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SUMMARY

In addition to the Karman momentum-~integral equation, two further
equations are required for the purposes of calculating the development
of the incompressible turbulent boundary layer - a “"skin-friction low"
and an "auxiliary equetion"., The problem of deriving a satisfactory form
of auxiliary equation is a magjor one. Indeed, despitec the effort devoted
to this question for many years, few derived forms of euxilisry eguetion
cen be relied upon to account for the boundary-layer development in more
than o restricted number of cases.

A8 a contribution to the elucidation of the problem an examination
is made of several sets of experimental deta covering different types of
pressure distribution. Among the data certain basic types of boundary-
layer behaviour con be distinguished. The equilibrium boundary-leyer may
be regarded as a dntum condition and the other types of behaviour are
discussed in the context of tendencies towards, or departurcs from,
equilibrium,

Simple forms of auxiliary equation are postulated and an cxamination
is madc of the extent to which they can be reconciled, even qualitatively,
with the obscrved types of boundary-layer behaviour. It is shown that
several forms of the equation must be rejected 2s inadequate. The most
economical form which appears to be capablc of describing ell the various
trends of the data is a second-order differential equation involving the
shape factor. A limited number of comperisons with experiment indicate
that values can be ascribed to the free constants in the equation which
lead to quantitatively acceptable predictions.
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NOTATION
X,y Orthogonal coordinates, x measured along the surface
p Fluid density
v Kinematic viscosity
P Static pressure
u Velocity an the x-direction
U, Velocity at the edge of the boundary layer
. . 2
u Friction velocity (uT = rw/p)
- iall shear stress
T
Cf Local skin~-friction coefficient <9f = -~H;>
1
2Py,
& Boundary-layer thickness
o Displacement thickness
0 Momentum thickness
Ree Reynolds number based on ©
H "Geometric" shape factor (H = §%/0)
G Shape factor based on the velocity-defect profile,
- i -
2.\° 1
fe@ e
é Value of G 1f the boundary-layer were in equilabrium at the
local value of 1.
&* dp
I Pressure-gradient parameter (Il = b &Y) .
W
¢ Length scale
% Nondimensionsl distance parameter
X
z dx . .
X = ral with € generally equal to &%) .
Xo
a, B85 M Constants in equation (22).

f,f,,f2,§,§,F,H1,H2,¢,§ and Y denote arbitrary functions.

The suffix o denotes initial values.,



1.  INTRODUCTION

Tne purpose of this paper is to discuss the two-dimensional, incompres-
sible turbulent boundery-layer developing on a smooth, plane, impermeable
wall in an adverse pressure gradient.

Basic to most methods of treating the incompressible turbulent
boundary-layer is the Kédrmén momentum-integral equation which expresses the
rote of change of momentum-defect in terms of the pressure gradient and the
wall shear stress:-

d dp
== (pu0) = 8% == 41 . ees (1)
i @ "

If the pressure p (or the velocity, u , at the edge of the boundary-

: . - e;. -
layer) is given as a function of x, equation (1) contains thrce unknowns:
the momentum thickness, © , the displacement thickness, & *, and the local
wall shear stress, Tu+ Thus, for the purposes of calculating the develop-
ment of the boundary layer, two further equations involving these quantities
are required, Using the conventional nomencleture, these are referred to as
the "skin-friction law", and thc "auxiliary equation" or "shape-factor
equation",

As usually formulated, skin-friction laws relete the local well shear
stress to a Reynolds number based on a length scale typical of the boundary-
loyer thickness and a parameter (such as H, = &%/ 06) which describes the
shape of the velocity profile. A brief review of some skin-friction laws
in current use was mede in Ref, 1.

The auxiliary equation essentially describes the effect of pressure
gradicnts on the snape of the mean velocity profile, Attempts have been
made for more than thirty years to derive a sctisfactory form of auxiliary
cquation but reccent reviews of this problem (2, 3, eg.) have shown that
few forms of this cquation can be relied upon to account for the boundary-
layer development faithfully in more than a limited number of cases.

In the next Section a brief discussion will be made of the principal
forms of auxiliary equation to be found in the litereture. The point will
be made that most of these were originally based on data relating to only
one type of boundary-loyer development. As a contribution to the general
work in this field an examination is made in Section 3 of the various different
types of boundary-layer behaviour which czn be distinguished from an
analysis of existing experimental data. Finally, in Section 4 simple forms
of esuxiliery equation will be discussed in relation to these types of
boundary-layer behoviour, and an attempt will be made to find an equation
which will account for them at least qualitatively.
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2, REVIEY OF EXISTING AUXTLIARY EOUATIONS

2.1 DMNost published forms of the auxaliary equation (see, e.g. Ref. 2)
are formulated on the assumption that the mean velocity profiles in the
turbulent boundary layer reduce to a two-parameter family, i.e. that they
can be described adequately by a thickness parameter and a single "shape
factor". Thus the auxiliary equation takes the form of an expression
relating the shape factor and, usually, its derivatives to the Reynolds
number and the pressure gradient.

Basically, there are two types of shape factor in general use. One
type is a parameter based simply on the geometry of the velocity profile;
the other type anvolves the wall shear stress in addition. Most of the
auxiliary equations found in the literature are formulated in terms of
the geometric type of shape factor. In some cases this is the ratio, H,
of displacement to momentum thickness; 1in others the shape factor is based

on such ratios as
u 5=8%*
u G
e

y=9

There is no essential difference between any of these geometric shape
factors and, in the light of the assumption that the velocity profiles form
a two-parameter family, they can all be related to one another (at least in
principle). Accordingly, our remarks will refer explicitly to auxiliary
equations based on H but they can be taken to apply to equations
involving other geometric shape factors also.

This interchangeability of shape factors does not extend to those
which involve the wall shear stress. Among these are Clauser's parameter,

G, which is based on the velocity-defect profile 4), and Coles' wake-

component coefflclent(B) which is also used by Spalding(6). Reference to
shape factors of this category will be left to another Section.

2.2 Decpite the confusing variety of auxiliary equations in current
use, only two basic types can be distinguished. The first is represented

by the method of Buri(7) and 1s a direct analogue of the Polhausen method
for the laminar boundary-layer and the numerous later methods which owe
their inspiration to the Polhausen approach (see Ref. 8, e.g.). Buri
postulated that the shape factor, H, was a function of the Reynolds
number and the pressure gradient:-

6 due
H = f‘1<Ree , == === > . eee (2)

This form of the auxaliary equation has never commanded much attention,

largely as a result of Prandtl's critlcism(9) that it ignored the effects
of the upstream history of the boundary layer. In the light of more
recent knowledge it would be fairer to say that it 1s valid so long as
the layer 1s in local equilibrium at each streamwise station. More will
be said about this point later in the paper.
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2.3 The second Torm of the auxiliary equation is represented by some

thirteen metho%s %isted by Rotta(z to which must be added recent methods
10

such as Head's . This form can be written
daH 6 due
6 - = fz (H 3 R66 y T T . XX (3)
dx u  dx

By virtue ol its being a differentisl cquation of the first order in H,
equation (3) requires the specification of an initial valuc of H with
which to start the calculation, Thus in broad terms equation (3) contains
a mechanism by which the upstream history can be taken into account in

so far as it affects the velocity profile. Consequently, as far as this
auxiliary cquation is concerned, two boundary-layers vath the same initial
velocaty profile subseguently subjected to the same pressure dastribution
will develop alike whether or not their previous history was the same.

No provision is made for the possibility that thear initzal shear-stress
distributions could be dissimilar. The distribution of shear stress
across the boundary-layer 1s, of course, related not to the local velocities
in the layer but, via the equation of motion, to their derivatave with
respect to x. Therefore some estimate of the effect of the initial shear
distribution could be made by specafying, in addation to H, the initial
valuc of dH/dx, say. Equation (3) would then need to be replaced by a
second-order differential equation in H. So far as is known to the
author, no attempt to do this has been reported. )

It is not intended, here, to gave a detailed discussion of the merits
or demerits of the various auxiliary equations grouped under equation (3).

(3)

Useful work has already been done in this respect by Rotta 2 and Thompson‘~’.
Their work has shown that the confidence with which the state of the art

has been viewed in many of the text books could not be substantiated and that
many of the auxiliary cquations have a severcly limited validity of
application. issentially they are correlations of experimental data whether
or not some physical concept - for instance the kinetic energy or moment -

of - moment equations (see Ref. 12, e.g.), or thc entrainment equation
(6,10,11) ~ has been invoked as the basis for the correlation. Consequently
much depends on the range of types of boundary-layer development which has

been examined i1n the correlation., Nearly all the auxalaary equations in the
literature have been derived from an analysis of boundary layers of a single
type, namely, where the shape factor H increases with distance downstream.
This 1s typical of boundary layers growing on aerofolils or an diffusers.,
Bearing this in mind it is not dafficult to see why these methods arec of
doubtful validity when applied to either equilibrium boundary layers (where

H is approximately constant) or boundary layers where H is decreasaing

with x (see Refs. 2, 3). Even when applied to the same sort of boundary-
layer development as the ones on which they wvere originally based, some
auxiliary equations have exhibited lamitations such as an unlikely sensitivity

(13)

to initaal conditions + In this respect, however, it must be pointed out
that there is little experimental data to elucidate the question of the
extent to which initial conditions affect the boundary-layer development

at appreciable distances dowvmstream,
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3. TIYPES OF BOUNDARY-LAYER BEHAVIOQUR

3.1 The equilibrium boundary layer

The first type of boundary-layer behaviour vhich we shall discuss,
and the most important from a fundamental standpoint, 1s the equilibraium
boundary layer. This topic has received considerable attention in

rceent years. The ecarly cxperimental work of Clauser(4’14) and the

(15)

analysis of Rotta ! served to demonstrate that equilibrium boundary
layers in non-zero pressure gradients could exist (at least in an approximate
form) on a smooth surface. Their work has been added to by a number of

theoretical treatments, among which those of Townsend 16) and lellor and

(17)

are important in the present context, and by the recent experiments

(18)

of Bradshaw .

Gibson

The particular aspect of equilibraum boundary layers wvhich is of prame
importance in our prescent work is the observation that a certain type of
streamwise pressure distribution can support a boundary-layer growth
charafterised by similaraity of the velocity-defect profiles. The pressure
distribution 15 one of constant "severity" in so far as the ratio of
pressure-gradient forces to skin-friction forces acting on an element dx
of boundary layer is the same at each streamwise station. The appropriate
pressure-gradient parameter which expresses this ratio 1s Il (see
Ref. 2, e.g.) where

5* dp
m = =-- -, oo (4)
T dx

5 v

and II 1s independent of X for an equilibrium boundary layer. For a
particular value of this pressure-gradient parameter, the velocity-defect
profile 1n the boundary layer has a given shape independent of Reynolds

number:-
ue-u ¥
o). e
u )
T

Clauser(a) has suggested that a convenient "shape factor" for describing
the velocity-defect profile could be defained by

G = =temmmm-- . oo (6)

G can also be related to the geometric shape factor H by
i

QY o

f
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The value of G 25 about 6.5 for the flat-plate case and tends to (19)
infinity for the equilibrium boundary layer with zero wall shear stress .

Thus for equilibrium boundary layers G is a unique function of 1.
Some relevant experimental data 1s shown in fig. 1 along with the relation

beticen G and I indicated by the theories of Townsend 16) and lMellor

(17)

and Gibson . The former is restricted to values of 11 greater than

about 2; the latter makes no such restriction but states that no equalabrium
boundary layer can exist for values of I less than -0.5. Over the common
range Mellor and Gibson predict higher values of G than sre given by

Townsend's theory. Judging by the experiment of Bradshaw(18 and Clauser's

"Boundary layer I" b s, Tounsend's theory seems the more accurete., Clauser's
"Boundary layer II has a measured value of G higher than that predicted
by eather theory 1f one takes the value of [I indicated in Ref. 14, namely
7. However liellor and Gibson found from an examination of Clauscr's date
that the actual value varied between about 6 and 13 over the course of
development of the layer. Thus 1t would seem that the value of 7 is to be
token only as a guide and the discrepancy indicated in fig. 1 1s of little
significance. For small values of I, #ellor and Gibson's theory appears
to prediet values of G which agree satisfactorily with experiment.

For the purposes of our later calculations a relation between G and
Il will be required covering the vhole range of 1. An cmpirical curve
has therefore been drawn in fig. 1 representing a synthesis of experiment
and theory. This curve is given by the function

1
G = 6.1 (i1+1.80)° -1,7. ... (8)
®
3,2 Tendency towards equilibrium

If the pressure distribution appropriate to a particular equilibrium
boundary-layer 1s set up but the initial value of G is not the equalibrium
value, one of two things can happen. If the boundary-layer has "downstream
stability" (see Ref., 2) the value of G wall approach the equilibrium
value G, asay, as the layer progresses downstream; if it 1s "unstable"
the value of G will diverge from the equilibrium value. The only direct
experimental evidence there i1s concerning the approach to equilibrium relates

to the flat plate case, Tillmann<20) and Klebanoff and Diehl(21) carried
out tests to observe the downstream behaviour of constant-pressure boundary
layers which had been disturbed initially gaiving & value of G higher

than 6.5. Recently one of Bradshaw's experiments 18) consisted of setting
up an equilibrium boundary layer and subsequently (i.e., do mstream of some
x-position) removing the pressure gradient so that the layer could return
to the flat-plate type.

It might be supposcd that, at lcast some distancc downstream of the
disturbing agency, thce return to equilibrium would exhibit some universality
independent of the particular form of the disturbance. Tor instence, the
rate of change of G might be uniquely related to the amount, G-G, say,
by which G was out of equilibrium, Such consaiderations lead us to inquire



-8 -

whether an expression of the form

aG
¢ -- = f£(G-G) , ees (9)
dx

has any general valadity. In equation (9) & is the particular equilibrium
value of G (6.5 for the flat-plate case) and ¢ 1s some length scale
typical of the boundary-layer thickness. Intcgration of equation (9) yiclds
an expression for G:-

¢ -6 = PEZ), ... (10)
- % ax

where X = j -, oo (1)
% ¢

and Xo 1s an arbitrary constant. Three sets of experimeantal data arc

shown in fig. 2 in the form of a plot of G against x, using &* for

¢, and choosing X, such that all the curves pass through the point "A".

Fi1g. 2 indicates little evadence that a universal function of the form of
equations (9) or (10) exists; nov does it seem likely that a better
correlation could be achieved by using some other length scale in equation (11).

The failure of this exercise casts considerable doubt on the suggestion
that boundary layers with the same inatial velocity profile will develop in
the same way 1f subgected to the same pressure distribution downstream of
the initaal station., It will be recelled that this assertion s aimplacat
in nearly all the auxiliary equations appcaring in the literature (see
Section 2, above).

Before passing to thc next topic it 1s instructive to note from fig. 2
how long 1t can take for a disturbance to die out. Tae data of Klebanoff
and Diehl, and Bradshaw indicate that G is unlikely to approach the
equilibrium value closely for a distance of hundreds of times the displace-
ment thickness. This observation strongly supports the comments of Coles
in Appendix A of Ref. 22.

3,3 Departures from ¢guilibrium

The equalibrium boundory-layer develops in a pressure gradient of constant
severity (see Section 3.1 above). The parameter 1 (equation 4) 1s constant
with respect to x and the shape factor G 1s also constant. On the other
hand, 1f the severity of the pressure gradient changes the boundary-layer
will cease to be in equilibrium and both II' and &G will be functions of
x, In a sense [I can be regarded as the independent and G the dependent

(1)

variable, or, to usc Clauser's "black-box" terminology , thcre is a
certain response in G %o a given input function :(x).

The severity of the pressure gradient can either increase (dll/dx > 0)
or decrease (dll(dx < 0). ‘e shall now proceed to examine experimental
data relating to each of these possibilities.
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An 1ncreasingly "severe" pressure gradient is typical of the boundary
layer developing on an aerofoil surfacc or in a diffuser. The actual
pressure gradient dp/dx may be constant but due to the increase in &+
and the decrease in 1 with increasing x, the valuc of 1l aincreases
with x, reaching infinity at a separation point (zero Tw). Some

experimental results obtained under such conditions are shown in fig. 3*
as a plot of G against I, Since I 1s increasing with x each curve
represents a trajectory whose sense 1s indicated by the arrow head.

One of the most important features of the data in fig. 3 1s the fact
that the curves lie close to the curve G(iI) which represents the locus
of all possible equilibrium boundary layers. [This curve has been drawn
according to equation (8).] The significance of a trajectory which
coincides with the curve (1) is not, of course, that the boundary
layer is in equilibrium” but that the variation in shape factor is the
same as 1f the layer were passing through each possible equalibraum state,
This situation might be referred to as "local cquilibrium" at each
streamvise station. To 1llustrate thc point further fig. L4 shows the
variations in H corresponding to the spread of the data in fig. 3 about
the curve G(II). The dotted curves represent the loci of points for whach
H is the given percentage above or below the value corresponding to
"local equilibrium" at a Reynolds number (Ree) of 10*. It will be

noted that the data lie within about 5 or 10 percent of the "equilibrium"
values of H. One might cxpect a boundary-layer trajectory to remain
close to the G(II) curve so long as the value of I was increasing
very slowly. However this does not seem to be a nccessary condition,

The curve in fig. 3 derived frou Schubauer and Klebanoff's data(ZB) is
close to the "local equilibrium” condition although a typical value of
8*dll/dx 1s 0.3 (when T = 8).

To turn to the case where the severity of the pressure gradient is
decreasing, fig. 5 shows some experimental data presented in a similar way

to that in fig. 3. The data of Ludwieg and Tillmann(zq) relate to the
case where I! first increases with x and subsequently decreases

Bradshaw's boundary 1ayer<18) 15 1nitrally an equilibrium with II = 5.5;
subsequently I falls to zero.

Compared waith the data in fig. 3, that in faig. 5 gaves a quate dafferent
prcture. ‘“hereas for di/dx > 0 the trajectories were confined to a narrow
corridor about the curve @(H), in the present case the trajectories
diverge markedly from the cqualibrium locus. This 1s most evadent in the
cases where I 1s initaally increasing with x; the subsequent reduction
of II 1s accompanied by little sympathetic response in G. The impression
1s gained that some kind of "ainertia" effect 1s causing G to continue

*To reduce the data to this form one requires values of the wall shear
stress. These were found using the skain-friction law derived in Ref. 1.

/For instance, the shear-stress distrabution would be expected to
differ considerably from that in an equilabrium boundary layer.
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increasing even after dll/dx has decreased to zero and is inereasing
negatively. ZEven in the case of the boundary-layer initially in
equilabrium there is a "sluggish" response of G to the dcerease in [
to zero. Nor is [I changing particularly rapidly. The maximum value
of -8*dll/dx in the case of Bradshaw's test was about 0,25; this may
be compared with the value quoted above for the data of Schubauer and
Klebanoff which lay close to the condition of "local equilibrium",.

34  Summary

Before proceeding to the next Section it wiall be useful to list the
main points which have emerged from this study of the data:-

(1) The equilibrium boundary layer is specified by values of
¢ (= g) and I which ere independent of x., From a synthesis
of experimental data and theory the function G(H) can be
defined fairly precisely.

(2) The rate at vhich an initially-disturbed, flat-plate boundary-
layer tends to equilibrium is not determined solely by the
initial value of the shape facter and the boundary-layer
thickness, This would appear to indicate that in more general
cases also knowledge of the pressure distribution downstream
of some initial station together with the initial value of the
shape factor is insufficient information from which to compute
the boundary-layer growuth.

(3) PBoundary-layers in pressure gradients of increasing "severaty"
)&\\ (dil/dx > 0) remain close to the condition of "local equilibrium";
’ iee G = G(I). This appears to bc true even if II is changing
quite rapidly.

(4) Boundary-layers in pressure gradients of decreasing "severity"
(dl/dx < 0) depart markedly from the condition of "local
equilibrium"., This is particularly so in the case where dll/dx
is initially positive but subsequuntly changes sign, suggestive
of some kind of "inertia" effect.

4, THE AUXILIARY EQUATION

4.1 e return now to the problem of the auxiliary equation. Stated
briefly the problem is one of finding some algebraic or differential
equation involving the shape factor which exhibits a response to various
changes of pressure gradient which is similar to that observed in the
experamental data., It wes seen an the previous Section that certain basic
trends can be distinguished in the data and that these trends can be
interpreted in the context of tendencies towards, or depertures from, a
condition of "local equilibrium". It would seem that this way of examaining
the data is an important onc which can make many of the observed trends
meaningful and coherent. Moreover it is likely to facilitate the process
of deriving a satisfactory auxiliary equation.

With the object of making maxamum use of this concept of variations
about an equilibrium state, G 1s selected as the appropriate shape factor,
and T becomes the corresponding pressure-gradient parameter. A
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fundamental requirement of our auxiliary equation is that a solution must
exist of the form

G
I

i

constant
constant { °

4.2 One possibility is the algebraic auxiliary cquation:-

¢ = G(n) . .o (12)

Clcarly this equation satisfies the condaitions for equilibrium boundary-
layers. Moreover, as was seen in Section 3.3 above, 1t is a reasonably
good approximation in the case of boundary layers of the "aerofoil" or
"daffuser" type, (1.c. for which dll/dx > 0). If a given form for
equation (12) is assumed - equation (8) for cxample - together with a
suitable skin-friction law, the geomctric shape factor, H, can be
expressed as a function of Ree and the locel pressure gradient:-

6 du
e

H = H<§ee , == ——-> ) ver (13)

u_  dx
e

vhich 1s identical to equation (2). If the necessary calculations are
performed one does not arrive at an cxpression of the samc detailed form as
Buri's, namely

1
6Re64 du
H = H< ------- 9> cer ()
u dx
but one more nearly of the form
) due
H = H1 (Ree) + HZ( ————— ) . seo e (15)
u dx

Nevertheless, in so far as equation (13) represents his fundamental assumption
Buri's work appears to be coafirmed.

On the other hand equation (12) is ancapable of describing the return to
equalibrium following a perturbation - indeed perturbations from equilibrium
are themselves inadmissible - nor can it account for the typc of observed
behaviour illustrated in fig. 5 for pressure gradients of decreasing
"geverity".

4.3 If equation (15) 13 equivalent to Buri's approach, an auxiliary
cquation corresponding to that of most other investigators (see equation (3))
would be of the form

aG
-- = #(m,6) , ee. (16)
dx
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with X as a non-dimensional distance defined, say, by

1
dx = =-- ax . .. (07)

&%
A form similar to this has been suggested by Rotta(z). If the function &

in equation (16) 1s of a form which vanishes for G = G(1I) +the equrlabrium
case would be taken into account. Thus we night postulatc some expression
like

dG

&

= ¢(n) . (@8) . ... (18)

Equation (18) also goes somc way to accounting for a return to equilibraum
following some disturbance, with ¢ and n determining the degree of
downstream stability. However the remarks in Section 2.2 should serve to
show that no combination of values of ¢(0) and n can lead to an
expression which can account guantitatively for all the data in fig. 2.
This 1s because the experimental results indicate different degrecs of
stability for the same value of G.

Passing to the cascs where [T is a function of x this problem of
fitting either equation (16) or equation (18) to the data becomes even more
difficult., Figs 3 and 5 show that at, any given value of Ii, the data
are not even consistent as far as the sign of stability 1s concerned, at
least so long as the "stability" is intorpreted in the sense of equations (416)
or (18). Furthermore equations (16) or (18) contain no mechanisn for
taking into account the apparent "inertia" effect suggested by the data
in fig. 5.

It soon becomes clear that an auxaliary equation of the form of
equation (16) 1s inadequate in descrabing the dafferent types of behaviour
which we have distinguished in the experimental data. The best that could
be done with equation (16) is to make it strongly stable about the "local
equilibrium" condition. In this way the advantages of the simple form,
equation (15), would be rctained, in that the equation would predict values
of G close to G which i1s correct for the "acrofoil type" boundary-
layers, and also in that thec approach to equilibraium follovring an anatial
perturbation would be accounted for at least qualitatively. It 1s possible
that this provides thc explanation for the partial success of some of the
auxiliary equations in the form of cquation (3), that of Ref. 10 for example.

4.4 Some of the disadvantages of equation (16) can be minimised by
the use of an auxiliary equation formed by a combination of equations (15)
and (16). 1In a fairly gencral form this could be written as

dG di
==, =, o). e (19)
dx

However, this equation still cannot account for the dafferent rates of
approach to equilabrium exhibited by the data in fig. 2, nor for the
apparent inertia effect suggested by the data in fig., 5. TFor these reasons
it will not be considcred further in this paper.
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4.5 The two effects which it has not been found possible to account
for - the return to cquilibriun and the inertia effect - appear to demand
that the auxiliary equation be of the second order in G, Starting with
the former, it was seen in Section 3.2 that equation (9) was inadequate
because the behaviour of a flat-plate boundary-layer following a
disturbance did not depend solely on the initial value of G. This point
was mentioned in Section 2.3 also, and it was suggested that there were
good grounds for expecting that the first deraivative of the shape factor
might be a necessary additional starting condition. Accordingly, we
postulate that the approach to equilibrium can be desecribed by

gg = f{(i?)o , c--é} , ... (20)

where the suffix o denotes an initial condition. Differentiating
equation (20) throughout with respect to % and eliminating (dG/dx),
between this new equation and equation (20) leads to an expression of the
form

d%G =]a . .
--= = f|-- (6-G¢) , G-G| , see (21)
ax® [ax

A

since G is assumed constant,

To give the function f some definite form we suggest

a2q *
s - x{i (G-a)} (-8)F . ‘ eee (22)

dx? az

By a suitable choice of the constants A, a and B, equation (22) can,

in fact, be fitted satisfactoraly to the experimental data relating to

the approach to constant-pressure equilibrium# But what is more aimportant,
however, cquation (22) also appears to be capablc of describing, at least
qualitatively, each of the other types of boundary-layer behaviour
discussed in Section 3. In those latter cases, of course, G is not
constant but 1s a funetion of i by way of its relation with (x). Thus
in the sense of equation (22) G can be regarded as equivalent to a
pressure-gradient perameter.

By trial and error the values of the coefficients A, ¢ and @ in
equation (22) have been assessed to give satisfactory agreement with two
or more sets of boundary-layer data from each class discussed in Section 3.
‘hen a comparison is made with more data it may be necessary to modify
these assessments, but the provisional values obtained are as follows:-

d “ 3
- (6-8) >0 :-
ax
A= =025, a = 3, g = =2
d R '>o XK (23)
-- (6G-G) < 0 :=
dx
A= 5, a = 2, ﬂ=-2 J

%Tt nay bs notod that for the cmse whore ¢ is indepondent of x,
equation (22) can be solved analytically.
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The distinction between the values of A and «, depending on the
sign of d(G-G)/d%, 2s of prime importance in describing the different type
of response of G according to rhether ali/dx is positive or negative.

Since B 1s negative, equation (22) 1s singular et G = G. Thais
behaviour has only local repercussions but it is an embarrassment for a
number of reasons and it is suggested that the term (Gm@)'z in equation (22)
be replaced by

where a 1s some small number. Insufficient experience of the equation has
been gained so far to estimate the precise significance of the value of a
but 1n the calculations 1t has been taken as 0.1.

Some comparisons between the new auxiliary equation and experimental
data are shown in figs. 6 to 11. In this exercise the measured variation of
II' and &* with x have been assumed as data and the variation of G with
x has been calculated using equation (22). In figs. 6 to 11 the solid curve
represents the predicted values of G, the dots showing the intervals in the
computation. The measured values of G are shown as square data points. In
each case suitable initial values of G and dG/dx have had to be assumed
in the calculations.

In figs. 6 and 7 two boundary-layers of the "aerofoil" type are
considered. Equation (22) strongly portrays the tendency of boundary-
layers of this type to remain close to the "local equalabrium" condition.
The initial conditions need to be chosen fairly critically 1f the precise
small departure from “local equilibrium”" 1s to be correctly represented. If
the initial values of G and dG/dx had been appreciably higher the
predicted values of G would soon have coincided with the G-curves. As
1t 15 the small departure from "locel equilabraium" is somewhat exagerated.
The saignificance of this sensitivaty to initial conditions needs to be
examined more carefully, but allowing for this the comparisons in figs. 6
and 7 can be regarded as satisfactory.

Fig. 8 shows Sandborn's data(25) relating to his "zero suction"
conditions. The pressure distribution s of the same general form as that
considered in figs. 6 and 7 but the initial value of G 1s higher than the
local value of G. Again the agreement between the predicted and the
meagsured values of G is very encouraging.

Fig. 9 shows one of the sets of data obtained by Ludwieg and Tlllmann(ZA).
This boundary-layer was subjected to a pressure gradient of inaitaally
increasing, and subsequently decreasing, "severity". Over the first part,
with II increasing, thz valus of G remains close to G, as was the case
in figs. 6 and 7. For larger values of =, where [ and, consequently,

G are decreasing, G continues to increase - exhibiting the apparent
"inertia" effect, The predicted variation of G with x 1s seen to
represent these different types of behaviour adequately.

Another case in which [ decreases wath increasing x is illustrated
in fig. 10. This shows the datae from Bradshaw's experiment in which a
boundary~layer initially in equilibrium at a value of I of about 5.5 is
subsequently subjected to constant pressure, If falls rapidly to zero but
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G responds only slowly and would take a distance of several hundreds of
times the displacement thickness to approach the nev equilibrium state
closely. The predicted variation of G follows the observed behaviour
very well.

For values of x greater than about 65 an, II = 0, and the data in
fig. 10 correspond to the case of a perturbed flat-plate boundary-layer.
Fig. 11 shows another set of data relating to this class of boundary-layers,
namely the results of Klebanoff and Diehl for the 0.25 in rod (Ref. 21).
Again the agreement between the measured and the predicted variation of
G with = is very satisfactory.

These comparisons between calculations based on equation (22) and
experimental data are far from exhaustive. Nevertheless they serve to
show that the proposed form of auxaliary equation can be fitted to a range
of different types of boundary-layer development, and that it 1s probably
the most economical one which can be. There is scope for a considerable
amount of further work. Comparisons must be made wath a far greater number
ef sets of data before equation (22) can be used with confidence in making
boundary-leyer predictions, “'hen further comparisons have been made 1t
may, of course, be necessary to modafy the values of the constants to give
the best overall agrecment,

5.  CONCLUDING REMARKS

5.1 A review, in broad terms, of existing forms of the auxiliary
equation wused in the calculation of the incompressible turbulent boundary
layer in two dimensions, reveals two basic types. One is an algebraic
equation involving the shape factor (Buri); the other is the familiar
first-order differential equation on which attention has been concentrated
for more than thirty years.

5.2 From an analysis of the experimental data certain fundamental
types of boundary-layer behaviour can be distinguished. These are

(a) The equilibrium boundary-layer which is characterised by a pressure
gradient of constant "severity" and similarity of the velocity-
defect profiles,

(b) The return to equilibrium conditions following an initial
perturbation.

(¢) The departure from equilibrium when the "severity" of the pressure
gradient is changing with =x. Two possibalities can be considered,
according to whether the "severaity" of the pressure gradient is
increasing or decreasing with x.

5.3 A synthesis of experiment and theory relatihg to equilibrium
boundary-layers enables a relation to be defined fairly accurately between
a shape factor G (based on the velocity-defect profile) and a pressure-

gradient parameter
&* dp
H <= == _~> .
T dx
W
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The function G = é(ﬂ) thus represents all possible equilibrium boundary
layers.

5.4 At least in the particular case of Il = 0, the rate at vhich
the shape factor G approaches the equilibrium value @&, following an
initial perturbation, is not solely determined by the initial value of
G and the scale of the boundary layer. From this 1t can be deduced that,
in the general case also, knowledge of the initial velocity profile together
with the subsequent pressure distribution is insufficient information from
which to compute the development of the boundary-layer.

5.5 1If the pressure-gradient parameter II is a function of x the
"response" of G ‘takes alternative forms depending on the sign of dl1/dx.
In cases where II 1s continuously increasing G remains close to the
value G corresponding to an equilibrium boundary-layer at the local
value of 0. This situation might be referred to as "local equilibraium"
at each streamwise station. On the other hand, if II 1s decreasing with
increasing x, G departs markedly from the "local equilibrium" condition
This type of behaviour appears to be accentuated when II dscreases
subsequent to an initial increase, i.e. when dl/dx is first positive and
then negative. Under such conditions G can continue increasing although
the local value of G 1s decreasing with increasing x. By analogy with
dynamical gsystems one might attribute this to a kind of "inertia" effect.

5.6 The main points which emerge from the examination of experimental
data are used as a basis for evaluating various possible forms of auxiliary
equation., It 1s seen that for an important class of boundary-layers -
including typical ones on aerofoils or in diffusers - the assumption of
"local equilibraum" could lead to predictions of H which are accurate
to better than 10 percent under most conditions. Thais assumption is
equivalent to the type of algebraic auxiliary equation proposed by Buri.

The use of an algebraic auxiliary equation implies that the upstream
history of the boundary-layer has no significant influence on the shape
factor except by way of its effect on the thickness of the layer. To take
direct account of the effect of upstream history one requires a differential
equation. But in view of the comment made in 5.4, above, 1t would seem
that a first-order auxiliary equation involving one initial condition (the
initial value of the shape factor) must be inadequate. This goes some way
to explaining why the use of a first-order equation i1s only marginally more
effective in describing the various types of boundary-layer behaviour than
the algebraic auxiliary equation mentioned in the previous paragraph.

The use of a second-order differential equation offers considerably
more promise of success. Two initial conditions are required, and these
may be regarded as specifying information about the initial velocity profile
and shear-stress profile. The demand for an additional starting condition
thus has a strong physical justification.

A tentative proposal is made as to a suitable form for a second-order
auxiliary equation. It would seem that this new auxiliary equation is
capable of describing all the types of boundary-layer behaviour listed
above at least qualitatavely, and a limited number of comparisons with
experiment indicate that acceptable gquantitative agreement can be obtained
also.
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The work described in this paper is at an interim stage. Further
comparisons between the auxiliary equation proposed and experimental data
will probably require some adjustment of the constants in the equation to
maintain the best overall agreement. But in any event it is thought that
the results which have already been obtained are of sufficient interest
to merit presentation at this stage. Furthermore it 1s hoped that the
paper will stimulate discussion of the more general points raised, and of
their relevance and possible repercussions on the current work of other
investigators,
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