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A type of rolling manoeuvre suitable for structural design load cdcula- 
tions is defined. The governing equations of motion are given in basic form 
and in a form suitable for general practical application. Their solution is 
briefly discussed and it is seen that a strict adherence to the specified 
oonditions leads to difficulties. A simpler approach is giiren: examples show 
that results agree aoceptably well with those from the strict approach, and 
also that a qualitative assessment of the closeness of this agreement can in 
each case be made. 
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1 IN!i!RODUC!?ION 

‘a’ 

'One of the manoeuvres considered fundamental in the estimation of 
structural design loads is the aileron-induced manoeuvre, the aircraft rea-- 
ponding predominantly in roll but also in other degrees of freedom. The 
current approach is to divide the load calculation into the determination of 
the %.gid body" response of the aircraft to aileron application and, sLibse- 
quontly, the corresponding distribution of net external load*. The former 
part presents greater difficulty from the computational point of view and is 
the subject of this Report. The equations and analysis are developed with 
ease of application to digital computers in mind: the availability of automatic 

computing facilities is essential in tackling the present problem. 

Ihe type of manoeuvre to be considered is defined fairly precisely and 
the equations of motion are developed in a form suitable for general application, 
This is desirable since, although the "response" method has been widely accepted 
for some time as the standard technique for this loading problem, the lack of a 
document describing in some detail both the problem and methods for its solution 
has led to two major difficulties. The first is that the various groups engaged 
in such work have adopted a number of variations on the basic scheme and, while 
each may have its particular merits, such diversity makes communication diffi- 
cult. Secondly, it is necessary for the aerodynamicist to appreciate what 
information the structural design team requires and the form in which it should 
bo given: equally, the data given by the aerodynamicist must be immediately 
understood. Lack of standardisation can cause the waste of time and effort; 
providing a basis for avoiding this is one of the purposes of this paper, 

The other purpose is to present and briefly illustrate an approach, 
likely to be of practical value to the designer, which produces calculations 
of the motion of the airoraft for a fraction of the effort involved in a 
strict adherence to the defined conditions while giving results sufficiently 

i? 

accurate at least for preliminary work. Moreover, the reliability of the 
approach in any case can b'e assessed qualitatively from the results produced: 
this is an important consideration in any approximate method. In general, then, 
the use of this simplified approach is thoughtto effect a good compromise 

*The above division of the calculation is strictly valid only if the aircraft 
can be considered rigid. Some account may be taken of aeroelastic effects by 
the "method of modification of derivatives"'; however, as has been noted2, care 
must be taken in the application of this "quasi-static" technique to essentially 
dynamic problems. 
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between precision and convenience in most cases, while exceptional cases can 
be recognised and treated by more rigorous and laborious techniques. 

2 DEFINITION OF THE MANOEUVRE 

The specification of the type of aileron-induced rolling manoeuvre to 

be considered for structural design purposes can be approached in a variety 

of ways since, if it is assumed that the initial conditions are fixed, 

requirements can be formulated in terms of the aircraft kinematics at the end 
of the manoeuvre, the aileron input used, and the form of the response itself. 

The definition of the manoeuvre will usually be achieved by the choice of 
0 

specified conditions from at least two of these. Only one such choice is 

considered in detail here, although much of the paper is clearly more 
generally applicable. 

In seeking requirements for modern aircraft we wish to choose a 

manoeuvre which at any speed and altitude is structurally at least as severe 
as any feasible rolling manoeuvre at that speed and altitude, Therefore this 

manoeuvre should accommodate any adverse effects that arise from aerodynamic 
damping deficiencies, inertia‘and aerodynamic coupling, or violent pilot 
action. The following requirements, which allow their numerical specifica- 
tion to be chosen to suit a particular aircraft or class of aircraft, are in a 

accordance with these desires. 

R(i) The aircraft is to roll through a given angle of bank. 

R(ii) At the final bank angle the rate of roll shall be zero. 

R(iii) The aileron input is to be of a specified form. 

c' 

This last requirement has purposely been stated in a general fashion since, 

although detailed analysis is given below for only one form of aileron input, 
the main lines of approach would not be altered should any other form be sub- 
stituted. Aileron input here refers to the deflection of the control surfaces, 
not the pilot's control. The above requirements might not be satisfactory I 

should there be an indirect relationship between pilot action and control 
surface deflection, for example if rate demand control were employed, c 

3 THE EQUATIONS OF MOTION 
s 

I The equations of rigid body motion as given herein apply to the 

principal inertia axes system, Gxye, shown in Fig.1. The orientation of 

these axes in space is defined with respect to a system of axes, GXYZ, of 
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fixed orientation by tho Eulcrian angles 0, $, $ shown in Fig.2'. GX and GY 
are horizontal, GZ is vertical; the direction of GX (and hence that of GY) is 
left undefined since Jr does not enter tho present analysis but is included for 
oompleteness. 

As is usuaJ. when considering rapid manoeuvres in which the velocity com- 
ponent u is not of primary interest, we regard this as constant, so eliminating 
one equation of motion. Further, the total velocity V is taken as constant and 
it is assumed that one can simplify the kinematic terms involving u by setting 
u/V equal to unity. 

3.1 Basic form of the equations 
i 

Under the conditions and assumptions of the preceding section the equations 

of motion are, in basic form 

9' E g+r-pa 
Q ( > 

= Y + W co9 6 sin 9 

$++Pp-q) = z + w cos 8 co9 l$ 

A g '- (B - C) qr = L 

B%i - (C - A) rp = M - sr 

Ck at -(A-B) pq = N+ h$q 

(11 

(2) 

(3) 

(4) 

(5) 

where a = w/V, p = V/V**. 

ME is the sum of the angular momenta of the rotating parts of the engines 
due to rotation about their own axes (here assumed to be parallel to Gx), that of 
a particular engine being positive for rotati.on in tho sense of positive pa Y,Z 
are the total aerodynamio forces along Gy and Gz; L,h9,N are the total aero- 

E: dynamic moments about Gx, Gy, and G~a. 
- 

aA definition of these angles may be found in Bef.3, the system G@T therein 
. being replaced by the system GXYZ above. 

**Wiih these definitions, a and /3 do not reprosent easily recognisable angles: 
however, for small values they are very.near to the radian moasure of the angles 
of inoidenoe and sideslip, For convenience, then, they will be termed incidence 

and bo regarded as being in radians; their values multiplied by 
regarded as being in dogreos. 
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3.2 Practical form3 of the equations 

As the first step in recasting equations (1) to (5) in a form amenable 
to numerical treatment the forces and moments Y,Z,L,M,N are' expressed in terms 
of velocities and control angles. The expressions which are chosen depend 
upon the purpose for which the equations are to be used, the relative 
importance of various quantities in each expression, and, to a considerable 

extent, upon the amount of theoretical and experimental data which the user 6 

hopes will be available to him. Bearing in mind the current state of the art 
in predicting and measuring aerodynamic forces, and anticipating the initial 

il b 

conditions of Section 3.2.2, the following expressions are chosen: 

M= 

N = $pV2S b 

Fz = [c] 2 u,T)=o cm = [c] 0 
m u,a,q,q=o l 

(6) 

(7) 

(8) 

(9) 5 

(10) I7 

The starred differentials indicate that these are taken to be variable 
with the quantity with respect to which the differentiation takes place, and 

with incidence. For example, X* 
s/ 

+3 is assumed to be a function of /3 and a. 
In the majority of cases the available data can be adequately fitted by 
expressing the differentials as linear functions of a alone: this form has 

been used in the analysis and examples of Section 6. In such a case the 
differentials are written, for example 

y$lY 
(0) ac (') 

+a2 . 
v 
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This same notation is retained for the generalisation of the usual aerodynamic 
derivatives. That is yv is generalised to y:, for instance, and wo write by 
analogy with the above expression 

Y; = J;(o) + UyJ’) . 

When the force and momont expressions (6) to (10) are substituted into 
equations (1) to (5) the arrangcmcnt of these equations in terms of aerodynamic 
derivatives may be made in a variety of ways. The following set of equations 
has been found very satisfactory for practical application since a minimum of 
multiplicstive constants is used and real time is preserved. 

(11) 

(12) 

(U) 

04) 

f When equation (5) is recast to gi<e equation (15), the right hand side 
contains the term E2 q. However, retention of this term is contrary to the 
initial conditions of 3.2.2 since in symmetric flight there would be an 
unbalanced yawing moment giving non-zero acceleration in yaw. We assume that 
this is balanced by a small rudder deflection which contributes negligible side 
force and rolling moment, and henoo replace E2 q by E2(q - qo) as above. 
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where 

E, = FT2 
-iii7 E "ME 

2 = \%.&7g 

gA = 
F(C - A) 

%I = ITK: 

FC 
yc = 'B(bJ2)- 

gc = 
PA-B) -+7-T- Wb2 l 

Some further notation may conveniently be given here, al-though it does 
not occur in the analysis of this paper. This is 

B-C 
fA= A 

C -A fB = B . A-B fC =c . 

It will be noted that gA = yA f'A etc. 

Equations (II) to (15), together with the kinematic relations 

a0 
dt = q cos Cp - r sin 19 

$$C p + q tan 0 sin + + r tan G cos d, ' 

are those which are used to compute the response of the aircraft. 

3.2.1 Notes on the aerodynamic derivatives ' 

Two points concerning the aerodynamic terms in the above equations 
should be noted. 

(46) 

(171 

(1) To simplify the kinematic terms, a is defined as w/V and p as v/V. 

The aerodynamic3 terms must be given with regard to these same definitions, 
and not alternative forms such as arctan(w/V). Also, principal inertia axes 
are used rather than stability axes. Wind tunnel results should be analysed 
with these points in mind as subsequent transformation of derivatives is time- 
consuming and inaccurate. 
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(2) The incremental values of response quantities can be quite large and 
hence it is more important,to be able to repr$gcnt the aerodynamic forces with 
good accuracy for fairly large departures from the initial motion than with 
closer accuracy over a restricted rango. Expressions for the derivatives must 
be chosen accordingly. In some cases a set of derivatives, all of which are 

adequate over the whole range of initial normal accelerations, no, cannot be 
found; it is then necessary to use different expressions when no lies in 
particular ranges, the computed response indicating whether the range of 
validity of a particular earessfon ha, Q been exceeded, in which case the com- 
putation is repeated with an alternative one. 

while 
start 

3.2.2 Tha initial conditions 

The above practical equations of motion, (II) to (15), have been developed 
anticipating the initial conditions, i.e. the aircraft's motion at the 
of the manoeuvre, described in this section. 

The aircraft is in a symmetric pull-up or push-over at a specified 
normal acceleration, n o, the flight path being approximately horizontal and 

6 and i being instantaneously zero. This condition is not in general steady 
. due to the changing normal component of the weight; however the resulting 

0 accelerations are small over a fairly long time. (!I!he term "quasi-steady 
flight in a vertical circle" is sometimes applied to this condition.) More 

u7 precisely, the plane of symmetry XGZ (Fig.1) is taken to be vertical and the 
aircraft's initial motion is in this plane and unaoceleratsd with respect to 

I the axes Gxyz. -Then from equations (12) and (14) are obtained 

7 

- 54-z* 
( 

a + z* w 0 rl TO > 
= z q, + F cos e. 

and 

El + In; CL0 + G 
0 IT rnz q. + rn; q. = 0 . 

Now the normal acceleration, no, is given and 

n = 
0 

cos fJo + q. x45 

or 

no F = i qo + F co9 e. l 

(204 

(2W 

Equation (18) then becomes 

(21) 
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For sjmplicity it is usual to take e. = 0 and hence q. is obtained from 
equation (20a), and a0 and qo from equations (19) and (21). 

It has been usual to obtain from the equations of motion only incre- 

mental values of response quantities, a0 and q o having been found by 

preliminary calculations. I!owevcr, with the above representation of the 

aerodynamics, which is meant to cover large variations in incidence, it is 

possible to retain the same aerodynamic data for varying values of no. Then 

equations (19) and (21) may be solved within the main response calculation 

, program: this is of wrticular value if the aerodynamic derivatives depend 

markedly on a, necessitating an iterative method of solution. 

4 THE AILERO?Y INPUT FUNCTION 

The form of the aileron input function demanded by R(iii) is assumed 

in the present report to be as shown in l?ig.j(a), that is a "double 
trapezoidal" function. This is uniquely defined by seven parameters: the 

rates of aileron application I/K,, l/tc2, I/K. 3; the angles E,, E,; and the 
times t, and t2. Of these I/K,, 1/x2, I/L~ are in all cases taken to be 
specified and, with the exception mentioned in section 6.2, it is further 

assumed that c, and E2 are also given. Then requirements R(i) and R(ii) 
are sufficient to detormine t, and t2. 

In the majority of cases each of the five given quantities will take 

its numerically greatest value (appropriate to the flight conditions) so that 

the manoeuvre is a limiting one, the possible exceptions being in case? where 
the manoeuvre loads imply that because of jack stalling, for instance, these 
values cannot be attained. We assume that modifications introduced to cover 
these cases will not alter the general form of the requirements and so do not 

pursue this point any further. It may be mentioned that the idealisation to 
infinite rates of aileron application (K = 0) is not considered desirable 

since this leads to unrealistic responses, particularly in roll, as wall as 
causing programming difficulties. 

5 CALCULATION OF 'IHE RESPONSE' TO AI?XRCN INPUT 

The set of differential equations (11) to (17) may be solved on a 

digital computer for known input &(t) by any suitable marching process: there 

is usually a standard process readily available to the programmer and so this 
report will not discuss the various alternatives, Experience with a particu- 
lar process Ml1 socn enable questions such as the best choice of marching 

step to be decided. 
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The greatest difficulty in practice is that, within Ft(iii), the exact 
function E;(t) which will sati3fy R(i) and R(ii) cannot be computed before the 
full response calculation is performed, One can only find.an approximation, 
compute the response, and then adjust c(t) in the light of the rssults obtained. 

If R(i) were the only one not satisfied this would cause little trouble a3 one , 
could then merely perform the response calculation3 for differing-bank angles 
and interpolate to find the required information: however, it is often the ca3e 
that the initial estimate of g(t) lead3 to R(ii) being badly violated, thus - 
necessitating adjustment of c(t). Such a state of affair3 is.very serious from 
the designer'3 standpoint since much time md effort is needed in this adjust- 
ment process. In fact if the aircraft's flight regime is to be adequately 
investigated the employment of such a technique for every flight condition 
considered would be quite unpractical. The designer's need is first to decide 
on a fairly, small numbor of manoeuvres among which are those giving critical 
design load3 and then, possibly, to investigate these more fully. To satisfy 
this a technique is sought which can be applied with a minimum of effort, still 
assuming the ~30 of a digit& computer, and which yields results accurate enough 
to allow reliable assessment of a manoeuvre's severity. 

6 A SIMPIZFIED APPROACH TO CALCULATING THE RRSPONSE 

6.1 Outline of the method 

For practical purposes it is sufficiently accurate to apply R(i) tc P at 
rather than to bank,angle and thus both R(i) and R(ii) are requirement3 
applying to the time history in roll, p(t), alone (see equation (17)). Hence 
by choice of p(t) one can en3ure that R(i) and R(ii) are simultaneously satis- 

fied. If, then, this function p(t) is sub3tituted'into equation3 (II) to (17) 
the remainder of the response quantities may be oomputed, again by a marching 

proce38. 

Within this basic idea there are many possible practical approaches, the 
differences between them stemming from the ways in which.p(t) is determined. 
If p(t) be chosen with little or no regard for the actual dynamic properties of 
the aircraft in a particular flight condition then the results of the response 
oaloulation oannot be expected to be reliable. This lack of realism is often 

most clearly shown in the prediction of rather curious aileron movements. 

We assume that the "direct" term3 in the rolling equationsare suffioient 

to describe the manner in which the aircraft is manoeuvred to a given bank 
angle, the aileron input being of the required form. Consideration of these 
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terms alone allows the response in roll which satisfies R(i) and R(ii) to be 
00mputOd. This derived function p(t) is then used as an input to the set of 
equations (11) to (17): equation (13) is now not a differential equation but 
is used simply to obtain c. 

In determining p(t) one also finds, at least implicitly, the function 
g.(t) which would lead to the satisfaction of R(i) (with + replaced by 

J 
P at) 

and R(ii) if the response in roll were indeed governed only by the "direct"' 

terms: in this ideal case the substitution of e(t) into equations (11) to 
(17) would produce results identical with those of substituting p(t) into the 
same equations. The approach suggested here of considering p(t) as the input 
function results in the effects of additional terms in the rolling equation 
being reflected in F;(t) differing from the form of R(iii). However, it will 
be seen in some later examples that this lack of conformity is often not 
gross and that the remainder of the respdnse quantities agree fairly well 
with those found by the more laborious technique of adjusting E(t) so that 
R(i) and R(ii) are met while preservihg precisely the form demanded by R(iif). 

The method is similar to that of Pi.nske& but extends his analysis to. 
more general responses in roll, and also places emphasis on c(t) remaining 
close to the required form. 

6.2 Analysis of the method 

It is convenient to introduoe an alternative notation to describe the 
aileron input function, as illustrated in Fig.3(b). This notation and that of 
Fig.j(a) will be used concurrently as economy and convenience demand. 

Retaining only the Viroct 'I terms in equation (13) WQ obtain 

zp and EC are some constant values of 4; and d*, the choice of which is some- 
E 

&at arbitiary: they will often be chos& to agree with 4; and 4: at or near 
aoj but if they depend markedly on a, and the incremental veluos of a are 
large, other values may .be more suitable. 

Equation (22) is rewritten in the form 
-- 

t 
b 9 where E = - 
2v Y A  l 

(23) 
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The general solution of this is 

P = A exp(st) + p* (UC) 

in which p* = 

fiiith c(t) as defined in Section 4 WC have 5 taking one of two forms, 
dopending on the value of t: 

or 

with the correspondi+g expressions for p* 

Now let A = An for T, Q t < T,+,; then 

P = A, ed&t) - dt/u, - ~/Ic, , 0 G t d T, 

P = A2 =det) - ~65, - s6(t - T2)/u2 - 6/K2 

P = A3 =Pbt.) - ~b.5~ , T3 sz t < T4 

P = A4 exp(et) - ~652 - es(t - T~)/Ic~ - s/'(3 

where 6 = 

(254 

(26.0) 

(26.1) 

(26.2) 

(26.3) 

(26.4) 

fTho subsequent analysis assumes that none of IC,, ICY, IC 3 is zero. As has been 
stated above, the use of infinite rates of aileron application is not desirable; 
should they be used the analys+ may oasily be modified by eliminating the 
redundant time intervals and proceeding to the limiting forms of certain 
expressions. 



Since p(0) = 0, and p(t) is continuous' 
* 

* =o 
0 "1 

*I = Ao-$ 
1 

=P(- E T,) 

(27-d) 

(27.1) 

*2 =, *, + 6 exp(- E T2) (27.2) 
"2 

A3 
= A2+- exp(- E 5) (27.3) 

2 

*4 = A3+ Aexp(-~ T4) . 
'c3 

(27.4) 

*a E,, E,, “,’ ~~3 ‘c3 are assumed to-be given, c(t) is uniquely defined by 

the quantities t, and t2: the corresponding function p(t) then follows from 

equations (26) and (27). t, and t2 are determined as follows. 

* . First, condition R(i) is applied to.p(t), in the form . 
T5 

.I 
p(t) at = z . 

0 

Integrating equatio? (23) and applying the conditions p(0) = p(T5) = 0 . . 
we have 

-E$ = 

which in this case becomes 

Applying now R(S), Le. p(T5) = 0, to equations '(26), (27) we obtain 

$[I - exd-&T,31 + $ ew(-ET2) b - expl- e(T3 - T2)j] 

I 
t- exp(- CT,+) [I - exp[- E (T 5-Tq)jl I= 0 

K3. _. 
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0 

or 

t, 1 (l-a,) + : (A-02) exp(-et,) + p (l-a,) exp(-et,) exp(-et2) = 0 
I 3 

l ** (34) 
where 

al = exp !? e Ic, E,] 

a2 ” oxP I- e K&E;2 - F;,)] 

a3 = exp Ee “3 QJ- . 

Equations (29) and (3l)‘now enable t, and t2 to be founh uniquely. In 

certain cases the resulting value of t 2 becomes negative: the approach is then 

to set t2 to be zero and regard E, as variablo. The solution of these equations 

is discussod in Appendix A. 

The function p(t) is thus a0tOrmin~a and UsOa as an input to'oquations (II) 

to (47) which can be solved by a marching procedure. Equation (13) is replaced 

bY 

(32) 

which is used to compute that aileron function c(t) which is in faot necessary 
to perform the manoeuvre, when p(t) takes the previously calculated form. 

6.3 Examples , 

To attempt to give a set of examples covering all practical cases muld 

be prohibitive and tho use of the abovo simplified method in any particular case 
must be judged on the merit of the results obtained in that case. One must 

theref'oro bo able to decide, having. only the results of this method,'whother 

such results give a reliable measure of tha manoeuvre's soverity. One can a0 
this for the examples below, and most cases are expected to allow this facility. 

The examples chosen and shown in l?igs.lc(a), (b), and (c) arc 180' rolling 

manoeuvres. They all apply to the same aircraft, a high speed delta wing 

research aircraft. IIowevor, variations in the initial conditions of speed, 

height, and normal acceleration (indicated in the figures) lead to differences 

in the aircraft's dynamic properties and so to different responses. In 
particular, tho differing oharacteristics of the responses in roll lead one to 
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consider that these examples should test the applicability of the above method 
to a wide range of manoeuvres. (For more deteiled information the interested 
reader may refer to Table I, which lists the data for these examples.) 

In each figure rate of roll, aileron angle, incidence, and sideslip are 
plottOa*. These quantities are not, of course, sufficient to determine all 
the significant manoeuvre loads but they are indicative of the degree of 

success of the present method. To reduce further the amount of discussion, 

while still enabling a critical assessment to be made, the comments below 
concentrate on the two quantities incidence and aideslip. The full lines 
are the results obtained by the use of the simplified method while the dashed 
lines, termed l'exact'l, were produced by successively altering the aileron 
input function prescribed by R(iii) until R(i) and R(ii) were closely mot. 

In Pig.&(a) it is seen that c(t) differs somewhat from the "exact" time 
history but remains similar in character over moat of the manoeuvre: 

incremental incidence and aideslip reflect this in that despite some 
differences in their histories the matimum value of the former agrees with 
the "exact" value within about 7% and that of the latter differs from the 
"exact" value by a barely perceptible amount. By contrast, the results shown 
in Fig.&(b) are far from satisfactory: maxima of incremental incidence and 
sideslip are overestimated by the simplified method by nearly lOO$. A strong 
indication of this lack of agreement could be obtained by a glance at C(t) in 
this caae# The deviation from the correct form is,considerable over almost 
all the manoeuvre so casting doubt on the reliability of the simplified 
method. ~ With Fig.b(c) we return to more acceptable results, as evidenced by 
the generally good agreement of &(t) with the "exact" form. In this case 
agreement between maxima of incremental incidence is obtained to within 
2-5s and the maxima of sideslip agreo to within 8%. 

6.4 A modification of the simplified method 

The reason for unsatisfactory results in caaas such as the second 
example above must be that the response in degrees of freedom other than 
rolling has considerable influence on the response in roll. It is then 

*In order to roll through a positivo bank angle, E, must be negative. There- 
fore (-e) is plotted to give complete correspondence with the aileron function 
of Fig.3. Similarly in the Appendix when it is convenient to choose a 
particular sign for X3, and hence for the other quantities defining the 

aileron function, this is taken to bo negative so that $ may be positive. 



natural to consider whether account can be taken of this and more reliable 

. 

results obtained. A method of achieving this is now described: its basis must 
bo regarded as semi-empirical but, as will be seen, considerable ndvantages 
can bo gained from its application. 

It is assumed that the effect of other degrees of freedom is to change 
the damping in roll such that this now has the (_constant) effective value z . 

Then the roll response is governed by tho equation, analogous to equation (p22) 

LiJz 
yAdt = (33) 

Supposo that results have been obtainod using ns input the time history in roll 
given by equation (22) and that at time t = T2 the velue of & obtained from 
equation (32) is E'. Then at t = T2 

Hence 

yA [$$lT2 = ($4 Lp P(3) + $ g, (34) 

(35) 

If i is small at this point oquation,( 36) tends to the simple relation 

(37) 

17ith zp calculated from equation (36) or (37) the simplified method may be 
applied again with zp replacing z . 

P 
Results obtained from this "modified" 

method arc shown in Figs.&(b) and (c), denoted by chain-dotted lines. (In the 
cases of a in Fig.4(b) and p in Fig.k(c) the "modified" results are so near the 
"exact" ones that plotting thorn is impracticable.) 

In the example of Fig&b) the above modification has been successful in 
bringing the form of Fi;(t) into almost complete agreement with R(iii) and in 

consequence the maxima of incremental incidence Fnd sideslip are within 135: and 
673 of the "exact" values. In Fig.&(c) the already good agreement betweon the 
"simplified" and "exact" values of incidence and sideslip is somowhat improved 

by the modification, the form of the incidence history showing particular 

improvement. 



The choice of the point t = T2 for identifying equations (22) and (33) 
has been made in an arbitrary fashion but it seems intuitively that this 
choice is a suitable one. In the majority of cases the aileron time histories 
are similar to those of the second and third examples above in that t, is 
large compared with Tq, and in such cases the success of the simplified 

approach depends mainly on keeping the value of 5 near to &, for moat of the 
time interval t,: it can be expected that agreement will be excellent at T, 
and so attempting to achieve agreement at T, recommends itself. L 

7 CONCLUDING DISCUSSION 

The early sections of the paper described the type of aileron induced 
rolling manoeuvre thought to bo the most suitable for structural design 
purposes. Tho equations of motion of the aircraft were then developed in a 

form suitable for practical application to calculating the aircraft response, 
retaining sufficient generality for their universal use in this problem while 
tailoring them to its particular roquiromonts. 

It was seen that the production,of rigorous solutions of these equations 
under the specified conditions+caused serious practical difficulties, the 
effort involved in overcoming these being so large that any attempt by a 
designer to produce such solutions for all flight conditions he would like, 
or be required, to cover would be unpractical. The designer's need was 
suggested to be a simpler method which could be used to sort out the most 
severe manoeuvres, such manoeuvres being the subjects of subsequent more 
rigorous calculations. Section 6 presented such a method, which it is thought 
will give, in the great majority of cases, reliable indications of the 
severity of particular manoeuvres. In addition the degree of reliability can 
be assessed, qualitatively, from the results obtained. 

The recommended approach to doaling with a large number of rolling 
manoeuvres for structural design purposes is, then 

(i) Apply to each manoeuvre the method of Section 6, in its basio form. 

(ii) Apply the modified method of section 6.4 to those cases giving 
results thought to be unreliable. 

t 

(iii)‘If any cases-remain in doubt these should be treated rigorously, 
as described in section 5. 

L 

(iv) Having.decided from the results of (i), (ii) and (iii) which cases 

produce the most severe loadings on various aircraft components, these cases 
can be treated in a rigorous manner to obtain the final "design" loads. 
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THF, SOLUTION OF EQUATIONS (29) AND (31) 

The purpose of this Appendix is to discuss method; for the solution of the 

pair of simultaneous equation3 (29) and (31), i.0. 

and 

0 = (l-a, I/K, + a, (+a21 exp(-et, >/ x2+a,a2(1-aj) eaxp(-et,) exp(-et2)/K3 0 

l ** (31) 

It is assumed that there is at least one solution (t,, t2) such that t, 3 0 an6 
that we arc interested only in s,uch solutions. From equationa(29) it can be seen 
that for most practioal cases, where the ab$olute velues of K I' "2 wax ~0 

3 
faiily similar and also E2 is c1030 to -E,, t2 < t,. Hence a positive kslue for 
t, may correspond to a negative value for.t2: in this event an alternative 
approach must be used. Before discussing numerical methods for obtaining a 
solution, then, it is necessary to establish its nature. 

It is shown that there-can be only one soYl.ution with t, 2 0; the criterion 
for deciding on the sign of the corresponding t2 then follows immediately. 
Firstly we note that if E;, and 4;, aro assumed fixed and of opposite signs then, 
from equation (29), t2 is a linear and increasing funotion of t,. Hence if the 
right hand side of equation (31) be donoted by F and this be regarded as a 

, . function of t, _ 

F(t?) = > + 2 (l-a,) exp(-et,) + y 
3 

(I-a3) exil-e(q+X) ta] 

where X = 4+/c, > 0 and & > 0. 

Since c IC~ E2 > 0, a3 > 1 and so 

F + - 00 sgn(rc3) as t, 306 . 

9.m (38) 

Vith no loss in generslity.we assume that 'c3 < 0, i.e. sgn(a3) = -1. Then we 
can write (38) in the form 
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F = a-bT+cz Ith 

where T = exp(- ct,) and a,b,c > 0. 

An expression of this form has either no real positive zeros or has exactly 
two. Here we have assumed that there is such a zero and, moreover, this 
corresponds to a positive value of t,. That is there exists z' ?. 1 for which 

-I+h a -b 7 NC 'c z 0 . (39) 

the other root of F = 0 corresponds to a value of z less 
to a negative vdue of t,. It is sufficient to show that 

We now show that 
than unity, i.e. 

a3? [I z, >o for any 531 

or 

-b+c(l+h)+>O . 
Now 

- b + c(1 + h) ;' = Xb- (1 * h) a/f from (39) 
0 

and since the second term on the right hand side is negative, if the inequality 
be provea for F = 1 it will hold a fortiori for t > 1. Therefore we require 

hb- (1 + h) a > 0 

or, substituting for a,b,X and after some elementary algebra 

But 

or 

exp (4 -1 >x for all x*0 
I 

expo-l>l for 'x>O; -<I for 
X X 

x-co . 

(40) 

Applying the above two inoqualities to the first and secona terms respectively 
in (40) the desired result is obtained,. 
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The oriterion for the sien of t2 may now be irmaediately deduoed. For 

and substitution of this value of t,, say t*, into F(t,). will produce a negative 

or-positive result according to whether ta is less than or,greater than the 

positive root for t,. Sin00 t2 is an increasing funotion-of t, we therefore 

obtain 

t2 < 0 if and only if F(V),> 0 . 

When F(V) > 0, then, we sot t2 = 0 and regard "2 as variable; also, for the 

convotienca of eliminating square roots, we regard F as a function.of g,. 

In general equation (31) can be solved only by an itorative method: the 
practical application'of two such methods will now be discussea. 

’ 

One method which is practicable is the Now-ton-Raphson methods: for this 
the firs,t dorivativo of tho function with respect to the independent variable 
is,required. The expressions for this in tho two possible.oases are given 
below. , 

; 
If F = F(t,) I . 

II , dF 
q=- e oxp(-at,) (I-a3) (1 - 3 exp(-st?l]' 

or if F = F(C2) 

aF -= 
%2 

E exp(-at,) 
c 

a,a2 c Y!qmx + 
K3 2 

An immediate question with such a method is as to the ohoice of a starting 

point for the iteration which will ensure oonvorgonoo to the required root, 
Since it is necessary to compute F(t*) to decide whethor t, or &, should be _ 
osnsidered the indepondcnt variablo, it may be hoped that t* is a suitable 

point and it has indeed been shown that in eithor case this choice does onsure 

convergence, at least for the most common situation, namely IC, = -x2 = tc3a 
(The proof is 0dttOa since it is a little tedious and devoid of intorest.) 
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An altebnative methdd is to-apply a search procedure:. the following 
description is for t, as the variable, that for the alternative situation 
being exactly similar. As in this case the required value of t, is greater 
than t* the first stage is to march forward in t,, with step h say, until a 
value of t, is found such that F(ti) > 0. Then the root lies in the interval 

(t, - h, t,): we step back h/2 and compute F at this point. The sign of F 

will then indicate whether the stop back has passed over the root or has not 
reached it: wo next step h/4 in the appropriate direction. By this method 

an interval of length h2-", where n is a specified positive integer, can be 
found in which thi? root must lie. (This is mathematically sound but the 

process has a practical limit: see discussion below.) 

Of these two methods the former is rather the better; the more compli- 
cat& nature being offset by more rapid convergence (and hence fewer 
exponontials to compute), as well as by the certainty of each iteration 
producing an answer closer to the root than, the previous estimate, a property 
not of'course possessed by the search procedure. In practice both methods 
are severely limited by the accuracies to which the constituent terms in F 
(and its derivative) can be calculated, and the specification of too large a 
number of iterations or too small an absolute error should be avoiged as 
uneconomioal and self-deceptivs. Experience with the facilities which are 
available to him will soon indicate to the individual the accuracy for which 
he is entitled to ask. From this point of view also, the Newton-Raphson 
method with its inherent properties of self-correction is the better one to 
use. 



23 

Table 1 

P 

DATA FOR THE EXANF’LES; FIGS.4(a), (b), AND (0,) 

a 

-0*182 0 

0 0 

0 .O 

0 0 

0*051 

-1.472 0 

-0-346 0 

a-032 -0.62 
-0e237 0*012 

0.0205 0 

-O*liO 0 

0*00713 
-o*oJ+2 0 

-0*0503 0 

-09129 0 

-0m118 0 

0'083 -0*195 
-0.04 0*066 
-0e329 0 

-0 l Ol 06 0*014 

7602 
53815 
60319 

2590 
20-8 

17500 
,o -09 
422 
2*0 

-0.235 

d*llO 

180 
-0eo125 

o+oi25 
-0*0125 
-21 

21 

b 

-0.167 o 
0 0 

0 0 

0 0 

0*018 
+215 0 

-0q6 0 

-oeq34 -0a80 
-Oal@+ -1 *IO 

090945, 0 

-0*0665 0 

080v74 
-0*128 0 

0.034 0 
-00297 0 

-0.087 0 

O-0745 0*0&6 
-0-0072 -0-022 

-0*193 0 
-OS0172 O*lO 

7602 
53815 
60319 

25.0 
20.8 

17500 
0.028 

1550 
2-o 

-0*2105 

-0*309 

-o&65 
180 

-0eoi25 
0.0125 

-&0125 
-5 

5 

. . 

0 

-0*171 0 

0 0 

0 0 

0 0 

-0*012 

-0~yoy 0 

-0q6 0 

.-o*a+2, -o*j3 

:-?+I27 oe93 
0.034 0 

-0*0673 0 

-0~026 
-0*087 0 

0.034 0 

-0e297 0 

-00087 0 

0 a81 0 ;os 

-0ao17 -0*14 

-0e185 0 

-0*005 0*17 

7602 
53815 
60319 

25*0 
20.8 

17500 
0*028 

1550 
-0*5 

-0.153 
-0 so99 

-0*0673 
180 

-0*0125 
010125 

-0+0125 
-5 

5- 



'Jkble 1 (Cod) 

Notes: I. The aerodynamic derivatives are presented in the form 

Yv 
(0) ) 

Yp 

2. The "exact" values were produced by a computer program which 

gives only incremental values of response quantities; therefore the velues 
of i and L corresponding to q = 0 were determined and are shown above. Since 

g: 
and rn: are independent of a in these examples there is no effect on the 

response. 

3. The quantities IC,, K~, ic3$ c,, E, above are those which are 
used in equations (29) and (31) to determine p(t) in the simplif'ied approach. 
They are in terms of degrees and seconds. 
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SYMBOLS 

[i) General notation 

A moment of inortia about Gx slugs ft* 
B moment of inertia about Gy slugs ft2 
C moment of inertia about Ge sluga ft* 

c M 5 
m &pV2S0 

cn = N 
&IV* Sb 

c = Y 
Y gpv2 s 

cz = Z 
&pv2s 

F B 
E, = k 

TT 

ME sum of angular momenta of rotating parts of engines slug ft*/sec 
S area of reference ft2 

T~#T2s****T5 times in definition of aileron funotion (see Fig.3(b)) aec 
V total linear velocity ft/sec I 
W aircraft weight lb 
L aerodynamio moment about Gx lb ft 
M aerodynamio moment about Gy lb ft 
N aerodynamic moment about Gz lb ft 

Y aerodynamic force along Gy lb 
Z aerodynamic force along Gz lb 
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. SYMBOLS (Contd) 

a, +a3 coefficients in equation (31) 
b aircraft span ft 
C chord of reference ft 

3-c fA = A 

C-A f3 = 7 

A-B fC = c 

gA = 

&c = 

gravitational acceleration ft/soc2 

e length of rof'erence ft 
e' 

P 
z 

- 1 

Aerodynamic derivatives defining the aircraft response in roll 
P in the simplified approach 

. % 
n aircraft normal acceleration g-units 

P rolling velocity radians/set 

9 pitching velocity radians/set 

r yawing velocity radians/set 

v2 
times indefinition of aileron function (see Fig.3(a)) z&c 

z Y ‘cv z---z 
f3PSV 

U velocity component along Gx ft/sec 

V velocity component along Gy ft/sec * 
W velocity component along Gz ft/sec 

a = w/v 

P = v/v 

t 



\ . 
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' SmOLS (Conta) 

d 

FC 
yc = yo 

“, 1y3 reciprocds of rates of aileron application set/radian 

F aileron angle radians 

rl elevator angle radians 

P air density slugs/d 
e angle of pitch radians 

4 angle of bank radians 

3 angle of bank through which the aircraft is required to manoeuvre 
radians ,) 

If angle of yaw radians 

(ii) Dofinitions of norodynamic derivatives in terms of aerodynamio 
coefficients 

See also section 3.2 

4 

Yv* = 5 acY 
ap 
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iii = $Crn 

acme 
mw* = $ a 

a 

m= * 
“Cm’ 

w =s,g 

7-I V 

m * = C ac * m 
9 24 a + 

7-l 
ac * 

m?l" = h$- 

de,+ 
I$* = - 

fv 

rip* = 
ac,+ 

a% 7-J 

nr* = 
'acn* 

-7-J 
a22 

2v 

JZMBOLS (Contd) 



29 

REFERENCES 

& Author Title, etc. 

1 W. J. Duncan . Control and stability of aircraft. 
Cambridge University Press, p 303, 1952 

2 A. S. Taylor The prosent status of aircraft stability problems 
in the aoroelastic domain. 
Jnl. Roy. Aero. Sot., 6J, No.580, 230-237, 1959 

3 Royal Aeronautical Data sheets - Aerodynamics Vo1.3, 
Society No. Aircraft 00.00.02, Section 1.2, 1947 

4 W. J. G. Pinskor Charts of peak amplitudes in incidence and 
sideslip in rolling manoeuvres due to inertia 
cross-coupling. 
A.R.C. R & M 3293, April, 1956 

5 A. M. Ostrowski Solution of equations and systems of equations. 
London, Academic Press, 1960 





‘C 

i 
x 
a 

i 

G 
0 

W 
I 
l- 





I  

r .  
3 

FIG .3 (Q) THE AILERON INPUT FUNCTION 

3 

------ 

t 

FIG. 3(b) THE AILERON INPUT FUNCTION- 
ALTERNA-WE NOTATION 



SlMf’LIFIED 
-------- EXACT 

250 Kt E.A.S 
SEA LEVEL 

no= 2.0 

\ 
\ 

I-5 t sets 

FIG.4 (ci, COMPARISON OF SUvlPLIFED AND EXACT METHODS 



. ------- 
SIMPLIFIED 
Sl~PLlFIED(F10DlFIECi) 
f XACT 

M+ I.6 
40,000 ft. 
no= 2-O 

2.5 

0 

FIG. 4 (b) COMPARISON OF SJMPLIFIED AND EXACT 
METHODS (CONTINUED) 



SIMPLIFIED 
-------.- SIMPLIFlED(M00lfIEO) ---------- EXACT 

M = 1.6 
40,OOOf t 
71,“0.5 

2.0 t sets 

FIG. 4 (Cl COMPARISON OF SIMPLIFIED AND EXACT 
METHODS (CONCLUDED) 

Printed in England for Her Majesty’s Stationery Office by 
the Royal Aircraft Establishment, Farnborough. W.P.60. K.U. 



A.R.C. C.P. No.799 
October, 1964 
Eckford, D. J. 

THE CAIZUIATION OF AIRCRAFT MOTION IN DESIGN ROLLING 
MANomEs. 

!S3.6.048.1 : 
533.6.Cn3.153 : 
533.694.51 

A type of rolling menoeuvre suitable for structural design load calcuktions A type 0r rolling manoeuvre suitable ror stmctural design load calculations 
is defined. The governing equations 0r motion are given in basic r0m and IS defined. The governing quations 0r motion are given in basic r0m and 
in a form suitable iOr general practical application. Their Solution IS in a roxm suitable for general practical application. Their solution is 
briefly discussed and it is seen that a strict adherence to the specified brierly discussed and it is seen tht a strict adherence to the speciried 
condttio~ leads to dirriculties. A simpler approach is given: examples conditions leads to dirrlculties, A simpler approach is given: examples 
show that results agree acceptably well with those from the strict approach, show that.results agree acceptably well with those from the strict approach, 
and also t&t a qualitative aasesmnent of the closeness of this-agreement and also that a qualitative assessment of the closeness or this agreement 
can in each case be made. can i? each case be made. 

A.R.C. C.P. No.799 
October, 1964 
Eckford, D. J. ’ 533.6.048.1 : 

THE CALCUIATION OF AIRCRAFT MOTION IN DESIGN ROILIRG 
53$6&l',;'" : 

. . 
MANOEDVRES. 

A.R.C. C.P. No.799 
October, 1964 

. Eckford, D. J. 
TIiE CAICUIATION OF\AIRCRAFT MOTION IN DESIGN ROLLING 
MANO-. 

533.6S48.1 t 
533.6.013.15 : 
533.69+.51 

A type or rolling aunoeuvre suitable ror structural design load calculations 
is derined. The governing equations or motion are given in basic rorm and 
in a rrrm suitable for general practical application. Their solution is 
brierly discussed and it is seen that a strict e&erence to the speclrled 
conditions leads to difficulties, A simpler approach is given: examples 
show that results agree acceptably well with those rrom the strict approach, 
and also that a qualitative assessment of the closeness or this agreement 
can in each case be made. 

I 1 , 







C.P. No. 799 

0 Crown Copyright 196.5 

Published by 
HER hhwsn’s STATIONERY oFXW% 

To be purchased from 
York House, Kingsway, London W.C.2 

423 Oxford Street, London W.1 

13~ Castle Street. Edinburgh 2 
109 St. Mary Street, Cardiff 

39 King Street. Manchester 2 
50 Fairfax Street, Bristol 1 

35 Smallbrook, Ringway, Birmingham 5 
80 Chichester Street, Belfast 1 

or through any bookseller 

C.P. No. 799 
S.O. CODE No. 23-9015-99 


