LenRE NY " C.P. No. 813
gvgar o non oA AUSHARYY
Ryt 0 1V

C.P. No. 813

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Theoretical Investigation of Some

Basic Assumptions of Schlichting's
Singularity Method of Cascade Analysis

By

Rl Lewis and G.A Pennington

LONDON: HER MAJESTY'S STATIONERY OFFICE

1965

SEVEN SHILLINGS NET






Theoretical Investigation of Some Basic Assumptions
of Schlichting's Singularity Method of Cascade Analysis
-By..

R. I, Lewis and G. A. Pennington

Communicated by Prof. J. H. Horlock

C.P. No, 813

September, 196l

SUMMARY

The accuracy of Schlichting's kinematic source flow equation
has been investigated for an isolated symmetrical aerofoil. Studies
are presented also of the suitability of the Glauert series for
representing profiles by source/vortex distributions. Influence of
data rounding off error upon profile analysis with large numbers of
control points has been examined, and importance of data accuracy and
smoothness stressed. An estimation of the optimum number of control
points has been made for a typical profile., A method of initial data
processing to ensure a valid computation has been suggested.
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INTRODUCTION
Of the wide variety of published cascade analyses, Schlichting's )

method of singularities,(1) applicable to incompressible inviscid flow
through cascades of thin low-cambered aerofoils, is probably the most
suited for extensive use. The method is rapid, well suited to digital
computation and gives good agreement with experiment for a wide range of

stagger and solidity.

Following the established basis of thin aerofoil theory, Schlichting
represents the blade profiles as streamlines generated by source and
vortex distributions g(x) and (x) located in a uniform stream of
velocity We,. The source distribution produces profile thickness while the
vortex distribution induces curvature of the flow which in theorj is
matched to the curvature of the camber line, Figure (1). These singu-
larity distributions are expanded as Fourier series with an additional

special term.

q(x) = zuw{ B, (Coth/? - 25inff) + B, Sin2f + etc.} (1)
y(x) = 2U.,,{ AoCotf, + A,Sing + A,Sin2f + etc.} (2)
where

377 (1 - cosp) (3)

Uo is the component in the x or chord direction, Figure (1) of the
vector mean velocity Wy. 1 is the chord length,

The term containing Cotjzf/2 has a special significance in each case.
In the source series this term, in the absence of others, produces the
thickness of a Joukowsky profile(1). This ferm is thus usually important
since it produces the general characteristics of an aerofoil, namely a
blunt nose and sharp trailing edge. The Fourier series provides further

control over the profile shape.

In the vortex series.the first term alone corresponds to the
vorticity distribution of a flat plate with inoidence. The remaining
terms of'the Fourier series are required for producing curvature to match
the camber line. If the cascade operates with shock-free inflow, by
definition, the stagnation point is located on the camber line at the
leading edge. Ao is then zero. For all other incidences a vortex

singularity exists at x = o producing the suction peak which is always to
be found at off-design inlet angles.
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The simplicity of Schlichting's analysis resultea from a number of
restrictive assumptions, The major simplification was to locate the
singularities on the chord line rather than the camberline. This reduced
analytical complexity but restricted the allowable range of camber over
which the theory may be safely applied. This assumption has not been
investigated in great detail here but some indiceation of the range of
validity has been given in the latter part of the report by a comparison
of this theory with the exact theory of Merchant and Collar applied to
cascades of 70° and 120° of camber. The authors are indebted to Mr. P.
Gostelow of Liverpool University for his cooperation in deriving these

exact solutions.

Further assumptions were made by Schlichting in deriving thekinemafic
equation which relates source strength to profile thickness. The main pur-
poses of this investigation were to examine the accuracy of the simplified
equation and to study the adaptability of the source Fourier series for
matching arbitrary profiles. The project was extended further dﬁ the basis
of the conclusions that accurate smooth profile data were essential if
large numbers of control points were to be used. To this end a method qf

input data processing was devised which ensures a valid analysis.
The contents of the report may be summarised as follows.

-dection 2.

Derivation of kinematic flow equations.

Section 3,

Investigation of the accuracy of the kinematic source flow equation
by comparison with an exact solution.
Section 4.

Study of the adaptability of the source series when using large-
numbers of control points; especially the importance of specifying
accurate smooth input data, analysis of an unusual profile and estima-

tion of the optimum number of control points.

Section 5.

Data processing to ensure the best representation of a given profile.
Section 6.

Comparison of the performance of cascades with cambers of 70° and
120°, as predicted by Schlichting's theory and the exact theory of
Merchant and Collar.
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KINEMATIC FLOW EQUATIONS

The Kinematio flow equation of particular interest here is the one
which relates q(x) to the profile thickness yg, If the continuity
equation is written for the small area ABCD of the symmetrical profile
illustrated in Figure (1) we have

%Q£X)dx = (ls + u f—%% . dax) (yq + Ha | ax)-(n, -+ wyg (%)

Velocities are defined in Figure (1)a.

This equation is not exact since it neglects the variation of u with
y. For thin profiles this is likely to be a good assumption apart from
the leading and trailing edge regions where a more detailed investigation

of the assumption would be valuable,

The profile slope, on rearranging terms, is

\
z4(x) - ygdu
dyd Z ( ) ydd.x

= (4)a
dx _ Up + u + du , dx
dx

Schlichting made the further assumption that du is small enough to be
neglected also which then results in the more apprg§imate equation,

%ﬁd = 2 U5X+ u (5)

It is possible, following Schlichting, to simplify this equation
still further for the case of very thin isolated profiles for which

U<<Jpe The equation then reduces to

dy _ qfx)
Hig' T 21U (6)

which as the special appeal that it is directly integrable yielding
equation (10) below.

The vortex kinematic flow equation states that the total induced
velocity must have no component normal to the camber line, Referring to
Figure (1)b this results in the equation.

dys Vm + Vv
d&x ~ U, +u (7)

where U, and V, are the components, parallel and normal to the chord

line, of the vector mean velocity W, . u and v are the velocity components
of the flow induced by the singularities. If it is assumed, as is

reasonable, that vq<< Vv, and also that u<<U, this equationapproximetes to



Yy - g Yy (8)

where v, is givén by

x'=]1
K. /{_,__x’(’f')){} ax! (9)
x'=0

Direct integration of equations (6) and (8) using equations (1),
(2) and (9) yields ‘
(10)

B = 3B, (Sinf + 35in2f)+ 5 B,(35ing - Sin3g)+ 2 B;(251n2ff -Sinkfl...eto.
1
(11)

%g_: %A1 (1-Cos2g) + _11_21\.2 (Cos@ - Cos3g) - %A3(1 -2Cos2f + Coskff)+...etc.

These equations were used for the studies described in sections (4)

and (5), -

From this preliminary background theory we proceed to the various

investigations.

COMPARISON OF APPROXIMATE AND EXACT THEORY FOR FLOW PAST A
SYMMETRICAL PROFILE

In this section a comparison is made between the actual profile
generated by a given source distribution in a uniform stream U and the
analysis of this profile by Schlichting's method using equation (5). The
simplest case is conéidered, namely that of an isolated aerofoil, or cas-
cade of infinite pitch. The complication of interference from adjacent
blades is then removed. The exact theory used here actually required the

implementation of numerical techniques for integration and was in practice

‘subjeot to error from this ,source. By repeating the integrations with

decreasing increments it was possible to check successive solutions and to

ensure that errors were negligible in comparison with the analytical errors
under investigation., Details of the exact theory are contained in '

Appendix II. The derivation of the approximate solution and the general

prodedure of the ihvestigation wers as follows,
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An equation analogous to (9), but for the velocity induced by the

source distribution, is

x' =1
‘ (12)
u, = 1 a(x') dx*
q Do U//, {._____T_
X - X

x'=0
This equation may be integrated to yield
u = Ug‘[Bo(1 + 2C0sf) - B,Cos2f - BCos3p +‘etc.} (13)

q .
Remembering also equation (1), equation (5) now becomes
1 3 Z

dyg - BO(Cotjd/2 - 25ing) + B281n2¢ + B581n4¢ + eto, (14)

dx

1+ 30(1 + 2Cos@) - BQCos2¢ - B_Cos3¥ + etc.

3

The investigation proceeded in three stages dealt with in the’

,

following subsections.

3.1 Derivation of a set of realistic coefficients Bo’ BZ’ B3’

for a three term seriss.

3.2 Computation of the induced profile and surface velocity
using exact theory.

3.3 Analysis of the exact profile by Schlichting's method

yielding the approximate source distribution and surface
velocity.

Derivation of a Typical Source Distribution

B

In order to derive a set of coefficients Bo’ B2, B_ which would for
sure produce a realistic aerofoil, the first step was to choose a typical
aerofoil and to match it by Schlichting's method using a simplified form

of equation (14) corresponding to the approximate kinematic equation (6).

¥4

=0 = Bo(Cot¢/2 - 28inf) + BZSiyzﬂ + B

3Sin3¢ + etc, (15)

By matching the profile slope at the three control points

x/].= 3/k, 7/12, 11/12 recommended by Schlichting, a set of three

simultaneous equations in Bo B,B

0 B3 was obtained. The solution yielded
’

the values

32 = 0.111628
B3 = 0.035256

for which the corresponding distribution is shown in Figure (2), curve (a).
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5.2 Derivation of Induced Profile by Exact Theory

For this source distribution the corresponding profile was computed
by exact theory as outlined in more detail in Appendix II. The resulting
profile is shown in Figure (3), curve (a), plotted to an expanded yq scale.

3.3 Analysis of Exact Profile by Schlichting's'Method

Having obtained now a profile and its source distribution, the
accuracy of Schlichting's approximate kinematic equation (5) was checked
by subjecting this profile to an analysis identical to that described in
Section 3.1, but making use of the more exact equation (14) for the profile
élope corresponding to Schlichting's equation (5).

The surface velocity W was computed, remembering equation (13), by

the introduction of Riegel's factor (1).

W = Up + u (16)

/ 1 +(¥3 )?

The source distribution and profile derived by this procedure are
compared with the exact analysis in Figures (2) and (3). The profile
could not be derived here by direct integratioh of equation (14). Instead
the slope was computed for a large number of chordwise positions and the
profile determined by numerical integration from the trailing edge for-
wards.. Because of the infinite slope at the leading edge this was an

unsuitable starting point for the integration,

The coefficients thus determined were

BO = 0.072546
B2 = 0.093271
B3 = 0.013467

The approximate profile matched the exact one very closely, Figure
(3), although in this case the derived source distribution was on average
about 8%% of the true value. The good profile matching is not surprising
when it is remembered that the profile shape is related to a three term
source series through the more approximate equation (15). Indeed such
good agreement of the profiles was the original deliberate intention in
order that the errorin q(x) couldbe isolate@from the errorin profile

matching.

The surface velocity and pressure distributions yielded by the two

theories are compared in Figure (4) and (5). An encouraging measure of
agreement was obtained for this profile which has a fairly large maximum
thickness of 14.4 per cent of the chord. The fractional error in velocity
and pressure is less than that of the derived source strength because the

source-induced velocity has finally to be added to Us whichis at all points
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at least five times the magnitude of the source velocities. In other words
a first order error in gq(x) leads only to a second order error in

velocity and pressure.

This investigation has demonstrated that for a typical asrofoil,
Schlichting's kinematic source flow equation is accurate enough for

practical purposes.

Position of the Leading Edge.

It is well known that a source in a uniform stream generates a
parabolic streamline separating the mainstream from the source flow, with
a stagnation point upstream of the source. It is shown in Appendix 1I that
the series source distribution generates a brofile whose leading edge

coordinate is located just upstream of x

0 at a position given by

\/T Bo 58, - I+B2 1; 613_5
1+3130-}32-133 - - 1+3B1—2-B X

3
For the aerofoil under investigation

X/l = - 0,005

which is negligible for practical purposes

INFLUENCE OF DATA ACCURACY, PROFILE SHAPE, AND NUMBER OF
CONTROL POINTS UPON MATCHING, -

This seotion is concerned with the accuracy with which an aerofoil

may be represented by the source series. Particular attention is
concentrated on the advantage or otherwise of using an extended series with
many control poiﬁts for the purpose of obtaining closer matching. Light is
shed upon the importance of beginning with accurate smooth data when using
large numbers of control points. A restricted study has also been made to
estimate the opt;mum number of control points for obtaining the best

matching of a typical aerofoil,

This investigation could be viewed alternatively as a study of the
adaptability of the particular series chosen for representing functions with
the general characteristics of aerofoil thickness distribution. For this
reason, the siﬁplest kinematic equation (6) was-adaquate to illustrate this
point., A further computational advantage was gained in that the profile was
then represented analyticelly by equation (10), and the profile slope by

equation (15). The surface velocity was computed by equation (16).
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Importance of Data Accuracy with Many Control Points

Three calculations were made of flow past a given profile with 19
control points. Data was supplied to eight, four and three significant
places respectively, in order to study the influence of data accuracy upon

the efficacy of Schlichting's method.

The profile chosen for this purpose was generated by a three term
series using equation (10), and is shown as curve (a) in Figure (7). It
was expected therefore ideally that analysis of this profile with 19 con-
trol points would yield coefficients Bn of zero magnitude for n> 3 and
identical coefficients for n< 3,
eight significant figures, this procedure represents the best working

As the original profile was given to

accuracy within the computing facilities, but of course an accuracy far
in excess of that which is usually practicable. The coefficients are

compared.in columns 1 and 2 of the table below,

Table of Coefficients for Source Serises

Derived Values
Cooffiofent | 3oroel 8 Sig.Fig. | b Sig.Fig. |3 Sig.Fig.| pooriiod

B +.08929 +.08938721 +.01227 -2.03680 | -49.61142
B, +.10417 +.10403869 ++21420 +3.20245 | +66.41216
B3 +.03422 +.03404535 +.1§5§1 +4+.22084 | +97.89990
B, _=.00008599 +.07043 +2.05419 | +37.04083
B5 -00016487 +.14285 +3.94196 | +92.1833
B, -.00005200 +,03878 +1.20631 | +14.60056
B7 -.00014320 +:12525 +3.45599 | +80.77051
By -.00002236 +0168L - + 60021 | + .56769
B9 -.00011359 +.09953 +2.74549 | 464.01240
B -.00000887 +.00435 | + .23139 | - 5.65969
B,, -.00007902 +.06942 +1.91463 | +44.50483
B2 -.00000011 ~-.00077 + 05279 | - 6.20496
Bys -.00004376 +.04078 +1.12344 | +25.87339

" -.00000005 -.00158 - .00559 | - 3.90033

15 -.00001995 +.01890 + 52030 | +11.69935
Bs6 +.00000106 -.00084 | - .00988 | - 1.52059
317 -.00000560 +.00618 + 16938 | + 3.67146
B,g +.00000059 -.00021 - .00296 | - .30429
319 -.00000091 +.00108 + .029%2 | + .60093
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The coefficients in column 4 for three contrel points and in column
2 for nineteen control points, agree to only three decimal places despite
eight significant figures of accuracy of initial data. This is due partly
to rounding off errors during the solution of the simultaneous equations
and partly to the added necessity for matching with high order terms the
rounding off error in the eighth decima1>p1ace of the original data.

In order to assess which was the more important of the above causes,
two further calculations were made of the same profile, but with the
coordinates rounded off to four and to three significant figures represen-
ting the usual order. of accuracy encountered in practice. It will be
observed that the coefficients, tabulated on’the previous page, in neither
case bear any resemblance to the original ones, On the contrary, some
high order coefficients are greater in 1nagpitude than Bo’ B2, and Bj'
This confirms that these high order terms are required to match the sur-

face ripple of amplitude equal to the rounding off error.

The singularity distributions, profiles and pressure distributions
for these cases are shown in Figures (6), (7) and (8). Curves (a) are for
the original three term series. Curves (b), (c) and (d) show results for

eight, four and three significant figures.

The singularity distribution with eight significant figures differed
by a negligible amount from the original, Figure (6). Case (c) agreed
quite well over the central range but large oscillations occured at the
extremities, These errors increased and extended further into the mid-

chord region for case (d).

The corresponding profiles, Figure (7), were derived from equation
(10). As before cases (a) and (b) differed by a negligible amount. For
case (c), the profile shape was correct over the central range but dis-
placed slightly. The further reduction of accuracy in case (d) produced
a remarkable result. Although as before the general profile shépe was
retained over the central range, the vertical shift was increased to such
an extent that the coordinates assumed large negative values over the whole
chord. The high order terms had introduced such large oscillations at the
extremities of the range as to introduce a large net sink strength upstream
of the position where the profile slope is more accurately matched. The
profile results are of course meaningless. With such a singularity distri-
bution in reality no profile would exist. Streamlines would enter the chord
line near the leading edge, and leave towards the trailing edge. The
computed pressure distributions, Figure (8), exhibited similar tendencies.

In this case the pressure distribution with four significant figures was

quite close to the original,
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From these calculations it is evident that accurate presentation and
smoothness of data is vital. OSmoothness of data and suitability to the
matching series was ensured by choosing a profile corresponding to a three
term series. For this special profile a reasonable prediction of pressure
distribution was obtained with four significant figures. On the other
hand no advantage was gained by matching the profile at 19 contrel points.

Further improvement would require greater accuracy of specified data.

Matching an Unusual Profile

As already mentioned, the profile dealt with in section (4.1) was
carefully chosen to ensure a favourable thickness distribution devoid of
characteristics which would require higher order terms of the series, For
the next study a bulge was added onto this profile, Figure (7)e, near to
the trailing edge in order deliberately to introduce dominant high order
terms. The profile was then matched at 19 control points resulting in the
coefficients given in the last column of the table. The singularity
distribution, profile and pressure distribution are plotted in Figures (6)

to (8), curves (e).

The oscillations of singularity strength at the extremities of the
range were even greater than case (d). Once again the general profile
shape including the bulge was quite well matched, though displaced a con-
siderable distance in the negative Y4 direction.

It is quite clear from this study that the method must be applied with
care., The adoption of a large number of control points is not the
irrefutable remedy for dealing with unusual profiles. In fact the same might
be said for profiles which appear reasonable, but which nevertheless require
large high order terms. This is further illustrated in the next section
which deals with such a profile analysed for 3, 5 and 10 control points.

Estimation of Optimum Number of Control Points for a Typical Aerofoil

The purpose of this investigation was to estimate for a typical aero-
foilAand optimum number of control points. The profile was analysed with
3, 5 and 10 control points, Data was specified to four significant figures.
The simplified equation (10) was used. Results are shown in Figures (9)
to (11).

The singularity distribution, which is equal, by equation (6), to
2Ue yé was computed in between control points, Figure (9). Progressive

increase in accuracy of matching was obtained.

The computed profile, Figure (10), with 10 control points matched the
original closely over most of the chord including the curvature at the

trailing edge. The latter, however, introduced high order terms which
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caused a reversal of profile curvature at about 7 per cent of the chord.
This produced a kink in the pressure distribution at the same position,
Figure (14). With 5 control points it was not possible to follow the
trailing edge curvature. In consequence the derived profile was parallel
to the original but displaced in the Y3 direction by about 6 per cent of
the chord. 'The pressure distributions suggest that this was an acceptable
error. Agreement was close over the mid-chord region where the 10 control
point'case gave accurate profile representation., The suctionpeak
corresponding to ideal flow around the curved trailing edge was of course
eliminated. In fact an advantage has been gained here by reducing the
number of control points. In actual fluid flow past the trailing edge,
this suction peak is not found because of the cushioning effect of the
boundary layer which has grown to its maximum thickness at the trailing
edge. Correction of the original profile by addition of the displacement
thickness would be more representative of the ideal fluid situation we
wish to match., Furthermore, the fluid in practice separates from the
trailing edge as from a bluff body, and leaves the aerofoil in a direction
which is probably close to the camber line. The solution with 5 control
points may well be much more representative of the true viscous flow at
the trailing edge. Added to this, the elimination of the reversal of

curvature near the leading edge commends the 5 control point case.

With three control points a much inferior profile match was obtained.

This was reflected in the pressure distribution also.

From this investigation it was concluded that a good representation
of an average profile could be obtained with 5 control points. With less
control points a smooth profile was obtained, but the general shape was
not adgquately matched. With more control points the general shape was
matched closely at the expense of the leading edge where the beginnings of
profile undulations were observed. In addition, the close matching of the
trailing edge curvature with 410 control points did not necessarily repre-
sent the real visoous flow. In fact the 5 control point case was
considered to be more probably equivalent in character because of the

smooth decelerating flow from the trailing edge.

DATA PROCESSING TO GIVE BEST MATCHING.

It is possible to overcome the difficulties outlined in section (4)
by processing the input data. A method which has been used with successGD

_is as follows. As the source series is finally to be used, it is logical

to begin by representing the original profile by a function which it is
certain can be closely matched., Equation (10) for the thickness and
equation (11) for the camber are the obvious choice. These series,
truncated to the same number of terms as will be used in the cascade

analysis, are then matched to the given aerofoil by the method of least squares.
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This mefhod has been tried out on a compressor cascade 10C2/20C50
using three control points. The original, processed and final integrated
profiles are compared in Figure (12), where Y3 is plotted on an expanded
scale. Three terms were sufficient in this case to represent the C2
profile and circular arc camber line with good accuracy. The processed
profile was close to the original and the final integrated profile
derived from the actual cascade analysis agreed with the originél to well

within 1 per cent of the chord at all points.

HIGH CAMBER CASCADES

Schlichting's assumption that the singularities are located on the
ohord line is the one most open to question. A fullinvestigation was beyond
the scope of this préject. The comparisons presented here between exact
and approximate theoriesdo however give an indication of the ran'ge of vali-
dity of this assumption. The profiles chosen, shownin Figure :(14), have
cambers of 70° and 120° respectively. The 70°cambered profile is very
similar to 10C4/70C50. Also shownin Figure (14) are the integrated profiles
derived from the conputed singularity strengths which show that the Schlichting

analysis was obtaininga good profile match, Threecontrol points were used.

The 70° camber profile was analysed with zero stagger, a pitch/chord

ratio of 0:9 and for inlet angles of +35° and -35°. For both cases the
computed pressure distributions, Figure (15), were in very good agree-

ment., The computed outlet angles were as follows:

Inlet , . a, Merchant a2 Schlichting
Angle and Collar 3 control points
o
+ 35° 23.80° 20.28
o
- 35° 24 .84° A 22.57

This can be considered as good agreement considering the large

deflection of the cascade.

The 120° cambered blade was analysed for zero stagger and a pitch/
chord ratio of 0.59. In this case, Figure (16), the pressure distri-
butions bore some resemblance over the first 50% of chord but differed
strongly over the remainder of the span. The outletangles were as

follows;

51.17° Merchant & Collar
L6, 32° Schlichting

It

a2

Thus although the the deflection was predicted to within S per
cent, Schlichting's theory did not give a satisfactory prediction of

pressure distribution for this case of very high camber.
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SUMMARY OF CONCLUSIONS

P

The main conclusions may be summarised as follows:-

(a) It has been demonstrated that for a typical abrofoil
Schlichting's kinematic source flow equation is accurate enough
for normal profiles. Source strength is 15 per cent too small, but
pressure is given to within 4 per cent of the main stream dynamic
head.

(b) The streamline representing the profile cuts the chord at a
position of approximately + per cent of chord upstream of the

assumed profile leading edge.

(¢) Accurate presentation and smoothness of data has been found to

be vital.

(d) The adoétion of large numbers of control points will not ensure
better matching of unusual profiles. On the contrary severe surface
undulations and even complete breakdown of the matching process can
occur. On the other hand, the method has proved eminently suitable

for practical profiles which are known to be good aerodynamically.

(e) The optimum number of control points for a typical profile was
5. This can only be regarded as a guide. A greater number leads
to surface undulation and less representative flow at the trailing
edge. Having less control points restricts the matching accuracy

over the central chord region.

(f) These difficulties can be overcome by initiai data processing
to ensure accurate input data of a form acceptable to the matching
process. Most of the restrictions to profile matching resulting
from use of a truncated series are imposed in this initial step.

A valid Schlichting's analysis is then ensured.

(g) The method proved accurate enough for a cascade with 70° of

camber, Pressure distributions are probably inaccurate above this,
although fluid outlet angle was predicted to within 3° for the case
considered here with 120° of camber.

@
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APPENDIX T
NOTATION

X Direction parallel to chord line.
y Direction perpendicular to chord line.
Ya Profile thickness.
Y, Camber line coordinate.
1 Chard.

Variable of chord defined X 1
ﬂ R -.I-' = —-2-'*@ - COS¢)
g(x) Source strength per unit length.
y(x) Vortex strength per unit length.

X
o(x) - ala)

e

o
W Vector mean velocity.
Ug Component of W, in X direction.
Vo Component of Wy in y direction.
¥ Stream Function.
u= _%.3; Singulsrity Velooity perturbationin X direction.
V=~ .%‘i’; Singularity Velocity perturbation in y direction.

x' = 1

!
uq - q(x ) ax' Velocity perturbation
X - X dgue to source distribution.

x' =1
v 2/ ____(35.'_)- . Velocity perturbation
Y L xt-x | & due to vortex distributio
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APFPENDIX IT

Derivation of profile induced by a source distribution

in a Uniform Stream

The stream function is defined by

oy ov (2.1)
Y ox

The profile in Figure (13) is to be represented by the streamline
¥y = O generated by the source distribution q(x) in a uniform stream of
velocity U.

Since yis a function of x and y -
dy Ay
d“’:'—'o dy+_— dJ[
- dy ix

A
Hence for two points on the profile YA - B = ‘4? udy: -~

j;A vdx =0 (2.2)

If the integration- is taken along the contour BpqrA for example

where the y co-ordinate e of q and r approaches zero, then

Lt v

X
udy - %Jf gdx = 0 (2.2)a
€0 (o]

since Jr v dx equals half of the source flux from the x
B
axis between B and r.

The velocity component u is given by u =T0U + uy

where ug is induced by the source distribution and is given

by

0y f { (x - &) } a=) aa
J{:O (x -a)2 + y2 | 2



Upon integration with respect to y it can be shown that

y 1 '
f u, dy = f 1(a) { tan-1 - - tan”’ < } da
o 8r X-a x-a

€

It then follows that

y 1
Lt Yy dy = U[ _jf) tan~! Y. aa (2.3)
6"06 ) 2 X~a

Where tan~1 E%E lies between + =

We now define

Ax) + /:x a(a) da

Thus  Q(0)

(1)

since Q(1) is the total source strength which is zero for a closed
profile.

In fact Q(x) is an approximation to the y4 co-ordinate, equation (6),
which has been evaluated in equation (10).

The integration in (2.3) is now carried out to give

1

q(a) - , 3 G
o 2 tan~ x-a
1
Vi
- we@ L [ Wy ow
4 0 (x_a)2+y2

Finally equation (2.2)a becomes

__Q(a) da = 0 (2.4)
o (x-8)Zu°

x,y in this equation are the profile streamline co-ordinates corres-
ponding to the source distribution q(a). To determine the streamline, equation
(2.4) was integrated numerically for several values of y at chosen x positions,

the correct value of y being finally obtained by interpolation.
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Leading edge co-ordinate

There is no reason to expect that the profile streamline stagnation
point will occur at x = O, It is more likely to be slightly upstream of this

point. At the nose we have, since y = 0

" = d.a

It can be shown that this reduces with good approximation to

Bk By | BoByBy (2.5)
1+38 5,5, 1+38, - B, - B,

the second term in fact being negligible, For the profile considered here

this gave, referring to Figure (13), the value

B = (] 00
o 5
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FIG.4
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