reynolds numbers,
transition will not be delayed to any appreciable extent beyond the maximum,
Whether transition will occur before the maximum will depend on the velocity
gradient, the state of the surface, the turbulence in the air and the Reynolds
number¥ In certain circumstances, also, transition may occur well after the
veloclity maximum - for example, with a good surface and low turbulence in the air,
if' the maximum is followed by a small fall in velocity and the velocity begins tg
rise again (Fig.1), or, at Reynolds numbcrs which arc not too large (106 to 2.100),
if the mexdmum is very "flat". The former state of affairs (Fig.1) applies ncar
the nose of a good many acrofoils at certain valucs of Cp. To sum up we may say
that, for the purposes of discussing the probablec position of trensition, a rough

/v e

%/

Fig.1

calculation of the positions of maximum velocity may be of some restricted use for
a preliminary “sorting-out", but much more will be nccessary for an aerofoil which
it is proposed to study-in any detail, so only very rough calculations of the
positions of the maxima will be needed; in particular, if gq is varying vory
slowly, then that is itself probasbly all we necd to know - the exact position of
the maximum in a "flat" portion of the graph of g is not of any practical
interest. . i )

Closely connected with the question of the positions of the velocity
maxima is the discussion of the "theoretical™ Cyrrangos for low-drag acrofoils
according to a definition we have used for somc time now, the "theoretical"
Cr-range being dofined as the range of values of Oy for which the velocity
continually increases, on both surfaces, from the stagnetion point to the designed
position of maximum velocity at the design GL¥* A slight oxtension of the

analysia/

*Por some Turther remarks on this subject, seec B6.

s low-drag acrofoils are designed at present, the slopes of the graphs of the
velocity on Approximation I (i.e. the slopes of tho graphs of gg t gy) are
discontinuous ot the desipgn position of maximum velocity, and the definition
given applics strictly only to such cases. If the graphs of gg k gi ave
rounded off, we should require the velocity to incrcase only up to the beginnirg
of the rounding off.
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analysis for finding the positions of the velocity maxima enables us to discuss
these "theoretical" Cp~ranges, but before we proceed to the analysis, a short
discussion of definitions of Cp~range may not be out of place. The general
notion is that the Or~range iz the range of values of Cp, for which the aerofeil
drag stays low and practically constant. Such a statement is, however, too
vague to serve as a definition until the circumstances are specified in whioch

the drag 1s to be determined, One such definition is the range of wvalues of

Cr, for which the drag stays low and constant when measured on models made as
carefully as possible and tested in a low-turbulence wind-tumel at a given
Reynolds nmuber, say 30 x 106,¥  This "wind-tunmnel" definition would certainly
be useful if a suitable tunnel and model-meking facilitics were available., The
third definition - the "practical" definition - is the most probable range undexr
practical conditions of manufacture, flight and maintenance; values according to
this definition are the values we should all like to be able to give but none of
us can. It is probable that in future 2ll three definitions will be used. Our
"theoretical® definition will be of use Twr.a preliminary "sorting-out”. Its
main disadvantage is that it takes no accuunt of the naturc of the velocity

curve after the maximum; if, for example, theie is only a small fall in velooity
after the maximm (Fig.1), it does not take into «ccownt the magnitude of the
velocity gradient thereafter, which moy be fairly large in some cases and
practicslly zero in others, As soon as really good surfaces become practicable,
and a small veclocity followed by a risc does not necessarily lead to transition,
this point will have to be borne in mind, Mearwhile, it is doubtful if, at
prcesent, it would be possible in practice to delay transition in this way, so
acrofoils may perhaps be expected to be in the same "order of merit" as regards
Cr-rangeswhether arranged according to the "theoretical” or "practical" definitien.
In fact, with present surfaccs, the "theoretical™ dcfinition may be nearer to the
+ "practical” one than the "wind-tunnel" definition would belt®

o

2. The Approximate Calculation of the Positions of Maximum Velocity on the
Upper Surface

We wish to use the simplest possible mebhod to calculate the position

(or positions) of maximum velocity. The crude, linear Approxamation I cannoct
be used; q/U is infinite at O = 0 except for Cl, = CL ont accordﬁ:g%
to Approxlmation I. We therefore use Approxamation II, according to whicl
on the wupper surface,
Q 1+ 205 1 cost
- = - + ( + gg + 8;) sin D 4 Op | == 4 <om
i (w2 + sin2 @)z 271 ag
111 1
= = =+ =] Cp (1 + cos )},
2 \a, 2 opt

so/

*This "wind~tunnel" definaition may be that adopted by American workers on the
subject, though, if so, 1t is not clear which ReXnolds number, if any, they
adopt as standard, Jacobs, Abbott and Davidsonl, however, write of the

ﬁ range as the range "over which the pressure dastrlbutﬂon remains favorable",
which suggests that they adopt the definition of what we call the "‘heoret:oal"
GL~range, though no exact definition is given of when a pressure distribution
is favourable, It s of interest that Mrs. Moore, in working outZ the velocity
distribution on N.A.C.A.66, 2-015, also worked out the theoretical Crrrange,
and found it to be %0.166 (Plg.Q), in place of the %0.2 indicatea in the title
of the aerofoil. This acrofoil is onc of an older seriesy it has now been

replaced by N.A.C.A.662 - 015, and it would be of intercst to repeat the
caloulations on the now aerofoil.

4 fourth possible definition, namely the range of values of Cp, for which
transition stays at or behind the designed position of the moximum velocity,
has not been included, sinec 1t is still not possible te calculate the position
of transition, and the drag is casier to measure,
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2.
d /q 1+ 4c5
—f - = —pe {sinv (w2 + sin? 0)(g! +g)
a?\y (p2+ sin? @ )3/2 ¥ s
142
+ (W2 cos O =k sin®)(1 + gg + g4) = O, {sin O ¥ )
) a,
focs G 1
+1) P o e
llw &g 277
yl 1 1

"
+-:-2- —f —— CLOPt[an(1+}J2+oos'9)+:|ny' (1+cos@)]J

a, o1

where the dash denotes differentiaticn with respeet o (/. This expression
is too complicatéd to be of practical use; it must be simplified by approximation.
Ixc ’c for very large valucs of O we may say that the terms of the first order

1 ?
J 1 cos & 111 1

3 9 (g iy & o) .
Bin gl 4+ g]) = Cp, sin® | wm 4 wenerme]| 4 = | vom 4 2= ]OT, ot Sin (1 + cos B)
s 8l = O so  27C) 2\ag 21t} % '

thosc of the seccond order are
Y 2 5050 - oyt sinf?;

and those of the third order are

. oL
W Z(gé +gl) sin® + (‘qlz cos 0 - Pyt san¥)(gs + gi) ~ - 1}}2 sin ©

89
1/1 .1 ) ; cos & 1
R Rl B B ¢ sin vV - C Yy
2\ag 21 I, opt W L X 1‘}1{”
A 1 ( 9)
o | mm o e c 1 + cos ‘qJ'-
2 \a, 27 L opt ¥

The torms of the first order are all small when € is small, wherecas those of the
scoond and third orders are rot, so it is immediately clear, as cexplained in the
introduction, that we moy not simply neglect the terms of the scoond and third
orders 1f inoorrcet results are to be avoided for small values of ©, On the
other hand, as we also explained in the introduction, we abandon the requirement of
even fair accuracy in the cosc of a very 'flat! maxdimum, and then the neglect of
the i‘:Lr,st four torms of the third order would appcar to be always Justifinble.

For 7} (g' + s:Ln 8 will always be small cither comparod with aind @(gs + gl 1)
or compare W:Ltf’l cos G = t sin®; go+ gy Will be small comparcd

. with 1; and 1[)2 ccrtaa.rﬂ.y small conpared with 1, It 18 equally clear that,
at any rate for smll @, the first term of the second order may not bo
neglected; . when ©= 0 this term is simply 2¢7, where @1 is the radiug of
curvature of the aerofoil section at the leading cdge. To what cxtent the influence

\ of/
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of the second term of the second order, and of the last two terms of the third
order, may be neglected, is a more difficult question to decide; it seems
probable that the former, since it is of the second order and is, moreover, small
when © is small, may always be neglected, and that the last two terms of the
third order may be neglected except when Cr, is very large and € very smell,

We shall presently give some numerical examples and shall sec that the above state-
ments are correct.

. The second and third order terms are of most importance when ¢ is small,
so we carry the analysis further for small {/, ncglecting completely the first
four terms of the third order. In the terms of tha first and second orders we
write 1 Jlor cos © and © for sinf; for W< we write

W 2(0) + 2 &y(o)y (o),

and for Yt we write Y (0)%1(0)., In other words we expend the first and

second order torms in powers of & , and keep only the terms in B0 and @1,

In the last two third order terms we kecp only the term in 20, Also, on the
upper surfaoce,

Y= 1})5(5;') + Vol €),

'IUO(O) = 0, ﬁ(’g(o) =\/(2PL)-

Henee dq/d& = 0 on the upper surface for small ( whon, approximetcly,
20, + BJ(2e)wr(0) - A[6 +V/ (20 V' (0)] = o

where
1 1 < )
' A= . CL-—oC ; sacsss (2)
. a, o Loopt j 2
i.e.

201, ~ M (2 ) v (0)
A=A e Yr)

D
n

veree  (3)

In order that ¢ should be small, the denominator must be large compared
with the numcrator, i.e.

M (2P )W) D 26y = A4 (20 1) W1(0),
A1 /ey 2 20p /e vr0),
ices, since /(207)Y'(0) is small compared with 1,

A D 20p +./ (20 V(o)

Hence certainly

A Dwhap ) yro),

the sceond term in the denominator may be neglected, snd approximately

2
g - —{%E-k/(zew'(o) e )
Thus/
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Thus of the terms of the second order in !,’ } in (‘I), the sccond could have been
-
neglected and the first replaced by its valuc at ©= o.

Before we proceed to numerical illustrations we must remark that the
last step in our analysis is anvalid if there is a singularity at = 0 in
the equation of the centre line; such singularitics occur in ccrtain modern centre
lines, for which g;(0) # O, the approximate loading bang taken as constant
from x = 0 cither over the vholc chord or over some fraction of it from the
leading edge. As a result both dy./dx and the approximate value of W'G(G)
“-.rc logarithmically infinitc at  © = 0, and we m not substitute LP‘ (0) for
Y L(8), 1o mticr how small © mey be, nor Y (0% + 2 6y (0) Y1 (0) for -q)2(@)

In pl'-Lcc of (2) we have then, to begin with,
Y2(9) - MRy (&)
0 = - - - ceees  (5)
A+ 1|) () Y+(&)

r © = @ is the relevant (small) root of thas cquation, I{JC(@ o) vAill

be small compa.rec'f' with \f’s(@o), as we shall sce later in numerical cxamples,

an 1{;3(9 ), will be nearly equal to Y .(0), d.c. to “/(29 ), so IP(GO)

will Be of the samc order of magnitude 'xs N (2@ Yo We shall leso shevwr later, by

numerical examples, that, although Y'(®)  is logarithmically infinite at

B = 0, yet, for quitc smll valucs of o? '"(8, ) for centre lines with

singularitics is of sbout the same order of magnitude nS '(0) for centre lines

with no singuloritics. It follows thet, Jjust as we could ncglcct,\/(ZQ ) W1 (0)

1n the denominator in (3), so ve may ncgrloc't; W(E)WH(@) in the denoninator in
s Beccausc of th\, sangularity, however, the order of magnitude of

‘w 2(9) - 2Py, |/® is wncertain, so 1t is difficult to forctcl& how larpge a
percentago: c.rror will be involved in substituting 20 for (0©) in the
numerator of (5). If we do mekc this substitution, (4}) rcducus to

0 = -f—li‘-J(szw (0). ceeen (6)

This cquation may be solved by successive approrimation; for the first approximation

weput @= 20;/% din Y'(Q), so that
2p 2
0 _..7.\.2' -J o)y _f::E ; evers (7)

Tor the second amproximntion we substitute from (7) into w'(®) in (6), and
so on. The first asproximation (7) will usually be sufficicntly acourate; in
th:Ls foim the cquation 1s equally applicable af there is no singularity in

'{@) ot €= 0, sincc in such cases, in fact, the difference between (i) and
?) is neglaigible.  Morcover, on the upper surface,

Yr8) = Yi(0) +wy(O),

ond, unless ’L{r/l‘ (%) is discontinuous at @ = 0 as a conscqucnce of singuloritiocs
in the equatioh of the ncrofoil contour, W 1(0) = 0 and ‘L}»" (2p1/2) will be
ncgligibly small, so we mey replace vopy® Y oin (1), (6) and (7). Such

discontinuitics occur on NLA.C.A, 00 acrofoils. On N.A.C.A,0012, for example, the
approximate value of W' at é: 0 changes discontinuously from +0,0378 to
~0.0378 ns we pass from the lower to the upper surface. For such acrofoils, 1} '
should not be replaced by y} an (4), (6) end (7)%

o ———— . vy L A o R T e ek S B S At Y Mt it S At S Y 0 ot S P e M e A ot S S S 4l T AR A P S o S Ly

*on N.4.C.A0012, the ageurate value of t 15 goro ot O = 0, Dbut riscs very
rapidly to opproximate agrecrment with the valuco coleulated on the approximate
theory,

Ve should mentaon that the glngu.lmty :|.n the cquation of the acrofoil contour
which produces a discontinuaty in W L(®¢) at @ = 0, also mkes g, logrrith-
mically infinite at @ = O.  But for N.A.C.A. 0012, is only 0. 3545 vhon
& = 0.0 and 0.3574 when W= 0,02, compared vith O, 1333 at
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Since, for small values of &, Y'(&) is larger cnd Y (0) varies
more rapidly for N.A.C.A, four-figure acrofoils than for any other common syrmetri~
cal types, for our numcrical examples we shall suppose the aerofoil fairing to have
the shape of N.A.C.A.0012; and we shall consider two centre lines, one vath, and
onc without, a singuwlerity at @= 0, For thc former we take the parsbolic
centre~line

which corresponds to 2 per cent cember and a Cf, opy roughly 0.25; for the latter
the centre-~line for constant approximate loading, '

9 +

Fo = === <xinx+ (1 ~x)in(l-x),
167

which corresponds to a Cp opt of 0.25 and a camber of roughly 1.4 per cent. For
the former

Y, = 00k sin®, WL = 0.0k cos (i
for the latter

-I
1

Yo = -'{.3_1‘.1: to.n% Glnsin29-+‘-cnt‘% @"lncos%(:} R

: |
- ——{sec® 1§ In sin 3 @ ~ cossee? % 8 in cos 0.

1671 y

Yo

Then {2¢;) = 0.1781. Let us take X = 1/6 to stert with, so that,

for a, = 270, Cp=Cp oot = (/6. Then 20/% = 0.1903. For this

veiue of €, q/s(@) = 0,1715, TP;(@) = «0,032,, and, according to the
formilae sbove, Yo = 0, 0076, W:: = 0,0393 for the first ccntre line and
Y, = 0.0108, 1’)(‘,} = 0.0373 for the second. Hence, on the upper surface,

for the first centre line

¥ o= 0,179, ¢? = 0.03208, 1{/2/7» = 0.1925, Y' = 0.006,
Yyt = 0.0012,
and for the second
Y = 01823, WP = 005323, YA = 049%, Y' = 0.0049,

Yy = 0.0009.
This in these cases not only may “yy' be negleoted in the denominator of (5),
but also in the mumerator, l.e. the second terms in (L), (6) and (7) mey be

neglected,  We shall, however, wish to make the same approximations for the
lower as for the upper surface; for the lower surfaoce,

Y o= 0.1639, Y2 = 0.,02686, W2/a = 0.1612, {y'| = 0.0717,|yy'| = 0.0118

for/

I is used for loge.



for the first centre~line, and
Y o= 0.1607, Y2 = 0.02582, YZ/n = 0.,1549, {y'| = 0,0697, |ww'| = 0.0142,

for the sccond. Here both W Y' and the difference of qiz from 207, may not
be completely negligible., We shall Bee, however, that the sign of WYWY' is to
be taken as negetive, and the effect of ancluding the Y Y' terms in (5) is
therefore opposite in sign from the cffect of taking the above values of

in place of 2 Pre In fact, if we calculate a second approximation to € from
(5), we find ® = 0.1B60 for the first centre line amd © = 0,1781 for the
second;* even in the latter case the percentage diffcrence from the first
approximation 0,1903 (about 6% per cent) is probably tolerable for the purposes
we have in mind, That the effects tend to cancel is not fortuitous; the
dafforence botween W2( () snd 2py is dlearly related to the sign and
magnitude of Y y'. '

As a second numerical cxample we consider the same aerofoil, but double
the valuc of A, 8o that the valuc of ( is halved. With lr = 1/3,
Cp, = Cp opt = /3 for a, =1, The first approximation to & is

Q
20/% = 0.,0952, For this valuc of €, Y _(6) 0.1747,
0.0038, W' = 0.0398,

Y (8®) = -0.0344; for the first centre line ¥,
and for the second Y, = 0.0068, Y} = 0.05087 On the upper surface

Y= 01785, Y2 = 0,03185, Y/A = 0,095, Y' = 0,005k, Yy' = 0,0000
for the first centre line, and

Y o= 001815, %2 = 0.032%, VY2/n = 0,0988, ' = 0.0164, wyt = 0,00298
Tor the second; on the lower surface

Y= 04709, 2 = 0.02921, W2/n = 0.0876, |y} = o.om2, |yy'| = 0.01268
for the {irst centre line and ,

Y= 0.1679, Y2 = 0.02819, ¥°/A = 0.0846, |Y'| = 0.0852, [yy'| = 0.01431

for the sccond. The second approximations Lo ©, according to cqn.(S),

arc now O0,094.3 and 0,00950 for the upper surface for the first and sccond centre
lines respectively, and 0,1043 and 0,1033 for the lower surface, The largest
rercentfge crror in the farst ayproxamation (about 9 per cent) is now on the
lower surfacce for the first centre line; if we include the second term in (7)
this crror is rcduced to less than half, and the error on the upper surface for the
first centre lanc is reduccd almost to zero; moreover, this term will clearly
account for an increcasing fraction of the error as A increases, TFor the
sccond centre line, however, computation shows that there is no substantial
advantage to be gained by including the second torm of (7) unless we also change
the farst term to Iyz(EFJI/R), snd then we may as well solve (5) by successive
approximation.

Thua/

AY

*For the upper surface these sccond approxamations are 0.1898 for the first
centre line and 0.1974 for the second. ‘ '

Even when 9 is as small as 0.0, Yg is only 0.0679. Eventually as (= O,
the whole basis of our approximation 2o Pt will farl becausc of the
singularity, and we must usc morc nearly oxact valuss in (5). But the
numerical results above scem to show that such failure will not occur for
any practical valuc of N
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Thus we see that, when € is small but not very small, a satisfactory
approximation to the position of maximum velocity is given, gquite simply, by

G = 20 /2 ceess (8)

in all cases. @ becomes very small when | GL - CL op’t‘ becomes very large;

in such cases Approximation IT itself may not be a satisfactory basis, and we
shall briefly consider the matter later on the basis of Approximation III

(only briefly because the results are of no great practical interest);

meanwhile we note only that for centre lines wathout singularities at . -

0 = 0(g,(0) = 0), eqn.(7) provides a better answer for very small o

than egn. (8%, and for such very small values of ¢ we may as well use (4), which
is easier, in place of (7); but for centre lines with singularities (g4(0) =/ 0)
it is safer to solve (5) by successive approximation, ‘tsing (8) for the

Tirst trial value.

We seek next for the simplestequation to solve when € is not small.

The second and third order terms in { Y in (1) are now small compared with
the first order terms; in order, howdver, to ensure that the solution for ¢
should pass fairly smoothly into the value given by (8) as C1, increascs

and € becomes small, we must include the term W< cos € of the second order.
For the purposc for which it is included, however, wc may approximate to it by
2py cos 0; i.e. we neglect terms

(Urjz - ZE}L) coz G = V! sin ©

of the sccond order, and all terms of the third order. The equation dq/dfl = O
then becomes, approximately

1/1 1

207 008 0+ sind€ [g(6) + gf(R)] + ~{m+ =] 0, _, 510 € (1 + cos €)
2 2, 27 P

1 cos €
~Cp, 8iN G { = 4 ey | = O,
g 27

Probably this equation will be most often used when 1t is required to study the
maxime of q over a range of values of Cp, and the simplest way to carry
out the calculation would appear to be to write

1/ A1 1 ocos€
Cp = 2Py, cotB + sinZB[gé(‘}) + gi(@)] + e+ O g (T4oos @) [ { = + =)
2 Qo o1t ao EﬁJ
ceene (9)

plot the function on the right against U, and read off the values of €

for which it is equal to specified velues of Cy., If the functicn stays
practically constant over a considerable range of values of ¢, then for the
corresponding Cy, we have a 'flat'! maximum.

We may note that for a, = 271, (9) becomes, more simply,

Cy -C
DT L e, =2 i1 cese][e(0) ¢ (6)] . e (10)
27T 1 + cos @

! As/
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As Cp, increcases, after a certain stage ¢ beoomes smaller, and when A
(as given by cqn.(3)) ig large compared with 2¢;, 8 is given approximately
by (8) provided that » is also large compared with

2¢ 2p
(20p)? |a! --7-:5'+ g! --;E . eenes (1)

Finally, we return to the cons deration of very large values of
Gy, ~ O, opt| @nd very small values of © rfor which it is advisable to use

Approximation IIT, At these very large values of | Cp, = Cy, opt the velocity

graph will have a very sharp peak ncar the leading edge; if the aerofoil 1s not
completely stalled, we should expect that at any rate a restrieted boundary-layer
separation wall occur and appreciably modify the high theoretical peak, unless
such scparation is prevented by suction. Consequently the theoretical
calculations cannot be expected to have much practical significance at present,
and they have therefore been relegated to an Appendix. It is there shown

that cqne (5) still holds if the definition of A in ogn.(2) is altored to

1
cZ|® 1’1 1 1 (2
l = C 1 - e — e vt - - e e H avee 12
L G L opt ’ *
a L %o 2 eCOJ a, 2 it X

the maan effect is that in (2) Cy, must be replaced by Cy, 1 - C%/ B-g

if Opfa, is comparable with 1, Combining this result with those predicusly
deduced for eqn. (5), we have the following rules for determining tho positions
of maximum velocity on the upper surface,

If | Gy - Gy Op,G| is not large, solve cqn. (9) by plotting the

right-hand side against © and reading off the values of © for which it is
equal to specified values of Oy tor, if a, = 2%, solve eqn. (10)
similarly by plotting the right=hand side and rcading off the values of %
for which it is equal to (Cp = Op, ,p)/27F . If the right-hand side stays
practically constant over a c:onsi{iergble range of values of ¢, then for the
corresponding volue of Cr, we have a 'flat' meximum, which we do not attempt
to locate with any precision. As Cp increascs, after o certain stage
becomes smaller, When M (as defined by egn. (25) is large comparced with
ZQL, anéd M large comparcd with (10), & is given simply by (8), 1f,
however, we procced to very large values of CL and very small values of @,
we must take the defimition (12) of A in place of (2); © is given by (4)

for contre lines without singularities at O = 0 (gg(0) = 0), and by
substituting 2 pl/m into the right-hand side of (5) [and then, if no¢essary,
solving (5) by successive approximation | for centrc lines with singularities

(e1(0) # o).

The approximate methods of this scction have been tested by
Mc, E. J. Richardsy who has applicd them to N.A.C.A.16 series and Clark ¥
acrofoils, with satisfactory results for practical purposes.

3, .- The Approxinate Colculation of the Positions of Maocimum Velocity on the
Lower Surfoce.

Qur previous equations apply on the lower surface if we remember that
£ is negative, Bz Y gl, ! even functions of ¢ and g{, wé, g1,
yi.c odd functions of (3. I% is, ﬁowever, convenicnt always to consider

- . thesc/
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these functions in the range 0 € <M. If we do this, then the eqn, (9)
which we solve when | Cp, = Cp, gpt| is not lerge, becomes

‘ 111

Oy = -2QLcot9-sin2€5 [gé(@’)-q(g)] el Gl R opt
, . 2\g, 27
1 cos €
(1 + CO8 6) o o} —e—— S, teane (91)

8y 271
and (10), which is the form teken by this equation when a, = 27, is
CL 6pt = Oy oot 9
e e 2y et [t = c0s€] [(E) - g2(B)] eereen (101

2 7( L1 + cos ¥ [ i [ 8 + J

If the sign of A is changed in the definition (2), so that

1 1
A= —— e C "GL resr e (21)
then when A\ is large compared with 2 QL, and W large compared with
2¢ 2 £
2 L L
(ZPL) g‘s il e 81 S—— tevee (111)
A A
0 is given by
8= 2?1/3., sease (811)

simply.  For very large values of Cy opt = Cr, and very small values of §,
A must be defined by (12) with the sign chenged:

4’
1 c21® 1 1 (121)
k = GL t —— s — —-GL b R— . oy Srmserwen » IR XN 121
°p a, 2t aiJ a, 2 7 &Co

and then, for centre lines without singularities, & is gaven by (&),

6= 201/% = (20 1) Y'(0), ceren (41)

and for centre lines with singularities we substitute &= 2 @p/M into the
right~hand side of (5):

208) - AW(9) ¥ (9
5 - we(B) plP( ) ¥ ( ), e (5)
M y(0) Y (8)

and proceed if necessary by successive approximation; but whereas on the
upper surface Y, "Ll;' are given by

IP = 1V&;(g) "'"\'f"c(@): v

on the lower surface we must teke

o= Ye(6) - 3 (&), !

Pi(0) + pi(O)  eeeee (13)

1

w;(@) - W;(G‘). veres (131)
kef



L. The Theoretical Cy-Range of a Low=Drag Aerofoil

We recall the defunition of the theorctical Cr-range given in the
introduction, as the range of values of O, for which the velocity continually
mncreascs, on both the upper and lower surface, from the stagnaticn point to
the designed position of meximum velocity at the design Cz, if, as is now usual,
the slopes of the graphs of g p gy are discontinuous at that position; if-
the graphs of gg * g4 are rounded off in the future, we shall require the
velocity to incrgase only to the beginning of the rounding off.

If ¢4 is the value of € up to which the velocrty is to increase,
we may immediately write lown Trom egn. (1) the condition to be satisficd by Oy,
The coefficient of ~CL in the ckpression in { | in (1) is positive for
0< (< ¢y; so, in order that dg/daC shouldbc > O on the upper surface,
C1, must not cxceed the minimum value of

{ 510§ (Y2 + s1n® 0) (gl + &f) + (Y2 oos € = YY" sin6)(1 + gg + g3)
{

171 1
ol Gor Lm0G e 42 e o) v pyr (1 v con B 5
1 4 q;2 cos ¢ cos @ 1
Sin@ + +‘\P1|J' o [ N N ] ('“-{-)
2, 271 &g N

in the range 0 <G < 0y Similarly in order that dg/d€® should be > 0
on the lower surface¥ ~Cp must not exceed the minimum valuc of the cxpression
obtained by changing thc signs of g:{, 85» C1, opt in (14). On the upper
surface W, ¥' arc given by (13), and on the lower surface by {(131).

The expression (14) is much too complicated to be of general use.
Novr as l Cr, = CL opt | increascs, when it reaches a certain value the position of

maximm velocity may begin to move forward or a new maximum may make 1ts
appearance somawhere ncar the nose of the aerofoil. In cither casc, as w¢ sco
from the discussion in B2, we may cxpect the values of [7\‘ (dcfincd by egns, (2)
and 521)), at the ¢nd of the Cirrange to be such thet the assumpt-ons leading to

cqn. (9} | or cqn.(8) if @- becomes small cnough ] will be sufficicnt to provide
a fair approximation to dq/aC. [ We found this to be the casc when
|Gy, = CL opt | = 71 /6, and the error was not prohibitively large even when

|CL - Gy, opt l = 71/ 3] « Conscquently we have, approximetely, that [ Cp
must not cxecced the minimum value of

141 1
2071 cosf + sin3§f(gé + g{) + =f ==+ = | Of opt 8inZ (1 + cos U)
2\a, 271
1 cos ('
s sn G| om 4 w———— vesee (15)
2q 211

in/

*0n the lower surfacc the cocfficicnt of Cz, i.c. the denominator in (ML), my
be negative for very small valucs of € af we usc the approximate values of "f .
For such very smoll values of © we should, as mentioned in a previous footnote,
usc more accurate values for W', but such very small valucs of ¢ d&o not
coneorn us herc, Morcover, the stagnation point does not coincide with the

4 1 |
lcading cdge; accoraing to Approx:mation II it is at =l o=+ wem Cr, = Gy, opt'
ay 2
approximately, on the woper or lower swrface according as Cp - O oph is
negative or positive. No complicaticns arc introdvcced since we are noil

concorned with the range of € between the loading edge and the stagnation point,
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in the range 0< § §01 and similarly ~Cp must not cxcecd the mmmn

valuc of the expression derived from (95) by changing the signs of g and Cy, opt*
The most important criteria for the volidity of this approximation are that, on
both the upper and the lower surfaces, h], W ‘\ should be small compared with
sin @ at the position of the minimum, and W2 not too different from 20

these criteria may be applied mumerically after the values of € at the r&mﬂ
have been found, but the numerical valucs in 82 are sufficicnt 4o show that we

may expect ‘t'.hem to be faarly well satisfied,

When ag = 297, our approximete conditions for Cy, reduce to the’
1 1
simpler conditions that o (CL ~ Cp, opt) and --7; (GL opt = CL) must not exceed
2T 2
the minimum values of

cot U
2€ 7y, ~- —-é;- + (1 - cos O)(géigi), soevs  (16)

1 + cos U
respectively,

Let us now consider the cage in which, as ‘ Cr, - GL opt l is increased,

a maximum of g makes its appearance ncar the nose of the aerofoil before the
maximum moves forward from € = 4+ Then, if we suppose ¢ smell in (15),
we sce that Cp and -C; rmust not cxcced the minimum values of

2p 4, g I
2
o ( t !) t - cae- o] - e o
0 s T Bl fq b op‘b 21(

respectively; i.c.

. 1 1 ( ) 2¢ I 0 (

LA (O — Gy, = C < Minimm { == + € la'tg‘) eaeee  (17)
a_ 5 L L opt | ~ 0 S i/t

respectively, Since dax/a0 = L sin J, we may write (17) in the fom
1 c < Mini 2oy, & (s . (18)

+ —— o S - C i mam e .y S -

- L L ~ "e .
a, 27 Pt e 2 \ax ax

In order that the right~hand side of (17) may have a minimum for a

small value Oy of (, gl t g!, which we supposc small compared with 1,
nust be large compared with 2p o 6 = §,  Moreover, if gk gl arc
large compared with 20y for E’ 91 , then the minima wh:.cn occur when

fr  is small arc cither the only mnuna, or arc lower then others vhich may
occur when £ is not small,

I the conditions are not satisfied, and gl % g} is not large compared
with 201} (1/27)(Cp, = Cp, 0Pt’) in the former case (positive sign) or

(1/2 ) oy, opt = O, ] in the latter case (negative sign) must not exceed a
quantity/

*Over the whole range of € wp to © = €4, except that very small values of f
are irrelevant, since for very small values of ( the termin 2@y in (15) or
(16) clearly dominates; in other words the minima will not occur for very small
volues of (.

Por Cp = O opt, /4 © will be small, on the vpper or the lower surface
respectively, for all valuss of T which are not too small; our approximations
will be inadcouate to pv'ov:Ldo rcsu.i.tf .of even fair percon‘tage acouracy, but it
will £ti11 be correct that 1/25“){01, - Cp, cpt} must be 0(2071) or less,
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quanvity which is of order 2 QL, or less; vherecas when gé

comparcd with 2¢; in the relevant range of values of 7, the right-hand

side of (17) has a minimum of o somewhat highcr order than 2071, the minimum
oceurring when the two terms in b in (17) are of the same order of magnitude.

+ gl is large

We have so far considered g! ¥ g! to be positive, and we shall now
show it is adventageous that they should be'so. It is probably sufficient to
illustrate the argument by using (16); similar deductions may, in fact, be made
from (15). Quite generally we may writc (46) in the form

cot ¥

Moximn { = 20 [ memmemem= = (1 = cOS U)(gé - g{)l
1 + cos b

1
{ - (CL"CL i
N o1 op

t G
< Minimum ZEL;;-C;-E;-'- (1 —cos@)(gé+g{)}. ceeee (19)

If g4 - gl is ncgative and g; + g:i positive, and g} A gy are
large compared with 2. for all relevant values of €, +then the left-hand
member of (19) is probab?['y greater than the right-hand member, end there is no
CL -range at all. For whereas the right-hand mcmber has a minimum for some
fairly small value of (1, when both its terms are of the same order of magnitude,
the left~hand member may either have no maximum at all and we may have to take
simply the greatest value for 0< (4, or a maxumum may occur vhen @& is
not small; in cither case the left~hand member will be greater than, or at least

nearly cqual to, the right-hand menber. Similar conclusions follow from (15);
in fact, if g:;_ + g; arc positive and large compared with 2p7,

-

1 1
— e — (CL - Cy, op‘b) must he positive and of the order of magnitude of
ag 271

gnf_ - gé in order that the velocity on the lower surface may be increcasing;

and then there 1s probably some range of (fairly small) valucs of G for which
the veloeity is decreasing on the upper surface.

Simiar statements mey be made if gf + g:'{, or both gé + g} and
g; - g:!L arc ncgative. If thoy ere large in absolute valuc compared with ZQL
over the rclevent range of valucs of €, +then there is probably no Cp-range at
all, and at best a very small rangc.

Ir 'gé t gi’ is small, of order 2(;, then, vwhether gy g{ is
positive or negative, it still remains ocorrect that :(1/2Tf)\31, - Cr, opt) st
be 0(2€L) or less,

It follows that to obtain a Cr-range of any practically significant
size, g; t g;_ should be positive and large compared with 20y, except perhaps

for small values of ., Hence g;,’ should be positve and lorge comparcd with
2€L’ except perhaps for small valucs of g.

It/
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It also appears that when a, = 27 best results are obtained by
teking g = O. In (16} lot us write terporarily

cot ¢
F(C) = 2pq -t (1 = cos@)gé,
1 + cos ©
() = (1 = cos Q)g:{.

Let the least value of F(®) ocour vhen €=

I o of F(O)+G(E) when
= J,, adof F(t)-6(J) when O ) e

C 3 Then, in general,
1
"’F(@3)+G(“3) ‘g E;T- Cy - Cr, opt) \<. F(fg) "‘G(Oz)’
and we require to show that
N B - H 4 i . eseew 20
F(0,) + P(O) + &(C) = e€ ) < 2(E) (20)
But
(C,) + 6(C,) <RC )+ 6(?)
F(O}) - G-(D 3) \< F((_" O) - G’( 90)’
since P 7 G is least when (@ = (‘2 or @3, respectively., Hence (20)
follows by addition, and our theorem is proved.
Similarly from (15) we may shew that, when a, # 271, best rosults

are obtained by teking
)

1 1 1
g:{ = e e CL opt (1 + cos R),
2 a, 20

to compensate for the variation of

1 1 1 ) 1 cos &
- | o m— ] O (1 + cosy — o —— 1
2\ ag 21 L opt 8 orc)’

\ .
but usually, on modern low=drag aerofoils, a, will be near cnough to 21 for
this suggested difference of gi from zero to be negligible,

It should be made plain that, whereas the th eorem on the best value
of gi moy be rigerously proved on the basis of our initial approximetions, the

previous discussicn of the order of magnitude of g' is neither rigorous nor
g

corprehensive, since g!' may be of widely different orders of magnitude in different
parts of the range 0 <¢§<G,, and it is not practicadble to discuss rigorously
all possible cases. In particular we did not discuss the case when gl was

sufficiently small over the relevamt range of valucs of © for the minimum of /
(17), for a fairly small valuc of &, to be avoided, but when gy increased to
a different order of mognitude as £ increased. A1l that wewere attorpting f
was a preliminary general discussion of (1) the circumstances likely to arise for
any given acrofoil; (2) the conditions necessary to obtain a Cr-range of some
proctical significance. We did not atiewmt to find a formula for g, to make

the/
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the C;-range as large as possible; to do this it would appear that the minimum
(17) rust be avoided, and then, as far as practicable, gl must be incrcased vhere

it 1s lcast, and g inercased, in particular for small values of © , in order
to incrcasc 2p T Methematically, for a5 = 277, +this problem may be
defined os that of making the minimum of
cot £,
ZG}L-‘———--;--‘. (1 —GOSE:') g's eneoea (21)
1 + cos €

.

for 0 U<y as large as possible, whered
™

4
N@eR) = = \ g (0)(1 + cos @) &T; esose  (22)

A4
L
o

a satisfactory solution for practical purposes has been found by Thwaites6 sy by
considering variations, involving a smnll number of parameters, of the 'roof-top!
acrofoils dascussed in Ref.5, 886 and 7.

5» Displacement of the 1fiddle of the Cr-Range from Cr, opt-

We break off the discussion of Cyp-ranges to refer briefly to a matter
to which reforence had already bheen made in Ref.3, especially as the discussion
there was inconpletc and misleading - namcly, the shift of the middle of the
Oy~ range from Cy, ooy when g! 0. With a, = 27, in thc notation of

can. (20), the middlo of the Cpmrange is given by

1

- o= 0 ops) = P(02) = B(83) + 6(B2) + o B5)

and the right~hand sidec will not be zero unless g:{ 0.

fl

As an example of both the diminution and the shift of the Cp~range
when g! # 0, we mry consider the case when dgg/dx and dgy/dx are constant,
i

and c}_gs/dx is larpge compared with ZPL. Then the minimum of the expression
m{ } in (18) occurs when =

dgg  dg4 L
-; — '-t ———— = - rane s (23)
v dx ax 3 €1
and, if we writc
dg./dx = s, dgy/dx = s (o r<1), T ¢
the Cy-range is given by
22 3/ 1/ 4 11
-2 "h'(2PL) 8 (1-?&)/4 K| - e e (CL"GLop“tD
3/ a 2r(
o\ 3/L y y © y
< - 3/ A/y 1/

The/
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1
The totol range of e Cp, is then
ag 291
3/
2 1
227 e S L e 0w ]
3

which has its greatest value when A = 0, and the middiec of the Cp~rangc
is at

3/h .
~ (% - o opt) - 2= ) @ M e WYL - WV
ag 2% 3

Ve refer also to the rosults for the aerofoil EQH 1250/4050 )
(Rofs3, Part IT), a fairly thin aerofoil with a large cesber (L. per cigt e
According to the accurate results reported in Part II, ’E:hcre 18 a}lsma . oL ge,
0,63 £ 0p, € 0,66, whereas Cp ooy s O.L35k. For this acrof010,16gs 15
negligibly smoll for small §, and gy = .0.16 sin(G, gl = 0. cgsth:3
N (2eg) = 0.*\r 2,  According to our approximate results ; e m:.gnmmooﬁf)? .
expression in in (17) for the upper surface oceurs when = 0, s E
je o, 607, which ILads -bg the condition Cp & 0,601 (in place of the accggt:re
result 0.,66), On the lower surface, there is no minimum neor thchnose, e e
fand from (15) that, very roughly, we must have Of £ 0,60 for the iixier SFOI' .
Thus on our approximate thcory we find that there is no Cr~range ;_rb B .urfacc
reasons given previously, we should not expect the result for the ower s e
to be moré accuratc than it is;  the inaccuracy for the wper surface is, ?'\1;0 s
rather large. The reason lies in the large camber, .ar_ld the conscqgegt Jf‘ap11?)
voriation of Y. If we find the position of the minimur on the right in EO ).8)
in the same way as beforc, but substitute the value of w at tl}c mnim;lun :zraté
for n/ (2 pL) before finding its actual value, we obtain practically the acc
result, Cp £ 0.66.

6. Cp~Ranges of 'Roof-Top! Acrofoils

We have a very simple formuila for the Op-range of a ‘'roof-top' acrofoil,
designed according to 19%6 aJIE 7 of Ref.5, with Cen%re lines designcd fgﬁ'oc):onstan‘t
approximate londing up to x = X(gi = 0, O @45 see Ref.7, 9. (18)
With dgy/dx = s for 0  x < X, as in cgn.(24), the application g t;qn.

is irmediate; we have, in fact, only toput X = O in the results o e
precoding scction, and we find that the CL—range is given by

3/%
(-1—+-1- ‘OL—CLGP-E_\QZE

1'1‘_756(2 QL)B/J-I- 51/11-.
\ao 277

i

2o )" 17
) i P (25)

This formula has proved remarkably sccurate for ecrofoils with rcasonably
larpe veluss of s eond small cember. (It hos nol been tested on any
acrof'o1l with lerge camber, sinece no practical neecssity to do so hag
yet arisen.) The rcsults obtained, all found in thc coursc of
nvestiations made for other purposcs, arc tcgted below,

100 t/c Date for Foiring Assumed | approx, |Accurate
No, ( approx) T T e e e e e e e Value of Gy~ Cr,-

a b c X s {20 L) 8o Range Range

v o et i e o s e e e . e e A L e e B ik i e e ey e - L g g,
4 2y 0.226 | 0.3 ~0.193 0.5[ 0.16 0.1775] 5 0.644 | 0,648
2 18 0.47 0.25 | -0,14L5 .51 0,243 0.2367 5 0,390 0.390
3 107 |0.1065 | 0.1392{~0,1125 | 0.6| 0,0545 | 0.1072 5.5 10147 0.145
4 9% 0.08135 0. 1304 -O.1O375 0.6] 0.08175| 0,0891 5.5 0,123 0.123
5 i 8 0.05627} 0.1216| -0, 095 0,61 0.109 0.0711 L 5.5 0.09)4-5 0.098

ST ENURNVE O NI, V. B do JEN S, P IS SO S
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Aerofoils 1 and 2 were symmetrical; 3, L and § all had a centre line
desioned for constant approximate loading for 0 € x é 0.6, with the approximate

loading dﬁcreasn.ng linearly to zero for 0.6 < x < 1, and )
(ﬂ/a + 2 CL opt F 0.126, With a, = 5.5, CL opt = 0.118, %but the
m:.ddle of the 8 p~range was, in fact, _gomewhat greater than 0,126, being 0. 1305,

0. 1295, 0.131 for aerofoils 3, 4 and 5, respectively. The results for aerofoils
1 and 2 are due to Mr., H. C. Gorner, and those for aerofoils 3, L and 5 to

Mrs. Moore. It will be seen that the formula (25) gives a satisfactory result
for a value of ' s as low as 0,0845, '

The shape of the fairing depends on the four paremeters a, b, "¢, X. -
In plane of a and ¢, we introduce the slope s of gg and N (ZQ 5 s Where
g o is the radius of curvature of the trailing edge. TFor a cusped aerof‘o:.l

,\/ \ZPT) = 0, and, more generally, thc degrec of the concavity of the aerofoil
surface towards,the trailing c,dge is sens:.bly influenced by the value of ~ (ZQT)

We suppose X and ,J (2@ ) ‘have certain fixcd chosen values. In addition we

suppose the theorstical crltlcal Moch number, or the acrofoil thickness at a
given chordwise position, or the maximum thickness, is given. If the theorctical
cratical Mach nunber is given, then with a given centre line and design Oy, -

b will be fixed. If the theoretical critical Mach number, for example, 1s 0.68,
and the centre linc 1s of the type previeusly mentioncd (for acrofolls 3, 4 and 5
above) but with X = 0.5, and the low speed cquivalent of the top-speed Oy,
is 0.2, then the maximum value of /U on the surface must be 1.2525; with

a, = 277, g; accounts for 0,0667, so b is 0,1858, In any case, if' X,

V4 (2Qq)s and b, or the thickness for a given x, or the maximum thickness,
arc given, there will be a value for s which makes the Cp~range a maximum,

Oonsidcr, Tor example, the case X = 0.5, Then
g = 2(b - a), A/ (2Pgp) = 0.06831 a + 0,36338 b + 0.56831 o,

J (2QL) 0.56831 a + Or.36538 b + 0,06831 o

{1

0.87980 b - 0,28005 s + 0,12020 ./ (2 0p).
The Cp~range is proportional-to 20 L)3/2 81/}“"; if ,J (EQT) and b are
fixed, and s varles, this cxpression has a maximum when

s = 0,44880 b + 0,0613 ./ (2 )

If, howevcr, the thickness is given at a given x, for example x = O,i{., then
from the tables of Ref.5,

i
.

0.10976 a + 0.31936 b + 0,06077 ¢ = ¥y,

where ¥y 1s the half-thickness, as a fraction of the chord, at x = O.4.

Hence .
0.38296 b = 0.05123 s + 0,1069% ./ (20q) = ¥4
and '
J2p ) = 2.29737 yq - 0.16236 5 - 012546 ,/ (sz)
Again (\/QPL)3/2 1/1" has a moximum when s varics, this time when
s = 2.021h yq = 0.11Qk \/(291- )e
Whew/



When the maximum thickness is given, the matter is a little more complicated,
since the position of the maximum thickness varies as s varies. The variation,
hewever, 1s not large;” and there is still a maximum Cperange for which, if
~/(2@g) and the thickness are given, the corresponding value of s may be
computed; and hence the values of a, b, ¢ may be found, For X = 0.5 =
and 0,6, these values were computed by Mr. H. C. Garner; I f£ind that his values
are satisfactorily reprocduced by the formulas

0. 953 © = 0,208 o (20 p), b
1.0319 £ - 2.00 /(2 0y), 5
for X = 0.5, and

a

il
n

1.4362 t ~ 0,335,/ (2¢0q),
0.9818 t ~ 0.254 A/ (20p)

-C

n
i

o

n
i

1.3765 © = 0,259 [(2pq),
0.8095 t = 0.172 J(ZGT)
for X = 0,6, In these formulac t represents the maximum thickness
(not the half-thickness) as a fraction of the chord, Velues have also been

roughly calculated for X = 0,4 by Mr., E. J. Richards; his valucs are
represented by .

1,0125 £ ~ 0,3 . /(2eq), b
0.9085 t ~ 1.87 “/(29 T, s

0.8908 ¢+ - 0.156 ,J(zQT), b-

-C

(!
it

1.2121 £ = 2,170 r\/(ztj m) s s

o

un
i

1,5125 t = Ok L /(2@q),
1.25 %+ = 0,25 ,\/(29T).

For all normal thicknesses and values of. /(2@ q), the abovo
formulac lead to very reasonable valucs of s, For a clisped acrofoil
ﬂZP m) = 0, and valucs would not normally cxceed 0,02; 0.0 would be a
very large valuc. Experimental evidence of the effcct of s on the tolerance
that can be allowed for wavinegss of the surface is still rather scanty, and not
at all systematic; Dbut such cvidence as we have indicatces that once a fair value
of s has been reached, any furthur increases nced to be very large indeed
to make eny practical differcnce to the wavincess, and the values obtained from
the above formulac arc, for all normel values of t and A~/ (2@ ) large
enough for this stage to have been reached, Thus once s = 0Oy1, for cxample,
it is very doubtful if it would moke any practical difference to the tolerance if
5 were inereased to 0.2, On the other hand, when the velocity gradient is made
very much bigger indeed, for cxample multiplicd by a factor of 10, so that
instead of 0.1 it becomes 1.0, then it seems thot the tolerance on wavincss may
definitely be inercascd. Thus we may expect to be able to tolerate a larger
waviness very near an acrofoil nosc than elsewhere., Also if s  is very ruch
decreased the tolerance on waviness certainly becormes less; but we have no
exact quantitative knowledge, and systoematic expeorimonts are certainly required.
Rough volucs of the meximum Cp-ranges for a, = 27 and for various valucs
of %t arc given in thc tables below. The figures give the complete Cp-ronge
(27¢ times the right-hand side of (25)), not the half-range., For X = 0.5
and 0.6 they are derived from Mr. Garncer's results; for X = 0.4 they havebeen
computed from the formulac given above as representang Mr. Richards'! results.

i

-0

i

2/ When r\/ (ZQT) = C, the OCy~range is very nearly proportional to
't . *

Cy-ranges/

*For X = 0.5, it appears thot the position of the rmaxirum thickness is given
guite closely by x = 0,3767 + 0,0576 s/b + 0.0899 ./ (2@q)/b. There are
similar formulac for other values of X,



Cr-ranges, a, = 277
J(2eg) = o0 /(@0 = 0.02 ‘
-.\ X h x ——————
mm O | 05 | 0.6 |,00%% N O | 0.5 | 0.6
8 0.111 | 0,703 | 0,099 8 0.10L{ 0.102 | 0,095
10 0,165 | 0,161 | 0,147 10 0.157{ 0,153 | 0,141
12 0,227 0,222 | 0,203 | 42 0.218 | 0.214. | 0,195
1 0.297 | 0.291 | 0.26l 12 | 0.287 | 0,281} 0,256
16 0.375 | 0,367 | 0,333 16 0.363| 0.357 | 0.326
18 0.462 | 0.451 | 0.408 18 0.449 | 0.440 | 0,401
20 0,554 | 0,543 | 0.4.90 20 0,540 0.532 | 0,482
22 0.655[ x X 22 0.6L0 X 'S

¥ Not caleculatcecd

7. Concluding Remarks

1. The roof-top' aerofoils,’ congidercd in the preceding scction,
are, of course, not the only oncs for which the analysis can be fully carried
out. We might, for example, take

. gg = A+Btan i O,

Then we fand (still with gl = 0) that the rinirum of (17) occours approwimetely
when

97 = 2013

and the Cp-range is given bv

11
— =] o -0y o] < 15207 BV,
a, 27

This form of gy may lead to somewhat larger Cp-ranges than (25); bul to
pursue. the matter further, .wec should have to find and work out formiac for the
fairing ordinntes, and we letve the matter for the present,

2, In so far as we may ncglect W', and replace * 2 by ZQL,
221 our work could have been based on a girple form of Approximation 1T,
which we may eall Approximation IIa, and which is the simplest form neccssary if
we arc to make any attcmpt at all at approximating to the velocity near the nosed

2

4 (1""12?00 ( ) 0 1 cos O
s 1+g5+gi)sin®  +Cp *
U (20 + sin20)% ° 27 ag
1 /1 1
(L 1) o e 1+ cos 6) <o < &1)
2 \2, 277 l

cosec @ cot ©
—t, -

2 aq
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where
(1 + % c2) sin Uy
K = .
(2()L+ sin? ‘:"I)“riT
APPENDIX
On Approximation IIT,
q AL (* + €1) G% & ' Gy,
- = T 1 - Sin(@-I— 6“B)+"’-COS(Q+E_B)
U (Y2 + sin2 0)z | ag a,
CL
e —————
277 &Co ’
and D)
a {aq oL\ #
(w2 + sin? 9)5/2 o0 e 1 2 2 (] e [14[;2 + sin2G-|
k¢ af \vu i
20

[(1+ €92 005 (6 +6=p)+ 6" sin (§ + € ~p)]
-[sins cos & 4+ “q/q:’] [1+ Cl'] sin (0 + ¢ —B)}

C P -
- L J){'l\vz+sin29J [(1 + E')2 sin(€ + € =p) ~C" cos{Q +€ - p

B.o >

A
+ [sine' cos & +1{/"{)'_-t [1+ E'] cos( 0 + € -5)}

-

+ - {E"[W2+ s:'.n?-E’] + [1 + G’:l [sinO cos 9+‘q)1p'_'} '

We still suppose € - B, €!, £", Y, W' =mell, but Cr/a,, cy/(2rcelo),
though they are less than 1, may now be comperable in magnitude with 1, We are
concerned only with cases in which Cyp/a, is large enough for € to be small

compared with unity; and in order to have a comparison with the results from
Approximation IT it will be convenient to introduce g and gi., We haves

11
Bg + 8 = Co+ €t+(F—B)cot6+E ;—+5-T-( CLoptcotJE"G’

o

sin? @ (gt + g{) = " sind @ + €' cos @ sin2@ - (€ = B) sin®

1

1 1 1
2 \a, 2N L O?t

It/
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If we retain only the most important terms the equation ag/a® simplafies %o

i
AL
1-'--5 W cos {7 - R sin Q@ + sin? & (gé-f-g_i)
%
1 1 1 C( e) g( ) ;
4w | me o omne | sin U (4 + cos - Py & =~ f) cos
2 \ o 271 L opt
)
0 1 cos ¢ cos O 1
- C Sin e S T bl C /1 i gt vt = e e = 0’
L a, 2 71 lo . LYY a, 2 77 &G0

which, for small 9, becomes

Y2 - gyt 6 - MO+ ) = 0,

with
2% (1 1 1
L a% ag 270 00 L opt 2q 277

Apart from the eltered.expression for A, this equation is tnec same as
cquation {5} ’

- ——— s
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