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The so-called impact theory equation Cp" = K* sin20 for a circular cone 
is written as the sum of three terms associat@ with axial, combinqd and* 
transverge flows respectively. By postulating that K* in each term represents 
a lktiiting value as M . 0 *m of coeff'ioients Ka,\,Kc whioh are functions of 
variables like M OO. 6,ma simple, semi-empirioal method is devised for predicting 
pressure distribution on the windward region of a circul.Gr cone &ich agrees 
well with experimental data up to large incidence angles. Numerically, the 
method is based on the small incidence theories of Taylor-kaccoll and Stone, , 
arid-on experimental pressure distributions over cylinders placed normal to the 
strew. _ . 
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1 INTRODUCTION 

Theoretical methods for 
and hypersonic speeds (M 2 3) 
angles, and for higher angles 

predicting pressures on cones at high supersonio 
are strictly limited to moderate incidence 
semi-empirical methods such as the so-called 

impaot theory and tangent-cone approximations are used. In this note, a method 
for predicting pressures over the windward region of a circular cone at these 
speeds and at arbitrary incidence is propose$, which can be regarded as derived 
from the impact theory equation Cp* = K$< sin 0. However, unlike earlier semi- 
impirical methods of this type, the suggested method is consistent with the . 
well-known Taylor-Maccoll and Stone theoretical results, and also with experi- 
mental pressure distributions round circular oylinders placed normal to the 
8 tream, 

No explicit account is taken of boundary-layer displacement effects, 
real gas effects or separation phenomena, Application of the method is 
restricted in this note to the special case of a circular cone, and hence the 
question of possible corrections for centrifugal effects due to body curvature 
in the longitudinal planes does not arise. Extension of the method to oover 
other bodies of revolution is obviously feasible. 

2 . IMPACT THEORY - A BRIEF REVIEW ’ 

The general name of impact theory is given to all those equations for the 
pressure coeffioient in hypersonic flow which have the form 

Cp’ = K* sin20 . (1) 

Here the asterisk is used to denote limiting values for M l o-* w and K* is an cd 
impaot coefficient. 8 is the angle between the free st?eam and the local sur- 

face, measured in a plane normal to the surface,‘ i.e. 
t > 

$ - 8 is the angle 

between free stream direction and surface normal. 8 must be positive for this 
equation to apply, Cp* being assumed zero for negative 0, 

Formulae of this type may be derived in several ways, one of which 
employs the original corpuscular theory of Newton and hence has given rise to 
the name impact theory. Another derivation applies the strong shook approxima- 
tion to the oblique shock equations. Details of such analyses are given in 
Refs. 1 and 2, but some special examples will. be repeated here: - 

(a) For plane surfaces (e.g., a wedge) the oblique shock equations give 

KC 3 
(1 + Y) l (2)  

for the assumption of small 8 and very high Mach number such that M l 8 >> I, 

where 0 is the angle between the plane body surface and the free stream (see 
equation (25) of Ref. 1) l For M + 00) equations (I) tina (2) in fact prediot Cp* 
to within s of the oblique shock equation results for angles up to about @‘I 



(b) For conical flow with an attached shock and again assuming 8 small and 
Mm. 8 >> I, Lees 3 obtained the impact coefficient for a ‘cone 

K* <s . 2(rel )(p& ; . 1 ) 
,- (Y+3)2% 

(3) 

Here 8 is the semi-angle of the cone, which is at zero incipenoe. Numeriaal 
results obtained by KopaJ4 from the complete Taylor-Maocoll equations for 
& =* suggest that equation (3) is a close approximation ‘for all cone angles 
which permit an attached shock. 

(0) The above values of K’” apply to aases where the angle between the flow 
and the surface is small enough for the shock to remain attached, so that 
the flow between the shook and the surface is essentially planar or ooniaal 
as the case may be. For bluff bodies such as spheres or cylinders placed 
noma& to the stream, K* at the stagnation point, (where 9 = 90”)) must be 
equal to the stagnation pressure ooeffiaient behind a normal shock in the 
limit as MW+oo. Experimentally it is found that the pressure distribution 
over the forward-facing surfaces of a bluff body with a detached shock does 
in fact follow a sin20 law quite closely, so that the limiting stagnation 
pressure coefficient may be regarded as an impact coefficient for bluff 
bodies, 

1 
, 

K" = 

. . 

Now, the well-known Newtonian result P = 2 is obtained by assuming 
that all free-stream ‘momentum normal to the surface is lost, the flow moving 
tangentially to the surfaae after impact. This implies that the shock is 
coincident with the body surface, and therefore the density ratio across the 

shock 
( 

I * for Ed, sin Z- >> 1, where < is the shock angle 
Y-1 > 

must be infinite 

in order that the flow behind the shock mey be accommodated. This will be 
the case for y 5 1, and pith this assumption equations (2), (3) and (4) all 
give P = 2. 

3 IMPACT THKORY FOR A CONK 

Consider a cone with its axis at an angle of incidence a, (see Fig.1 ). 
Let aw point on this body and the most windward point in the same plane 
normal to the axes subtend a polar angle Q, at the axis. Then if E is the 
surfaae slope of the body at the point relative to the axis, (i.e. the cone 
semi-angle), the angle 8 between the free stream direction and the surfaae at 
this point, measured in a plane-normal to the surface, can be found by con- 



I Tangent ‘to generator through P ] cos E I sin 8 sin f#~ I - sin E 00s $- I 

I 
~~ 

Tangent to circular section at P 0 CO8 c/l I I 

I Normal to surface at P I sin E I - co9 E sin 9 I 00s & 00s $J , I 

I Stream direction I cos a I 0 I sin a I 

Hence, the relation between the local inclination of the body surface to the 
stream, 8, and the variables a, E and C$ is:- 

sin 8 = cos $ - 8 
( ) 

. 
‘= sin E co9 a * sin a cos e co9 $ 0 . (5) 

, . 

Fig.7 indicates how this result may be derived in another waya 

Assuming 6 to be positive, i.e. cos $ > - tan e/tan a, equations (1) and 
(5) give I . 

. . 

cp” = K*(sin2s aos2a t 2 sin E co6 8 cos Q, sin b co8 a t ‘oos2e cos2+ sin2a) . 
* ’ 

l .* (6)  

. . 

The three'terms in this equation can be identified with three distinct 
components of Cp* which will be denoted respectively Cp’@, Cp{, Cp:. . These will 

. . 
be considered in turn: - . 

+ - , I . 
The first component Cp: is given by the following e quation 

I 
cp* = K* sin2tz cos2a . a (7) 

Cp* is that part+of the total pressure coefficient which can be regarded as a’ 
being generated by the axial flow component of the’stream, (velocity VW cos a; 

where V, is the free stream velocity) and is due entirely to the surface slope ’ 

of the body E relative to its axis. At zero incidenoe Cpz is equal to Cp*. 

The second component is Cp;;‘, given by 

CP< = 2K* sin E co3 E co9 9 sin a 00s 6 . (8) 

-5- 



C$, is that part of the’ total pressure ooeffioient on a body at inoidenoe 

whioh osn be regarded as arising from interaotion between the axial velooity 
oomponent of the stream, VW 008 a ma the transverse velocity oomponent 

VW 85n (2, on, a body having a finite surfaoe slope. THUS c$ depds on all 

oomponents of the flow, At’ small angles of ‘ipoidenoe C$ is the major inorement 

in Cp* due to inoidenoe and in this ease is olearly related to the inorement 
derived by linearised theory, ’ 

Lastly, Cpz is given by 

. 1 . . CPi = F’ oos*e oos*# sin*a , . (9) 

F 

Cpz is that part of the total Pressure coefficient whioh oan be oonsidered as 
being generated entirely by the transverse velocity component of the stream, 
VW sin a. This component of Cp* is very little sffeoted by surfaoe slope, and 

in the -limiting base of a oone with e + 0, i.e. a cylinder, Cp: is equal to Cp*. 

The remainder of this note is devoted~ohiefly to showing how, by rewriting 
these three equations in a more generalised form and by making some intuitive 
assumptions oonoerning the interpretation of the supersonio-hypersonio aimiiarlty 
rule, their range of applicability oan be usefully extended. However it will 
3e neoessary to assume that the three components of C$ desoribed above ban at ’ 
all times be treated independently-of eaoh other, and this assumption alone 5 
must limit the method to high supersonio and hypersonio speeds, f 

The basis of the proposed method is to replaoe K* in equations 7, 8, 9 
by variable ooeffioients which tend to K* in the limit M . 0 + ao. Even in this 

limiting ease, for which the above impaot theory equatiors are strioay valid, 
although a single value of K’s oould be chosen to suit any particular ease 
(depending on the nature of the flow) it would seem logioal to assooiate with 
the axial and oombined flow oomponents Cpi and C$ an impaot coeffioient K* 
derived from theories which assume flow through an attached shook, (e.g. 
equation (J)), while the transverse-flow oomponent Cp”, would be assooiated with 

an impaot ooeff ioient K* appropriate to flow round a oylinder, i.e. that. for 
bluff bodies equation (4). 

4 SIMILARITY RULES . 

The hypersonic similarity rule- for the pressure ooeffioient on a body of 
revolution at a given longitudinal-position and a given polar angle $ may be 
written 

22 e* = f (M 00. 0,’ M . 02 eta.) 00 

where 8 ,, C2 eta. are small angles defining the flow field, Refs, 1,2,3 giv0 

fuller aooounts ti this rule, 
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stream Maoh number, Pa = h4 , 00s a, and the oone semi-angle a. It is proposed 
to obtain.values of Ka frym theoretioal zxsults, disdussed in seotion 7: 

. . 
Kb like Ka is essentially related to flow through an attaohed shook. 

Since r&, arises from the interaction between b&h axial and transverse floi 
oomponents, the hypotheses will be’ made that the value of Kb at any point 

depends * only on a similarity parameter involving the stream Mach number M 00 
and the loo&L inolination of the body surf’aoe to the stream at that point; 8. 
Sincze values of K,, must be derived from theoretioal results which assume a + 0, 
this implies that for a cone at an arbitrary angle of inoidenoe the value of Kb 
applying at any point where the local surf’aoe inclination to the flow is 8 ii g 
the theoretioal value for the same Maoh number but at eero inoidenoe and with 
e 8,’ ' = Values of Kb are derived, for y = I .4, in seotion 8, ' 

: . 0 
K is associated with the, transverse flow, velooity VW sin a, i.e. sinoe A- 

the effect of surfaoe slope is small, essentially with the flow round a cylinder 
normal to the. stream with a detached shook. Hence it is proposed to assume that 
K. (numerically equal to the maximum pressure ooeffioient on a cylinder normals to 

the stream) depends simply on the cross-flow Maoh number, b4 . sin a. The 00 
validity of this assumption is discussed, and values of K. are derived, in 
seotion 9.’ . ’ 
(b) In addition to the introduotion of variables $, Kb, K,, the original 

impaot theory equation has been modified by the substitution of cos*(l - 6) $I 
for oos*$ in equation , 
11-14 give Cp/Cpmax = 

(14 
h 

For a long cylinder at 90’ inoidenoe, equations 
co9 (1 - S)@; the variable 6 has been introduced to 

enable small dirferenoes between experimental pressure distributions round 
cylinders and the impaot theory prediction to be taken into acoount. Data on 
CP/CPmax for cylinders and appropriate values of 6 are disoussed in seotion 10. 

6 LiXITATIOIB OF MEYTHOD ’ 

Clearly an approaoh of this kind is only valid if’ both M, and M . 8 are 
reasonably large. The lower limit of M, is believed to be about 3 Gd the 
method oan be applied with greatest oonf’idenoe where M,. 0 > I, Although values 
of Ka and Kb oan be oorrelated for M , 8 c 1 the assumption that the .transverse 
flow term Cpo oan be treated as two-Dimensional and independent of the rest of 

the flow is only likely to be applioable if the oondition M . 8 > .I is fulfilled. 

Fortunately, Cpo is usually small when M 00’ 0 is small so th% the method may be 
expeoted to yield useful results for values of bfW. 0 ‘less than unity, 



. . 

7 DERIVATION OF Ka 

Values of the ooeffioient Ka derived from Kopal’s tables4 for the pressure 
ooeffioient on a cone in axial flow (Taylor-Haccoll theory) are plotted for 
M 9 3 in Fig. 2(a) as a funotion of the supersonic-hypersonio similarity 

1 parameter for small angles, i.e. 

’ Ka = )f (pa; E) . 05) 
___- 

5 Here, pa has the meaning pa =,/Mz - 1 where Ma is the axial Maoh number ' 

M, cos a in the general case. (In fact of course the theoretical ~points have . 

been derived for zero incidenoe. ) The correlation represented by equation (15) 
is good for cone semi-angles up to about 20° but less satisfactory *for larger 
angle 8. 

Much better correlation of the Taylor-Maccoll va;lues of Ka at large angles 
is obtained by means of the relation 

K a = f (pa. sin a. 00s a)’ , (16) 

P 

As shown in Fig. 2(b), for Ma 2 3 equation (I 6) gives almost perf eot correlation 
for angles up to at least 40°. 
fore used, 

For predioting Ka for cones, Fig. 2(b) is there- 

i) 

Thus the statement of the small angle, hypersonio similarity rule given by 
equation (IO). has been modified empirically, following the arguments presented in 
section 4, by replaoing Cp/02 by Cp/ski.n%, and M,0 by p sin6 cos0. In this way, 
the range of applicability of the similarity law is greatly increased in the 
present case, A si ' 
plane oblique shooks v 

ar approaoh has been found7 to oorrelate pressures behind 
. 

. 8 DERIVATION 0F ~b 

For the reasons given above, it will be assumed that K,, is a unique function 
of p sine . co9 0, where p is derived from stream Maoh No. and 6 is the loosl 
incidenoe, Theoretioal values of Kb must be obtained from small inoidenoe theory, 
Now Stone' has derived pressure perturbation coefficients for a slightly yawed cone 
in the form 

8 
. . * 

(dCp/da)c+o = cos# .f (IL, a) . (17) 

From equation (13) it follows that values of Kb oan be derived from these * 
results using the relation 

# For this simple case, and also for the Prandtl-Meyer expansion, it may also 
be noted that the modified law 

Mz CP = .f(M?p sin 0) 
oarrelates pressures over an even wider range of M 00. 

-9. 



% = f (p l sine . 003 e) = 
- (dCP/dc)& 0 

1 2sine ; case , cos$ 1’ . we 
Fig. 3(b) shows a plot of K,, derived from Stone’s results (as tabulated by 

Kopal 9 ) and it can be seen that for Mm z 3 the similarity law expressed by 
equation (18) is well justified up to large angles, Also shown, Fig, 3(a), 
‘is a plot of Kb against the small angle parameter p0; as in the base af Ka 

this does not yield such a good correlation, 

It is proposed that Kb be obtained from Fig. 3(b) using stream Maoh number 
for p and the local inaidence 0 to obtain the similarity parameter p sin 8 co8 8, 

9 DERIVA!UON OF K, 

The component Cp, of the pressure coefficient, given by equation (16) iS 

\ proportional to sin2ct and o&n be attributed entirely to the flow in the trans- 
verse plane, with a maximum value at a = 
components of Cp are zero). 

90°, (at which condition the other 
The coefficient Ko is related to flow about a 

bluff body with shook detached, and must therefore tend in the limit Ed 00’ e+oo 

to the value given by equation (4) e 

It ia proposed to oonsider the transverse flow as two-dimensional so that 
the pessures due to it can be derived from the pressure distribution round a 
long cylinder; (with c = 0, Cp, and Cpb are both zero and Cp = Cpc). 

The Q&i.larity parameter p sin 0 00s 8 used for Ka and Kb applies to flows with 
shock attached and is not appropriate. It is proposed to assume that the 
relevant ‘bluff body’ similarity parameter is the oross-flow Maoh number, i.e. 

K. = f (M 00 , sino) . 

Experimental values of Ko from wind-tunnel tests on long oylinders 

shown on Fig. 4. The value8 plotted are in faot (CpmaJcyL/sin2t3, (see 

equation (14)) where (Cpma&L is of course the pressure ooeffioient on 

’ (19) 

exe a 

the 

most windward generator of a cylinder, $ = 0. The line through these points, 
whioh is a very good fit, is the theoretioal stagnation pressure ooeffioient 
behind a normal shook in a stream of Mach number M aim, with y = 1.4. 
Hence it is valid to write co* 

Ka = Cps (b!& sina) l , 

10 PRESSURE DISTRIBUTION ROUND CYLINDERS - DERIVATION OF 6 

In equation (14) the pressure distribution round a oylinder has been 
virtually represented by 

- 10 - 



.  
r  

&?/CPm&* = oos* (143 l ( > 21 

Experimental values af' (Cp/Cpmax cyL ) from references-lo, 11, 12 are plotted 
against (b in Fig. 5 for M , sina33.5 andin Pig, 6 for 1.5 < Mw sina< 3, We 

F are concerned here only w?th the distribution for # c 90'. 1 

Iif M, sin u > 3.5 (Fig. 5) all the results lie near the full-line ourve 
4 which corresponds to, (seeinset graph in Fig. 5), 

6 = 0.1 (b for Mm sin a s 3.5 (22) 

where $ i& in radians. Fig. 6 shows experimental values of (Cp/Cpmax)cyL fol? 
1.5 < Mea sin a < J and in this oase the point8 suggest a variation of 6 with 

Mm sin a from approximately zero at M 00 sin a, c I.5 towards equation (22) at 
M, sin a h 3.5p 

If M, sin a, < 1 large variations of (Cp/Cp,,)C.,L for a given $ oocur with 
variations of MO, sin Q and M . ln any oase, if Moo sin cb < I the principle of 

<* adding the transverse flow Gessure distribution to the other oomponents oannot 
be justified; however since the method is limited to cases where !Am 3 3, quite 
large errora in Cp, canbe tolerated if RI, sin a ( I, sinoe this component of' 

T Cp must then be small. 

For prediction purpoaes, the assumption will be made 

6 = 0 for Mmsinac 1.5 

interpolation between equations (22) and (23) being neoessary for 
1.5 < Mm sin a < 3.5. 

(231 

On Figs. 7(a) to 7(j), comparisons are made between the predioted pressure 
ooefficient on cones by the method of this note and experimental data from 
Refs, 13,14,15 and 16. Each figure Shows, for partioular values of oone semi- 

" angle and Mach No., pressure coefficient Cp vs. meridian angle $ for a range of 
angles of incidence, a. The predioted pressure coefficients are shown by full 

E 
lines for Mm sin 0 > I, and continued as chain dotted lines for 1.0 > Moo sine> 0.3. 
Also shown on each figure by a broken line is the prediotion using the simple 
Newtonian impaot ooefficient of 2, 

On the whole, for M sin 0 > 1, agreement between the predioted pressure 
coefficients using the me&ad of this note and experimentd values is very good, 
the only serious - and somewhat puzzling - 
Fig. 7(g) for # > 90'. 

di8Crepanoy being the oase shown on 

- 11 - 



For moderate or lirge oone semi-angles ti small angles of inoidenoe 
the method is much superior to aimple impaot theory, espeaially at the lower 
Maoh numbers -see for example Figs. 7(a) and 7(b), a = 5% This is beoause 
in these cases that part of the pressure perturbation generated by inoidenoe 
is small compared with that generated by the cone volume itself, and ainde the 
latter oorreaponds to a ooefficient K, rather greater than 2, (Fig. 2(a) ) , 

Newtonian impaot theory underestimates the pressure.. At the other extreme, 
exemplified ‘by Fig. 7(o), where the oone angle is small but incidence large, a 
large part of the pressure perturbation is generated by the transverse flow 
whioh oorresponds to a ooeffioient K, less than 2, (Fig. 4). Henoe in this 
o&se, Newtoni- theory overestimates the pressure ooeffiaieti. Between these 
two extremes, for example Fig, 7(a), a = 15O, a = 25O, the differences between 
the prediotion of the method deaaribed herein and of simple impaot theory may 
be small, due to a fortuitous oombination of axiti and transverse flow pressure 
0 omponent s . 

Where the surfaoe normal Maoh number-M . sin 0 ia leas than one, the 
prediction would be expected $0 be leas reli:ble than at higher normal Maah 
numbers, and the experimental data oonf’irm this. In 8ome oases, for’example 
Figs. 7(a) and 7(h), the prediotion is quite good for Moo. sin 9 aa low as 0.3, 
but in others, for exarllple Fig, 7(J), it is poor, . In general, duoce88fCl. 
prediotion for ti oo, sin 8 < I must be regarded aa fortuitous, but it is worth 
noting that there is no sudden divergenoe between prediotion and experfment aa 
UW, sin 8 deoreasea through unity; instead the likely error apparently . 
increases steadily as 1 - M , sin 8 increases. ’ 00 
12 CONCLUSIONS 

A simple semi-empirioal method has been devised for predicting peasure 
on the windward aurfaoe of’ a oone at Maoh numbers .in exoesa of 3, and arbitrary 
angle of incidenoe, 

c. 

? 

Agreement between psedioted pressures and experimental data is good so 
long as the looal Mach number component normal to the aurf’aoe exoeeda unity. 2 
The method is more accurate than the simple impact theory equation Cp = 2 sin 8 
espeoially for smell angles of inotinoe or small cone an&es, 

3 
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SYMBOLS 

local pressure coefficient, 2(p-p,)/y p M2 0000 

oomponents of Cp, see section 5 

stagnation pressure coeffioient 

pressure ooeffioient in the limit M , 8 +OO 00 

variable coefficients in equations 12, 13, 14, Figs. 2, 3, & 

impaot.aoeffioient in the equation Ca = K* sin20 P 
free stream Maoh number 

M 00 , 00s a 

MWr,sin a in Fig. 4 

local statio pressure 

free stream static pressure 

local oone radius (Fig, 1) 

free stream velocity 

Cartesian ooordinates for a oone, (Fig. 1) 

oone inoidenoe, measured from axis 

12 Ma --I 

ratio of specific heats 

empirioal variable discussed in seotion 10 

cone semi-angle 

angle between shock wave and free stream dire&ion 

angle between free stream and looal surfaoe, measured 
in a plane normal to the surface 

polar angle subtended at the oone axis between any point 
on the surface and the most windward point in the same 
plane normal to the axis 
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