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1. We may find the positions of maximum velocity on the upper surf'ace 
with suf'fzoient preclszon for practlc.1 purposes by the following rules. 
When ( CL - s optI , 1s not large, so;;e the equation 

( 
>- CL = 

I 
2eL cotO + sin*O[gA (V) t gi (d)] 

II 1 
t- 

i 1 

I + -- CL opf. (1 + cc=@!) 
2 a0 21t 

} /[$ + E.Z.] . . . . . (1) 

by plotkng the right-hand side agamst 0 snd readmg off the values of E 
.for which it 1s equal to specified values of CL; or, if a0 = 2ri, solve 
the equation 

CL - CL opt 
------- = 

2rr *CL ------- , ;l,r!? + [1 - cos ij [ gp) + gp 1-J 

. . . . . (2) 

similarly by plotting the right-hsnnd side and rending off the values of 0 
for which it is equal to (CL - CL .pt)/2H. If the right-hand side stays 
practically constant over a considerable range of values of 8 , then for the 
corresponding value of CL we ha+ a 'flat' maximum, which we do not attempt 
to locate kqth any precxsion. As CL increases, after a certain stage @ 
becomes smaller. ihen A, defined by 

I..... (3) 

is large compared with ' 2oL, al-113 $ large compared with 

i3 is given simply by 
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If, however, we proceed to very large values of CL - CL opt and very dl 
values of 0 ) we must change the definition of A to 

. . . . . (6) 

for igntrc lines without singularities at & = '0 (gi(0) = 0), 8 is then 
given by 

\ 0 = 2PI/A - J (2p~)yt(o); ,......... (7) 

for centre lines with singularities at Q= 0 (gi(0) f 0) 8is given by 
substituting 2PT/h for 0 in the right-hand side of the equation 

0 = 
v2(d) - A’+‘(@)~‘(O) ------------------.-, 

I+ yJ (8) ‘P(O) 
I.... (8) 

snd then proceeding by successive approximation if necessary. In thcsc last 
casts, nowever, mess ~ounaary layer suczlon 1s employed, restricted boundary 
layer separation will probably modify the theoretical pressure distribution very 
considerably oven if the aerofoil is not stalled, so the results will not have 
much practlcsl significance at present. 

8 
The equations above also apply to the lower surface if we remember that 

is negative, gsr *Vsr 
odd functions of 0 . 

gl.9 Yvb cvcn functions of B, snd g;, y', 
'Y 0 

.l "if It is, however, convenient always to Cons= cr t ese 
functzons in the range 0~ 8 g t7' and WC may da so if we make the follol 
changes in the equations. In (I) change the Sims of 2pL cot 0 .and sin ogi(6) 3 

In (2) change the signs of CL - CL opt and of g!(Q)). C2mnge the sign of 

CL - CL opt in the definition of h in (3): and the sign of gi in (4). Then 

is unoltercd. 
%ning h; then (7) and (8) 

Change tho sign of the right-hand side of equation (6), 
<sr?re unaltered, but, whereas on the upper surface, 

-Y = Ys(f ) +yo(E), -qJ' = v;(O) + yp), . . . . . (9) 

for the lower surface we must take 

il = Y,(O) -y&(S), y" = $p) - y;(B). . . . . . (IO) 

Those npproxirmte methods have been tested by Mr. E. J. Richard.&, who has 
applied them to N.A.C.A. I6 series and Clark Y aerofoils, with satisfactory results 
for practical purposes, 

2. A discussion is given of possibli definitions of CL-ranges for 
low-drag aerofoils. The "thcoretlcsl" CL-range is defined as the range of values 
of CL for which the velocity continually increases, on both the upper and lower 
surface, from the stagnation point to the &signed position of maximum velocity at 
the design CL. (This definition a@ies strictly only when the slopes of the 
graphs of gs +, gi are disoontinuous at the design position of maximum velocity, 
which is the case for low-drng nerofoils as now &signed; if the graphs of gs !: gi 
are rounded off, WC should require the velocity to increase only up to thebeginning ( 
the rounaiup-off). 

To obtain a CL-range of <any practiwlly significant size, g;(6), wh.Gzh 
is small coward \mth 1, must be positive =s.nd large compared w.th 2@1,, except 
perhnps for smn'l values of 8. For a0 = 2n(, best results NTC obtzincd by 
Iding g!(B) = 0, 
practicdy correct. 

and for practical values of ao, this theorem remnins 

If/ 
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If, at the relcvsnt value of 0, g&(o) + g:(c) are large enough con~ared 
with 2eL for 

to have minims for small vnluos of 0, then the Ci-rango is given, quite 
w-W, by 

. . . . . (11) 

except that, for highly cnmbered thin aerofoils it seems worth while, having 
found thL positions of the maximum snd minimum of the expressions above, to 
substltuto the vducs of. !j2 at those positions for 2pL in order to find the 
values. 'ybr,c generally, end with no very.grent accuraoy,'if a0 = 2'Tf me have 

thceonditidnstk~ t;~(CL-CLopt)~tMtexccedthc~~vslvcsof 

cot E 
2pL ;l-,,o t (1 - DOS E)(gA +, g;, . . . . . (12) 

rcspeotively; for a0 f 277, WC have the m3rc elaborate conditions (15) of 
the text. 

' 
If gi b 0, the middle of the CL-range is displaced from 

CL = CL opt* 

for 0~s x&X), with c&xc-lines dcnigncd 
O<x<X(J&/dX = 0 for 06x&X), t' 

For the keof-to-o' ‘ncrofoils of RB6 and. 7 of Ref.5 (c$/dx, = s = oonstsLnt 
for constant .smroxirdo landing for 

hc 

1 1 ( ) - + -- 

a0 2?f 
I CL -.C, Apt 

: CL-range is given by , 

_ 

6 1.4756 (2pL)z &. . . . . . (13) 

WC suppose the positlon of dmum vclooity, X, fixed, rind also hj(2pT) fixed. 
[ For a cuspcd aerofoil J (2 
would be n large value.] 

T) = 0; it till. in so case be small; O.CY+ 
I in addition the mtimwn velocity is given (theoretical 

criticd.LBch nunbcr given), or the thieknoss for a given value of x, or the ' 
maximum thickness, then there is a value of s lrhich mskds the CL-rengc a 
maxim- (For the oases when the maximum velocity is given, or the thickness for 
a given x, see the cxmples in the text.) In particular, when the m;udmum 
thiclcnoscrchord ratio, t, is given, the value of s mny be found from the 
fonmiLacl 

s = 1.25 t - o.25J(2pT) for x = 0.4 - 

= 0.9818 t - 0i2fd.+J(2pT) for X = 0.5 I . . (14). 

= 0.8095 t - O.l72,/(2p~) for 'X = 0.6 

With/ 
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IWith normal values of t snd J((2PT), the values of s so found are probably 
large enough for a stage to have been reached when any practicable irlorease in 
s would not, in any case, mahe sny practical difference to the tolerance for 
imviness of the surface. (An increase of the velocity gradient by a large factor 
would probably mske a difference, which is why we expect the tolerance to be 
greater near the nose than elsewhere) 

Oorrospcnding to the above formulae for s, we have the following formulae 
for the parameters a, b, 0 needed to find tho ordinates of the fairing5. 

For X = 0.4, 

a I 1.0125t- 0.3 ,'(2(3T), b = 1.5125 t - 
-0 = 0.9085 t - 

for X -ii 0.5, 

a = 009453t- 0.208 ,,/@{T), b = 1.4362 t - 
-0 zz 1.0319 t - 

for x = O-6, 

a z 0.8908 t - 0.156 ti;(2pT), b = 1.3765 t - 
-c = 1.2121 t - 

Tables of the m&mum CL-ranges of these aemfoils are given for thicknesses 
between 8 end 22 per cent, for A(2pT) = 0 aud 0.02. For hj(2pT) = 0, 
the CL-range is m%.rly proportional to t7/4. 

1. Introduction 

To calculate the theoretical critic&l compressibility speed for a given 
acrofoil section af a given CL we first compute the grcatost velocity on tho 
aorofoil contour. This greatest velocity may be found. by graphical or numerical 
methods from a graph or table of the velocity distribution, but when we require the 
answers for a nunitxr of aorofoils over a range of CL-values, such a method is, 
long and laborious, and has been found in practice in sort cases to be prohibitively 
long. Some simplification is, therefore, nooessnry. It appears that it is j 
possible to find s&ple formulae for the positions of the volo&ity maxima; 
formulae, though r&or crude, 

sqd 
scem to be sufficiently accurate for practical ) 

pu_rEssos. The act&i maximum values of the velocity ore then easily computeq, 
by Appro-tion III, for the v?Jucs of , x and ,o so found? end for those values 
only* If there ore two maxima for any CL, both must be computed and the l,yger 
chosen (unless wo luvw bcforchnnd which will bc the larger). 

To oonptko tho mnxLmun vnlucs of the velocity no great accuracy is 
necess‘ary an oaloulating their positions, since a smell error in the position s 
produces a second-order error in the value. As \cL( 
in the velocity graph develops near the loading edge of 

increases, however, a peak 
the aerofoil - on the 

upper surface for CL positive and on the lowor surface for CL negative - and 
the absolute error in the calculated vnluc of &' at the nm.xbum must be small if 
we <sre to avoid the possibility of fairly large errors in the calculated maxirmr 
VgLuo. (T'nepcrccnta~ crroc need not be very smQ1, since G itself is &&.l). 
In other words, spocMl. attention must be paid to the nose of the aorofoil 

(b\ 
small). 

The/ 
-- - 

*x is the distsncc, perallcl to tho chord, of a point on the aorofoil surface, 
measured as a fraction of the length of the chord, ‘and x = $(I - cos @)j 
O,< e < Tf on the upper surface, 0 2 0 >-77' on the lowor surface. 
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$? da/d@ 
The positions ofthe maxima being calculated from an approxlmateformula, 

(where q is the velocity) remains small over a large range of 8 
in the neighbourhood of the maximum, our determination of its position will be 
subject to quite considerable error. This error, however, will not be wortsnt 
in the caloulation of the anximum v&he of q, 
slowly over the whole range of f: in question. 

since the graph of. q till vary 

The determination of the position of the maximum velocity may also be 
considered to give some information on the probable position of transition-to 
turbulence in the boundary layer. 
information. 

Care will be needed, however, in using this 
Other factors in addition to the velocity distribution (waviness 

and roughness of the surface, turbulence in the air, Reynolds number) affect the 
position of transition, and the effect of the velocity distribution, end its 
interaction with the otiier factors, do not depend solely on the position of the 
maximum velocity. We do know that if the velocity fslls off steadily snd not 
too slowly after the maximum, then in practice, at high Reynolds nunicers, 
transition will not be delayed to any appreciable extent beyond the maximum, 
Whether transition will occur before the maximum will dcpend on the velocity 
gradient, the state of the surface, the twbuloncc in the air and the Reynolds 
nunberT In certain circumstances, also, transition may occur well after the 
velocity maximum - for example, with a good surface and low turbulence in the air, 
if the msxkmnn is followed by a small fall in velocity and the velocity begins 
rise again,(Big.l), or, at Reynolds numbers which arc not too large (106 to 

t 
8 

if the msximum is very "flat". 
2.10 ), 

The former state of affairs (Pig.1) alrplics near 
the nose of a good many aerofoils at certain values of CL. To sum up we may say 
that, for the purposes of discussing tho probable position of transition, a rough 

calculation of the positions of msximum velocity may be of some restricted use for 
a preliminary vsorting-out", but much more will be necessary for sn acrofoil which 
it is proposed to study,in any detail, so only very.rough c&xitat~ons of the 

/ positions of the me&ma will bc needed.; inparticular, if q is varying very 
slowly, then that is itself probably all wc need to know - the exact position of 
the meximum in a "flat" portion of the graph of q is not of sny practical 
interest. 

Closely oonncotod with the questaon of the positions of the velocity 
maxima is the discussion of the "theoretical" ~-ranges for low-drag aorofoils 
according to a definition we have used for some time now, the "theoretical" 
CL-rsnge being dofined as the ramp of values of CL for which the velocity 
continually increases, on both surfaces, from the stagnation point to the designed 
position of maximum velocity at the design CL?* A slight oxtension of the 

--se-- F--.- e-m 

%or some further.rcmerks on this subject, see B6. 

analysis/ 

9~3 low-drag aorofoils are design4 at present, the slopes of the graphs of the 
velocity on Approximation I (i.e. the slopes of the graphs of gs 2 gi) are 
discontinuous at the design position of .maximum velocity, and the definition 
given applies strictly only to such 0asC.s~ If the graphs of gs 2 gi are 
round& off, WC shouJA require the velocity to increase only up to tho beginning 
of the rounding off. 
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analysis for finding the positions of the velocity maxima enables us to discuss 
these "theoretical" CL -ranges, but before we proceed to the analysis, a short 
discussion of definitions of CD-range may not be out of place. The general 
notion is that the CD-rsnge is the range of vslues of CD for which the aerofeil 
drag stays low and praotically constant. Such a statement is, however, too 
vague to serve as a definition until the ciroumstanoes are specified in whioh 
the drag is to be determined. One such definition is the range of values of 
C$ for which the drag stays low and constant when measured. on models made as 
carefully as possible and tested in a 1owLturbulence wind-tunnel at a given 
Reynolds number, say 30 x 106,~ This %ind-tunnel" definition would certainly 
be useful if a suitable tunnel and model-making facilities were available. The 
third definition - the "praoticsl" definition - is the lnost probable range under 
practioal conditions of msnufacture, flight and maintononoe; values according to 
this definition are the values we should all like to be able to give but none of 
us can. It is probable that In future all three definitions will be used.. Our 
"theoreticsit" definition will be of use r0r.a preliminary "sorting-out". Its 
main disadvantage is that it tskes no account of the nature of the velocity 
curve after the maximum; if, for example, there is only a small Gill in velooity 
after the rmximum (Pig.l), it does not take into scoount the magnitude of the 
velocity gradient thereafter, which may be fairly lsrgc in some oases and 
practically zero in others. As soon as really good surfaces become practicable, 
and a small velocity followed by a ris o does not neoessnrily lead to transition, 

I this point till have to be borne in mind. b%oenwhile, it is doubtful if, at 
* present, it would be possible in practice to delay transition in this way, SO 

aerofoils may porhaps be expected to be in the same "order of merit" as regards 
CL-rangeswhether srrsnged according to the "themretical" or "practical" definition. 
In fact, with present surfaces, the "theoretical" definition may be nonrer to the 

d "practical." one than the "wind-tunnel" definition would be?" 

2. The Approximate Calculation of the Positions of Maximum Velocity on the 
Upper Sudace 

We wish to use the simplest possible method to calculate the position 
(or positions) of maz&num velocoty. 
be used; q/U is infinite at 

The crude, linear Approximation I cannot 
6 = 0 except for CL = CD oat 

to Approximation I. We therefore use Approximation II, accordang 
on the upper surface, 

9 1 + $qFj 

i 

1 
----__---- 

= (Y2 + siIPi$ 
(1 + g, + ii) sin6 + CD 

cost 
- + m-w- 

U 271 _ 
a0 ) 

11 1 

c ) 

-- em+- 

2 a0 \ 

27~ c, opt (1 + OJs b) 9 

so/ 

?Xis "wind-tunnel" definition may be that adopted by Amoriosn workers on the 
subJect, though, if so, It is not ,clear which Re olds number, if any, they 
adopt as stsndsrd. F Jacobs, Abbott and Davidson , however, write of the 
C -range as the range 

k, 
"over whioh the pressure distribution rcmclins favorabla", 

w ich suggests that they adopt the definition of what we c‘all the "theoretical" 
CD-range, though no exaot definition is given of when a pressure distribution 
is favourable. It IS of interest that J&s. Moore, in working out2 the velocity 
distribution on N.A.C.A.66, 2-015, cals~ worked out the theoretical C&e, 
.snd found it to be a.166 (l?ig.2), in place of tho LO.2 ind~atea ir the title 
of the aerofoil. This acrofoil is one of an oldor scrux5; it has now been 
replaced by N.A.C.A.662 - 015, and it would be of interest to' repeat the 
calculations on tho now aerofoil. 

**A fourth possible definition, namely the rango of values of CD for which 
transition stays at or behind the designed position of the maximum velocity, 
has not been included, since it is still not possible to calculate the position 
of transition, and the drag is easier to measure. 
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so 

a 9 
0 

I+@. 20 
-a --- 

de u = 7,V2+sin2Q)3z 
i 

Sin'J (l+J2 + sin2 B)(gA + gi) 

+ by2 003 5 -'rmq' sinf?)(l + &, + gi) - 

, (cd 1 

I 

cL[sb6( ;6"'+$) 

+u;lq.--.-+~ . 

II 1 
+- 

i ) 

-w + 7' 
2 2H 

CL opt L sin (3 (I + :y* + oosi,) + i~lp (1 + I ooso,] 
aO I 

. . . . . (I) 

where the dash denotes differentiation with respect to 0. This expression 
is too complioat&d to be of practical use; it must bo simplified by approximation. 
Ike 

FI 
t for wry large valves of CL ~0 pry say that the terms of the first order 

those of the second order are 

and those of the third order are 

, . 
CL 

-II*@ + g:) sinQ + (-VT cosQ - ?fv* sm3)(gs + gi) - -- y* sin Q 

a0 

1 1 ,I 

( ) 

'OS' ' +- -+- 
2 a, 2/H CL opt u* 

I 
sin J - CT, ( j - + - VW 

, ' 
-\a0 277r//" 

11 1 
+- --+--- 

( ) 

CL opt (1 + cosQ)yy'. 
2 a0 2ti t 

The terms of the first order are all snnl.1 whon 6) is smsll, whereas those of the 
scoond and third orders are rat, so it is inmediately clear, as explained in the 
introduction, that YB may not simply neglect the,terms of the second and third 
orders If inoorrcot results nrc to be avoided for small values of 0. oil the 
other hand, as we LSiso explained in the introduction, we abandon tho requirement of 
even fair accuracy m the case of a very 'flat' msximum, nn8. thon tho neglect of 
the firgt four terms of the third order wdl.d appear to be always justifL?ble. 
For 7p '(g' + g') sin 8 still alwsys be small either compared. with sin3 @(gL + g!) 
or OO~XKICI~~~~~ ~2 00s 6' - lf li!' sin@; gs + gi 

. Mth 1; certaitdy ma 1 compared with 1. 
will~be smK!A COM@W~ 

It 1s eqwdly clear that, 
at any rate for smll 8, the first term of the second order may not bc 
neglected;. &en @= 0 this term is simply 2@L, whcrc PL is the radius of 
curvnturo of the aerofoil section et the leading cd.@. To hat extent the influence 

of/ 
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of the second term of the second order, and of the last two terms of the third 
order, may he neglected, is a more difficult question to decide; it seems 
probable that the formr, since it is of the second order and is, moreover, small 
when 8 is small, may always be neglected, snd that the last two terms of the 
third order may be neglected except when CL is very large snd 8 very saall. 
We shsll presently give some numerical examples and shall sea that-the above state- 
ments Bre correct. 

The second snd third order terms are of mst importance when e is smsll, 
so io osrry the analysis further for szitl (j neglecting completely the first 
four term of the third order. In the tem'of th first az.3 second orders ws 
write 1 r^or 00s 8 and G for sinFj; for W2 we writ0 

-q2Fo + 2 ~w3)u:‘(O), 

and for l+J l/J' we mite y (O)i/!l(O). 
second order torms in powers of ti , 

In other words we expand tho first snd 
and keep only the terms~ in 80 snd 01. 

In the last two third order tern wc keep only the term in (70. Also, on the 
"pper surface, 

vJo(o) = 0, $$o = i/W& 

Hence as/a6 = 0 on the upper surface for small G when, approximately, 

2?L + G'&!pL)Y*(+ - A[6 + J (2eL) V(o)] = 0 

where 

A = (;+&I) (CL"CLqt)i . . . . . (2) 

i.e. 
2PL - 4J(2PL)Y'(C) 

0 = -I_------* . . . . . 
h - J (2p JJ q ’ (0) 

(3) 

In order that a" should be small, the denominator must be large compared 
with the nmmrator, i.e. 

~-,/(2~~)-‘4”03) 3 ~CL- ‘hJ WL)Y'(O),. 

i.e. 

h [ll +n/(2~$p&0~ 2 2PL +~Pe3yW, 

i.e., sinoe J @PiI V’(O) is small compared with I, 

+ 2PL +J(2,?#P(0). 

Home oertainly 

h $Y,/fqq y'(o), 

the sooond term in the denominator may be negloctod, mnd approximately 

' 2pL 

8 = -7' 
- J (q IJ $J ' (0) . . . . . (4.) 

Thus/ ,- 
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Thus of the terms of the second order in I I 
:I 

in (I), the second could have been 

neglected and the first replaced by its value at 0=0. 

Before WC moceed to numerical illustrations I;% must remark that the 
last stcl> in our NIR~~SXS is lnvnlid if there is n singularity at B= Oin 
the equation of the centre line; 
lines, for khlch &i(O) f 0, 

such smngula+.tlos occur in certain modcn ccntrc 
the approximate losdinp, bang taken as constmt 

from x I 0 either over the who16 chord or over some fract-ion of it from t'ne 
leading e&c. As n result both dyo/dx rind the npproximntc vGKluc of 

at8 @ = 0, and 
may bc, nor 

In place of (2) wo have then, to begin lrith, 

------_---------------~, . . . . . (5) 
h+qJ(Q)Vl'(W 

If f3= 0 is the relewnt (small) root of this equation, 
be small com&rcd with ‘\ys(80), 

yc(@o) w-ill 

as w shrill xc later in numoricnl ex~amplcs, 
cm-d lf' s(Qo), rtillbc nearly equal to ys(0), i.e. to d((2pL), so y(oo) 
will be of the s‘amo order of magnitude as n/ (2pL), We shall also shw later, by 
nuwrical exnmples, that, although V'(s) 
8 = 0, yet, for q.tc sm-lll vnlucs of 

is 1ognrithmicKLly infinite at 
Qo9 y/'(Q,) for centre lines I-6th 

singulnrltics is of about the sync order of m?gnitud? ns for centre lines 
with no singul&,tics. It follow th?t, j'ust as wo could!$k+/(2&) '/'l(O) 
&thc donormnntor in (3), so VC may neglect v(Q)v/'(@) 3n the denonunntor in 

pcrcontago~orrkr ~211 bo lnvolvod'ln substituting 

,yl 5(81;cz"p" ;~~i~$~&~, Howick, thz order of ;;?;;l 
SO it 1s dl,flcult to forotcl horr lnrec a 

2p in the 
nmorator of (5). If we do make this substitution, (4) rcducos to 

. . . . . (6) 

This equation may be solved by succossivo approuimation; for the first approximation 
TIC put Q 5 2pJX in I$'(@), so that , , 

. . . . . (7) 

for the second aiT?roximat]on wo nubstltuto from (7) into \y*(B) in (6), ema 
so on. The first 6?proximation (7) ~6.11 usually bc sufflcicntly ncctrnto; ln 
this fain the cquatlon 3s equally applicable If thcrc is no singularity in 

Q= 0, suxc in such CIZSCS, in fact, the difference bekocn (4) cud 
is ncglz.giblo. ~reovcr, on the upper surface, 

lfJy'(@) = yJ;co, +4@3), 

ma, uliLcss as n conscquoncc of singulnritks 
in the cquatlo %::;hDi:c:::;;t%:;t $$),"=~~(,~d?~~~~~) ~511 be 
negligibly small, so vo my rcplncc 

Y' . 
such 

?].scontinuitlcs occur on N.A.C.A 00 nerofoils. On N.R.~.h.0012, for'exnmple, the 
qqroxirmto vnluc of Ijy' at b= 0 chnngos discontinuously from +0.0378 to 
-0.0378 ns VC pass from the lcwcr to the u or surfnco. 

m (4), (?cnd (7)? 
For such norofoils, J$' 

should not bc roplncod by yh 
Smcc/ 

--- ----____ .----------~~L__--_-___,_-____----_------------------------------------ ----- 

*On N.A.C.h.0012, the nccurntc vnluo of VI' J.S zero ?.t 8= 0, but rises wry 
rqndly to npproxirmto agrccncnt with the values c.dm.iLntcd on the approximate 
theory. 

VC should rwnt?on that the slngukulty in the cquntion of the ncrofoll contour 
which produces ~1 dascontmnulty in vi(@) at @ = 0, also mnkcs g 
mically ini'initc at @ = 0. But for N.h.C.I",. 0012, ' 

-1 
545 

logLarlth- 
~rhon 

Q = O.OJ+ rind 0.3574 when d= 0.02, compared wzth 0.?~331~t0fl$ 2 4 H. 
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Since, for small values of 6 , -q'(G) is larger 2nd y(O) varies 

more rapidly for N.A.C.A. fomfigure acrofoils than for any other common symetri- 
onl types, for ow numcrioal cxsmplcs WC shall sqposo the aerofoil fairing to have 
the shape of N.A.C.A.0012; ad we shsll consider tVio centre lines, one mth, ‘and 
onz;tho10, a singularity at Q= 0. For the former we take the pnrnbolic 

YC = 0.08 x(1 - x), 

whioh corresponds to 2 per cent camber and a CL opt roughly 0.25; for the latter 
the centre-line for constant approximate loading, 

I ‘ 
16n t 

+ 
yo = - -- xlnx+(l-x)ln(l-x), 

J 
$~,~cz3ponds to a CL opt of 0.25 and a camber of roughly 1.4 per cent. For 

yy, = o.a!+ SinQ, y; P 0.04. cost:; 

for the latter 

Then J(2pL) = 0.1781. Let us take x = 1/6 to start with, so that, 

For this for a0 = 2d, CL - CL opt = r(/6. !l%en 2PL/A = 0.1903. 
value of 8,s q&G;) e 0.1715, Y'(F) = -0.0324, end, according to the 
formulae above, y. = 0.0076, 0.0393 for the first ocntre line and 

'to = = 0 0373 f?tL seoond 0.0108, -11; . . Hence, on the wer surface, 

for the first centre line 

Y = 0.1791, y2 = 0.03208, ?f'/A = 0.1925, y’ q o.ogY, 

Y’y = 0.0012, 

and for the second 

1 = 0.1823, 'i" = 0.03323, p/x = 0.1994, y" = 0.0049, 

'fly' = o.oooy. 

~~~o~~~e~~o~~~.~yt~~I 
be neglected in the denominator of (5), 

ccond terms in (4.), (6) snd (7) my be 
neglected. We shall, hokever, wish to make the ssme alJproximations for the 
lower as for the u-r surface; for the lower surface, 

y = 0.1639, y2 = 0.02686, 1+2/x = 0.1612, jy~'l = o.o717,~y/yi~( = 0.0118 

for/ 

+In is used for log,. 
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for the first centredz~e, ad 

$J = 0.1607, u.2 = o.ozy32, ,q‘2/A = 0.1549, II+,'1 = 0.0697, IyJy'\ = 0.0112, 

for the second. Here both lv‘ly' and the difference of y2 from 2p~ may not 
be completely negligible. We shall See, however, that the sign of 7y‘\y' is to 
be taken as negetive, and the effect of‘Woluding the q?+Jw' terms in (5) is 
therefore opposite in sign from the effect of tsking the above values of y2 

In fact, if we calculate a second approximation to 0 from 
Xz"Kf, 2P * SL= 0.1060 for the first centre line and 9 = 0.1781 for the 

;* even In the latter case the percentage difference from the first 
approximation 0.1903 (about 63 per cent) is probably tolerable for th'e purposes 
we have in. mind. That the effects tend to cancel is not fortuitous; the 
difference between yq G) red 2pL is cleverly related to the sign and 
magnitude of -V wt. 

As a second numerical example we consider the same aerofoil, but double 
the value of h, so that the value of G is halved. With hti=1sl/3* 
CL - CL opt = rf/3 for a0 = ?I. The first approxlmat,ion to * 

2QJh = 0.0952. For this value of F , Vs.(@) 7 0.1747, 

y i(o) = -0.0344; for the first centre lint VI, = 0.0038, ‘ly; = 0.0398, 

and for the second 7v o = 0.0068, y:, = o.osoa? On the upper surface 

-q = 0.1785, y2 = o.ojla6, ?+2/h = 000956, -qJ' = 0.0054, yl+J' = 0.000?6 

for the first centre line, and 

'/J = 0.1815, y2 = 0.03294, -p/A = 0.0988, l/J' = 0.0164, u/y' = 0.00298 

for the second.; on the lower surface 

'1' = o.j709, ltJ2 = 0.02921, v2/1, = 0.0876, 1-p 1 = 0.0742, pjqJ') = 0.0~266 

for the first centre line and . 

y = O.-t67y, y2 = 0.02819, W2/A = 0.0846, ( u/'I = 0.0852, lqqJ'/ = O.Ol43f 

for tho second. The second approxclmations to 8, according to cqn,(5), 
are now 0.0943 and 0.00950 for the upper surface for the first and second centre 
lines respcct~vely, and 0.1043 azd 0.1033 for the lower surface. The largest 
ycrcent~~c error in the first approximation (about 9 per cent) is now on the 
lower surface for the first centre lmc; if we inoludc the second term in (7) 
thus error 1s reduced%?&s than h,slf, and the error on the upper surface for the 
first centre l~nc is roduccd almost to zero; moreover, this term till ole~~ly 
account for nn lncrcnslng fraction of the error as h increases. For the 
second centre line, howvcr, computation shows that there is no substantial 
ndvnntagc to be gained by including the second term of (7) unless WC also chgc 
the first term to 7~~(2pL/h), and then we may as vmll solve (5) by suocessivo 
approxmation. 

mus/ 

__-__ --------_ ___l-_-l_l--- 

%OI- the wper surface these second approximations s.rc 0.1898 for the first 
centre lint and 0.1974 for thz second. 

+Ewn when 0 is as small as O.Cd+, 
% 

is 0n1.y 0.0679. Eventually as c'* 0, 
the whole basis of our approtimation o q' will fd because of the 
SlrpJbl-lty, ,md WC mst USC more nwrly oxact vnl.ws m (5). But the 
nruneric,Q results zLbovc stem to show that such failure will not occur for 
any practical vnluc of ?, . 
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Thus we see that, ~ti:len @ is small but not very small, a satisfactory 
approximation to the position of dmum velocity is given, quite simply, by 

. . . . . ‘(8) 0 = 2QI/h 

in all cases. @ becomes very small when ( CL - cL ,+.I becomes very large; 
in such cases Approximation II itself may not be a satisfactory basis, and we 
shall briefly consider the matter later on the basis of Approximation III 
(only briefly because the results are of no great practical interest); 
meanwhile we note only that for centre lines without singularities at 

0), eqn.(7) provides a better answer for very small's 
and for such very small values of d we may as well use (4), which 

is easier, in place of (7); but for centre lines Nith singularities (gi(0) 4 0) 
it is safer to solve (5) by successive approximation,%sing (8) for the 
fmst trial value. 

We seek next for the simplestequation to solve when @ is not small. " . 
The second and third order terms in J \ in (I) are now small compared with 
the first order terms; in order, h%ver, to ensure that the solution for @ 
should pass fairly smoothly into the value given by2(8) as CL increases 
and 0 bcoomes smsll, we must include the term Jo oos 0 of the second order. 
For the purpcsc for which it is included, however, WC may approximate to it by 
2pL 00s 0; i.e. we neglect terms 

(Y2 - 2pL) cos G- y7+Jt sin@ 

of the second or&r, end. all terms of the third order. The equation as/a@ = O 
then becomes, approximately 

2OL -2.3s 0 + sin3F [ep, + gJ(F)] + ; ‘+ ;; 
( ) 

CL opt sin 6 (1 + 00s 0) 

0 

= 0. 

Probably this equation till be most often used when it is required to study the 
maxima of q over a range of values of CL, and the si@est way to carry 
cut the calculation would appwr to be to write 

. ..*. (9) 

plot the function on the right against 0, and read off the values of G 
for which it is equal to specified values of CL. If the function stays 
practically constant over a considerable range of values of U, then for the 
corresponding CL we have a 'flat' maximum. 

We may note that for ac = 2f(, (9) becomes, more si@y, , 

CL= = cot Q 
2PL I---- + Cl - cos 83 [gg 6 1 + gp @ 11 * . . . . . (10) 

29-r 1 + oar3 

I 
As/ 
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As CL increases,' after a certain stage @ becomes sms.ller, and when h 
(as given by cqn. (3)) is hrge compred with 2F 3 
by (0) provided that 13 is also large compared $th 

is given approximately 

l?indly,we return to the cons am&Son of very large values of 

1% " CL opt\ and very small values of' 0 for which it is advisable to use 

Approximation III. At these very large v&es of 1 CL - cL optl the velocity 
graph will have a very sharp peak ncsr the lending edge; if the aerofoil 1s not 
completely sts.llcd, we should expect that at @ny rate a restricted boundary-layer 
separation lnll occw and appreciably modify the high theoreticnl peak, utilcss 
such separation is prevented by suction. Consequently the theoretical 
oalcu.lations cannot bc eqccted to have much practical significanoe at present, 
and they h&v0 therefore been relegated to an Amen&ix. It is there sholm 
tint oqn.(5) still holds if the definition of h in cqn.(2) is altcrea to 

h=CL 

the mam effect is that in (2) 
if Cr/a, is comparable with I. 
deduced for eqn. (5), WC have the following rules for detenrdning the positions 
$ rraxinnun velocity on the upper surface. 

If 1 CL - CL optl is not loge, solve cqn. (9) by plotting the 

right-hsnd side against 0 and reading off the values of 0 for which it is 
equti to specified vshes of 0,; f or, if a0 = 2rf, solve eqn.(lO) 
similclrly by plotting the right-hand side <urd reading off the values of G 
for which it is equal to (CL - C If the right-hand side stays 
practicnlly constant over a consi of values of e, then for the 
oorrcspon&ng value of CL WC have c 'flat' &mum, dioh 1'70 do not attempt 
t0 looate with nftcr n certain stage 6 
bccomos smaller. 
2FL, ana h3 

is l‘arge comprcd with 
simply by (8). If, 

howwAr, we proceed to wry large values of CL iind very small values of 0, 

we must t&c the dcflnltion (12) of h in place of (2); 6 is given by (4) 

for centre lines Tslthout singul<arities et 0 = 0 (gi(0) = 0), ‘and by 
substituting 2 PJh into the right-h‘-& side of (5) ccand thon, if WCcsssry, 
solving (5) by su0ccssive approximation] for centre lines with si@iLarities 
(g;.(o) f 0). 

The approximate n&hods of this section have been tested by 
Iti-. E. J. Richard& %&o has applied them to N.A.C.A.16 series and ClarkY 
ncrofoils, with satisfactory results for practical purposes. 

3.,. The Approxinate Calculation of the Positions of Maximum Velocity on the 
Lower Surfcce. 

Our previous equations a:rply on the lower surface if we remember that 
@ is negative, ES, even fmctlons of 6 and g$ qk, gi* 

'1' 0 odd fundions of owever, convenient always to consider 

these/ 
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these functions in the range 0 < o,( TT'. If we do this, then the eqn. (9) 
d-h& we solve when 1 CL - CL opt) is not large, becomes 

and (IO), which is the form taken by this equation when 

1 
+- 

) 2T( 
CL opt 

. . . . . (91) 

aO 
?a 2r(, is 

CLo%t - CL oot 9‘ 
--------- = 

2ti 
2"L;-;cos-;3+ El - c0sE-j [g;(G) - g;(o)). . . . . . . (101) 

If the sign of A is changed in the definition (2), so that 

. . . . . (21) 

then when h is large compared with 2?,, and ti large compared with 

. . . . . (111) 

0 is given by 

8= 2F&, ..,.. (81) 

simply. For very large values of CL opt - CL, and very small values of 8, 
h must be defined by (12) with the sign change& 

a = cLopt(;+;) -oL[ -31” [-J+--&-.J, . ..*. (121) 

and then, for centre lines without singularities, 8 -is given by (4), 

G = 2pJx -JW L) y'(o), . . . . . (41) 

and for centre lines with singularities we substitute @ = 2 pi/h into the 
right-hand side of (5): 

O= 
yJ2(Eu - hV(O) y(B) 
-------------* . . . . . 

a+ y(G) u/' (El 
(51) 

and proceed if necessary by successive approximation; but whereas on the 
upper surfaoe T+, 'yy' are given by 

Y= . Ys(Q) + ~J~)9 -Y = I$@) + l+JpL . . . . . (13) 

on the lower surface we must take 

‘t/Z Y%(Q) - Uo(6), V’ = y;(6) - 7p’(G’). . . . . . 
c 

(131) 

4./ 
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4. The Theoretical C~rR~snSe of a Low-Drag Aerofoil 

We recal.1 the definition of the theoretical CL-range gaven in the 
antroductlon, as the range of values of CL for vrhlch the velocity continually 
mcrcasos, on both the upper and lower surface, from the stagnation point to 
the dosigncd posation of maximum+velocity at the desagn CL if, as is now usual, 
the slopes of the graphs of gs - 
thC graphs of g, +, g< 

gi are dascontinuous at that position; ifs 
are rounded off in the future, we shall require the 

velocity to incrcaoe only to the beginning of the rounding off. 

If 0, is the value of 8 up to vhach the velocity is to increase, 
WC may immediately write lown.from cqn.(l) thc.oondition to be satisfied by CL. 
The coefficient of -CL in the cz@ressaon in { ,I in (1) is positive for 
o<c,<o,; so, in order that dq/dc should bc > 0 on the upper surface, 
CL must not exceed the minimum vsSue of 

LA 1 +- 
i: ) 
- + Y” 

2 a, 27f 
CL opt [sinO(l + :I2 + cost) + -y-q (1 t co9 ei) + 

1 

. _’ . 
in the range O<G<o,. Similarly in order that &q/d@ should be > 0 
on the lower surface: -CL must not exceed the minimum value of the expression 
obtained by changing tho sagns of gi, gi, CL opt in (14). On the wpcr 
surface IJ,y' arc given by (IJ), and on the lower surface by (131). 

The expression (14) is much too complicated to be of general use. 
No17 as CL - CL opt ( increases, x&en it reaches a certain value the position of 

maximum vcloc&ty may begin to move forward or a new m&mum may m&c Its 
aJ?peaEu~cc somztierc near the nose of the aerofoil. In oithor case, as WC! seo 
from the discussion in i%2, 
‘and 

1 

w my expect the V~LICS of 1x1 (defined by cqns.(2) 
21))-at tho end of the CL-range to be such that the asswm&ons leading to 

cqn. 9) /or eqn.(8) if a-becomes small enough] will be suffioicnt to provide 
a fair approximation to dg/clQ. 
ICL - CL opt 1 = e/6, 

[We found thas to bc the case when 
snnd the error was not prohibitively large even vrhcn 

1% - CL opt 1 = 7f/3]. Consequently NC hove, approximately, that ,CL 

must not exceed the manimum value of 

(i 
l/l I\ 

2pLms& tsinW(g:, + g;,+ 2 
2\,,Y4 

CL opt sir19 (1 + co9 0) 

I 
1 cos c 

j s3.n B ( -- + ---- ) ..,.. (15) 
a0 2 7-c 

id 

*On the lowr surface the coofficicnt of CL, i.e. the denominator in (14), ny 
be negative for wry small values of 0 If we USC the approximate values of' 
For such vary small values of 8 we should, as mentioned in a previous 
use‘ more accurate values for v', but such very small vslucs of 0 do not 
oonczrn us here. &n-cover, the stagnation pomt does not 

loading cdgc; accoraang to Approxzmation II it is at i 

approximately, on the Lzcr or Icvc2 stu-face according as I 

negative or positive. X0 com$.icntions ,a.r$ 
conocmed tith the rsngo of 8 betwwn the 1sadlnC edge and the stagnation point, 
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in the range 0 < 0 a,; and similwly -CL must not cxcecd the miW 
value of the expressIon derived from (35) by changing the signs of g! and CL optS 
The most important criteria for the validity of this amroxlmation are that, on 
both the upper and. the lower surfaces, Iy Y1l should be smd.1 compared n+.th 
sin 6 at the position of the minimum, and 1~~ not too different from 2p * 
these criteria may be applied numerically after the vqXlucs of c at the rm h&l 
h.?.vo been found, but the numerical values in 82 arc sufficient to show that WC 
nz~y expect them to be faxrly well satisfied. 

When a0 = 27‘1, our approximate conditions for CL reduce to the' 
1 

simpler conditions that - 
2 TI 

the minimum v~alues of 

CL opt) and f; (CL wt - CL)must not exceed 

cot 3 
2 (7 L I---.. 

I+ DOS @ 
+ (1 - 00s 0 1 .gfi +, g; , 

( ) 
. . . . . (16) 

respectively. 

Let us now consider the case in which, as 1 CL - CL opt 1 i3 incrcascd, 

a maximum of q makes its appearance near the nose of the aerofoil before the 
maximum moves forward from o= Fj,. Then, if we suppose 0 small in (15), 
we see that CL and -CL mat not cxcced the mininavn values of 

reqwctively; i.e. 

respcctlvely. Since &c/d6 = 2 sin 3, we may write (17) in the form 

In order that the right-hand side of (17) may have a minimum for a 
sdl value 0, of I‘, g; +, 
must be large compared with '2pL 

$9 ;h:hc "'+'P;~P~~~;~""~~;~~~~ I' > 

then the minims which occur when 

occur when @ is not small. 
or arc lower thnn others which my 

satisfied, and g; f g! is not large compared 
the former case (positive sign) or 

case (negative sign) must not exceed a 

quantity/ 

%ver the whole range of 6' up to 0 = t3,, except that very small values of @ 
are irrelevant, since for veq small values of @ the term in 2cL in (15) or 
(16) clearly dominates; in other words the minima 
values of 0. 

will not occur for very small 

For CL = CL opf, dq/d 8 vi11 be smdl, on the upper or the lower surface 
respectively, fcr all valves of F fi~h5.3 are not too md; our approximakons 
~~11 be inadeauats to provide resuitc,,of even fair percentage acsuracy, bet it 
ivill still be correct That ?<1/2fl)jC~ - CJ, cpt) must be O(2pL) or less. 
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qwl-clty which is of order 2pL, or less; whereas when g: f. g! is large 

compcarcd neth 2pL in the relevant range of values of Q, the right-hand 
side of (17) has a minimum of a somewhat higher order than 24L, the minimum 
occurring when the two terms in 

I ) in (17) are of the s- order of magnitude. 

We have so far considered g' 2 g! to be positive, and we shjll new . 
show it is advantageous that they shodd be'so. 
i'llwtrate the argument by using (16); 

It is probably sufficient to 

from (15). 
similar deductions may, in fact, be made 

Quite generally we may write (16) in the form 

$&..&J 
cot (9 

- 2p L T;,-F - (I - 00s ")(g; - g! , 

I: > 

-I 
> 
I 

< -I- CL - CL opt 
2ti 

cot 6 
<ivIhimm 

! 

2CL -+(I-cosQ)g;+gi 
I + WSP i ) 

7 

.J 

. . . . . . (19) 

If &-EC! is negative and gi + gi positive, and g$ +, g; are 

large comparedwith 
member of (19) is 

2~ 
Ji 

for sll relevant values of 0, then the left-hs.nd 
probab y greater than the right-hand member, and there is nc 

CL -range at all. For whereas the right-hard mcniwr has a minimum for 530~ 
fairly small value of 8, when both its terms are of the same order of magnitude, 
the left-hand mcni!xr may either have nc maximum at all and we nay have to take 
simply the greatest value for 0 < 6) < f.31, or a msxmm may occur v&en 8 is 
not small; in either case the left-hand member till be greater than, or at least 
nearly cqud to, the right-hand member. Similar conclusions follcw from (I 5); 
in fact, If gl+ g A are positive end large compared with 2pL, r 

(;+~)~L-cLcpt) must be positive and of the order of magnitude of 

K; ” g; in order that the velocity on tic lower surface may be increasing; 

land then there 1s probably some range of (fairly small) values of G for which 
the velocity is decreasing on the upper surface. 

Sim~ar statcwnts may be mn8.e if g; + G, or both g; + gi and 

.!$ - .&cl are ncgativc. If they are lsrgc in absolute vnluc compared cith 2CL 

ova- the rclcvont r‘ange of vnlucs of 0, then there is probably nc CL-range at 
al, end at best a very small r<anSe. 

If le; 2 $1 is small, of order 2eL, then, whet er gi z gi is 
positive or negative, it still rema'ns ocrrect that 
be O(2fL) or less, 

+(1/2H) (7 do - CL cpt ) must 

It follows that to obtain a CL-range of any practically significant 
size, s I g gt + ; should be positive ‘and large compared with 2pL, except perhaps 

for small values of C:. Hence g; should be positrv- and l‘orge compared with 

2PL' oxccpt perhaps for small valws of 8. 

It/ 
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It dso appears that when a, 5 25f best results are obtained by 
taking .$ = 0. In (16) let us write temporarily 

cot ( 
F( c-1 E 2PL -+ (I -cosB)gk, 

I + cosc: 

G(cj) = (1 -cos f?)g$ 

L$ the vastvslue of F(6) occurtien F= @,, of F(o) + G(e) ~&en 
= 1v2, and of F(k ) - G(!:) when fi = Cj3. Then, in general, 

- F( 6+ + G(h’+ < -& ~L-CL$) <FF(c2)+G(g2), 

and we require to show that 

F(D2) t F(Fj)t G((:'2) - G(6 $ < 2-F(i;'o). 

Eut 

F(c2) + G(c2) < F(C ,) + G('>*) 

F($) - G(i'j) < F(cyo) - G( f!?,), 

. . . . . (20) 

since FZ G is least when 0 = (‘ 2 or G3, rcspectivcly. Hence (20) 
follows by addition, and our theorem is proved. 

Similarly from (15) we may shew that, when a0 # 271, best results 
are obtained by taking 

to compensate for the variation of 

CL opt (1 * 00s 6) 

but usually, bn modern low-drag aerofoils, 
thx suggested diffcrcnce of 

a, will be near enough to' 27T' for 
9;. from zero to be negligible. 

It should be mndc plain that, whereas the thexem on the best value 
Of gl may be rlgcrously proved on the basis of our initid. approximations, the 

previous discussion of the or&r of magnitude of g' is neither rigorous nor 

conprehcnsive, since g' may be of widely differen: orders of magnitude in different 
pnrts of' the range 0 <B&'CfJ,, and it is not practicable to discuss rigorously 
aJ1 possible cases. In partloular WC did not discuss the case when gJ was 
suffxiently small over the relevant range of values of 0% for the minimum of 8 
(Ii'), for a fairly smxll value of 6$, to be awided, but when gk increased to i' 
a different order of m~gn5.tud.e as 0 inorensod. All thnt wewere attempting 
was a prclininsry gcncr3?. disoussion of (1) the ciroumstanccs likely to arise for 

, 

any given acrofoil; (2) th c 
practical signil"icanc0. 

oonditions necessary to obtain n CL-r‘ange of some 
We dv3 not attelQ7t to find a formula for g3 to make 

the/ 
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the CL-r~ange as lnrgo as possible; to do this it would appear that the minimum 
(17) must be avoided, and then, ns fnr as practicable, g: must be increased where 
it 1s least, ana inorcased, in pnrticul~ar for small vciluos of 8 , in order 
to inorensc 2p L 

g, 
h&therx?tically, for no = 2X, this problem may 'be 

defined PB that of making the minimum of 

cot f: 

2C’L --w-w 

1 + 00s 6 
+ (I - COSC) g:, . . . . . (21) 

for o< IGS((--, as lnrgo as possible, where5 

d sntlsfactory solution for practical pur~ses has boon found by Thwaites 6, by 
considering variatxons, involvin 

% 
a sm?ll number of pammeters, of the 'roof-top' 

aorofo&3 d.x3cussed in Ref.5, ~33 <SM. 7. 

5. Displacement of the Eiddlc of the C,-Rcange from CT opt. 

We break off the discussion of CL-ranges to refer bxaefly td a m&ta- 
to which rcfcrcnoe had already boon nnde in Rcf.3, espoci~ally as the discussion 
thcrc MS incomplete and mislca . - mmcly the skft of the middle of the 
CL- range from CL opt when gi 7 0. Wiih a0 = 277, in the notation of 
cqn.(20), the middle of the CL-range is given by 

I -- 
2/r 

opt = F(C)2) - F(v?3) + G(@2) + G( 93) 

rind the right-h‘and side till not be zero unless g; = 0. 

As nn cxamplc of both the diminution and the shift of the CL-range 
when g! f 0, WC m-y cohsider the cane when d&&/&c and dgi/dx nro constant, 

is lnrgc oomprcd 112th 2eL, Then the minimum of the expression 

in (18) ooou~s when 

. . . . . (23) 

,and, if wc wit0 

dg&x, = s, agi/&K = As (o,c 1 <I), ..*.. (24) 

the CL-range is given by 

The/ 
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11 
The totjl range of 

( 1 

-- + ;;; CL is then 
no ' 

2 0 - 3/4 2 (%(Z )3'4 r 
3 

L $4 \( 1 + x) l/4 +(1-h) l/4 I , 

which has its greatest value when h = 0, m.d the rrdddlc of the CL-rs.WC 
ient 

\;'2 refer deo to the results for the aerofoil EQH 1250/4050 
(Rcf.3, Part II), a fnirly thin acrofoil with R loge cnnber (4 per cent). 
According to the accurate results reported in Part II, there 1s a small CL-range, 

For this acrofoil, g; is 

to be md accurate than it is; 
rather large. The mason lies in the large onnber, and the consoqucnt rapid 
vnriation of JP. 1f we find the positlon of the minimun on the right in 17) 
in the sme way as before, but substitute the value of v/ at the minimum 0.148) 
for d(2pL) before finding its actual value, we obtain practically the accurate 
result, CL ,( 0.66. 

6. CT,-R’X~~ROS of 'Roof-Top' Acrofoils 

the CL-r‘ange of a 'roof-top' acrOfoi1, 
centre lines designed for constant 

see Ref.7 &O). 
is y; c~~('!~ %e application of eqn.(18) 

is inmediate; YE have, in fact, only to put h 3 0' in the results of the 
preocding scctlon, rind we find that the CL-r,ange is given by 

( -- ,a + -- )I 2i OL -% opt ’ s 2 0 2 3/4 3 (2q 3314 ,I)4 = $1;1$(2~33'4 s'b. ’ . -- 
,,.d.L (25) 

This formula has proved remarkably accurate for acrofoils with reasonably 
large values of s and small. cnmber. 
acrofod with large camber, 

(It 1 10s not been test& on any 
s~ncc no pmctlcol necessitv to do so hos 

yet a-isen.) The results obtained, nil found In the CO"WSC of 
lnvsstl,ations mode for other purposes, ilrc tcstcd bclo\J. 
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Aerofoils 1 and 2 were symmetric&l; 3, 4 and 5 all had a centre line 
desimned for constant approximate loading for 0 < x < 0.6, with the a~roximate 
loading d3oreasing linearly to zero for 
(T-C/R, + ;)c, o t 

0.6< x<i, and 

fiddle of the 8 
= 0.126. With so L 5.5, CL opt = 0.118, 'but the 

L-renge was, in fact, ,s&what greater tiian 0.126, being 0.1305, 

0.1295, 0.131 for aerof0i.k 3, 4 and 5, respectively. I'ne results for aerbfoils 
1 and 2 we due to Mr. Ii. C. Garrer, and those for aerofoils 3, 4 snd 5 to 
&s. I&acre. It will be seen that the formula (25) gives a satisfactory result 
for a value of' s as low as 0.0545. 

The shape of the falring depends on the four parsmeters a, b 'c, X. - 
In place of a and o, we ?ntroduce the slope s of gs 
pr is the radius of curvature of the trailing edge. 

and A/ (2C~j, where 
For a cusped aerofoil 

h/ @py) = 0, and, more genersJ.ly, the degree of the concavity of the aerofoil 
surface to~r~ds.,the~trailir~ Ldge is sensibly influenced by the value of h/ (2&). 

ad d(2(JT) 'h - We suppose X rive certain fzcd chosen 'values. in addition we 
suppose the theoretical critical Mach number, or the azrofoil thickness at n 
given chordwue position, or the msximum thickncss,is given. If the theoretical 
cnticd Mach nuder is given, 
b will be fixed. 

then vvlth a given qcntre line and design CL, 
If the theorcticsl critical. &ch number, for example, 1s 0.68, 

and the centre lint 1s of the type previduslj: 
above) but with X = 0.5, 

mentioned (for aerofoils 3, 4 snd 5 
and the low speed cquivslent of the top-qccd 

is 0.2, then the 
CL 

xxtximm value of q/U on the surface must be 1.2525; with 
ncoounts for 0.0667, so b is 0.1858. In any cast, if X, 

or the tiiickcss for a given x, or the maximum thickness, 
arc given, there will be a value For s which makes the CL-rsngc n maximum. 

Cbnsidc;, for exaqle, the case X = 0.5. Then 

S z 2(b - a), 2/(2pT) = 0.06831 a + 0.36338 b t 0.56831 o, 

,/ (2eL) = 0.56831 a t 0.36338 b + O,Q6831 o 

= O.@BOb- 0.28005 s t 0.12020 ,J (2&)' 

T:le CL-range is proportional-to IJ 2p L)3/2 s'/'+; if J (2Q 
T 

) end b are 

flxcd, and s varies, this exp:esslon has a maximum when 

s = O&l+880 b + 0.0613,,/ (2pT). 

If, how&r, the thickness is given at a given x, for exsmple x = 0.4, then 
from the tables of Rcf.5, 

0,10976 a c 0.3;936 b + 0.06077 c = ylr 

where yl 1s the half-thickness, as a fraction of the chord, at x = 0.4. 

Hence 

end 

0.38296 b - 0.05123 s + 0.10693 J (2pT) = y.j 

J(2p,) = 2.29737 yl - 0.16236 s - 0.1254.6 /,/ (2pT). 

Agaln (,/2eL)3!2 sl/fe *I has a maximum when s varies, t'fiis tints when 

s = 2.0214y, - 0.11% j(+). 

me4 
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When the maximum thickness is given, the matter is a little more complicated, 
since the position of the 
however, is not large+ 

maximum thickness varies as s varies, The vnriation, 

JGPT) 

and there is still a maximum CL-range for which, if 
and the thickness are given, tho corresponding value of s may be 

computed; and hence the values of a, b, c maybe found. For X=0.5 2 
and 0.6, these values wore computed by b@. H. C. Garner; I find that his values 
are satisfactorily reproduced by the formulae 

a = 0.9453 t - 0.208 h/w Ip), 

-0 = 1.0319 t - 2.00 J(2 (JT), 

for x = 0.5, and 

b = I.4362 t - 0.335 ,,/(2&), 

s = o.pa10 t - o.s4 JP@ 

a = 0,8908t- O-156 ,J(2@ b- I 1.3765 t - 0.259 ,,/(22,), 

-0 = 1.2121 t - 2.170 &\jT), 8 I o.8oy5-t- 0.172- J(q.3) 

for x = 0.6. In these formulae t represents the maximum thickness 
(not the half-thickness) as a fraction of the chord. Values have also bcon 
roughly calculated for X = 0.4 by Mr. E. J. Richards; his V‘nlUcx are 
represented by 

a = 1.0125 t - 0.3 RlPP!r)I b q l..5125t- 0.4 J(2f+)' 

-0 s 0.9085 t - 1.87 A@+ S = 1.25t- 0.25 &2&. 

For all normal thicknesses and values of 
fo mulac lead to vary reasonable values of s. 

,../(2c)T), the above 

s 
[For a ousped nerofoil 

(2pm) = 0, ‘~3 values would not normally exceed 0.02; O.CY+ would be a 
very Grgo va1ue.J Experimental evidence of the cffeot of s on tho'tolcrance 
that can be allowed for waviness of the surface is still rather scanty, and not 
at all systematic; but such ovidenoe as we have indicntcs that once a fair value 
of s has boon reach@ any further increases need to be very large indeed 
to make any practical difforcncc to the waviness, and the values obtained from 
the above formulae are, 
enough for this stage to 

for all normal values of t and +/((2e ), large 
have been reached. Thus once s = O?l, for exnmple, 

it is very doubtful if it y?ould make any practical difference to the tolerance if 
s wmo increased to 0.2. On the other hand, when the velocity gradient is made 
very much bigger indeed, for example multiplied by a factor of IO, so that 
instead of 0.1 it becomes 1.0, then it seems that the tolerance on waviness may 
definitely be increased. Thus we may expect to be able to tolerate a larger 
waviness very nenr ~1 aerofoil noso thnn els&hcre. Also if s is very much 
dcoroased the tolerance on waviness ocrtainly bccomos less; but WC hnve no 
exact quanto.tative kno~vledgc, and systcmztio expwimonts are ocrtainly rcquirod. 
Rough values of the maximum CL-ranges for a0 = 2If rind for vnrious values 
of t nre given in the tables below. The figures give the complete CL-range 
(2r( timos the right-hand side of (25)), not the half-r‘ange. For X = 0.5 
and 0.6 they ‘arc derived from Mr. Gnmer's results; for X = 0.4 thoy havebeen 
oomputed from the formulae given above as represcntlng Mr-. Richards' results. 

t& 
I9h.m "/(2PT) = c, the CL-range is vary ne,arly proportional to 

CL-rsngcs/ 

%or X = 0.5, it ame,srs that the position of the nnximum thickness is given 
quite closely by x = 0,3767 t 0.0576 s/b t O.O@g ,,/ (2eT)/b. There nre 
similar fomulnc for other values of X. 
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-I--- ---- ------ ____._ ---.--_\ _.- - 

J@PT) = ------------i . 
X \I 100 t 

0.4 

2.. 

t 
------A-- 

a 0.111 

:z 0.165 0.227 
14 0.297 
15 0,375 
48 
20 
22 

0 
--- -- 

0.5 
-- 
0,103 
0.161 
0,222 
0.291 
0.367 
0.451 
0.543 

~ 

I x 
I 

/ J((2(q = 0.02 -- 
-----. -. 

0.6 
I 
I 

L% 
0.099 
0. I+? 
0.203 
0.264 
0.333 
0.408 
0,490 

x 
--- 

------ 
a 

10 
12 
14 ~~ 
16 
48 
20 
22 

0.4 

O.lCJ+ 
0.157 
0.218 
0.2E7 
0.363 
0.449 
o.ybo 
0.640 

-a- 

, 

1. The ~raof-top' aerofoils,' consideycc? m the preceding section, 
a-se, of course, not the only ones for which the analysis can be fully carried 
out. We might, for example, take 

.ss = A+Btm$Q. 

Then we fmd (still with g = 0) that the &nimm of (17) occurs appro-dmntoly 
when 

and zhe CL-range is given bv 

1 cL - cL ,& < L5(2pL)2'3 ES"~- 

This fern of g, my lend to somewhat lcargcr CL-mngos than (25); but to 
pursue.the matter fwther,.m should kwe to fmd a-d work out formdnc for the 
fairmg ordinates, and 11% lewve the matter for the present. 

2. In so fnr ns we my neglect -+J ', ma replace y2W 2e,, 
ti.1 our work could have been based on n simple form of Approximation II, 
which we my call Approximtion IIa, and which is the simplest form neccss~ly if 
TX nrc to make nny nttempt at nil at npproximdq to the velocity near the nose; 

I (1 2 + $ c, r _ 
- =- _ \ (I + P- + I 

" 
)’ sin 0 

u (2pL+ sin20)i; 1‘ -* 
+cL(;+::$) ' , 

1 1 1 

( ) 

Ye -+- 
2r( 

CL opt (1 + cos Q) 
2 

“0 3 
( qa<s1 ) 



-UC- 

/ 

where 
(1 + 4 $, sin 0 , 

K s ------- 
(2pL t sin* !'q)k' 

On A&roximation III, 

4 eYO(l+ C’) c:, g 
CL - E: sin(O+ f5-P)+-oos(B+E-P) 

U W2 + &-g$ i(, ) ' - ;; 
aO 

+ -w---m 1 
27-7 eco 

) 

ana 
2$ 

(ly2 + sin* 0)3'2 eye ;;, - 4 3 I U [ 1 "; ] 
aO 

{ h* + sin*0 7 

we still suppose e - p, . E,', E", U,, l.p' smdl, but CI/a,, Cdd(*~ecO), 

though they are less then 1, may now be 

4a 

comparable 
concerned only with cases in which 

in magnitude dth 1. We are 
C 

compared with unity; and in order to 
a,, is large enough for 8 to be small 
ve a comparison with the results from 

Approximation II it will be convenient to introduce g, and gi, We havefi 

11 1 

g.3 + gi = co+ C't (F -P)cotG+- 

( ) 

I + -- 

2 a0 27-l 
CL opt cot a(39 

7 
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If wx retain only the most important terms the equation as/a6 simpl2AY.es to 

24 
CL i I( 1 -- 

"20 

y2 cos 0 - ?+ lpl sin Q + sin3 0 (g: + g!) 

,I 1 1 
+- -+- 

( ) 2 a0 2Y-f 
CL opt sin G (1 + cos B ) - yy* ( C - P) Cos 0 

I 

&art from the al.+m-ed.eqression for 1, this equation is tine same as 

cqua.tion (5). 
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0 0-I o.2 I/= 0.3 a.4 0.5 

Velocity di&pibutions for NACA 66,2-015 aerofoil, to how 

$ Egc when ao0’2 TTQ =o ( With a0 = 2 ff the graphs are 

indistinqul’shabte 
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