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SUMMARY

A type of rolling manoeuvre suitable for structural design load calcula-
tions is defined. The governing equations of motion are given in basic form
and in a form suitable for general practical application. Their solution is
briefly discussed and it is seen that a strict adherence to the specified
conditions leads to diffiiculties. A simpler approach is given: examples show
that results agree aocceptably well with those from the strict approach, and
also that a qualitative assessment of the closeness of this agreement can in

each case be made.

Replaces R.A.E. Tech. Report No.64038 - A.R.C., 26622
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1 INTRODUCTION

'One of the manocsuvres considered fundamental in the estimetion of
structural design loads is the aileron-induced manoeuvre, the alrcreft res-.
ponding predominantly in roll but also in other degrees of freedom. The
current approach is to divide the load calculation intu the determination of
the "rigid body" response of the aircraft to aileron application and, subse-
quently, the coriesponding distribution of net external load™. The former
part presents greater difficulty from the computational point of view and is
the subject of this Report. The equations and analysis are developed with
ease of application to digital computers in mind: the availability of automatic

computing facilities is essential in tackling the present problem.

The type of manoeuvre to be considered is defined fairly precisely and
the equations of motion are developed in a form suiteble for general application.
This is desirable since, although the "response" method has been widely accepted
for some time as the standard technique for this loading problem, the lack of a
document describing in some detail both the problem and methods for its solution
has led to two mejor difficulties. The first is that the various groups engaged
in such work have adopted a number of variations on the basic scheme and, while
each may have its particular merits, such diversity makes communication diffi-
cult. Secondly, it is necessary for the aerodynamicist to appreciate what
information the structural design team requires and the form in which it should
be given: equally, the date given by the aerodynamicist must be immediately
understood. Lack of standardisation can cause the waste of time and effort;

providing e basis for avoiding this is one of the purposes of this paper.

The other purpose is to present and briefly illustrate an approach,
likely to be of practical value to the designer, which produces calculations
of the motion of the aircraf't for a fraction of the effort involved in a
strict adherence to the defined conditions while giving rosults sufficiently
accurate at least for preliminary work. Moreover, the reliebility of the
approach in any case can be assessed qualitatively from the results produced:
this is an important consideration in any approximate method. In general, then,
the use of this simplified approach is thought to effect a good compromise

*The above division of the calculation is 'strictly valid only if the aircraft
can be considered rigid. Some account may be taken of aeroelastic effects by
the "method of modification of derivatives"!; however, as has been notedz, care
must be taken in the application of this "quasi-static" technique to essentially
dynamic problems.



between precision and convenience in most cases, while exceptional cases can

be recognised and treated by more rigorous and laborious techniques.

2 DEFINITION OF THE MANOEUVRE

The specification of the type of aileron=-induced rolling manoeuvre to
be considered for structural design purposes can be approached in a variety
of ways since, if it is assumed that the initial conditions are fixed,
requirements can be formulated in terms of the aircraft kinematics at the end
of the manoeuvre, the aileron input used, and the form of the response itself.
The definition of the manoceuvre will usually be achieved by the choice of
specified conditions from at lcast two of these. Only one such choice is
considered in detaillhere, although much of the paper is clearly more

generally applicable.

In éeeking requirements for modern aircraft we wish to choose a
manceuvre which at any speed and altitude is structurally at least as severe
as any feasible rolling manoeuvre at that speed and altitude. Therefore this
manoeuvre should accommodate any adverse effects that arise from aerodynamic
demping deficiencies, inertia and aerodynamic coupling, or violent pilot
action. The following requirements, which allow their numerical specifica-
tlon to be chosen to suit a particular aircraft or class of aircraf't, are in

accordance with these desires.

R(1) The aircraft is to roll through a given angle of bank.
R(ii) At the final bank angle the rate of roll shall be zero.

R(iii) The aileron input is to be of a specified form.

This last requirement has purposely been stated in a general fashion since,
although detailed analysis is given below for only one form of aileron input,
the main lines of approach would not be altered should any other form be sub-
stituted. Aileron input here refers to the deflection of the control surfaces,
not the pilot's control. The above requirements might not be satisfactory
should there be an indirect relationship between pilot action and control

surface deflection, for example if rate demand cortrol were employed.

3 THE EQUATIONS OF MOTION

. The equations of rigid body motion as given herein apply to the
principal inertie axes system, Gxyz, shown in Fig.1. The orientation of

these axes in space is defined with respect to a system of axes, GXYZ, of

~
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fixed orientation by the Eulerian angles 6, ¢, | shown in Fig.2*, GX and GY
are horizontal, GZ is vertical; the direction of GX (and hence that of GY) is
left undefined since ¥ does not enter the present analysis but is included for

completeness.

As is usual when considering rapid manoeuvres in which the velocity com-
ponent u is not of primary interest, we regard this as constant, so eliminating
one equation of motion. Further, the total velocity V is taken as constant and
it is assumed that one can simplifly the kinematic terms involviné u by setting
W/V equal to unity.

341 Basic form of the equations

\
Under the conditions and assumptions of the preceding section the equations

of motion are, in basic form

,, %(g:%+r—pa> = Y+ Wecos 6 sin ¢ (1)
%§l<%% + 7P - §> = %+ Woos 6 cos ¢ (2)

A %%-'- (B-C)gr = L (3)

B %% -(C-Arp = M-l (1)

c %% -(A-B)pg = N+ Mg (5)

where o = w/V, g = v/V¥¥*,

ME is the sum of the angular momenta of the rofating parts of the engines
due to rotation about their own axes (here assumed to be parallel to Gx), that of
alparticular engine being positive f'or rotation in the sense of positive p. Y,Z
are the total aerodynamic forces along Gy and Gz; L,M,N are the total aero-
dynamic moments about Gx, Gy, and QZ.V

) definition of these angles may be found in Ref.3, the system GE?E therein
being replaced by the system GXYZ above.

#3With these definitions, a and B do not represent easily recognisable angles:
however, for small values they are very near to the radian measure of the angles
of incidence and sideslip. For convenience, then, they will be termed incidence
and sideslip and bc regarded as being in radians; their velues multiplied by
180/n will be regarded as being in dogrecs.



3.2 Practical forms of the equations

As the first step in recasting equations (1) to (5) in a form amenable

to numerical treatment the forces and moments Y,Z,L,M,N are expressed in terms

of velocities and control angles.

upon the purpose for which the equations are to be used, the relative

The expressions which are chosen depend

importance of various quantities in each expression, and, to a considerable

extent, upon the amount of theoretical and experimental data which the user

hopes will be available to him.

Bearing in mind the current state of the art

in predicting and measuring acrodynamic forces, and anticipating the initial

conditions of Section 3.2.2, the following expressions are chosen:
oC* ,9C*

. .2 acy BC§ v
Y=§PVS<6‘3 B+ P+3uTH

op

eC*

Z 1 ov%s

\ z da

g

/_ oC*
C + —2qa+—2 >

”

)

ac* ac* oC;
L = 3 pVZS b 8 P4 Lo+ é\
, .o ~ 3c* acg . ac; ac;
M = zpVSec <Cm t3. o ¥ a + 3q qQ + F
&
\ 2 ac; ac; aC* C;
N=~§pVSb<aB B+-é—-—p+5;~r+3g*€>
Cz = [Cz]a,n- Cm = [Cm]a,&,q,n=o

(6)

(7)

(9)

(10)

The starred differentials indicate that these are taken to be variable
with the quantity with respect to which the differentiation takes place, and

with incidence,

In the majority of cases the available data can be adcquately fitted by

expressing the differentials as 1inear functions of o alone:

been used in the analysis and examples

differentials are written, for example

ac 5. ¢
X = X
op o8

of Scction 6.

this form has

In such a case the

For example, aq;/ag is assumed to be a function of B and a.

\-

“
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This same notation is retained for the generalisation of the usual aerodynamic
derivatives. That is Yy is generalised to yﬁ, for instance, and we write by

snalogy with the above expression

i

© , ¢y )

N
¥y = 7. v

v

When the force and moment expressions (6) to (10) are substituted into
equations (1) to (5) the arrangement of these equations in terms of aerodynamic
derivatives may be made in a varicty of ways. The following set of equations
has been found very satisfactory for practical application since & minimum of

multiplicative constants is used and real time is preserved.

E %% = t (po. = r) + yip+ <£%> y; P+ <§%> yhr+ yg E+ Focos 6 sing (11)

% %% = % (q-pB) + 7+ zy o+ z; 1+ F cos 0 cos ¢ (12)
(—12. & .b.. ] .h.. * % b

Yy 35 = 6y O+ CIp+ <2V> LP D+ <2V cr T+ eg E (13)
dgq _ - # L) * s LY s ¥ r o T

Ypar = Gg TP+ M+ mbas <V> my G + <V> my q+ mt E, T (14)
dr _ " DY DY L« i -

Yoqg = B PA+ niB <2v> n p + (2v> ntr+nf €+ By(a-q) (15)/

/ When equation (5) is recast to giée equation (15), the right hand side
contains the term E2 q. However, retention of this term is contrary to the

initial conditions of 3.2.2 since in symmetric flight there would be an
unbalanced yawing moment giving non-zero acceleration in yaw. We assume that
this is balanced by a small rudder deflection which contributes negligible side
force and rolling moment, and hencoc replace E2 q by Ez(q - qo) as abova.



where
- 13 - _ L.c
zZ = ZCZ m = oY) Cm
W - VE W
F = - t = =~ = ——z=
oS V2 8 gp SV
F F ¢
B = —-ﬁ B = ME
1 Wo 2 ¥(b/2

_ _FA _ B _ _FC
Yy  Wv/2) g = W Yo © W(o/2)

_ KB -C _ R -4 _ Fa-B)
8y = TVWI(v/2 8y = W & W(o/2

Some further notation may conveniently be given here, although it does

not O6ccur in the analysis of this paper. This is

B-C C=-A - A-B

b
P
1
>
o2
1
w} |
'ﬁ
a
f
Ol

It will be noted that By = Ty fA etc.

Equations (11) to (15), togethor with the kinematic relations

%% = qcos ¢ -~ r sin ¢ (16)
%% = p+qtan 0 sin¢ + r tan 6 cos ¢ (17)

are those which are used to compute the responsce of the aircraft.

3.2.1 Notes on the aerodynamic derivatives

Two points concerning the aerodynamic terms in the above equations
should be noted.

(1) To simplify the kincmatic terms, o is defined as w/V and B as v/V.

AL

The aerodynamic terms must be given with regard to these same definitions,

and not alternative forms such as arctan(w/V). Also, principal inertia axes
ers used rather than stability axcs. Wind tunnel results should be analysed
with these points in mind as subsequent transformation of derivatives is time-

consuming and inaccurate.
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(2) The incremental values of response quantities can be quite large and
hence it is more important to be able to reprcsent the aerodynamic forces with
good accuracy for fairly large departures from the initial motion then with
closer accuracy over a restricted range. Expreséions for the derivatives must
be chosen accordingly. In some cases a set of derivatives, all of which are
adequate over the whole range of initial normal accelerations, no, cannot be
found; it is then necessary to use different expressions when n lies in
particular ranges, the computed response indicating whether the range of
validity of a particular expression has been exceeded, in which case the com-

putation is repeated with an alternative one.

342.2 The initial conditions

The above practical equations of motion, (11) to (15), have been developed
while anticipating the initiel conditions, i.e. the eircraft's motion at the

start of the manoeuvre, described in this section.

The aircraft is in a symmetric pull-up or push-over at a specified
normel acceleration, n s the flight path being approximately horizontal and
a and q being instanteneously zero. This condition is not in g%neral steady
due to the changing noxrmal component of the weight; however the resulting
accelerations are small over a fairly long time. (Tho term "quasi-steady
flight in a vertical circle" is sometimes applied to this condition.) More
precisely, the plane of symmetry xGz (Fig.1) is taken to be vertical and the
aircraft's initial motion is in this plane and unaccelerated with respect to

the axes Gxyz. -Then from equations (12) and (14) are obtained

-17% 5 * - }
(z + oy ag + ap no> = tq +F cos 6 (18)
and
- )
% 2 R * =
m+ mt oo+ <V> mq a + mTl n, = 0 . (19)

Now the normal acceleration, n,s is given and

cos 6 + q V/e (20a)

o]
1]

or

n F (20b)

o]

t qo + P cos 60

Equation (18) then becomes

-z # * =
<z * 25 o+ 2 n0> n, P . (21)
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Tor simplicity it is usual to teke 60 = 0 and hence a, is obtained from

equation (20a), and a, and Mo from equations (19) and (21).

It has been usual to obtain from the equations of motion only incre-
mental velues of response quantities, o, and % having been found by
preliminary calculations. Ilowever, with the above recpresentation of the
aerodynamics, which is meant to cover large variations in incidence, it is

possible to retain the same aerodynamic data for varying values of n . Then

-

equations (19) and (21) may be solved within the main response calculation

_program: this is of particular velue if the aerodynamic derivatives depend

)

markedly on a, necessitating an iterative method of solution.

L THE AILERON INPUT FUNCTION

The form of the ailcron input function demanded by R(iii) is assumed
in the prosent report to be as shown in Fig.3(a), that is a "double
trapezoidal" function. This is uniquely defined by seven pérameters: the
rates of aileron application 1/x1, 1/&2, 1/x3; the angles &, &,; and the
times t, and t,. Of these 1/x1, 1/k2, 1/rc3 are in all cases taken to be
specified and, with the exception mentioned in socction 6,2, it is further
assumed that £, and &, are also given. Then requirements R(i) and R(ii)

are sufficient to detormine t1 and t2. ' o

In the majority of cases each of the five given quantities will take

its numerically groatest value (appropriate to the flight conditions) so that

o

the manceuvre is a limiting one, the possible exceptions being in cases where
the manoeuvre loads imply that because of jack stalling, for instance, these
values cannot be attained. We assume that modifications introduced to cover
these cases will not alter the general form of the requirements and so do not
pursue this point any further. It may be mentionecd that the idealisation to
infinite rates of aileron application (x = O) is not considered desirable
since this leads to unrealistic responses, particularly in roll, as wcll as

causing programming difficulties.

5 CALCULATION OF THE RESFONSE TO AILERON INPUT

Ry

The set of differential equations (11) to (17) may be solved on a
digital computer for known input E(t) by any suitable marching process: there

gy

is usually a standard process readily available to the programmer and so this
report will not discuss the various alternatives. Experience with a particu-
lar process will soon enable questions such as the best choice of marching
step to be decided.
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The greatest difficulty in prdactice is that, within R(iii), the exact
function E(t) which will satisfy R(i) and R(ii) cannot be computed before the
full response calculation is performed. One can only find.an approximation,
compute the response, and then adjust E(t) in the light of the results obtained.
If R(i) were the only one not satisfied this would cause little trouble as one
could then merely perform the response calculations for differing tank angles
and interpolate to find the required information: however, it is often the case
that the initiel estimato of E(t) leads to R(ii) being badly violated, thus
necessitating adjustment of E(t). Such a state of affairs is very serious from
the designer's standpoint since much time and effort is needed in this adjust-
ment process. In fact if the aircraft's flight regime is to be adequately
investigated the employment of such a technique for every flight condition
considered would be quite unpractical. The designer's need is first to decide
on a fairly small number of manoccuvres among which are those giving critical
design loads and then, possibly, to investigate these more fully. To satisfy
this a technique is sought which can be applied with a minimum of effort, still
assuming the use of a digital computer, and which yields results accurate enough

to allow reliable assessment of a manocuvre's severity.

6 A SIMPLIFIED APPROACH TO CALCULATING THE RESPONSE

6.1 Outline of the method

For practicel purposes it is suf'ficiently accurate to apply R(1) te [ p dt
rather than to bank angle and thus both R(1) and R(ii) are requirements
applying to the time history in roll, p(t), alone (see equation (17)). Hence
by choice of p(t) one can ensurc that R(i) and R(ii) are simultaneously satise
fied. If, then, this function p(t) is substituted into oquations (11) to (17)
the remainder of the response quantities mey be computed, egain by a‘marching

process.

Within this basic idea there are many possible practical appré&ches, the
differences between them stemming from the ways in which-p(t) is detefmined.
If p(t) be chosen with little or no regard for the actual dynamic properties of
the aircraft in a particular flight condition then the results of the response
caloulation cannot be expected to be reliable. This lack of realism is of'ten

most clearly shown in the prediction of rather curious aileron movements.

We assume that the "direct" terms in the rolling equation are suffioient
to describe the manner in which the aircraft is manoeuvred to a given bank

angle, the aileron input being of the required form. Consideration of these
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terms alone allows the response in roll which satisfies R(i) and R(ii) to be
computed. This derived function p(t) is then used as an input to the set of
equations (11) to (17): equation (13) is now not a differential equation but

is used simply to obtain E.

In determining p(t) one also finds, at least implicitly, the function
£(t) which would lead to the satisfaction of R(i) (with ¢ replaced by [ p dt)
and R(ii) if the response in roll were indeed governed only by the "direct"
terms: in this ideal case the substitution of Z(t) into equations (11) to
(17) would produce results identical with those of substituting p(t) into the
same equations. The approach suggested here of considering p(t) as the input
funcfion results in the effects of additional terms in the rolling equation
being reflected in g(t) differing from the form of R(iii). However, it will
be seen in some later examples that this lack of conformity is of'ten not
gross and that the rcmainder of the response quantities agree fairly well
with those found by the more laborious technique of adjusting E(t) so that
R(i) and R(ii) are met while preservihg precisely the form demanded by R(iii).

The method is similar to that of Pinskerl* but extends his analysis to
more genersl responses in roll, and also places emphasis on £(t) remaining
close to the required form.

6.2 Analysis of the method

It is convenient to introduce an alternative notation to describe the
aileron input function, as illustrated in Fig.3(b). This notation and that of

Fig.3(a) will be used concurrently as economy and convenience demand.

Retaining only the "direct" terms in equation (13) we obtain

& _ (g
Yaat ~ (2v bt
EP and ZE are some constant velues of 8; and £%, the choice of which is some=

what arbitrary: they will often be chosen to agree with 6; and &E at or neer

oy but if they depend markedly on a, and the incremental values of a are

[} }

g & & (22)

large, other values may be more suitable.

Equation (22) is rewritten in the form
£
4 = Ly
{dt e} P o= -8 (23)

. L
wheree:-——E-
2 YA

S8

(U3

[



13

The general solution of this is

p = Aexp(et) + p* (2)
Z -3
: ; w_ &ld _
in which p* = Y, {dt } E.

}‘With\?—;(t) as defined in Section 4 we have E taking one of two forms,
depending on the value of t:

-

or

2

n
g
+
=
P
ot
!
!
N
-

with the corresponding expressions for p*

Z
* - - 1
o= - == % . (258)
L 1
P:k = - ey <€ + ;E) N (25b)
A :
Nowlet A=A for T £t < T ,; then
n n n+1
¢ P = A exp(et) - e&t/x1 - &/x1 y 0<tsT (26.0)
P = A exp(et) - e8E, , T, stsT, (26.1)
P = A, exp(et) - 88, - ed(t - T)/ky = 8/ky 5 T, $ts Ty (2642)
P o= A explet) - eng , Tt T (26.3)
p = Ah. exp(et) - ebg, = ed(t - TA)/K3 - <3/xc3 R Tl&- st s T5 (26.4)
: z
where & = -—2—€-— .
15

YA

f‘l‘he subsequent analysis assumes that none oft Kys Koo xc3 is zero. As has been

stated above, the use of infinite rates of aileron application is not desirable;
should they be used the analysis moy casily be modif'ied by eliminating the
redundant time intervals and proceeding to the limiting forms of certain
expressions.
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Since p(O) = 0, and p(t) is continuous’

S

A =

o Ky
A =A-—§-—exp(-e‘1‘)
1 ° m1 1
A = A+ 2 exp(- & T,)
2 M1 X, 2
A, = A, - —Q-exp(- e T j
3 2 &, 3
A = AL+ —é-exp(- e T) .
L 3 x3 L

(27.0)
(27.1)
(27.2)
(27.3)

(27.4)

As E,, &, Ky Ky K3 8T assumed to be given, £(t) is uniquely defined by

the quentities t1 and tz: the corresponding function p(t) then follows from

equations (26) and (27). t, end t, are determined as follows.

1 2
First, condition R(i) is applied to p(t), in the form
T .
5 -
.fp(t)dt=¢.
(o]

Integrating equation (23) and applying the conditions p(0) = p(T5) =0

we have
T
z 5
—e ¢ = —gft-;dt
o
which in this cese becomes

(28)

¢ = - ¢€d {t1 g1 + t2 52 + %(Ki gf - Ky E? t Ko Eg - K3 Eg)l .

eee (29)

Applying now R(ii), i.e. P(TB) = 0, to equations (26), (27) we obtain

w [ - empl-eml] s g oxp(cen) 11 - expl- o (1 - 21

i

3 .

+ é;-exp(f'eﬁi) [1 - exp{- e(T5 - Th)}] = 0

ees (30)

<o)

)

1
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(5]

)

[4]

K
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or
2% a,a
= (may) + 25 (1ms)) exp(-et,) & =2 (1-a,) exp(-ct,) exp(-et,) = O
1 ‘ ’ (31)
where

a, = exp {=ex, ]
a, = oxp {~ex,(E, ~ &)l

8; = exp fe Ky g2§. .

Equations (29) and (31) now enable t1 and t2 to be found uniquely. In

certain cases the resulting value of t, becomes negative: the approach is then

2

to set tz to be zero and regard 52 as variable. The solution of these eguations

is discussed in Appendix A.
The function p(t) is thus determined and used 2s an input to cquations (11)
to (17) which can be solved by a marching procedure. ZEquation (13) is replaced

by
A (. £ . (2 b_
£ = oF {YA at = 8y Ly B - K2v> 5P <2v> A2 r} (32)

which is used to compute that aileron function £(t) which is in fact neccssary

to perform the manocuvre, when p(t) takes the previously calculated form.

6.3 Examples ¢

To attempt to give a set of examples covering all practical cases would
be prohibitive and the use of the above simplified method in any particular case
must be judged on the morit of the results obtained in that case. One must
therefore be able to decide, having only the results of this method, whether
such results give a reliable measure of the manoeuvre's éoverity. One can do

this for the examples below, and most cases are expected to allow this facility.

The oxamples chosen and shown in Tigs.i(a), (b), and (c) are 180° rolling
manoeuvres. Thoy all apply to the same aircraft, a high speed delta wing
research aircraft. Illowever, variations in the initial conditions of speed,
height, and normal acceleration (indicated in the figures) lead to differences
in the aircraft's dynamic properties and so to different responses. In

particular, the differing characteristics of the responses in roll lead one to
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consider that theso examples should test the applicability of the above method
to e wide range of manosuvres. (For more deteiled information the interested

reader may refer to Table 1, which lists the data for these examples. )

In each figurc rate of roll, aileron angle, incidence, and sideslip are
plotted*., These quantities are not, of course, sufficient to determine all
the significant manoeuvre loads but they are indicative of the degrec of
success of the present method. To reduce further the amount of discussion,
while still enabling a critical assessment to be made, the comments below
concentrate on the two quantities incidence and sideslip. The full lines
are the results obtained by the use of the simplified method while the dashed
lines, tormed "exact", were produccd by successively altering the aileron

input function prescribed by R(iii) until R(i) and R(ii) were closely mot.

In Fig.4(a) it is seen that E(t) differs somewhat from the "oxact" time
history but remains similar in character over most of the manceuvre:
incremental incidence and sideslip reflect this in that despite some
differences in their histories the maximum value of the former agrees with
the "exact" value within about 74 and that of the latter differs from the
"exact" value by a barely perceptible amount. By coﬁtrast, the results shown
in Fig.A(b) are far from satisfactory: maxima of incremental incidence and
sideslip are overestimated by the simplified method by nearly 100%. A strong
indication of this lack of agreeﬁent could be obtained by a glance at E(t) in
this case. The deviation from the correct form is.considerable over almost
all the manocuvre so casting doubt on the reliability of the simplified
method. With Fig.h(c) we return to more acceptable results, as evidenced by
the genorally good agreement of E(t) with the "exact" form. In this case
agreement between maxima of incrementel incidence is obtained to within

2+5% and the maxima of sideslip agrec to within 8%.

6s4 A modification of the simplified method

The reason for unsatisfactory results in cases such as the second
example above must be that the response in degrees of freedom other than

rolling has considerable influence on the response in roll. It is then

*In order to roll through a positivo bank angle, 51 must be ncgative. There-

fora (-g) is plotted to give complete corrocspondence with the aileron function
of Fig.3. Similarly in the Appendix when it is convenient to choose a
particular sign for KB, and hence for the other quantltles defining the

aileron function, this is taken to bo negative so that ¢ may be positive.

<
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natural to consider whether account can be taken of this and more'reliable
results obtained. A method of achieving this is now described: its basis must
bo regarded as semi-empirical but, as will be seen, considerable advantages

can be gained from its application.

It is assumed that the effect of other dogrees of freedom is to change
the damping in roll such that this now has the {9onstant) effective value ZP'
Then the roll response is governed by thc cquation, analogous to equation (22)

QE _ l = -
Suppose that results have been obtained using as input the time history in roll
given by equation (22) and that at time t = T2 the velue of £ obtained from
equation (32) is £'s Thonat t = T '

2
EJRAAY; ;
|dtl, T <2v> T, p(T) + & &, (34)
-T2
v (2] - (2)E I
Ya|at |, * <2v> €, p(Ty) + ¢ B . (35)
-T2

Hence

(]

- '- :
=z_.2_\lf£§;(_j£11, . (36)
P P \Db plT,
If p is small at this point equation)(}é) tends to the simple relation

- - - 1 .
e, = L& /€, (37)

With EP calculated {rom equation-(36) or (37) the simplified method mey be
applied again with 6p replacing & « Results obtained from this "modified"
mothod arc shown in Figs.4(b) and (e¢), denoted by chain-dotted lines. (In the
cases of o in Fig.h(b) and p in Fig.h(c) the "modified" results are so near the

"exact" ones that plotting them is impracticable.)

In the example of Fig.4(b) the above modification has been successful in
bringing the form of E(t) into almost complete agreement with R(iii) end in
consequence the maxima of incremental incidonce and sideslip are within 13% and

% of the "exact" values. In Fig.4(c) the already good agreement betwecn the
"simplified" and "exact" values of incidence and sideslip is somowhat improved
by the modification, the form of the incidence history showing particular

improvement.
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The chpice of the point t = T2 for identifying equations (22) and (33)
has been made in an arbitrary fashion but it seems intuitively that this
choice is a suitable one. In the majority of cases the aileron time histories
are similar to those of the sccond and third examples above in that t1 is
large compared with T1, and in such cascs the success of the simplified
approach depends mainly on keeping the value of & near to 51 for most of the
time interval t1: it can be expected that agreemont will be excellent at TH

and so attempting to achieve agreement at T, recommends itself.
&

7 CONCLUDING DISCUSSION

The early sections of the paper described the type of aileron induced
rolling manoeuvro thought to be the most suitable for structural design
purposes. Tho cquations of motion of the aircraft were then developed in a
form suitable for practical application to calculating the aircraft response,
retaining sufficient generality for their universel use in this problem while

tailoring them to its particular requircmonts.

It was seen that the prcduction,of rigorous solutions of these equations
under the specified conditions‘caused serious practical difficulties, the
effort involved in overcoming these being so large that any attempt by a
designer to produce such solutions for all flight conditions he would like,
or be required, to cover would be unpractical. The designer's necd was
suggested to be a simpler method which could be used to sort out the most
severe manoeuvres, such manoceuvres being the subjects of subsequent more
rigorous calculations. Section 6 prescnted such a method, which it is thought
will give, in the great majority of cases, reliable indications of the
severity of particular manoouvres. In addition thé degreec of reliability can

be assessed, gualitatively, from the results obtained.

The recommended approach to doaling with a lerge numbcr of rolling

" menoeuvres for structural dosign purposcs is, then
(1) Apply to each manoeuvre the method of Section 6, in its basic form.

(ii) Apply the modified method of section 6.4 to those cases giving
results thought to be unreliable.

(iii)‘If any cases remain in doubt these should be treated rigorously,

as described in section 5.

(iv) Having decided from the results of (i), (ii) and (iii) which cases
produce the most severe loadings on various aircraft components, these cases

can be treated in a rigorous manner to obtain the final "design" loads.

¥
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Appendix A

THE SOLUTION OF EQUATIONS (29) AND (31)

The purpose of this Appendix is to discuss methods for the solution of the
pair of simultaneous equations (29) and (31), i.o.

3o omeblt g vty By e by & mky Bk, Es - kg By (29)

and
0 = (1-a1)/x1-+a1(1-a2) exp(-st1)/x24-a1a2(1-a3)‘exp(-et1) exp(—etz)/u3 .

eer (31)

It 1s essumed that there is at least one solution (t1, tz) such that t1 2 0 and
that we arc interested oaly in such solutions. From equation'(29) it can be seen
tha# for most practical cases, where the absolute values of Kyy Ko end 3 aro
fairly similar and also 52 is close to —51, t, < t,. Hence a positive value for

2 1

t1 may correspond to a negative value for't in this evont an alternative

o
approach must be used. Before discussing numerical methods for obtaining a

solution, then, it is necessary to establish its nature.

It is shown that there.can be only one solution with t1 2 03 the criterion
for deciding on the sign of the corresponding t2 then follows immediately.
Firstly we note that if 51 and 52 arc assumed fixed and of opposite signs then,
4 Hence if the
right hand side of eoquation (31) be donoted by F and this be regarded as a

function of t1

from equation (29), t, is o linear and increasing funotion of t

1 . & Ha, 8, '
F(t,) = % (1-e,) + %, (1-0,) exp(-st,) + < (1-a;) expl-e(142) 1

ees (38)
where A = -51/32 >Oaeand p >0,

Since e KB 52 > 0, a3 > 1 and so
F+-oosgn(rc3) 85  t, oo .
With no loss in generality'we assume that x3 < 0, i.e. sgn(xB) = =1, Then we
can writo (38) in the form
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P = a-b'v+c'r1+)\

where T = exp(-st1) and a,b,c > O,

An expression of this form has either no real positive zeros or has exactly
two. Here we have assumed that there is such a zero and, moreover, this

corresponds to a positive value of t1. That is there oxists T > 1 for which

a-b'?+1051+)' = 0 . (39)

We now show that the other root of F = O corresponds to a value of T less

than unity, i.e. to a negative value of t1. It is sufficient to show that

dF -
[EE->O for any 7 21
T
or

-b+c(1+7\)$">o .

Now
cb+c(t+A) T = Ab- (142 o/f from (39)

and since the second term on the right hand side is negative, if the inequality

be proved for T = 1 it will hold a fortiori for T > 1. Therefore we require
A= (1+2)a>0

or, substituting for a,b,\ and after some elementary algebra

exp {—ex2(€2-€1)3 -1 exp {e X, 51} -1

= - - >0 . (40)
But
exp(x)-1>x for a1l x4+ 0
!
or
explx) - 1 explx) = 1
- >1 for x>0 - <1 for =x<0 .

Applying the above two incquelities to the first and second temms respectively
in (40) the desired result is obtained.

i)

«
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The oriterion for the sign of t, may now be immediately deduced. For

tz =0

; _$ 1 2 _ 2 2 _ 2
b & = o aley By - ky By 4wy By - kg Bp)
and substitution of this value of t1, say t*, into F(t1) will produce a negative
or ‘positive result according to whether t* is less than‘og\greater than the
positive root for t1. Since t
obtaln

2 is an increasing function of t1 we therefore

t, <0 if and only if P(t*) >0 .

When F(t*) > O, then, we sot %,
convenienca of eliminating square roots, wo regerd F as a function of 52.

= O and regard E: as variable; also, for the
2

In generel equation (31) can be solved only by an itorative method: the
practicel application'of two such methods will now be discussed.

One method which is practicable is the Newton-Raphson method”: for this
the first derivative of tho function with respect to the independent variable
is required. The expressions for this in the two possible cases are given

below,
If F = F(t,)
& ] 2% ) -
I, = e oxp( et1) {“2 (1 az) * x5 (1 a3) <1 z exp( st?)}
or if F = F(gz)
0,8
%%; = € exp(-et1) {a1az + ;32 (= Ky + (KZ-KS)aBJ

E
+ (KZ'KB) E—f- [;é (1-a2) + a;‘:z (1-9.3)]} .

An immediete question with such e method is as to the choice of a starting
point for the iteration which will ensure cbnvergenoe to the required root.
Since it is necessary to compute P(t*) to decido whether t1 or 52 should be
considered the indepondent variablo, it may be hoped that t* is a suitable
point and it has indeed been shown that in either case this choice doss ensure
convergence, at lcast for the most common situation, namely Ky = <K, = x3.
(The proof is omitted since it is & little tedious and devoid of intorest.)
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An alternative method is to apply a search procedure: the following

description is for t, as the variable, that for the alternative situation

being exactly simila;. As in this casec the required value of t1 is greater
than t* the first stage is to march forward in t1, with step h say, until a
value of t1 is found such that F(t1) > O. Then the root lies in the interval
(t1 - h, t1): we step back h/2 and compute F at this point. The sign of F
will then indicete whether the step back has passed over the root or has not
reached it: we next step h/L in the appropriate direction. By this method
en intervel of length h2'n, where n is a specified positive integer, can be
found in which thé root must lie. (This is mathematically sound but the

process has a practical limit: see discussion below.)

0f these two methods the former is rather the better; the more compli-
catod nature being offset by more rapid convergence (and hence fewer
exponentials to compute), as well as by the certainty of each iteration
producing an answer closer to the root than the previous estimate, a property
not of’course possessed by the search procedure. In practice both methods
are severely limited by the accuracics to which the constituent terms in F
(end its derivative) can be calculated, and the specification of too large a
number of iterations or too small an absolute error should be avoided as
uneconomical and self-deceptive. Experience with the facilities which are
available to him will soon indicate to the individual tho accuracy for which
he is entitled to ask. From this point of view also, the Newton-Raphson
method with its inherent properties of sclf-correction is the better one to
use.

)
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Table 1

DATA FOR THE EXAMPLES; PIGS.4(2), (b), AND (c)

a b o
¥ -0+182 0O -0:167 O 04171 0
y; 0 0 0 0 0 )
y* 0 0 0 0 0 0
yg 0 0 0 0 0 0
Z 0+051 0+018 -0+012
2t 1472 0O -1:215 0 -0:909 O
z; -0°346 0 -0+156 0 -0*15 0O
54 ~0+032 ~0+62 | -0°034 =-080 | -0.042 =-0+33
e; -0+237  0+012 | =0+144 =1+10 | -0+127  0+93
e 040205 0 0°0945 O 003, O
cg -0+110 0 -0+0665 © -0:0673 O
i 000713 000774 -0+0026
n? 0042 O -0+128 O -0:087 O
m; -0+0503 O 003 O 0:03, O
m; ~0+129 0 -0:297 O -0:297 O
mﬁ -0+118 0 -0+087 O -0:087 O
n* 0+083 ~0°195 | 0-0745 O-0L6| 0081 0054
n; ~0+04 0066 | =0+0072 =0:022| =0-0017 -~0°+14
n -0+329 0O -0+193 0 -0+185 0O
ng ~0°0106 0:014 | =0°0172 0°+10 | -0-005 0°17
A 7602 7602 7602
B 53815 53815 53815
c 60319 60319 60319
b 250 2540 250
) 208 208 208
w 17500 17500 17500
F 0-09 0-028 0+028
v 1422 1550 1550
n, 2+0 240 -0°5
Ep -0+235 -0+2105 -0+153
‘z‘p -0+309 -0+099
EE =010 ~0+0665 -0+0673
¢(deg) 180 180 180
Ky -0+0125 -0+0125 -0+0125
Ky 00125 0+0125 0+0125
Ky -0+0125 -0+0125 -0+0125
&4 -21 -5 -5
Eo 21 5 5

23
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Table 1 (Contd)

Notes: 1. The aerodynamic derivatives are presented in the form

yv(0) ’ yV('1)

2. The "exact" values were produced by & computer program which

)

gives only incrementel values of response quantities; therefore the values
of Z and m corresponding to m = O werc determined and are shown above. Since

q; and m; are indcpendent of a in these examples there is no effect on the
Tesponse.

L)

3., The quantitiles Kys Ko K}’ 51, §2 above are those which are
used in equations (29) and (31) to determine p(t) in the simplified approach.
They arc in torms of degrees and seconds.

>



o)

)

L8]

Vg

S

=

1]

1]

]

SYMBOLS

(1) General notation

moment of inortia about Gx slugs ft2
moment of inertia about Gy slugs ££2

moment of inertia about Gz slugs ft2

T
-’ngZSb

M
2

FpVsec
N
%pvzsb
—_—
1oves

%-pvz S

F ME
we

F Uy
W(6/2)

p V2 S

sum of angular momenta of rotating parts of ongines slug ft?/sec

arca of roference ft2

TysTpsees, Ty times in definition of aileron funotion (see Fig.3(b)) sec

N K2R o <

5
total linear velocity ft/sec

aircraft weight 1b

aerodynamic moment sbout Gx 1b ft
serodynamio moment ebout Gy 1b ft
aerodynamic moment about Gz 1b ft
aerodynamic force along Gy 1b

aserodynamic force along Gz 1b

25
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SYMBOLS (Contd)

84585585 coefficients in equation (31)
b aircraft span ft
c chord of reference ft
B-C
fA T A
C-A
fB - B
A-B
f0 = 7T
g gravitaetional acceleration ft/sec2
_F(B-C
€r = W(v/2
_F(c-4A
& T T We
_ F(A-B
& = W§b725
£ length of reoference ft
EP
z Aerodynamic derivatives defining the aircraft response in roll
P in the simplified approach
z
§
n aircraft normal acceleration g-units
P rolling velocity radians/sec
q pitching velocity radians/sec
r yawing velocity  radians/sec
st times in definition of aileron function (see Fig.3(a)) sec
P W
& &gpSv
u velocity component along Gx ft/sec
v velocity component along Gy ft/sec
w velocity component along Gz ft/sec
a = wV
p = V/V
__FA
Yo 5 W(o/2)
- IB
B T W

)
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' SYMBOLS (Contd)

_ _FC
Yo ° Wh/2
Z
5:25
SYA
. . bl
Toov Ty

x1,x2,x3 reciprocals of rates of aileron application sec/radian

g eileron angle readians
n elevator angle radians
p air density slugs/ft
] engle of pitch radians
¢ angle of bank radians
3 angle of bank through which the aircraft is required to manceuvre
radians
¥ angle of yaw radians
(1i) Definitions of acrodynamic derivatives in terms of aerodynamic
coefficlents
See also section 3.2
160*
W e =
Yvo T 238
aC_*
L
T
2V
aCc_*
@
yr =a£.£
v
. oC_*
% - 1 X
yE -265
:o= %8,
1 acz*
®x .. X
w T % 3a
1 acz*
z2 ®* = 3
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SYMBOLS (Contd)

n i

* * {af>" # fof=" =
N o W
s cemw cemw e
o o s} © ) o 1o
i n ) H

-3 % * *
> ol & P

% = I -] PR
42 s) 6~} o D |

o[ off  ofg
)] ] i
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