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STMMARY

The structure of a Prandtl-Meyer fan in a vibrationelly relaxing
gas is examined for the case when the amount of vibrational energy is small.
The vibrational energy distribution both through the fan and downstream of
the fan is obtained analytically and a criterion governing freezing within
the fan is developed. It is shown that there exists two length scales,
measured along the wave head, which characterise regions corresponding to
near frozen and near equilibrium states respectively.

1. Introduction

In a previous report (Elythe, {1962)) the suthor considered
non-equilibrium quasi-one-dimensional flow through a nogzle when the amount
of energy in the lagging mode was small., The analysis presented here is
an extension of this approach to a simple two-dimensional flow., The
assumption that the energy, o, in the lagging mode is small compared with
the total energy implies that as a first approximation the flow variables
are given by the usual isentropic soclution, From this basic solution the
firat approximations to the streamline shapes, velocity distribution, ete.,
are known. The distribution of the energy in the lagging mode is then
found by integrating the asppropriate rate equation slong the streamlines
given by the basic iszentropic solution, Since the gtreamtube shapes are
known, this integration ig analogous to that carried out in the
quasi-one~dimensional case for a specified area distribution.

Of particular interest in the nozzle flow case was the position
at which "freezing" would occur in the flow., This problem has interested
many workers and various critsria have been deduced from qualitative
arguments (see, e.g., Bray, (1959)). Under the assumption of small o
and for a linear rate equation (vibrational relaxation) it was shown
(Blythe (1962)) that the type of criterion used by Bray to predict the
onset of freezing did indeed emerge from a detailed analysis of the problem,
The corresponding criterion for sny general steady flow predicts the
position along a streamline where freezing becomes important. From this
result the locus of freezing points throughout the flow will follow,

In/

Replaces N.P.L. Aero. Report No.1056 - A.R.C. 24 522.
Published with the permission of the Director, National Physical Laboratory.



-2 -

In the nozzle flow case o tended asymptotically to some constant
value downstream of the freezing point. However, for Prandtl-Meyer flow
there is a gradual return to equilibrium in the region downstream of the fan,
and thus, although along some streamlines freezing will occur within the fan,
¢ will eventually fall to its equilibrium value at some distance downstream
of the fan, A detailed discussion of the various flow regions in
non-equilibrium Prandtl-Meyer flow is given in Appleton (1960). Within the
fan 1tself one expects that the flow far from the apex will be in equilibrium,
since at large distances from the corner the streamtube area changes relatively
slowly and the flow has more time to adjust to its local equilibrium state,
Conversely in the region near the apex where the strezmtube area changes
rapidly near-frozen flow conditions should hold (see Fig., 1). It is interesting
to note that the locus of freezing points for Prandtl-Meyer flow indicates that
along streamlines meeting the wave head within a certain distance r p from the

corner the energy distribution in the lagging mode will never follow the
equilibrium distribution, i.e,, it iz as though the streamline had passed
through a freezing point at some distance upstream of the fan, Some streamlines
which pass outside this region encounter a freezing point within the fan
(streamline SB in Fig, 1), but far enocugh from the corner, at distances
greater than a certain value T, o? atreamlines never encounter a freezing point

and the energy distribution in the lagging mode follows closely the equilibrium
distribution., Expressions for T e @nd r = are given in the text

(Section 3)}. Downstream of the fan the energy o decays exponentially with
distance, for a linear rate equation, to its equilibrium value, since to a
first approximation the temperature, density, etc., are constant in this region
and the streamlines are parallel to the wall. 1In this region one can define
e relative relaxation length, I ., which governs the decay of e/e P (ri),

where € 1is the departure from eguilibrium and es(ri) the value at the tail

of the fan carresponding to any streamline T . It follows that Lrel is the

same for all streamlines to the approximation given here. In addition one can
also define an absolute relaxation length, Lab ., which goverms the decay of
e/ X where 0'& is the equilibrium value of ¢ at the tail of the fan, It

is obv10us that in the region near the apex L b will be much larger than in

the region far from the apex, By using the solution for the distribution of €
derived in Sectiom 4, Lab can be expressed in terms of upstream conditions.

The solution obtained in Section 4 for the distribution of € through the fan

is specifically for vibrational relaxation under the assumption that the Mach
numbexr of the incident stream is large. This latter assumption leads to a
simplification in the analytical details, However, the analysis can be formally
extended to cover any initial (supersonic) Mach muber (see Section 6).

This report is not intended to be a full treatment of non-equilibrium
Prandtl-Meyer flow but rather to indicate a simple analytical, as opposed to
rumerical, approach which predicts some of the main features of this type of
flow, Questions such ag the decay of the frozen wave head far from the
corner, the pressure distribution along the wall, etc., cannot be answered
without resort to a higher approximation than that given here. One can regard
the solution obtained within as giving the first terms in an expansion of the type

- ]
K = K0+ «:rI_K1 + CJ'I_K2 + ses

o

COT +0°T 4+ 4ue
ri r 2

where/
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where K is any one of the kinetic variables and 0}(<< 1) 1is a representative

value of o (suitably normalised). However, in practice it is difficult to
obtain the higher order terms for Prandtl-Meyer flow beocause of the complex
nature of the coefficients in the resulting sets of differential equations,

Previous analyses of non-equilibrium Prandtl-Meyer flow have been

given, e.g., by Cleaver (1959), Bloom and Steiger (1960), Napolitano (1960) and
Appleton %1960%.

2. Formal Sclution

The problem to be considered is the supersonic inviscid flow of a
vibrationally relaxing diatomic gas (system of harmonic oscillators) around a
sharp <ommer., The translational and rotational degrees of freedom of the gas
sre assumed to be fully excited and in a gtate of local equilibrium throughout
the flow. The bagic aspumption i1s that the fraction of excited oscillators
is small, or altermatively, if ®;d. is the characteristic temperature of
vibration and T' +the translationa& temperature then

'

®
~yib »>» 1,
TI

Under this assumption the expression for the equilibrium vibrationsl energy o'
can be written (sse Blythe (1962))

o! )]
e = 6- ~ @ i.b e]@ """"Ei-:g .c-(1)
RT$ v T
G, T
where ®vib = VIb, T = =
T, T,

and the suffix a1 denotes the initial conditions in the incident uniform stresm.
Furthermore i% 1s reasonsble to assume under these conditiona that the rate

equation governing the approach to eguilibrium of the vibrational mode takes the
linear form

Dot
—_ = p'Q‘(T'){g'(T') - ot} eee(2)
Dt

where p' is the density and D/Dt' the usual convective operator. p'Q'(T')
is termed the relaxation frequency (the reciprocal of the relaxation time).

The vibrational energy enters explicitly into the flow equations only
through the energy equation and for ¢ = o'/RT{ << 1 the vibrational
energy term can be neglected to a first approximation in this equation
(see Blythe (1962)). Consequently the flow equations reduce to those
governing the isentropic flow of an ideal gas with constent specific heats.

The required solution for Prandtl-Meyer flow is well known and can be written

v/
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v! 1 cos A(O+a) ']
YV m e = m—ee———
q,; m cos A&
u! 1 sin A(O+a)
u m e— =
q, Am, cos M
[N 5
Lt > (3)
p! — cos A(D+a) —
g m e = ————
pd —  cos Aa
T* — cos MB+a) -?
T = e = ——
T1' L. cos A _
L™,

where © is the angular co-ordinate measured from the wave head (see Fig. 2).
v' 1ie the velocity in the angulsr direction, wu' is the velocity in the radial
direction, and q' is the resultant velocity at any point. m dis the Mach

number based on the frozen speed of sound vy RT' , where Yy is the ratio of
the gpecific heats neglecting vibration and R is the gas constant, The
angle a is defined by

1
& = —tart (A Yme—1)

A

and the quantity A is defined by

-1
w o
y+1
The astreamlines are given by
4
o cos Aa A
~ - |: ] e (4)
T cos A(O+x)

where r is the radial distance from the corner and 13 1s the radisl
position at which a streamline intersects the wave head.

The variation of ¢ =salong 2 streamline can be obtained from
equation (2). After suitsble non-dimenaionalization this equation beccmes

Gleg r Ml
— = Rd. = (o-"' oP) XX (5)
20 ™y OV ,
Ty Gy
where the differentiation is carried out along a streamline, and R = =-——,
o (T) r M _ a)
= . To a first spproximation the fimctions = — and o are
af (T)) TL vV

known/
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known functions of © along a streamline and by defining € = o ~C and
r M
F(®) = — ~, equation (5) can be rewritten
Irs v
de do
20 8o

This equation can be integrated immediately to give

e = j: (-.ZZ) [exp f: Rd,F(w)dw] dz ... (6)

where z and w are dummy varisbles, and it is assumed that the incident
stream is in thermodynsmic equilibrium, This result determines the veriation
of € along any streamline, the streamline being mpecified by the value of Ry.

3., Freeging Oriterion

Equation (6) can be rewritten in the form

e = [exp - famﬁ’(w)aw} foeg(z) [oxp - ®_,, £(z)] dz eos (7)

5] daT 1 Ry z
_(ﬂ)—-, and f£(z) = ~ --— [ P(w)aw.

T
d=z T ®v 1b

where g(z)

As was pointed out in Blythe (1962) (7) is a typical steepest descents type
integrel and it follows that the only important contribution to this integral
will come from a region in the neighbourhood of the stationary value of the
exponential termm, Physically this corresponds to a sudden increase in the
deperture from equilibrium in this region, i.e., what is termed here freezing
of the vibrational energy. The stationary value of the exponential term is
given by f* = 0 or

1 8o
-:"'—' = '-R;_F(e). "'(8)
o 90

Upstream of & certain region near this point (which is dependent on the
particulsr streamline since it depends on Ra) the flow will remain near to
equilibrium, while downetream of this region, but within the fan, freezing will
ocour, (downstream of the fan itself the flow will eventually return to an
equilibrium state, see Section 4). In order to evaluate the locus of freezing
points given by equation (8) the temperature dependence of 0 must e
specified, In general this is a somewhaet complicated function of T but for
pimplicity it will be assumed here that it can be represented by

0 =1

where s > O, TUnder this sssumption the function ¥(0) is given by

F(0)/
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2(s-1)

P0) = m [cos 1(6+a)]

cos AX

For freezing to be a realistic concept F(0) should be a monotonicelly decressing
function of O, It is certainly true that the relaxation frequency decreases
along streamlines btut this tendency is offset by the fact that the distence of a
streamline from the cormer increases with increasing £, and the above result
indicates that ®(0) decreases only for s > 1.

From equation (8) it can be shown that the locus of freezing pointa,
for 1 = T8, is given by

23‘l

w T, 2n @ i cos A«
R = = =2 tanh (O+a) [ :l .. (9)
a4 m, cos A(B+x)

It can be seen that Rf grows more repidly with © than does the distance

Wr
R (: S of 8 gtreamline from the corner. For & = 0
g

N2 @
R, = R, = —22 /2 ... (10)
'y

(using the definition of & and substituting in (9)). Along stresmlines
defined by R, < R o the freezing point no longer cccurs in the physical flow
(mathematically at pofnts upstream of the fan) and in this region the flow
variebles will never follow the equilibrium distribution, i.,e., it is a region
of near-frozen flow. If 6 = 61G defines the tall of the isentrople fan then

8& is given by

tan MO +a) = 7\.\’11%—1 = N cot(p+y, ~0,)

where ¢ 1s the corner angle and p¢ the Mach angle of the incldent stream,
Consider the streamline which has its freezing point at €& = 8,. It can be
shown from equations (4) and (9) thet the initial radial posiiion along the
wave head of this streamline is given by

2\ ®vi‘b COs AX 28
Rﬂ. = R‘.e  ———— AT 7\.(6&4—41) [ ]
my cos A(B+a)
2* @ 1 =2 4+ A%
, L
ilel ] Rﬂ.e = 'Vib m:’—'i [ 2 a L (11)
e 1 =A% + X H{

Along sireamlines defined by R1 > R the flow never passes through a
freezing point and remains near to equilibrium. In the intermediate region wherse

R:.f < R:. < R:.e

freezing/
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freezing will occur within the fan. The above results are shown schematically
j-rl Fig. 1-

4, Particular Solution

For the specisl case of hypersonic flow (my >> 1) the integral in (7)
takes a simpler form and can be evaluated in identical fashion to the
corresponding integral discussed in Blythe (1962), However, in this cage for
corner angles of order of magnitude greater than 1/my the flow downstream of
the fan is trivial since the flow will be fully expanded (p = 0) in that region
and the energy in the lagging mode will be frozen along each streamline at the
value it has when leaving the fan. For corner angles of 0(1/mi ), when the
flow is not fully expanded, the solution downstream of the fan can easily be
obtained, The streamlines in this region are now, to the approximation given
here, parallel to the wall and the density, temperature, etc., are comstant (# 0)
in this region., The solution for the vibrational energy distribution
downstream of the fan is thus found by integrating the rate equation, with all
the kinetic variables remaining constant, along these known streamlines subjpect
to the boundary condition on the vibrationsl energy distribution along the tail
of the fan; +this boundary condition is given by the solution within the fan.
Details of the smolution both within and downstream of the fan are given below in
the special case my >> 1; it is assumed that the cormer angle is O(1/m ).

The generalisation to any my > 1 is given in Section 6.

In order to evaluate the integral in equation (7) the various
functions are best expressed in terms of the Mach mmber m which is related to

the angle © by
A(Osa) = tar? Mo,

For m > } (strictly Am >> 1) the function f is given by
2s-1

£ (i) ' (25-1?1’@vib(§) (= £ 2

The statiomary point, or freezimng point, is given by

1

n Za+l

( Rs
B aﬁ@vib

A new variakle & is defined by

3]

Bs . .o (12}

2 g 2 1
¢ = [2®vibN:exp-T_25—-T]j ,_*exp-l“i(*”* - 25_1)‘1‘”‘
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where ¥ is a dummy varisble and N = @vib@:. This expression is now in a

suitable form for evaluation by the method of steepest descents. The analysis
proceeds slong exactly the same lines as Iin the quasi-one-dimensional flow
case (mee Blythe (1962) for details) and it follows that

2g-1
a n=n(g)
1 ( v a "o ) 1 1
x | aBE(N7) - E - exp -~ E K n®+0 (E E(N,n) )
n=n (81" )
oo (14)
where
.2 1 i
afg) = E* + e
n&) = sm(E-1) [20a(®) - a(1)]]®
x M7 > ees (15)
s - [ (7))
1
o T et

-/

Sufficiently far upstream of the freezing point it can be shown that
this expression reduces to the first term in the usual near equilibrium scolution
(expansion in powers of 1/Ry, Napolitano (1960)). Conversely it can also be
shomn that when the freezing point lies sufficiently far upstream of the fan
(in a mathematical sense only) the expression reduces to the ususl type of
near-frozen solution (expansion in powers of R ).

Upstream of the freezing point the first two terms in the square
bracket on the right-hend side of (14) are of the same order of magnituds.
In the neighbourhood of the freezing polnt and downstream of it the first term
dominates and represents the rapid departure from equilibrium which occurs there,
The behaviour of the above expression indicates that o approsches soms
constant value for large E, However, the maximum value of & permisaible in
this expression is determined by the tail of the (isentropic) fan, i.e., by

1
E = E, = . ver (16)

(y-1)
$ [1 - Tm¢

Dowvnstream/
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Downstream of the fan the streamlines are again parallel to the wall, and if
x' 1s a co-ordinate messured along the wall (x' = O at the apex) the
distribution of the vibrational energy along a streamline in this region is
governed by

do P, Ty
N (,-0) ... (17)
dx q,&

F gt
Xy

where x = and the suffix £ denotes conditions along the tail of the

fan, The x position of a streamline emerging from the fan is given by

a1 1
A2 >
X, 1 m,
—_— = = (—) = X&_ ..‘(18)
Ry (y-1) my
1T w—m
2
Equation (17) can be rewritten
de £
— 4 = 0,
B Xé1+(2s—1)x9§
The solution to this equation using the boundary condition € = ¢, (E.c) on
x = X, ig
(%=x,)
L
€ — [ e - 4 19
¢(&) om { 1+ (2s-1)2?] ] (19)
£

where €,(E,) is obtained from equations (14), (15) and (16). The decay of
the exponential term in (19) is the same, in terms of x-x,, along any streamline
since Xﬂ is independent of R,. Consequently if a relaxation length is
defined as the length that governs the decay of e/e& downstream of the fan then
this length will be the same for all streamlines since e/ez is independent of

F:. in the region downstream of the fan, Such a relaxation length is termed
the relative relaxation length since this length governs the decay of €
relative to its value when leaving the fan. For convenience this length,
denoted by I?cel’ will be defined ag the distance, downstream of the fan, over
which e/ea falls to 1/e. Hence

14+(2s-1)A?

(2 sd q . M (2st1)
14 (28=1)A ( 1e (20)
f=4 X - pt—— Poe
Lrel L Rif

A relaxation length which governs the decay of ¢/ -&6 downstream of the fan
can also be defined, Such a length is termed an absolute relaxation length

since/
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since this length governs the decay of € relative to the equilibrium value 3&
which is the same for all streamlines, Hence this relaxation length,

denoted by L abs? depends on the absolute value of e, Correspondingly this
relaxation length is defined as the distance over which e¢/a a, falls to 1/e
and it follows that

.oa (21)

rel

In the region far from the corner, where €p << 6'5, the expression on the
right-hand side of (21) will become negative showing that the flow is effectively
in equilibrium when it emerges from the fan., Sufficiently near to the corner,
provided €y >> Gy, the logarithmic term will dominate and the absolute
relaxation length will become much larger than the relative relaxation length,
However, it should be noted that this will not always be so in the vicinity of the
corner since, e.g., when ¢ ~ O, €, << O, even in this region and the flow
will effectively remain near to equilibrium., Although the general expression

€
for log :-‘2 is very complex certain simplifications can be obtained in these

o

I
limiting regions of the flow.

Sufficiently far from the corner it is expected that a conventional near
equilibrium solution (expansion in inverse powers of Rs) will be valid. 1t can
be shown that a neceassary condition for such a solution to hold is that
R1 >> Max (R , 1). Conversely it can be shown that in a region near to the

corner, given by R << Min (1, R, ), a conventional near-frozen solution

(expansion in powers of Ru) is val:l.d. Utilising these two types of solution
it is found that, exclu&ing for the moment the caae R ~ R pr for
Ra >> Mox (R 1)

L R
abs _ 4 . log 22 eeo (22)
I"rel R
for R << Min (1, Rif,) and also R = > R,
2
L R R \28+1 Ry
2 —
L1 N R, 2 (28-1)

When R:.e ~ R1 £ i.e., the corner angle ¢ ~ O, we expect that the flow

will everywhere remain near to equilibrium. In fact the relaxation length along
streamlines near to the wall becomes, for R1e - R1 g << 1

= 1 + log 2f eeo(24)



- 41 -

from which it is apparent that for Rie - R1 £ sufficiently small the flow is

effectively in equilibrium near to the cormer, Thig is not surprising as
although a conventional near-frozen type of solution is valid there
(R1 << Min (1, R f)), the first term in this solution is ©i and when

$ ~ 0, o ~ 01 throughout and hence € ~ O throughout.

It is interesting to note the variation of €/G at the freezing point,
FProm equation (14) it is seen that

(i) = zaoJfN,, - L(0) + [L(n) exp - + N na]n-—“n(ﬁi) .e. (25)

g e 2
dg
(557 %)

dn

where L{n) = .
fl

For [Mn(8;%)] >> 1, then
x

1 mf -
and since Ny = ®2,.8% and & = —, this result implies that ¢/0 varies

vib'1
m
linearly with the Mach number at the freezing point in the region where the above
inequality holds. However, as & - 1, i.e.,, in the neighbourhcod of the
wave head, the term neglected in deriving equation (26) from equation (25) must
be taken into account.

5. Numerical Example

A specific exsmple was evaluated for the theory of the last section.
The Mach number ratio across the fan was taken to be 10, which corresponds for a
diatomic gas, with my >> 1, to m¢ = 4.5  The initial temperature of the
gas was taken as T) = % ®1;'ib’ i.e,, ®vib = 4, and the parameter s,
dependence of the relaxation frequency on temperature, was given the value 2,
The variation, within the fan, of £/0 along streamlines is plotted in Fig., 3
as a function of the angular ratio 8/63 , where 0, is the value of O at the

tail of the fan, 8/66 is related to the Mach mumber ratio by the expression,
valid for m >> 1,

T
1 - —
9 m
—— = . ¢¢0(27)
0 my
£ 4 o
Mg,

Each/
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q,EEH‘I

Each streamline is characterised by a value of @, since R = ZR%DVib

If is seen that for values of & sufficiently greater than unity the flow
initially tends to follow closely the equilibrium distribution, but as the
freezing point is approached the departure from equilibrium incresses rapidly.

However, it should be noted that in the neighbouwrhood of the wave head

Ee = 0) the flow does not strictly follow the equilibrium distribution
Bloom and Ting, (1959)) since in that region on all streamlines
a € 1 9o
JOREE
B \o o 80
For N+ »>> 1 the value of €/G near © = 0 is too small for this effect

to be notic?d, but the effect is clearly visible on the streamline defined by
éi = 105 N "'-'5)-

In F1g. 3 the exponential decay downstream of the fan is not shown
since on the scale of the graph it would be confined to a very narrow region
indeed (because of the choice of © as the independent variable). Also plotted
in Fig. 3 are lines of constant r which are characterised by the value of
By (= Q{“) at 0 = 0.

€. General Solution

The above results, which were derived for hypersonic flow using the
simple power law temperature dependence for the relaxation frequency, can be
formally generalised to include all supersonic Mach numbers and any general
temperature dependence for . In this case an explicit expression for the
pogition of the freezing point cannot, in general, be written down. However,

m
it will be given by some Mach number ratio — = & (mi , ® Ri), and by
m
scaling the various quantities with respect to their values at the freezing
point it cen be shown that the generalised equation corresponding to (13) is

vib?

e = 20 . W [exp—zrffgidﬂr}[;i g(¥) fexo ~ N q(¥)}ay ...(28)

Fe
1 do 1 do 1
o dE E o dg F
where  g(£) = ———, q(8) = zj — -\ w
(1(10') (15.0‘) Ff
= . .. (29
UG.E, P O'dE, P r ( )
- 1 (5] r o0
= —-R P, —m— &, P = — —,
. 2 1 °f m Iy v
*(7)
m g

and the suffix f denotes conditions at the freezing point. The evaluation
of this integral is carried out as before, the result being given by

equations/
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equations (14) and (15) provided that in those expressions the above relations
ay ay

(29) are used and the factor ¥ — is replaced by g(¥) —.
dn dn

The solution downstream of the fan ia again given by (19) provided
that X& is suitably redefined, i.e.,

1
vy
X, 1 1—1’-&?\’11% 2
X& = e o= 1—"'"“"|: " 99:‘ --0(50)
R1 n% 1~ A +lm1

and that the modified expression for €(£) is used in computing €, (E_,'&).

The value of m, (and hence g, for a given ®,) is obtained from the full

isentropic Prandtl-Meyer relations glong the tail of the fan,
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vibrationally relaxing gas is examined for the case when
the amount of vibrationsl energy is small, The
vibrational energy distribution both through the fan and
downstream of the fan 1s obtained anaiytically and a
criterion governing freezing within the fan i=s developed.
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