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SUMMARY

The so-called impact theory equation Cp¥* = K* sin26 for a circular cone
is written as the sum of three terms associated with axiel, combined and.
transverse flows respectivelys By postulating that K* in each term represents
a limiting value as M « 0 200 of coefficients K ,Kb K which are functions of

verisbles like N . 0, a simple, semi-empirical method is devised for predicting

pressure distribution on the windward region of a circulsar cone which agrees

well with experimental data up to large incidence angles. Numeriocally, the
method is based on the small incidence theories of Taylor-Maccoll and Stone,

and on experimental pressure distributions over cylinders placed normal to the
stream.
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1 INTRODUGTION

Theoretical methods for predicting pressures on cones at high supersonio
end hypersonic speeds (M > 3) are strictly limited to moderate incidence
angles, and for higher angles semi-empirical methods such as the so-called
impact theory and tangent-cone approximations ere useds In this note, a method
for predicting pressures over the windwerd region of a circular cone at these
speeds and at arbitrary incidence is proposed, which can be regarded as derived

from the impact theory equation Cp* = K* sin"6. However, unlike earlier semi-
impirical methods of this type, the suggested method is consistent with the
well-known Teylor-Maccoll and Stone theoretical results, and also with experi-
mental pressure distributions round circular cylinders placed normal to the
stream.

No explicit account is teken of boundary-layer displacement effects,
real gas effects or separation phenomena, Application of the method is
restricted in this note to the special case of a circular cone, and hence the
question of possible corrections for centrifugel effects due to body curvature
in the longitudinal planes does not arises Extension of the method to cover
other bodies of revolution is obviously feasible.

2  IMPACT THEORY - A BRIEF REVIEW

The general name of impact theory is given to all those eqdations for the
pressure coefficient in hypersonic flow which have the form

Cp* = K* sin26 . (1)

Here the asterisk is used to denote limiting values for Mw.e*oo and K* is an

impact coefficient, 6 is the angle between the free stream and the local sur-

2

between free stream direction and surface normal. O must be positive for this
equation to apply, Cp* being assumed zero for negative 0. o

face, measured in a plane normal to the surface, i.e. (ﬁ - 6) is the angle

Formulee of this type may be derived in several weys, one of which
employs the original corpuscular theory of Newton and hence has given rise to
the name impact theory. Another derivation epplies the strong shock approxima-
tion to the oblique shock equations. Details of such analyses are given in
Refse1 and 2, but some special examples will be repeated here:-

(a) For plane surfaces (e.g., a wedge) the oblique shock equations give
K’# = (1 + Y) . ' (2)

for the assumption of smell 6 and very high Mach number such that %”. 8> 1,

where 6 is the angle between the plane body surface and the free stream (see
equation (25) of Refe1). For M = o, equations (1) end (2) in fact predict Cp*
to within 5% of the oblique shock equation results for angles up to about 40°.



(b) For conical flow with en attached shock end again assuming 6 small and
Moo' © >> 1, Lees” obtained the impact coefficient for a cone

K* = 2{v+1 + . ) . | (5)

Here 6 is the semi-angle of the cone, which is at zero incidences ‘Numerical
results obtained by Kopal¥ from the complete Taylor-Maocoll equations for
M, = ® suggest that equation (3) is a close approximation for ell cone angles

which permit an attached shock.

(¢) The above values of K* apply to cases where the angle between the flow
and the surface is small enough for the shock to remein attached, so that
the flow between the shock and the surface is essentially planar or conical
as the cese may be. For bluff bodies such as spheres or cylinders placed
normel to the stream, K* at the stagnation point, (where 8 = 90°), must be
equal to the stagnation pressure coefficient behind a normal shock in the
limit as M_ oo Experimentally it is found that the pressure distribution

over the forward-facing surfaces of a bluff body with a detached shock does
in fact follow a sin“® law quite closely, so that the limiting stagnation

pressure coefficient may be regarded as en impact coefficient for bluff
bodies,

1

v-1.

’ 2
. @

Now, the well-known Newtonian result K* = 2 is obtained by assuming
that all free-stream momentum normal to the surface is lost, the flow moving
tangentially to the surface after impact. This implies that the shock is
coincident with the body surface, and therefore the density ratio across the
shock (— I._ for M sin Z >> 1, where ; is the shock angle\ must be infinite

\ ¥ /
in order that the flow behind the shock mqy be accommodated. This will be
the case for y = 1, and with this assumption equations (2), (3) end (4) all
give K* =

3 IMPACT THEORY FOR A CONE

Consider a cone with its axis at an angle of incidence a, (see Figd1).
Let any point on this body and the most windward point in the same plane
normal to the axes subtend a polar angle ¢ at the axis. Then if € is the
surface slope of the body at the point relative to the axis, (i.e. the cone
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b4 y z
Tangent to generator through P cos € sin e sin ¢ - sin e cos ¢
Tangent to circular section at P 0 cos ¢ sin ¢
Normel to surface at P sin ¢ - cos € sin ¢ cos € cos ¢
Stream direction €08 o 0 sin o

Hence, the relation between fhe local inclination of the body surface to the
stream, 6, and the variasbles a, ¢ and ¢ is:=-

"8in 8 = cos <g - e) = 8in g cos o + sina cos € cos ¢ » - (5)

Fige1 indicates how this result may be derived in another ways

(5) Assuming 6 to be positive, i.e. cos ¢ > - tan g/tan a, equations (1) and
5) glve

Cp* = K*(sinze 005 + 2 8in & cos & 0OS ¢ sin a cos a + ‘cos’e cos2¢ sinza) .
ere (6)

The three’'terms in this equation can be identified with three distinct
components of Cp* which will be denoted respectively sz, Cpg, sz. - These will

be considered in turn:-

The first component Cp: is given by the following equation
Cp: = K* gin‘e cosa . (D

Cp;, is that part.of the total pressure coefficient which can be regarded as
being generated by the axial flow component of the stream, (velocity Yx co8 Q)
where 2” is the free stream velocity) and is due entirely to the surface slope’

of the body e relative to its axis. At zero incidence Cp: is equal to Cp*.

The second component is Cpg, given by

Cpf = 2K* sin e cos & cos ¢ sin a cos a . (8)

-5 =~



Cpg, is that part of the total pressure coefficient on a body at inoidence

whioh 6an be regarded as arising from interaotion between the axial velooity
component of the stream, V cos o and the transverse velocity component

V 8in a, on a body haV1ng a finite surface slope, Thus Cpb depends on all
oomponents of the flow, At small angles of 'incidence Cpb is the major inorenent
in Cp* due to incidence and in this case is clearly related to the inorement
derived by linearised theory,

Lastly, Cp: is given by

- - Cpg = K* cosQe cosz¢ sinza . . (9)

Cpg is that part of the total pressure coefficient whioch ocan be oonsidered as

being generated entirely by the transverse velocity component of the stream,
Yx sin o, This component of Cp* is very little affected by surface slope, and

in the limiting case of a cone with € » 0, i,e, a cylinder, Cp: is equal to Cp*,

The remeinder of this note is devoted chiefly to showing how, by rewriting
these three equations in a more generalised form and by meking some intuitive
assumptions conoerning the interpretation of the supersonio-hypersonioc simiiarity
rule, their range of applicebility can be usefully extended., However it will
e neoessary to assume that the three components of Cp* desoribed ebove oan at -
all times be treated independently. of each other, and this assumption alone
must limit the method to Ligh supersonic and hypersonio speeds,

The basis of the proposed method is to replace K* in equations 7, 8, 9
by variable coefficients which tend to K* in the limit M. ® + 0, Even in this

limiting oase, for which the above impaot theory equations are strictly valid,
although a single value of K* could be chosen to suit any particular ocase
(depending on the nature of the flow) it would seem logical to assooiate with
the axial and combined flow components Cp and CPB an impact coefficient K*

derived from theories which sssume flow through an attached shook, (e.gz.
equation (3)), while the transverse-flow component Cp would be 355001ated with

an impaot coefficient K* appropriate to flow round a oylinder, i.e. that for .
bluff bodies equation (4),

b SIMILARITY RULES

The hypersonic similerity rule for the pressure coeffioient on a body of
revolution at a given longitudinal, position and a given polar angle ¢ may be
written .

Cp _ ' .
% £ (Moo. 0,5 M .06, eto, ) (10)
where 61, 62 eto, are small angles defining the flow field, Refs, 1,2,3 give

fuller accounts of this rule,

4
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atream Mach number M = M . 008 a, and the cone semi-angle e, It is proposed
to obtain’ values of K from theoretical results, discussed in section 7.

KS like Ka is essentially related flow hrough an attached shock,
8

to
Since E- arises from the interaction between bofh ax _-l and transverse floﬁ
components, the hypotheses will be mede that the value of Kb at any point
depends  only on & similarity parameter involving the stream Mach number %m

and the loocal inclination of the body surface to the stream at that'point; 0,
Since values of Kb must be derived from theoretical results which assume a -» O,

this impd.des that for a cone at an arbitrary angle of incidence the value of Ky

applying at any point where the locel swfaoce inclination to the flow is 0 is
the theoretical value for the same Mach number but at zero incidenoce and with
g = e. " Values of K, are derived, for y = 1.k, in seotion 8,

Ko_is associated with the transverse flow, velooity vV, sina, i.e. since

the effect of surface slope is small, essentially with the flow round a cylinder
normal to the stream with a detached shock, Hence it is proposed to assume that
K (numerically equal to the maximum pressure coefficient on a cylinder normal- to

the stream) depends simply on the cross-flow Mach number, M » 8ina., The

validity of this assumption is discussed and values of K are derived, in

section 9.’

(b) In eddition to the introduction of varisbles K> K K the orizlnal

impaot theory equation has been modified by the substitutlon of cos (1— )¢
for c0s$ in equation (14), For a long cylinder at 90° incidence, equations
111k give Cp/Cpm = 008 (1-6)¢, the variable § has been introduced to

enable small differences between experimental pressure distributions round
c¢ylinders and the impaot theory prediction to be taken into acocount, Data on
Cp/Cp for cylinders and appropriate values of & are dissussed in section 10.

6 LIMITATIONS OF METHOD

Clearly an approach of this kind is only valid if both Mn and %n. 6 are
reasonably large. The lower limit of M” is believed to be about 3 and the
method ocan be applied with greatest confidence where M”. ® > 1. Although values
of Ka and K, oan be correlated for M”. ® < 1 the assumption that the, transverse
flow term Cpc can be treated as two-dimensional and independent of the rest of
the flow is only likely to be applicable if the condition Mm. 0 > 1 is fulfilled,
Fortunately, Cpc is usually small vhen M”. © is small so that the method may be
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1 DERIVATION OF K,

Values of the ooefficient Ka derived from Kopal's tablesl* for the pressure

coefficient on a cone in axial flow (Taylor-Maccoll theory) are plotted for
Ms 3 in Fig, 2(a) as a funotion of the supersonic-hypersonic¢ similarity
parameter for small angles, i.e.

K, = f(B,le) . (15)

Here, B a has the meaning Ba =~/M§ - 1 where Ma is the axial Mach number

M” ¢os a in the general case, (In fact of course the theoretical points have .

been derived for zero incidence,) The correlation represented by equation (15)

is good for cone semi-angles up to about 20° but less satisfactory for larger

angles, :
Much better correlation of the Taylor-Maccoll values of K, at large angles

is obtained by means of the relation

K, = £ (B e5ine.cose) . (16)

As shown in Fig, 2(b), for M, > 3 equation (16) gives almost perfeot correlation

for angles up to at least 40°. For predicting K, for cones, Fig. 2(b) is there-
fore used, .

Thus the statement of the small angle, hypersonic similarity rule given by
equation (10) has been modified empirically, following the arguments presented in
section 4, by replacing Cp/62 by Cp/sin20, and M 6 by p sin cos®, In this way,

the range of applicebility of the similarity law is greatly increased in the
present case, A similar approach has been found/ to correlate pressures behind
plane oblique shoocks/”.

8 DERIVATION OF K,

For the reasons given above, it will be assumed that Ky is a unique funotion

of B 3in6 ,cos 0, where § is derived from stream ilach No, and © is the looal
incidence, Theoretical values of Kb must be obtained from small incidenoe theory,

Now Stone8 has derived pressure perturbation coefficients for a slightly yawed cone
in the form

(de/du.)o»O'; cos¢ . £ (i, &) . (17)

From equation (13) it follows that values of K’b can be derived from these

results using the relation

P For this simple oase, and also for the Prandtl-Meyer expansion, it may also
be noted that the modified law

2 2
M Cp = ,:E‘(Mo/B sin 8)
correlates pressures over an even wider range of Moo .




- (acp/aa),
a-+0
K, = £ (B.sinb. cos0) = Lzsine; cos€ , cos ¢

. (18)
£-0
Fig, 3(b) shows a plot of Ky derived from Stone's results (as tabulated by
Kopsl”) and it cen be seen that for M_> 3 the sinilarity lew expressed by

equation (18) is well justified up to large angles, Also shown, Fig. 3(a),
is a plot of K, against the small angle parameter B0; as in the ocase of K

this does not yield such a good correlation.

It is proposed that Kb be obtained from Fig. 3(b) using stream Mach number
for B and the local incidence © to obtain the similarity parameter § sin © ocos O,

9 DERIVATION OF K|

The component Cp0 of the pressure coefficient, given by equation (14) is

proportional to sinza, and can be attributed entirely to the flow in the trans=-
verse plane, with a maximum value at a = 90°, (at which condition the other
components of Cp are zero), The coefficient Ko is related to flow sbout &

bluff body with shock detached, and must therefore tend in the limit M e 000
to the value given by equation (&),
It is proposed to oonsider the transverse flow as two-dimensional so that
the pressures due to it can be derived from the pressure distribution round a
long oylinder; (with e = O, Cp, and Cp, ere both zero and Cp = Cpc).
The similarity parameter §sin 6 cos 0 used for Ka and K applies to flows with

shook attached and is not appropriate, It is proposed to assume that the
relevant 'bluff body' similarity parameter is the cross-flow Mach number, i.e.

K, = f (Mw. sina) . . . (49)

Experimental values of Ko from wind-tunnel tests on long cylinders are
shown on Fig. 4. The values plotted are in faot (Cpmax)CYL/sinzo., (see
equation (14)) where (Cpmax)CYL is of course the pressure coeffioient on the

most windward generator of a ¢ylinder, ¢ = O, The line through these points,
which is a very good fit, is the theoretioal stagnation pressure coeffiolent
behind a normal shock in a stream of Mach number M , sina, with v = 1.4,
Henoe it is valid to write 0

K, = Cpg (i sina) . _ _A (20)

10 PRESSURE DISTRIBUTION ROUND CYLINDERS - DERTIVATION OF &

In equation (14) the pressure distribution round & oylinder has been
virtually represented by :

- 10 -
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(C/opy )y, = o0s° (1-8).8 (21)

Experimentel values of (Cp/cpmax)CYL from references 10, 11, 42 are plotted
against ¢ in Fig, 5 for M sina> 3,5 and in Fig, 6 for 1,5 < M sina< 3. We

are concerned here only with the distribution for ¢ < 90°.

If M_sina > 3.5 (Tig, 5) all the results lie near the full-line curve
which corresponds to, (sée'inset graph on Fig. 5),

& = 0,1 ¢ for M sinas 3,5 (22)

co

where ¢ is in rediens. Fig, 6 shows experimental values of (Cp/Cpmax)CYL for
1.5 < M sin a < 3 and in this case the points suggest a variation of 6 with
M_ sin o from epproximately zero at M sin o = 1.5 towards equation (22) at

M sina a 3.5,

o0
If M_sina < 1 lerge variations of (Cp/Cpmax)CYL for a given ¢ oocur with
variations of Mx sin a and fo In any case, if %” sin @ < 1 the principle of

adding the transverse flow pressure distribution to the other components ocannot
be justified; however since the method is limited to cases where M” 5 3, quite

large errors in Cp, can be tolerated if M sin a < 1, since this component of
o
Cp must then be small,

For prediction purposes, the assumption will be made

8 = 0 for mw sin a ¢ 1.5 (23)

interpolation between equations (22) and (23) being necessary for
1.5 < M_sina < 3.5.

11 COMPARTSONS WITH EXPTRIMENT

On Figs. 7(a) to 7(&), comparisons are made between the prediocted pressure
coefficient on cones by the method of this note and experimental data from
Refs, 13,14,15 and 16, Each figure shows, for partiocular values of oone semi-
angle and Mach No,, pressure coefficient Cp vs, meridian angle ¢ for a range of
angles of incidence, a, The predioted pressure coefficients are shown by full

lines for M” sin 6 > 1, and continued as chain dotted lines for 1.0 » %” sin6> 0,3,

Also shown on each figure by a broken line is the prediction using the simple
Newtonien impact cocefficient of 2,

On the whole, for M_sin © > 1, agreement between the predioted pressure
coefficients using the method of this note and experimentsl values is very good,
the only serious - and somewhat puzzling =« discrepancy being the ocase shown on

Fig., 7(g) for ¢ > 90°,
w11 -



For moderate or large cone semi-angles and small angles of inoidence
the method is much superior to simple impact theory, especially at the lower
Maoh numbers - see for example Figs, 7(a) and 7(b), a = 5°. This is because
in these cases that part of the pressure perturbation generated by incidence

is small compared with that generated by the cone volume itself, and since the °

latter corresponds to a coefficient K rather greater than 2, (Fig. 2(a))

Newtonian impact theory underestimates the pressure,- At the other extreme,
exenplified by Fig. 7(0), where the cone angle is small but incidence large, a
large pert of the pressure perturbation is generated by the transverse flow
which ocorresponds to a coefficient K, less then 2, (Fig. 4). Hence in this

oese, Newtonian theory overestimates the pressure coeffioient., Between these
two extremes, for example Fig. 7(e), € = 159, o = 259, the differences between
the prediotion of the method desoribed herein and of simple impaoct theory may
be small, due to & fortuitous combination of axial and transverse flow pressure
components, .

Where the surfaoce normal Mach number-%m. 8in 6 is less than one, the

prediction would be expeoted to be less reliable than at higher normal Mach
numbers, and the experimental data confirm this. In some cases, for example
Figs, 7{a) and 7(h), the prediction is guite good for M_,sin 6 as low as 0.3,

but in others, for example Fig, 7(J), it is poor, . In general, successful
prediction for M . sin ® < 1 must be regerded as fortuitous, but it is worth

noting that there is no sudden divergence between prediction and experiment as
M_.sin 6 deoreases through unity; instead the likely error apparently

inoreases steadily as 1 =~ Mn. sin O increases,
12 CONCLUSIONS

A simple semi-empirical method has been devised for predicting pressure
on the windward surface of a cone at Mach numbers .in exoess of 3, and arbitrary
angle of incidenoe,

Agreement between predioted pressures and experimental data is good so
long as the local Mach number component normel to the surface exceeds unity. ,
The method is more accurate than the simple impaoct theory equation Cp = 2sin£6
especially for small angles of incidence or smell cone angles,
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SYMBOLS
local pressure coefficient, 2(p-.3”)/¥ 1 Mi
components of Cp, see section 5
stagnation pressurelcoeffioient
pressure ocefficient in the limit M . € + oo
variable coefficients in equations 12, 13, 14, Figs. 2, 3, "
impaot ocoefficient in the equation C; = K¥ sin26 |
free stream Mach number
M”. cos @
M_. sina in Fig. &
local static pressure
free stream static pressure
local cone radius (Fig. 1)
free stream velocity
Cartesien coordinates for a cone, (Fig. 1)

cone incidenoce, measured from axis

ratio of specific heats

empirical varisble discussed in section 10

cone semi-angle

angle between shock wave and free stream direction

angle between free stream and locel surfaoce, measured
in a plane normal to the surface

polar angle subtended at the oone axis between any point

on the surface and the most windward point in the same
plane normal to the axis

-13 -



No.

10

11

12

13

Author
Crabtree, L.F.
Chernyi, G.G.

Lees, L,

Kopel, Z. (Ed,)

Grimminger, G‘.’
Willians, E.P,,
Young, G.B.W,
Ven Dyke, M.

Collingbourne, J.R.

Stone, A.H.

Kopal, Z, (Ed,)

Penland, J.A.

Gowen, F,E.,
Perkins, E.W.

Oliver, R.E,

Holt, M,,
Blackie, J,

REFERENCES

Survey of inviscid hypersonic flow theory for
geometrically slender shapes.
RAE Teoch., Note No, Aero 2695 June 1960

Introduction to hypersonioc flow,
Acadenioc. Press 1961

Note on the hypersonic similarity law for an
unyawed cone,
Journal of Aero Sciences, 18, pp.700-702 October 1951

Tables of supersonic flow around cones,
MIT Center of Analyses, Tech, Rpt, No, 1 19%7

Lift on inclined bodies of revolution in hypersonio
flow,
Journal of Aero Sciences, 17, Pp.675-690 November 1950

Combined hypersonio-supersonio similarity rule,
Journal of Aero Soiences, 18 July 1951

An empirical prediotion method for non-linear normal
force on thin wings at supersonic speeds,
ARC CP No, 662, January 4962

On supersonioc flow past a slightly yawing oone,
Pert I: Journal Math, Phys., 27, pp.67-81 1948
Part II: Journal Meth, Phys., 30, pp.200-213 1951

Tebles of supersonioc flow around yawing oones,
MIT Center of Analysis, Tech, Rpt. No, 3 1947

Aerodynamic characteristics of a oiroular oylinder
at Mach No., 6,86 ard angles of attack up to 90°,
NACA TN 3861, January 1957

ARC, 16996

Drag of oircular cylinders for a wide range of
Reynolds numbers and Mach numbers
NACA TN 2960 June 41953 ARC 15&51

An experimental investigation of flow sbout aimple
blunt bodies at a nominal Mach No. of 5,8
Journal of fero Sciences, 23, pp.177-179 1956

Experiments on e¢ircular cones at yaw in supersonio
ﬂOW.

Journal of Aero Sciences, 23, pp.931- October 1956 °

- 1 -

K}



16

Noo Author
1 Amick, J.L.
15 Peckham, D.H.

Cooper, R.D.,
Robinson, R.A.

REFERENCES (CONTD)
Title eto,

Pressure measurements on sharp and blunt 5° and 15°
helf angle cones at Mach No. 3.86 and angles of attack
to 10000

NASA TN D 753 February 1961

Experiments at hypersonic speeds on circular cones at
incidenoe.
ARC CP No,702, January 4963

An investigation of the aerodynamic charaoteristios of

a series of cone-cylinder configurations at a Maoh No.
of 6.86,
NACA RM 151 JO9 Decexber 41551

- 45 -

Printed in England for Her Majesty's Stationery Office by
the Royal Atrcraft Establishment, Farndorough. W.1.60.K.4.






0

pnZ + PI% - NI
2 PN. PI '

cos (§-6) =sinf =



36
SEE FIG 2(b) FOR NOTATION.
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CIRCULAR CONES AT INCIDENCE AT HIGH SUPERSONIC AND HYPERSQNIC SPEEDS (1 2 3)

Collingbourne, J.R., Crabtree, L,F,, Bartlett, W.J, June 1964

The so-called Impast theory equatlon Cp* = k¢ 3in3@ for a circular cons
1s written as the sum of three terms assoclated with axial, combined and
transverse flows respectively., By postulating that K* in each term
représents a limiting value as P[”O"eoor coeff iclents K, 5K ,K; which are
functions of variables like M. 8, a simple, semi-empirical method is devised
for predicting pressure distribution on the windward region of a circular
ccne which agrees well with experimental data up to large incidence angles,
Numerically, the method is based on the small incidence theories of Taylor—
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The so~celled impact theory equation Cp* = k¢ sin°@ for a clrcular cone
is written as the sum of three terms associated with axial, combined and
transverse flows respectively, By postulating that K* in each term
represents a limiting value as k%&'ooor coefflclents K, K which are
tunctions of variables like 1.0, a simple, semi~empirical method is devised
for predicting pressure distribution on the windward region of a oircular
cone which agrees well with experimental data up to large incidence angles,
Numerically, the method 1s based on the amald incidence theorles of Tayler-
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The so-called Impact theory equation Cp¢ = K* sin2@ for a clircular cone
is written as the sum of three terms associated with axial, cambined and
transverse flows respectively, By postulating that K* in each temm
represents a limiting value as €-%00 of coefficlents K, Kps which are
functions of variables like M.0, a simple, semi-empirical method is devised
for mredicting pressure distribution on the windward region of a circular
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