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In addition to the K&m& momentum-integral equation, two further 
equations are required for the purposes of calculating the development 
of the incompressible turbulent boundary layer - a "skin-friction law" 
and an "auxiliary equrtion". The problem of deriving a satisfactory form 
of auxiliary equation is a major one. Indeed, despite the effort devoted 
to this question for meny years, few derived forms of auxiliary equotion 
can be relied upon to account for the boundary-layer development in more 
th‘an a restricted number of cases. 

As a contribution to the elucidation of the problem en examination 
is made of several sets of experimental data covering different types of 
pressure distribution. Among the data certain basic types of boundary- 
layer behaviour ccn be distinguished. The equilibrium boundmJ-lcyer may 
be regarded as a datum condition and the other types of behaviour are 
discussed in the context of tendencies towards, or departures from, 
equilibrium. 

Simple forms of auxiliary equation are postulated and an examination 
is made of the extent to which they cnn be reconciled, even qualitatively, 
with the observed types of boundcry-layer behaviour. It is shown that 
several forms of the equation must be rejected as inadequate. The most 
economical form which appears to be capable of describing cl1 the various 
trends of the data is a second-order differential equation involving the 
shape factor. A limited number of comparisons with experiment indicate 
that values can be ascribed to the free constants in the equation which 
lead to qu‘antitatively acceptable predictions. 
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NOTATION 
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Orthogonal coordinates, x measured along the surface 

Fluid density 

Kinematic vlscaslty 

Static pressure 

Velocity In the x-direction 

Velocity at the edge of the boundary layer 

Friction velocity (uz =T dp) 

;all shear stress 

Local skin-friction coefflclent (cy = $;) 
e 

Boundary-layer thickness 

Displacement thickness 

Momentum thickness 

Reynolds number based on 0 

"Geometric" shape factor (H = St/e) 

Shape factor based on the velocity-defect profile, I 

Value of G if the boundary-layer were In equilibrium at the 
local value of JI. 

6= dQ Pressure-gradlent parameter (fl = ;- 
w ii,) l 

Length scale 

Nondimensional distance parameter 
X 

( i 
ic:= $2 

e ' with e generally equal to 6" 
> 

3 

x0 

a,P,h Constants in equation (22). 
- = 

f,f 19 29 9 9 > I> 23 9 f f f F H H # @ and Y denote arbitrary functions. 

The suffix 0 denotes initial values. 



-3- 

1. INTRODUCTION 

Tne purpose of this paper is to discuss the two-dimensional, incompres- 
sible turbulent boundary-layer developing on a smooth, plane, impermeable 
wall in an adverse pressure gradient. 

Basic to most methods of treating the incompressible turbulent 
boundary-layer is the K&m&n momentum-integral equation which expresses the 
rete of change of momentum-defect in terms of the pressure gradient and the 
wall shear stress:- 

d 
-- 

dP 

dx 
(pu,"o) = 6* -- $ Tvr . 

dx 
. . . (1) 

If the pressure p (or the velocity, u , at the edge of the boundary- 
layer) is given as a function of x, equgtion (1) contains three unknowns: 
the momentum thickness, 0 , the displacement thickness, 6 *, and the local 
wall shear stress, TV,, Thus, for the purposes of calculating the develop- 
ment of the boundary layer, two further equations involving these quantities 
are required. Using the conventional nomenclature, these are referred to as 
the "skin-friction law", and tho "auxiliary equation" or "shape-factor 
equation". 

As usually formulated, skin-friction lav~s relate the local wall shear 
stress to a Reynolds number based on a length scale typical of the boundary- 
layer thickness and a parametor (such as H, = 6*6/C) which describes the 
shapo of the velocity profile. A brief review of some skin-friction laws 
in current use was mado in Ref. 1. 

The auxiliary equation cssentielly describes the effect of pressure 
gradients on the snape of the mean velocity profile. Attempts have been 
made for more than thirty years to derive a satisfactory form of auxiliary 
equntion but recent reviews ol. p this problem (2, 3, eg.) have shown that 
few forms of this equation can be relied upon to account for the boundary- 
layer development faithfully in more than a limited number of cases. 

In the next Section a brief discussion will be made of the principal 
forms of auxiliary equation to be found in the literature. The point will 
be made that most of these were originally based on data relating to only 
one type of boundary-layer development. As a contribution to the generel 
work in this field an examination is made in Section 3 of the various different 
types of boundary-layer behaviour which ~93 be distinguished from an 
‘analysis of existing experimental data. FinKLly, in Section 4 simple forms 
of auxiliary equation will be discussed in relation to these types of 
boundnry-layer behaviour, and ,an attempt will be made to find an equation 
which will account for them at least qualitatively. 
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2. RJ!?JIE OF i ,,r EXISTING AUXILIARY EQUATIONS 

2.1 Most published forms of the auxiliary equation (see, e.g. Ref. 2) 
are formulated on the assumption that the mean velocity profiles in the 
turbulent boundary layer reduce to a two-parameter family, i.e. that they 
can be described adequately by a thickness parameter and a single "shape 
factor". Thus the auxiliary equation takes the form of an expression 
relating the shape factor and, usually, its derivatives to the Reynolds 
number and the pressure gradient, 

Basically, there are two types of shape factor in general use. One 
type is a parameter based simply on the geometry of the velocity profile; 
the other type involves the wall shear stress in addition. IvIost of the 
auxiliary equations found in the literature are formulated in terms of 
the geometric type of shape factor. In some cases this is the ratio, H, 
of displacement to momentum thickness; in others the shape factor is based 
on such ratios as 

U 
-- 

0 

6-6" 
or ---- . 

U 0 
e y=0 

There is no essential difference between any of these geometric shape 
factors and, in the light of the assumption that the velocity profiles form 
a two-parameter family, they can all be related to one another (at least in 
principle). Accordingly, our remarks will refer explicitly to auxiliary 
equations based on H but they can be taken to apply to equations 
involving other geometric shape factors also. 

This interchangeability of shape factors does not extend to those 
which involve the wall shear stress. Among these are Clauser's parameter, 

G, ilhich is based on the velocity-defect profile (4) 

component coefficient (5) ' a;yol;;;e;;;;; to which is also used by Spalding 
shape factors of this category will be left to another Section. 

2.2 Decpite the confusing variety of auxiliary equations in current 
use, only two basic types can be distinguished. The first is represented 

by the method of Buri (7) and is a direct analogue of the Polhausen method 
for the laminar boundary-layer and the numerous later methods which owe 
their inspiration to the Polhausen approach (see Ref. 8, e.g.). Buri 
postulated that the shape factor, H, was a function of the Reynolds 
number and the pressure gradient:- 

H = fl 
8 due 
-- --- . 
ue dx > 

. . . (2) 

This form of the auxiliary equation has never commanded much attention, 

largely as a result of Prandtl's criticism (9) that it ignored the effects 
of the upstream history of the boundary layer. In the light of more 
recent knowledge it would be fairer to say that it is valid so long as 
the layer is in local equilibrium at each streamwise station. More will 
be said about this point later in the paper. 
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2.3 The second form of the auxiliary equation is represented by some 

thirteen methods listed by Rotta (2) _ 

such as Head's("). 

to iqhich must be added recent methods 

This form can bo written 

dH 
8 Re 

8 due 
-- = MS --- 
dX vu l 

> 

0.’ (3) 
edx 

By virtue 0; 
equation (3) 

it3 being a differential equation of the first order in H, 
requires the specification of an initial valut of H with 

which to start the calculation, Thus in broad terms equation (3) contain3 
a mechanism by which the upstream history can be taken into account in 
so far as it affects the velocity profile. Consequently, as far as this 
auxiliary equation is concerned, tno boundary-layers LX-I% the same initial 
velocity profile subsequently subjected to the same pressure distribution 
will develop alike r{hether or not their previous hlstory was the same. 
No provision is made for the possibility that their initial shear-stress 
distributions could be dissimilar. The distribution of shear stress 
across the boundary-layer 1.3, of course, related not to the local velocities 
in the layer but, via the equation of motion, to their derivative rrith 
respect to x. Therefore some estimato of the effect of the initial shear 
distribution could be made by specifying, in addition to H, the initial 
valuo of dH//dx, say. Equation (3) would then need to be replaced by a 
second-order differential equation in H. So far as i3 known to the 
author, no attempt to do this has been reported. 

It is not intended, here, to give a detailed discussion of the merits 
or demerits of the various auxiliary equations grouped under equation (3). 

Useful work has already been done in this respect by Rotta (2) and Thompson (3). 
Their work has shown that the confidence with which ths state of the art 
has been viewed in many of the text books could not be substantiated and that 
many of the auxiliary equations have a severely limited vcalidity of 
application. ffssentsally they are correlation3 of experimental data whether 
or not some physicA. concept - for instance the kinetic energy or moment - 
of - moment equations (see Ref. 
(W%W 

12, e.g.), or the entrainment equation 
- has been Invoked as the basis for the correlation. Consequently 

much depends on the range of types of boundary-layer development which has 
been examined In the correlation. Nearly all the auxlllary equations in the 
literature have bean derived from an analysis of boundary layers of a single 
Q-m namely, where the shape factor H zncreases with distance dormstream. 
This 1s typical of boundary layers growing on aerofoils or In diffusers. 
Bearing this in mind it is not dafficult to see why these methods aro of 
doubtful validity when aFplled to either equilibrium boundary layers (where 
H is approximately constant) or boundary l&yers where H is decreasing 
with x (see Refs. 2, 3). Even Ishen applied to the same sort of boundary- 
layer development as the ones on which they \Jere originally based, some 
auxiliary equation3 have exhibited limitations such as an unlikely sensitivity 

to initial condltion3('3). In this respect, however, it must be pointed out 
that there is little experimental data to elucidate the question of the 
extent to which initial conditions affect the boundary-layer development 
at appreciable distances downstream. 
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3. TYPES OF BOUNDARY-LfX@ BEHAVIOUR 

3.1 The equilibrium boundary layer VP___ 

The first type of boundary-layer behaviour v.hich we shall discuss, 
and the most important from a fundamental standpoint, is the equilibrium 
boundary layer. This topic has received considerable attention in 
rccont years. The early experimental work of Clauser (4,14) and the 

analysis of Rotta(15) served to demonstrate that e 
layers in non-zero pressure gradients could exist 
form) on a smooth surface. 

? 
uilibrium boundary 
at least in an approximate 

Their work has been added to by a number of 

theoretical treatments, among which those of Townsend (16) and Alellor and 

Gibson(17) are important in the present context, and by the recent experiments 

of Bradshaw (18). 

The particular aspect of equilibrium boundary layers which is of prime 
importance in our present work is the observation that a certain type of 
streamwise pressure distribution can support a boundary-layer growth 
charafterised by similarity of the velocity-defect profiles. The pressure 
distribution is one of constant "severity" in so far as the ratio of 
pressure-gradient forces to skin-friction forces acting on an element dx 
of boundary layer is the same at each streamwise station. The appropriate 
pressure-gradient parameter !Ihich expresses this ratio is I1 (see 
Ref. 2, e.g.) inhere 

6" ap 
n = we -- J l l * (4) 

b ?J dx 

and ll is independent of x for an equilibrium boundary layer. For a 
particular value of this pressure-gradient parameter, the velocity-defect 
profile in the boundary layer has a given shape independent of Reynolds 
number:- 

Ue-U 
---- = e-0 (5) 

U 
T  

Clauser(l+) has suggested that a convenient "shape factor" for describing 
the velocity-defect profile could be defined by 

d 
f2 d(E) 

GC’ --------- . 

G can also be related to the geometric shape factor H by 

. . . (6) 

G . 
l ** (7) 
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The value of G is about 6.5 for the flat-plate case and tends to 
infinity for the equilibrium boundary layer with zero wall shear stress (19). 

Thus for equilibrium boundary layers G is a unique function of Q, 
Some relevant experimental data is shovm in fig. 1 along with the relation 
botr-ten G and 11 indicated by the theories of Townsend (16) and 5iellor 
and Gibson(17). The former is restricted to values of II greater than 
about 2; the latter makes no such restriction but states that no oqulllbrium 
boundary layer can exist for values of l? less than -0.5. Over the common 
range hiellor and Gibson predict higher values of 

G Townsend's theory. than( ,a;; ~;;eg~ser, s Judging by the experiment of Bradshaw 

"Boundary layer I" (4) Townsend's theory seems the more accurate. Clauser's 
"Boundary layer II ha: a measured value of G higher than that predicted 
by either theory if one takes the value of !! indicated in Ref. 14, namely 
7. However Xellor and Gibson found from an examination of Clauscr's data 
that the actual value varied between about 6 and 13 over the course of 
development of the layer. Thus It would seem that the value of 7 is to be 
taken only as a guide and the discrepancy indicated in fig. 1 1s of little 
significance. For small values of II, iriellor and Gibson's theory appears 
to predict values of G which agree satisfactorily with experiment. 

For the purposes of our later calculations a relation between G and 
I7 will be required coveriilg the whole rango of I!. An empirical curve 
has therefore been drawn in fig. 1 representing a synthesis of experiment 
and theory. This curve is given by the function 

G = 6.1 (iI + 4.8,)’ - 1.7 . . . . (8) 

3.2 Tendency towards equilibrium -- 

If the pressure distribution appropriate to a particular equilibrium 
boundary-layer is set up but the initial value of G is not the equilibrium 
value, one of two thin 

7 
s can happen. If the boundary-layer has "downstream 

stablli$y" (see Ref. 2 the value of G ~111 approach the equilibrium 
value G, say> as the layer progresses downstream; if it is "unstable" 
the value of G will diverge from the equilibrium value. The only direct 
experimental evidence there is concerning the approach to equilibrium relates 

to the flat plate case. Tillmann(20) and Klebanoff and Diehl (21) carried 
out tests to observe the downstream behaviour of constant-pressure boundary 
layers which had been disturbed initially giving a valtie of C higher 

than 6.5. Recently one of Bradshaw's experiments (18) consisted of setting 
up an equilibrium boundary layer and subsequently (i.e., do:mstream of some 
x-position) removing the pressure gradient so that the layer could return 
to the flat-plate type. 

It might be supposed that, at least some distanca downstream of the 
disturbing agency, the return to equilibrium :iould exhibit some universality 
independent of the particular form of the disturbance. For instange, the 
rate of change of G might be uniquely related to the amount, G-G, say, 
by which G was out of equilibrium. Such considerations lead us to inquire 
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whether an expression of the form 

dG 
e -- = f(G-6) , l *. (9) 

dx 

has any general validity. In equation (9) 8 is the particular equilibrium 
value of G (6.5 for the flat-plate case) and e is some length scale 
typical of the boundary-layer thickness. Integration of equation (9) yields 
an expression for G:- 

tlhere 

G- & = F(z) , . . . (10) 

. . . (11) 

and x0 is an arbitrary constant. Three sets of expegimeatal data are 
shown in fig. 2 in the form of a plot of G against x, using S* for 
e, and choosing x, such that all the curves pass through the point II 11 A . 
Fig. 2 indicates little evidence that a universal function of the form of 
equations (9) or (IO) exists; no:r does it seem likely that a better 
correlation could be achieved by using some other length scale in equation (11). 

The failure of this exercise casts considerable doubt on the suggestion 
that boundary layers with the same initial velocity profile ~~11 develop in 
the same way if SUbJeCtdd to the same pressure distribution do:Jnstream of 
the initial station. It will be recalled that this assertion is implicit 
in nearly all the auxiliary equations appearing in the literature (see 
Section 2, above). 

Before passing to the next topic it is instructive to note from fig. 2 
how long it can take for a disturbance to die out. The data of Klebanoff 
and Diehl, and Bradshail indicate that G is unlikely to approach the 
equilibrium value closely for a distant e of hundreds of times the displace- 
ment thickness. This observation strongly supports the comments of Coles 
in Appendix A of Ref. 22. 

3.3 Departures from equilibrium 

The equilibrium boundary-layer develop3 in a pressure gradient of constant 
severity (see Section 3.1 above). The parameter !7 (equation 4) is constant 
with respect to x and the shape factor G is al30 constant. On the other 
hand, if the severity of the pressure gradient change3 the boundary-layer 
will cease to be in equilibrium and both E end G lrill be functions of 
X. In a sense p! call be regard& a3 the independent and G the dependent 

variable, or, to use Clauser'3 "black-box" terminology (14) , there is a 
certain response in G to a given input function L!(X). 

The severity of the pressure gradient can either increase (d!!/dx > 0) 
or decrease (dI!(dx < 0). re shall now proceed to examine experimental 
data relating to each of these possibilities. 
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An increasingly "severe" pressure gradient is typical of the boundary 
layer developing on an serofoil surface or in a diffuser. The actual 
pressure gradient dp/dx may be constant but due to the increase in S* 
and the decrease in 5~ with increasing x the value of II increases 
with x, reaching infinity at a separation'point (zero Tag). Some 
experimental results obtained under such conditions are shown in fig. 3” 
as a plot of G against II. Since II is increasing t;ith x each curve 
represents a trajectory whose sense is indicated by the arrow head. 

One of the most important features tf the data in fig. 3 1s the fact 
that the curves lie close to the curve G(C) which represents the locus 
of ,all possible equilibrium boundary layers. 
according to equation (8). 

i 

[hs curve has been drawn 
The significance of a trajectory which 

coincides with the curve 09 is not, of course, that the boundary 
layer is in equilibrium,+ but that the variation in shape factor is the 
s,ame as if the layer were passin g through each possi.ble equilibrium state. 
This situation might be referred to as "local equilibrium" at each 
streomwise station. To illustrate the point further fig, 4 shows the 
variations in H corresponding to the spread of the data in fig. 3 about 
the curve e(R). The dotted curves represent the loci of points for which 
H is the given percentage above or below the value corresponding to 
"local equilibrium" at a Reynolds numbcr @e& of IOj. It will be 

noted that the data lie within about 5 or 10 percent of the "equLlibrium" 
values of H. One might expect a boundary-layer trajectory to remain 
close to the s(S) curve so long as the value of ll was increasing 
very slowly. However this does not seem to be a necessary condition. 

The curve in fig. 3 derived from Schubauer ‘and Klebanoff's data (23) is 

close to the "1oNI. equilibrium" condition slt'nough a typical value of 
SW!/dx 1s 0.3 (when II = 8). 

To turn to the case where th e severity of the pressure gradient is 
decreasing, fig. 5 shows some experimental data presented in a similar way 

to that in fig. 3. The data of Ludwieg and Tillmann (24) relate to the 
case where I! first increases with x and subsequently decreases 

Bradshaw's boundary layer (18) is initially in equilibrium with II = 5.5; 
subsequently II falls to zero. 

Compared mth the data in fig. 3, that in fig. 5 gives a quite different 
picture. 'P!hereas for d!I/dx > 0 the trajectories were confined to a narroir 
corridor about the curve uo, in the present case the trajectories 
diverge markedly from the equilibrium locus, This is most evident in the 
cases where 17 is initially increasing with x; the subsequent reduction 
of II is accompanied by little sympathetic response in G. The impression 
is gained that some kind of "inertia" effect is causing G to continue 

*To reduce the data to this form one requires values of the wall shear 
stress. 'These were found using the skin-friction law derived In Ref. 1. 

f For instance, the shear-stress distribution mould be expected to 
differ considerably from that in an equilibrium boundary layer. 
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increasing even after dlI/dx has decreased to zero and is increasing 
negatively. Even in the case of the boundary-layer initially in 
equilibrium there is a "sluggish" response of G to the &crease in I! 
to zero. Nor is II changing particularly rapidly. The maximum value 
of -6WI/dx in the case of Bradshaw's test was about 0.25; this may 
be compared with the value quoted above for the data of Schubsuer and 
Klebanoff which lay close to the condition of "local equilibrium". 

3.4 Summary 

Before proceeding to the next Section it will. be useful to list the 
main points which have emerged from this study of the data:- 

(1) 

(2) 

\ 

(3) , 
/ 

(4) 

The e uilibrium boundary layer is specified by values of 
GC= ) 6 and II which are independent of x. From a synthesis 
of experimental data and theory the function G(U) can be 
defined fairly precisely. 

The rate at w#hich an initiclly-disturbed, flat-plate boundary- 
layer tends to equilibrium is not determined solely by the 
initial value of the shape factor and the boundary-layer 
thickness. This would appear to indicate that in more general 
cases also kno>rledge of the pressure distribution downstream 
of some initial station together with the initial value of the 
shape factor is insufficient information from which to compute 
the boundary-layer growth. 

Boundary-layers in pressure gradients of increasing "sevzrlty" 
(dlI/dx > 0 

b 
remain close to the condition of "local equilibrium"; 

i.e. G z (U). This appears to bc true even if I! is changing 
quite rapidly. 

Boundary-layers in pressure gradients of decreasing "severity" 
(dl[/dx < 0) depart markedly from the condition of "local 
equilibrium". This is particularly so In the case whore dI?/dx 
is initinlly positive but subsequently changes sign, suggestive 
of some kind of "inertia" effect. 

4. THE AUXILIARY EWATION- 

4.1 '?e return now to the problem of the auxiliary equation. Stated 
briefly the problem is one of finding some algebraic or differential 
equatzon involving the shape factor which exhibits a response to various 
changes of pressure gradient which is similar to that observed in the 
experunental data. It WCS seen in the previous Section that certain basic 
trends can be distinguished in the data and that these trends can be 
interpreted in the context of tendencies towards, or departures from, a 
condition of "local equilibrium". It would seem that this way of examining 
the data is an important one which can make many of the observed trends 
meaningful and coherent. Moreover it is likely to facilitate the process 
of deriving a satisfactory auxiliary equation. 

Kth the object of making maximum use of this concapt of variations 
about an equilibrium state, G is selected as the appropriate shape factor, 
and !I becomes the corresponding pressure-gradient parameter. A 
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fundamental requirement of our auxiliary equation is that a solution must 
exist of the form 

G = constant 
n = constant l 

3 

4.2 One possibility is the algebraic auxiliary equation:- 

G = i(n) . . . . (12) 

Clearly this equation satisfies the conditions for equilibrium boundary- 
layers. Moreover, as was seen in Section 3.3 above, it is a reasonably 
good approximation in the case of boundary layers of the "aerofoil" or 
"diffuser" type, (1.0. for which drl/dx > 0). If a givon form for 
equation (12) is assumed - equation (8) for example - together with a 
suitable skin-friction law, the geomctrlc shape factor, H, can be 
expressed as a function of Bee and the local pressure gradient:- 

H = HRe@, 
( 

e due -- M-w > l ** (13) 
ue dx > 

which is identical to equation (2). If the necessary calculations are 
performed one does not arrive at an expression of the same detailed form as 
Buri's, namely 

1-j = Hf!;i! 2) , 0.0 (14) 

e 

but one more nearly of the form 

H= HI (Reel + HB 
-- ..e- . l ** (15) 

Nevertheless, in so far as equation (I 3) represents his fundemental assumption 
Buri's work appears to be confirmed. 

On the other hand equation (12) is incapable of describing the return to 
equilibrium folloi,ing a perturbation - indeed perturbations from equilibrium 
are themselves inadmissible - nor can it account for the typo of observed 
behaviour illustrated in fig. 5 for pressure gradients of decreasing 
"severity". 

4.3 If equation (15) is equivalent to Burl's approach, an auxiliary 
oquation corresponding to that of most other investigators (see equation (3)) 
would be of the form 

dG 
se = Q(W) > 
d.z 

. . . (16) 
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with H as a non-dimensional distance defined, say, by 

1 
aiT = --a~. 

6” 
l s’ (17) 

A form similar to this has been suggested by Rotta (2) If tne function 9 
in equation (I 6) 1s of a form ilrhich vanishes for G ='e(n) the equilibrium 
case would be taken into account. Thus we night postulate some expression 
like 

dG n 
-- = 4(u) . (G-t)” . . . . (18) 

Equation (18) also goes somo way to accounting for a return to ctquilibrium 
following some disturbance, with Cp and n determining the degree of 
downstream stability. However the remarks in Section 2.2 should serve to 
show that no combination of values of 4(O) and n can lead to an 
expression ilhich can account mtivelx for all the data in fig. 2. 
This is because the experimental results indicate different degrees of 
stability for the some value of G. 

Passing to the cases where li is a function of x this problem of 
fitting either equation (I 6) or equation (18) to the data becomes even more 
difficult. Figs 3 and 5 show that at, any given value of ll, the data 
are not even consistent as far as the sign of stability is concerned, at 
least so long as the "stability" 
or (18). 

is intcrprcted in the sense of equations (16) 
Furthermore equations (16) or (q8) contain no mechanism for 

taking into account the apparent "inertia" effect suggested by the data 
in fig. 5. 

It soon becomes clear that an auxiliary equation of the form of 
equation (16) is inadequate in describing the different types of behaviour 
which we have distinguished in the experimental data. The best that could 
be done with equation (16) is to make it strongly stable about the "local 
equilibrium" condition. 
equation (15), 

In this ~ay the advantages of the simple form, 
tw$Ld be retained, in that the equation would predict v,alues 

of G close to G #lrhich is correct for the "aerofoil type" boundary- 
layers, and also in that the approach to equilibrium folloiring an initial 
perturbation would be accounted for at least qualitatively. It is possible 
that this provides the explanation for the partial success of some of the 
auxiliary equations in the form of equation (3)) that of Ref. 40 for example. 

4.4 Some of the disadvantages of equation (16) can be minimised by 
the use of an auxiliary equation formed by a combination of equations (15) 
and (16). In a fairly general form this could be written as 

G . 
> 

l ** (IV) 

However, this equation still cannot account for the different rates of 
approach to equilibrium exhibited by the data in fig. 2, nor for the 
apparent inertia effect suggested by the data In f'lg. 5. For these reasons 
it will not be considered further in this paper. 
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4.5 The two effects which it has not been found possible to account 
for - the return to equilibrium and the inertia effect - appear to demand 
that the auxiliary equation be of the second order xn G. Starting with 
the former, it was seen in Section 3.2 that equation (9) WQS inadequate 
because the behaviour of a flat-plate boundary-layer following a 
disturbance did not depend solely on the initial value of G. This point 
was mentioned in Section 2.3 also, md it was suggested that there were 
good grounds for expecting that the firat derlvatrve of the shape factor 
might be a necessary additional starting condition. Accor&ngly, tJe 
postulate that the approach to equilibrium can be described by 

. . . (20) 

where the suffix o denotes an initial condition, Differentiating 
equation (20) throughout k.th respect to :? and ellmlnating (dG/dZ), 
between this new equation and equation (2C) leads to an expression of the 
form 

since 8 is assumed constant. 

To glvo the function ? some definite form we suggest 

d2G 
em- = 
dz2 

(G-E)ja (G-t)@ , ' 

. . . (21) 

. . . (22) 

By a suitable choice of the constants h, 0: and F, equation (22) can, 
in fact, be fitted satisfactorily to the experimental data relating to 
the approach to constant-pressure equilibrium P But what is more important, 
however, equation (22) cal3o appears to be capable of describing, at least 
quLa,litatively, each of the other types of boundary-layer behgviour 
discussed in Section 3. In those latter cases, of course, G is not 
constant but 13 a function of :: by way of its relation with II(x). Thus 
in the sense of equation (22) & can be regarded a3 equivalent to a 
pressure-gradlent parameter. 

By trial and error the values of the coefficients 1, a and p in 
equation (22) have been assessed to give satisfactory agreement with two 
or more sets of boundary-layer data from each class discussed in Section 3. 
lqhen 3 comparison is made with more data it may be necessary to modify 
these assessments, but the provisional values obtained are aa follows:- 

: (G-i) > 0 :- 

h = -0.25 ) a = 3 , p = -2 
!- . 

(G-i) < 0 :- 
dz 

X = 5, a = 2, @ = -2 
I 

l .* (23) 

*It nay be notad that for the CRS~ whore 6 is indopondont of x, 
equation (22) oan be solved analytically. 
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The distinction betileen the values of h and a, depending on the 
sign of d(G-6)/d?, is of grime lrnportance in describing the different type 
of response of G according to Flhether dIi/ax is positive or negative. 

Since p is negative, equation (22) is singular et G = 6. This 
behaviour has only local repercussions but it is an embarrassment for a 
number of reasons and it is suggested that the term (G-c%)'~ in egua-tlon (22) 
be replaced by 

i(G-6)' + a']-' , 

where a 1s some small number. Insufficient experience of the equation has 
been gained so far to estimate the precise significance of the value of a 
but in the calculations it has been takan as 0.1. 

Some comparisons between the new auxiliary equation and experimental 
data are shown in figs. 6 to 41. In this exercise the measured variation of 
l! and S* with x have been assumed as data and the variation of G with 
x has been calculated using equation (22). In figs. 6 to 11 the solid curve 
represents the predicted values of G, the dots showing the intervals in the 
computation. The measured values of G are sho;;n as square data points. In 
each case suitable initial values of G and dG/dx have had to be assumed 
in the calculations. 

In figs. 6 and 7 two boundary-layers of the "aerofoil" type are 
considered. Equation (22) strongly portrays the tendency of boundary- 
layers of this type to remain close to the "local equilibrium" condition. 
The initial conditions need to be chosen fairly critically if the precise 
small departure from "local equilibrium" is to be correctly represented. If 
the initial values of G and dG/dx had been appreciably hggher the 
predicted values of G would soon have coincided with the G--curves. As 
It 1s the small departure from "local equilibrium" is somewhat exagerated. 
The significance of this sensitivity to initial conditions needs to be 
examined more carefully, but alloT-ring for this the comparisons in figs. 6 
and 7 can be regarded as satisfactory. 

Fig. 8 shops Sandborn's data (25) relating to his "zero suction" 
conditions. The pressure distribution is of the same general form as that 
considered in figs. 6 and 7 but the initial value of G is higher than the 
local value of G. Again the agreement bet%!een the predicted and the 
measured values of G is very encouraging. 

Fig. 9 shows one of the sets of data obtained by LudMeg and Tillmann (24). 
This boundary-layer was subJected to a pressure gradient of initially 
increasing, and subsequently decreasing, "severity". Oxer the first part, 
with II increasing,tha value of G remains close to G, as was the case 
tn figs. 6 and 7. For larger values of I, lrhere :! and, consequently, 
G are decreasing, G continues to increase - exhibiting the apparent 
"inertia" effect. The predicted variation of G with x is seen to 
represent these different types of behaviour adequately. 

Another case in which 11 decreases with increasing x is illustrated 
in fig. 10. This shows the data from Bradshaw's experiment in which a 
boundary-layer initially in equilibrium at a value of II of about 5.5 is 
subsequently SubJected to constant pressure, Ii falls rapidly to zero but 
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G responds only slowly and mould take a distance of several hundreds of 
times the displacement thickness to approach the near equilibrium state 
closely. The predicted variation of G follows the observed behaviour 
very well. 

For values of x greater than about 65 in, D = 0, and the data in 
fig. IO correspond to the case of a perturbed flat-plate boundary-layer. 
Fig. 11 shows another set of data relating to this class of boundary-layers, 
namely the results of Klebanoff and Diehl for the 0.25 in rod (Ref. 21). 
Again the agreement between the measured and the predicted variation of 
G with x is very satisfactory. 

These comparisons between calculations based on equation (22) and 
experimental data are far from exhaustive. Nevertheless they serve to 
show that the proposed form of auxiliary equation can be fitted to a range 
of different types of boundary-layer development, and that it 1s probably 
the most economical one which can be. There is scope for a considerable 
amount of further work. Comparisons must be made with a far greater number 
ef sets of data before equation (22) can be used with confidence in making 
boundary-layer predictions. 
may, of course, be necessary 
the best overall agreement. 

5. CONCLUDIXG RJWARKS 

5.1 A review, in broad terms, of existing forms of the auxiliary 

'hen further comparisons have been made it 
to mo&fy the values of the constants to give 

equation used in the calculation of the incompressible turbulent boundary 
layer in two dimensions, reveals two basic types. One is an algebraic 
equation involving the shape factor (Buri); the other is the familiar 
first-order differential equation on which attention has been concentrated 
for more than thirty years. 

5.2 From an analysis of the experimental data certain fundamental 
types of boundary-layer behaviour can be distinguished. These are 

(a) The equilibrium boundary-layer bJhich is characterised by a pressure 
gradient of constant "severity" and similarity of the velocity- 
defect profiles, 

(b) The return to equilibrium conditions follobqing an initial 
perturbation. 

(c) The departure from equilibrium when the "seventy" of the pressure 
gradient is changing rfith x. Two possibilities can be considered, 
according to whether the "severity" of the pressure gradient is 
increasing or docreasrng \lith x. 

5.3 A synthesis of experiment and theory relating to equilibrium 
boundary-layers enables a relation to be defined fairly accurately between 
a shape factor G (based on the velocity-defect profile) and a pressure- 
gradient parameter 

l-I ( 
6" dp 

= -- -- \ . 
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The function G = 6(n) thus represents all possible equdlbrium boundary 
layers. 

5.4 At least In the particular case of n = 0, the rate at vrhlch 
the shape factor G approaches the equillbrlum value 8, following an 
initial perturbation, is not solely determined by the inltlal value of 
G and the scale of the boundary layer. From this it can be deduced that, 
in the general case also, knowledge of the Initial velocity proflle together 
with the subsequent pressure distribution is lnsufflclent information from 
which to compute the development of the boundary-layer. 

5.5 If the pressure-gradient parameter Il is a function of x the 
"response" of G takes alternatlve forms depending on the sign of arI/dx. 
In cases where L' 1s continuously increasing G remains close to the 
value G corresponding to an equllibrlum boundary-layer at the local 
value of r;. This situation might be referred to as "local equlllbrlum" 
at each streamwise station. On the other hand, if II 1s decreasing with 
increasing x, G departs markedly from the "local equdibrlum" condition 
This type of behaviour appears to be accentuated when II decreases 
subsequent to an lnltlal increase, i.e. when dl?/dx is first positive and 
then negative. Undez such conditions G can continue lncreaslng although 
the local value of G is decreasing with increasing x. By analogy with 
dynamical systems one might attribute this to a kind of "lnertla" effect. 

5.6 The main points which emerge from the examination of experimental 
data are used as a basis for evaluating various possible forms of auxiliary 
equation. It 1s seen that for an important class of boundary-layers - 
including typical ones on aerofoils or in diffusers - the assumption of 
"local equllibrlum" could lead to predrctions of H which are accurate 
to better than IO percent under most conditions. This assumption is 
equivalent to the type of algebraic auxiliary equation proposed by Buri. 

The use of an algebraic auxiliary equation implies that the upstream 
history of the boundary-layer has no slgnlflcant influence on the shape 
factor except by way of its effect on the thickness of the layer. To take 
direct account of the effect of upstream history one requires a differential 
equation. But in vieir of the comment made in 5.4, above, It would seem 
that a first-order auxiliary equation involving one initial condition (the 
initial value of the shape factor) must be inadequate. This goes some way 
to explaining why the use of a first-order equation 1s only marginally more 
effective in describing the various types of boundary-layer behaviour than 
the algebraic auxiliary equation mentioned in the previous paragraph. 

The use of a second-order bfferentlal equation offers considerably 
more promise of success. Two initial conditions are required, and these 
may be regarded as specifying lnformatlon about the inltlal velocity profile 
and shear-stress profile. The demand for an additional starting condition 
thus has a strong physical justification. 

A tentative proposal is made as to a suitable form for a second-order 
auxiliary equation. It arould seem that this new auxiliary equation is 
capable of describing all the types of boundary-layer behaviour listed 
above at least qualltatlvely, and a limited number of comparisons with 
experiment indicate that acceptable quantitative agreement can be obtained 
also. 
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The work described in this paper I,S at an interim stage. Further 
comparisons between the auxiliary equation proposed and experimental data 
will probably require some adjustment of the constants in the equation to 
maintain the best overcall agreement. But in any event it is thought that 
the results which have already been obtained are of sufficient interest 
to merit presentation at this stage. Furthermore it is hoped that the 
paper will stimulate discussion of the more general points raised, and of 
their relevance and possible repercussions on the current work of other 
investigators. 
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