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A series of nine csnibered ogee mcdels, each having the same planform end 
area distribution, has been tested at low speeds. The camber variants have been 
designed by means of slender-wing theory and include variations both of lift 
coefficient for attached flow and of pitching moment at a given lift. For all 
wings, the flow developent was regular regardless of load distribution except 
at low incidences, where the flow was very sensitive to%defe.cts in the leading 
edges. Trailing-edge effects dominated the load distribution achieved in the 
attachment condition; when an appreciable part of the load was carried over the 
forward part of the wing, correspondence between theory and experiment was 
reasonable. Increase of lift coefficient for attached flow had favourable 
effects with regard to both (L/D)- and the rate of forward movement of aero- 

dynamic centre with increasing lift. 
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I IN!TROD?JCTION 

Lcngitudinal camber desiped intc the wing can produce a trimmed ccnditicn 
at cruise on a supersonic transPcrt aircraft for smaller drag penalty than by 
use of elevators'. . But, whilst it is known that the slender-wing thecry is 
capable of Producing camber shapes having attached flow at the design bcidence, 
experimental results for a wide range of such designs are desirable in order to 

c investigate any limitations which could preclude regular vortex development off- 
design or indeed any limitations to the thecry itself. Such limitations might 
exist, for exaqAe, with respect to maximum permitted droop angle or rate of 
change of droop angle along the leading edge, or to the thickness effects of a 
practical area distribution which might become restrictive in the forward part 
of the wing. Equally, of course, it is necessary to determine the extent lx 

which such factors influence the actual lead distributions compared with those 
predicted by the theory. 

The basis for the Present work was the planform and thickness distribution 
resulting from a feasibility study comPleted in 1960. Owing t6 the comparative 
ease of manufacture of small wooden models for the R.A.E. & ft x 3 ft lcw-speed 
wind tunnel, an extensive series cf caMbered designs has been tested there during 
mid 1960 in order to ccver as wide a range cf parameters.as possible. The 
choice cf designs may be broadly divided into twc groups - forward.and rearward 
variations. At supersonic speeds, scme load distributions at the front cf the 
aircraft may be helpful in reducing wave drag due to lift while still attaining 

5 a given pitching mcment; but, due to the excessive thickness and rate of change 
of span, might lead tc uneven flow develoPment at lcw speed and high incidence. 
The rear part cf the wing is affectedmainly by change of design lift coefficient 
which can be expected to influence the maximum lift/drag ratio as well as the 
maximum practical lift ccefficient which can be used for landing. At low speeds 
the trailing-edge effects, not considered in slender-wing theory, will also 
play a large part in this area of the wing. The series of measurements of lift, 
drag and pitching moment together with surface flow patterns reported in this 
Note helP to clarify some of these points. 

2 DETAILS 03? MODELS AND TESTS 

Nine models have been tested, each having the same ogee planform with 
P = 0.45 and the same area distribution which corresponds very closely with that 
chosen for models -l5, 16, 17, I8 uf the 8 ft x 8 ft supersonic tunnel 
programme2. 

The camber surfaces for these wings have been computed using the downwash 
distribution given by 
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shcwn by Weber' to inc1u.k the conditicn for attachment. Adding to this distribu- 
tion the condition that the trailing edge is strai&t, the camber surface is 
designed-for any given centre-line Slope. The -atcambere~~ model of the present 
series corresponds with model 15 of the 8 ft x 8 ft superscnic tunnel programme, 
while models 1, 2 of the present series ccrresgcnd with mcdels 15, 16 of that 
programme except in that the latter have been designed to have the section at 
95>: length unccambered, rather than the trailing edge itself. Local load 
distributions and leading-edge drocp distributicns are shown in Figs.j(a), 3(b), 
&b) and- 4bh 

Models 1, 3, l+, 8 cmqxise a set cf Cies1gn3 each hli~hlg .zero lead over tne 
forward 207d of the wing* The design CT increa3vc3 in eqq.l increment3 from +J 
0 to 0.07'5 while the ccrre3pmding ACm, which is defined as the pitching moment 
of the cambered wing minus the pitching moment of the plane wing of the same 
planform at the design CL; decreases in equal increments from 0.0335 to OeOOjO. 
Model 2, which is tlte only design loving a finite load ct the trailing ;dge, has 
been designed for a CL Of 0.02> and, by kl.~LoUing d~aoop allgleS Of up t0 JI , 
Carrie3 more load fom&rd in or&r tc reduce wave drag due to lift at sqersonic 
speeds. Model 5 Alas the same lead and tkrefcrc droop-a~qle distribution at the 
front cf the wing ?~ut the rear part of tl,~ x&ng is such as tc give zero desiLm CL. 
It Was hope2 t112t rz0d.e~ 5 m?dd 31~ i.3 intcrprct~aticn of my peculiarities which 
might arise in Model 2,, X0&A 7 rcsu.lts from a cmbinaticm of the mYC.iiates cf 
models 1 and 5 in such a mmler as * tc produce a UA.IX.U~ drcq angie of 60'. 
Xcdel 6 has the same lcao distribution as mc::el 5 c*fer the rear part of the wing 
but the droop a@e is m&e finite CA; I516 ayx, t&-m prm2mi.n~ a. fixite rate of' 
growth of lead Lt the apt:: and carrying ra.t,kr klcre load forWard. 

Tlxse models were tested in the 4. ft x 3 ft lcw+drbiLenc~ -&nd tunnel, 
using a standard hire rig, ever <an incidence range cf -I+C i,c? 2&O where the design 
incidence for each model is regarded as zero. A knd s>etid of 2K) ft/sec was 
used thrctd&xit except at the highest inc idences where intense vibration of the 
mcdels necessitate2 a drcp to 100 ft/sec. Measurements were made of lift, drag 
and pitching mcment. Surface flo:-l patterns were produced using a mixture cf 
lamp black and paraffin, the models being sting mounted for this purpcse and a 
wind speed of IGO ft/sec being used. Lath m&cl has been tested both smooth and 
with transition wires on the u2~er surface. Tix latter took the f@l-m @f a 
semi-circular wire (26 S.Yl.G,) on the uqper su~facc cf the nose, approximate~Ly 
IO& centre-line chord behind the znc~:, tcgc.Ll:er \yitll a -:qire (32 S.V.G.), 
approximately lO$ local s&.-s pcan inboard of each leading edge. These transition 
wires were designed to eliminate the separations ccc~urring inboard of the 
shoulder lines over Ue re3-r part of the vrilq at incicdences close to AUhat for 
attached flew at the leading &ge. These sc.ixrations were sc serious that all 
the result3 plotted <are thcs:: produced with transition wires attached to the 
model. 

Tunnel constraint corrections, a.?plied to tjie fcrce measurements, allow 
for the slenderness of the models by the tcc!mique described by Zerndt'k, who 
uses slender-body theory e-ferywhere exce;d; in the drag ccrrection, Unfcrt- 
unately there is an appaent conflict between the value for the drag correcticn 
cbtained by the application of slender-body theory tc the conditicns at the 
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trailing edge and that obtained by Berndt using &nk's stagger theorem which 
equates the -interference drag from a lifting surface to that due to a lifting 
line and which therefore predicts the same drag ccrrection irrespeotive of 
slenderness. As it has not yet been found possible to resolve the conflict, 
the slender-body correction has been used for all components simply on the 
grounds of consistency. In this instance, the difference between the drag 
corrections amounts,at maximum C- ,,, to only 0.5% of total drag. 

3 DISCUSSION OF RESULTS, 

3*1 Force measurements 

Figs.5(a), (b) show that as expected the lift curves are all essentially 
parallel, each being displaced by the CL achieved at design incidence. This 

achieved CL does not correspond well with CLD (i.e. the design CL) but the 

differences can be explained at least qualitatively in terms cf the subsonic 
trailing-edge effects* &Wked on each curve is the incidence at which a line 
joining the trailing edge to a point 70% chord from the apex, makes an angle 
of 15O with the horizontal. This gives some indication of the restriction 
which undercarriage length vrculd place on landing attitude. These points 
demonstrate that on this basis, designing for a higher CLD results in a loss of 
CL for landing. However, each of these wings is convex towards the ground on 
the rear part cf the wing. It does net follow tlnerefore that this effect holds 
true in other cases. 

O-wing to the fairly high incidence range &ovcred and consequently the need 
for heavy rigging wires, the accuracy of drag measurements at low incidence 
leaves muoh to be desired. However, the curves cf' variaticn of induced drag 
factor, K, with lift (Pig.6) show a clear trend at low CL, namely that an 
increase in C I,,, produces a reduction in K. The curves of induced drag factor, 

K s, based on the minimum drag for the symmetrical wing do not disturb this 
trend (Fig.7) except in the case of model 8 where the minimum drag has risen to 
such >a level as to produce a minimum of KS in the neighbourhood of CL L 0.15. 
This effect is reflected also in the value of (L/D)-; see Figs.8(a), (b) and 
Table I. This indicates that (L/D)lW increases with increasing CLD at least 

until c h 
= 0.075 but the trend suggests that further increases, if any, will be 

small. At higher values of CL, two general trends of the induced drag factors 

ten be distinguished: (a) an increase in C LD produces a decrease in K; 04 
more extreme camber distributions produce increases in K. Thus the symmetrical 
model has a lower value of K than the highly cambered model 2 but greater than 
model 3 although both have the same C w 

Pitching moments are plotted in Fig.9. As non-linear lift is not 
appreciable for CL 's up to abcut 0.05, it, seems not unreasonable to compare the 

achieved ACm with the theoretical value at zero lift rather than at design 
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incidencee Cumpariscn cf tYhe values SllC<al in Table 1 demenstratcs t3at where a 
large part of the camber leading is carried over the forward part of the wing, a 
greater proportion of the theoretical AC,n is ac?kved. A,@ll -this orfeE suppcrt 2 
for the sucgesticn tha$ trailing-edge e?fects dominate any chmges in the 
theoretical lozimg &de to camber. Xodel 2 is perhaps a special case with 
regard to this ugument, as the theoretical finite load at the trailing edge 
could not be reccvzred in subsonic flow, thus r -2sulting in much closer agreement 
cf theoretical AC m with experiment Wan in cth3r cases. 

A?1 the pitchkg-mcizent CUiTCE3 show wavizless in the ncighbcurhcud of Cx9 
and at higher CL's, most cf the curves display "flats". Unfortunately there 
are insufficient experimentGal pcints to determine these accurately but, as XCst 
of the curves shcw thGse fe‘atures, it Secilltj certain that they do exist at least 
at this Reynolds n-tinber. ikxm~er in crkr to produce the curves showing 
variation of aeroclynaz&c centre with lift (Pig.?O(a), (b))smootkd pitching- 
moment curves have been us& Hero zgzin the effects cf increasing C- 

b 
and of 

introducing more ext mm ca.&zr distributions appear tc produce conflicting 
trends, name1.v that khe addition of cam&r increases the 1'or~:a.rd movcmcnt of 
the aerodynarkc centre while increase cf G 

+D 
reduces it. 

3m2 Surface flo+4 patterns 

Surface flow patterns produced by a su,spension of lamp black in kerosine 
show in I~ig.ll(a) the extezive laknar separations occurring at the shoulder 
lines at the design incidence* These separations are Frcscr1-t to a greater or 
lesser degree on a.11 the cambered mo7els0 IIcwever, the use of transition V&es 
as shown in FigelI completely <.liminate~ tnis problem> and results in an 
increase in CD 

rni.rI' 
fcr example fXXU~ OaO07Z to O.OOd? on model 4* 

At low incidence when the loading-edge voi-tcx is weak, thG flovJ develops 
in an irregular manner at the le,?&nyJ edge xsult~ ing i i l what are apparently 
streamwise vortices, as shewn in i'ig.l2(a) fcr Z.5c abcve design incidence. All 
of the fairly well defined traces on this end on other models could be seen to 
criginate at barely perceptible defects in the leading edges. On increasing the 
incidence these traces disappeared, so that at 5° only those due to relatively 
sericus defects remained, while at ?O@ the flow pattern was developing quite 
smoottiy (SW Fig.'l2(b)) and did net chanp,e in character up to the maximum 
incidence of 25'. 'The sensitivity of the flc37 at low incidences to small 
irregularities in shape at the 1eGling edge must be attributed to the ccmbina- 
ticn of planform and thickness diotributicn of tilis series of mod&s0 Camber, 
within the range tested, had no evident effect on tl:e regularity of flov< 
development, 

In the neiglibourhccd of the apex, tile flop; remained attached at the leading 
edges but, in this region, difficulties cf mcdel manufacture ensure that the 
leading edge is by no means shzr-p so khz;t this f'czture might well be expected* 

4 - CONZLUSICXS 

Cn all of the wings tgst e2 the floiz d.CVClCpiflGiIt bCC3iiE regular abcve some 
incidence between 5o and q0 . At lower incidenccs, tIiC flew was very sensitive 
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to the smoothness of the leading edge where very smsll defects in a model could 
give rise to noticeable disturbances downstream. This sensitivity d5d nut 
appear to be influenced by the caxiber distribution. 

The difference between the load distribution achieved and that predicted 
by slender-wing theory seemed to be dominated by trailing-edge effects, and 
agreement with design value s was gcod only when an appreciable part of the load 
was carried over the fonvard part of-the wing. The introduction of camber in 
order to produce a given pitching moment resulted also in an increase of 
in&tic& clrag and consequently a reduction in (L/D)mU. An increase indesign 
lift coefficient CLD was more favourable in increasing (L/D)ma as well as 
reducing the increased rate of forward movement of aerodynamic centre produced 
by the addition of camber. A less favourable characteristic was the reductiun 
in attainable CL for landing. 
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aspect ratio 
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CiCUSS- sectional area distribution 

total volume 

Cartesian coordinates; origin at the wing apex; x along the free 
stream direction, y spanwise, s positive upwards; all lengths made 
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