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The structure of a Prandtl-Meyer fan in a vibrationally relaxing 
gas is examined for the case when the mount of vibrational energy ia small. 
The vibrational energy distribution both through the fan and downstream of 
the fan is obtained analytically and a oritermn governing freezing within 
the fan is developed. It is shown that there exists two length scales, 
measured along the wave head, which characterise regions corresponding to 
near frozen and near equilibrium states respectively. 

I. Introduction 

In a previous report (Rlythe, (1962)) the author considered 
non-equilibrium quasi-one-dimensional flow through a nozzle when the amount 
of ener@y in the lagging mode was mall.. !Che analysis presented here is 
an extension of this approach to a simple two-dimensional flow. The 
assumption that the energy, c, in the lagging mode is mall compared with 
the total energy inplies that as a first approximation the flow variables 
are given by the usual mentropw solution. From this basic solution the 
first approximations to the streamline shapes, velocity distribution, etc., 
sre known. The distribution of the energy in the lagging mode is then 
found by integrating the appropriate rate equation along the streamlines 
given by the basic isentropic solution. Since the streamtube shapes are 
known, this titegration is analogous to that carded out in the 
quasi-one-dimensionsl case for a specified area distribution. 

of particular interest in the nozzle flow case was the position 
at which "freezing" XTXIM occur in the flow. This problem has interested 
many workers and various critsria have been deduced from qualitative 
arguments (see, e.g., Bray, (1959)). Under the ass tion of small u 
and for a linear rate equation (vibrational relaxation it was shown UTITP 
(Blythe (1962)) that the type of criterion used by Way to predict the 
onset of freezing did indeed emerge from a detailed analysis of the problem. 
The corresponding criterion for any general steady flow predicts the 
position along a streamline where freezing becomes important. From this 
result the locus of tieezing points throughout the flow will follow. 

Replaces N.P.L. Aero. Report No.1056 - A.&C. 24 522. 
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In the nozzle flow case u tended asymptotically to some constant 
value downstream of the freezing point. However, for Prandtl-Meyer flow 
there is a gmdualreturn to equilibrium in the region downstream of the fan, 
and thus, although along some streamlines freezing will occur within the fan, 
o will eventually fall to its equilibrium value at some distance downstream 
of the fan. A detailed discussion of the various flow regions in 
non-equilibrium Frandtl-Meyer flow is given in Appleton (1960). Within the 
fan itself one expects that the flow far frw the apex will be in equilibrium, 
since at largs distances from the corner the streamtube area changes relatively 
slowly and the flow has more time to adjust to its local equilibrium state. 
Conversely in the region near the apex where the streamtube area changes 
rapxlly near-frozen flow conditions should hold (see Fig. I). It is interesting 
to note that the locus of freezing points for Prandtl-Meyer flow indicates that 
along streamlines meeting the wave head within a certain distance rif from the 
corner the energy distribution in the lagging mode will never follow the 
equilibrium distribution, i.e., it is as though the streamline had passed 
through a freezing point at some distance upstream of the fan. Some streamlines 
which pass outside this region encounter a freezing point within the fan 
(streamline SB in Fig. I), but far enough fmm the comer, at distances 
greater than a certain value ris, streamlines never encounter a freez3.ng point 
and the energy distribution in the lagging mode follows closely the equilibrium 
dis trilmt ion. Ekpressions for r and r are given in the text 
(section 3). Downstream of the fiG the ene& u decays exponentially with 
distance, for a linear rate equation, to its equilibrium value, since to a 
first approximation the temperature, density, etc., are constant in this region 
and the streamlines are psrallel to the wall. In this regionone candefine 
a relative relaxation length, Lrel, which governs the decay of e/e8(r1), 
where E is the departure from equilibrium and ee.(ri) the value at the tail 
of the fan correspondingto s.nysinx?amline ri. It follows that L,,l is the 
same for all streamlines to the approximation given here. In addition one can 
also define an absolute relaxation length, Labs, which governs the decay of 

+ee, where Z8 is the equilibrium value of o at the tail of the fan. It 
is obvious that in the region near the apex Labs will be saxh larger than in 

the region far fmm the apex. By using the solution for the distribution of E 
derived in Section 4, Labs can be expressed in terms of upstream conditions. 
The solution obtained in Section 4 for the distribution of E through the fan 
is specifically for vibrational relaxation under the assumption that the Mach 
number of the incident stream is large. This latter assumption leads to a 
simplification in the analytical details. However, the analysis can be formally 
extended to cover any initial (supersonic) Mach number (see Section 6). 

This report is not intended to be a full treatment of non-equilibrium 
Prandtl-Meyer flow but rather to indicate a simple analytical, as opposed to 
numerical, approach which predicts some of the main features of this type of 
flow. Questions such as the decay of the fmzen wave head far from the 
corner, the pressure distribution along the wall, etc., cannot be answered 
without resort to a higher approximation than that given here. One can regard 
the solution obtained withFn as giving the first terms in an expansion of the type 

K = K. + u,K, t upa + . . . 
u = “,a, +u;u, +... 
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where K is any one of the kinetic variables and cr(<< 1) is a representative 
value of CT (suitably normalised). However, in practice it is difficult to 
obtain the higher order terms for Frsndtl-Meyer flow beoause of the complex 
nature of the coefficients in the resulting sets of differential equations. 

Previous analyses of non-equilibrium Frandtl-Meyer flow have been 

:2:40:- $; CkOT. 
b Cleaver (1959), Bloom and Steiger (lY60), Napolitano (1960) and 

2. Formal Solution 

The problem to be considered is the supersonic inviscid flow of a 
vibrationally relaxing diatomic gas (system of harmonic oscillators) around a 
sharp corner. the translationaL and rotational degrees of freedom of the gas 
are assumed to be fully excited and in a state of local equilibrium throughout 
the flow. The basic assumption is that the fraction of excited oscillators 
is small, or alternatively, if 0' 

3 
is the oharaoteristic temperature of 

vibrstion and T' the translatio tanperature then 

@:,b - >> 1. 
T' 

Under this assumption the expression for the equilibrium vibrational energy a' 
canbe written (see Blythe (1962)) 

. ..(I) 

0’ vib T' 
where 'vib zz -, T = - 

T: T: 

and the suffix % denotes the initial conditions in the inoident uniform stream. 
Furthermore it is reasonable to assume under these conditions that the rate 
equation governing the approach to equilibrium of the v&brational mode takes the 
linear form 

Du’ 
- = ~'fll(T')Ii?'(T') - at] 
Dt' 

where P' is the density and D/at' the usual convective operator. P'fI'(T') 
is termed the relaxation frequency (the reciprocal of the relaxation time). 

The vibrational energy enters explicitly into the flow equations only 
through the energy equation end for cr = u'/RTl << 1 the vibrational 
energy term can be neglected to a first approdmation in this equation 
(see Blythe (1962)). Consequently the flow equations reduce to those 

governing the isentropic ?SJW of an ideal gas with constant speoifio heats. 
The required solution for F'randtl-Meyer flow is well known and can be written 
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v’ I 00s qeta) 
v =-=- 

4: Eh cos Aa 

u’ I sin A(e+a) 
u=--=- 

(L: Aq 00s Au 

P’ co8 A@+a) 
.&I 

p=-= 

p: [ cos ha 1 
T' 00s A@+a) a T=-= T: 00s ha 1 

. ..(3) 

where 0 is the angulez co-ordinate measured from the wave head (eee Fig. 2). 
v' ie the velocity in the angular direction, u1 is the velocity in the radia 
dire&ion, and q' is the resultant velccityat~point. m is the Mach 
number based on the frozen speed of sound dy, where y is the ratio of 
the specific heats neglecting vibration and R is the gas constant. Ihe 
angle 0~ is defined by 

1 
cl = 

h tan- 
1 (AJZI) 

and the quantity h is defined by 

Y-1 
xa = -. 

Y+l 

The streamlines are given by 
1 

cos ha F r 
-= 

l- 
. ..(4) N co9 A@+%) 1 

where r is the radial distance frcm the corner and rt is the radial 
position at which a streamline intersects the wave head. 

The variation of u along a streamline oan be obtained frcm 
equation (2). After euitable non-dimenaionalization this equation becomes 

au rpR 
-= -- Rl (Z-u) . . . (5) 
ae l-iv 

2-i d 
where the differentiation is carried out along a streamline, and Ri = -, 

fl' (T') l-m 92 
n = -. To a first approximation the functions -- end 5 are 

n: CT:) ri v 

-d 
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known functions of 0 along a streamline and by defining e = u - G and 

F(6) = f "", equation (5) can be -itten 
ri v 

aa 
aB+RIF(e)e = -z 

ae 

This equation can be integrated imediately to give 

B = i," ( -g) [eG j; P&F(w)&.) az . ..(6) 

where z .%-id w are dunmy variables, and it is assumed that the imident 
stream is in thenzodynamic equilibrium. This result determines the variation 
of e along any atresmline, the stresmline being 6pecFpied by the value of a. 

3. Freezing Crite.rion 

Equation (6) can be rewritten in the form 

where g(z) = - -, and f(z) = --- F(w)&. 

As was poFnted out in Blythe (1962) (7) is a typical steepest descents type 
integral and it follows that the only important contribution to this integral 
will come from a region in the neighbourhood of the stationary value of the 
exponential tern. Physically thia corresponds to a sudden increase in the 
departure from e@.U.brium 531 this region, i.e., what is termed here freezing 
of the vibrational energy. The stationary value of the exponential term is 
given by f' = 0 or 

. . . (8) 

Upstream af a certain region near this point (which is dependent on the 
particular streamline since it depends On RI) theflcxvwillremainneartto 
equilibrium, while downstream of this region, butwithin the fan, freeaingtil 
occur, (downstream of the fan itself the flow will eventually return to an 
equilibrium state, see Section 4). In order to evs.l.uaCe the locus of freezing 
points given by equation (8) the temperature dependence of R must be 
speozlfieb In general this is a somewhat complicated function of T but for 
simplicity it will be assumed here that it can be represented by 

R = Ta 

where s > 0. Under this assqtion the fxmction F(8) is given by 

F(e)/ 
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cos A(B+a) 2(6-i) 

F(B) = nu 
co8 Aa 1 

F'or freezing to be a realietic concept F(6) should be a monotonically decreasing 
function of 8. It is certainl y true that the relaxation frequency decreases 
along streemlines but this tenders is offset by the fact that the distance of a 
streamline from the corner increaseswith increasing 8, and the above result 
indicates that F(o) decreaaez only for s > 1. 

From epation (8) it can be shown that the loaus of freezing pointa, 
for R = Ts, is given by 

u. r" 2A @--A, COB ha 
24 

R, = II= YwJ taI I tA @+a) 1 . . . (9) 
qi % co8 A(O+a) 

Itcanbe seen that Rf gcowsmorerapidlywith 0 than doesthedistanoe 

R =- of a etreemline Pram the corner. Fore-o 

Rf = Rif = 
m 

. ..(lO) 

(using the definition of a and substituting in (9)). Along streamlines 
defined by R* < R, the freezing point no longer occurs in the physical flow 
(mathematically at pd.nta upstream of the fan) and in this region the flow 
variables will never fdlow the e@.l.ibrium distribution, Le., it is a region 
ofnear-froZenflow. zt- e = ec defines the tail of the is.entrOpio fan then 
e&- if3 iem ay 

whem $ isthecornerangleand !A the Mach angle of the incident streem. 
Consider the streamline whioh has its freezing point at 0 = Bc. It csn be 
shown from equatiuns (4) and (9) that the initial radial position along the 
wavehead ok‘thiss~eamline is givenby 

aOvib ooa hn. 2s 

R* = Else = tan h(ep) 
m COE qk) 1 

i.s., Rke = . ..(Zl) 

Along streamlines definedby R, > Rie the flowneverpasses tkuugha 
fIwe5ing point and - near to equilibrium. In the intermediate regionwhere 
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freezing will occur within the fan. The above results are shown schematically 
in Fig. 1. 

4. Particular Solution 

For the special case of hypersonic flow (m >> 1) the integral in (7) 
takes a simpler form and can Be evaluated in identical fashion to the 
corresponding integral discussed in Blythe (1962). However, in this oaBe for 
corner angles of order of magnitude greater than i/mi the flow dowAresm of 
the fan is trivial since the flow will be fully expanded (p = 0) in that region 
and the energy in the lagging mode will be frozen along each streamline at the 
value it has when leaving the fan. For corner angles of 0(1/m), when the 
flow is not fully expanded, the solutxon downstream of the fan osn easily be 
obtained. The streamlines in this region are now, to the approximation giVen 
here, parallel to the wall and the density, temperature, etc., are constant (# 0) 
in this region. The solution for the vibrationsl energy distribution 
downstream of the fan is thus found by integrating the rate equation, with all 
the kinetic variables remaining constant, along these known streamlines subJect 
to the boundary condition on the vibrational energy distribution along the tail 
of the fan; this boundary condition is given by the solution within the fan. 
Detaxls of the solution both within and downstream of the fan are given belox 3x1 
the special case mf >> 1~ it is assumed that the corner angle is O(.l/rm). 
!I% generalisation to any m > 1 is given in Section 6. 

IZI order to evaluate the integral in equation (7) the va140u.s 
functions are best expressed in terms of the Mach number m which is related to 
the angle 0 by 

X@+u) = tan-i a&G. 

For BI >> 1 (strictly hm >> 1) the function f in given by 

b f $1. 

The statknary point, or freezing point, is given by 

A new variable c is defined by 

and equation (7) becomes, for m >> 1 

where/ 



where $ is a dummy variable and ti = BYib@I. This expression is now in a 
suitable form for evaluation by the method of steepest descents. !che analysis 
proceeds along exactly the smpe lines as in the quasi-one-dimensional flow 
case (see Blythe (1962) for details) and it follows that 

I ( 
$?-a0 

ti > 1 
aoE(Nitl) - - exp -- 

2$ 
q= + 0 

& 
L E(N,1)) 

II Ni 

where 

2 I 
&) = 4;* + - . - 

23-l g2=' 1 
I 

a = 
0 [q”(i)l+ 

. ..(15) 

Sufficiently far upstream of the freezing point it can be shown that 
this expression reduces to the first term in the usual near equilibrium solution 
(expansion in powers of l/F&, Napolitano (1960)). Conversely it can also be 
shown that when the freezing point lies sufficiently far upstream of the fan 
(in a mathematical sense only) the expression reduces to the usual type of 
near-frozen solution (expanaion in powers of a). 

Upstream of the freezing paint the first two terms in the square 
bracket on the right-hand side af (14) are of the same order of magnitude. 
In the neighbourhood of the freezing point, and downstream of it the first term 
dominates and represents the rapid departure from equilibrium which occurs there. 
The behaviour of the above expression indicates that u approaches some 
constant value for large t;. However, the maximum value of 4 permiesible in 
this expression is determined by the tail of the (isentropic) fan, i.e., by 

. ..(16) 



-T- 

Downstream of the fan the streamlines are again parallel to the wall, and if 
x1 is a co-ordinate measured along the wall (x' = 0 at the apex) the 
distribution of the vibrational energy along a streamline in this region is 
governed by 

au 
- 
ax 

= 2s (+$ . ..(17) 

s, 
x'$ 

where x = - and the suffix 8 denotes conditions along the tail of the 
s: 

fan. The x position of a streamline emerging from the fen is given by 

. . . (18) 

Equation (17) cm be rewritten 

a-2 e 
; + Xp+(2s-l)hq = O- 

e 

The solutzon to this equation using the boundary condition f = ce.(E8) on 
x = .x eis 

I 

(““J 1 
E = ee(EJe) em - 

41+(26-1)h~1 I 
. ..(I91 

where ~~(5,) is obtained from equations (I&), (15) and (16). The decay of 
the exponential term in (19) is the sense, in terms of x-x8, along any streamline 
since X4 is independent of q. Consequently if a relaxation length is 
defined as the length that governs the decay of e/e4 dawn&ream of the fan then 
this length will be the same for all streamlines since E/E~ is independent of 
I+ in the region downstream of the fan. Such a relaxation length is termed 
the relative relaxation length since this length governs the decay of 8 
relative to its value when leaving the fan. For convenience this length, 
denoted by LreL, will be defined as the distance, downstream of the fan, over 
which "/EL fall.5 to l/e. Hence 

A relaxation length which governs the decay of oe downstreamofthe fan 
can also be defined. Such a length is termed an absolute relaxation length 

since/ 
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since this length governs the decay of E 
which is the same for all streamlines. 

relative to the equillbrxml value z8 
Hence this relaxation length, 

denoted by Labs, depends on the absolute value of E. Correspondrngly this 
relaxation length is defined as the distance over which c/o4 falls to l/e 
and it follows that 

L abs Ee - = 1 + log =-. 
L rel ue 

. ..(21) 

In the region far from the corner, where E& << z&, the expression on the 
right-hand side of (21) will become negative showing that the flow is effectively 
in equilibrium when it emerges from the fan. 
provided et >> Fe, 

SufYiciently near to the corner, 
the logarithmic term will dcdnate and the absolute 

relaxation length will become much larger than the relative relaxation length. 
However, it should be noted that this will n@, always be 80 in the vicinity of the 
corner since, e.g., when $ - 0, Ed << a' even in this region and the fluw 
will effectively remain near to equilibrium. Although the general expression 

Ee for log - 
a 

is very complex certain simplification.9 can be obtained in these 

limiting rtgions of the flow. 

Suf'ficiently far from the corner it is expected that a conventional near 
equilibrium solution (expansion in inverse powers of IL) will be valid. It can 
be shown that a necessary condition for such a solution to hold is that 
R * " mx (Rie, 1). Conversely it can be shown that in a region near to the 

comer, given by R, << Min (1, R,f), a conventional near--Zen solution 
(expansion in powers of IL) ia valid. Utilising these two types of solution 
it is found that, excluding for the moment the case Rie w Rif, for 
IG " hf.a (Rie, 1) 

L abs R 
- = 1 + log2 
L rel IL 

. ..(22) 

for Ri xi Min (I, Rlf) and also R,, >> Rif 

L abs -=- 
L rel 

a 
. ..(23) 

h'(2F.w1)' 

When R,e * Rif, i.e., the corner angle $ - 0, we expect that the flow 

will everywhere remain near to equilibrium. In fact the relaxation length along 
streamlines new to the wallbecames, for R - R 1 ie if << 

L ('-Rif> 
"i (Rie-Rif) 

abs - = I + log 
L rel 

P(2!3+1) 
. ..(24) 

f4 
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from which it is apparent that for R,, - R,f mffmiently small the flow is 

effectively in equilibrium near to the corner. This is not surprising as 
although a conventional near-frozen type of solutmn is valid there 

CR, <i Min (1, R - if )), the first term in this solution is 81 and when 

ti - 0, t? ... cr$. throughout and hence E * 0 throughout. 

It is interesting to note the variation of S/Z at the freezing point. 
From equation (14) it is seen that 

where 

(e/qf - 2a. - L(O) . ..(26) 

4 9 and since & = Ovibm, and Bi = -, this result implies that E/(T varies 
!m 

linearly with the Mach number at the freezing point in the region where the above 
inequallty holds. However, as @i -t 1, i.e., in the neighbourhood of the 
wave head, the term neglected in deriving equation (26) from equation (25) mat 
be taken into account. 

5. NumericalFxample 

A specific example was evaluated for the theory of the last section. 
The Mach number ratio across the fanwas taken to be 10, which corresponds for a 
diatomio gas, with zai >> I, tQ Iik$ = 4.5. The initial tanperature of the 
gas wan taken as T: = i O&b, i.e., OYib = 4, and the parameter 8, 
dependence of the relaxation frequen 
The variation, within the fan, of ~~'~a%$e~k~~: !~~%~dw~i.~: 3 
as a function of the angular ratio O/0,, where OL is the value of 8 at the 
tail of the fan. e/Be ia related to the Mach nuder ratio by the expression, 
valid for llli >> I, 

I-" 
e m 

-= . . ..(27) 

Each/ 
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ZS+l Each streamline is characterised by a value of B1, since & = 2h%vib %JA . 
It is seen that for values of *i sufficiently greater than unity the flow 
initially tends to follow closely the equilibrium distribution, but as the 
freezing point is approached the departure from equilibrium increases rapidly. 

t 

However, it should be noted that in the neighbourhood of the wave head 
0 = 0) the flow does not strxtly follow the equilibrium distribution 
Bloom and Ting, (1959)) since in that region on all streamlines - 

a E 

( > 

1 at? 
- - =-w--,0 
ae Z Z ae 

For & >> 1 the value of c/Z near 0 = 0 is too small for this effect 
to be noticed, but the effect is clearly visible on the streamline defined by 
@l = 1.5 (IQ = 3). 

In Fig. 3 the exponential decay downstream of the fan is not shown 
since on the scale of the graph it would be confined to a very narrow region 
indeed (because of the choxe of 0 as the independent variable). Also plotted 
in Fig. 3 are lines of constant r which are characterised by the value of 
m, ( = &a) at e = 0. 

6. General Solution 

The above results, which were derived for hypersonx flaw using the 
simple power law temperature dependence for the relaxation frequency, can be 
formally generalised to include all supersonic Mach numbers and any general 
temperature dependence for R. In this case an explicit expression for the 
posltion of the freezing point cannot, m general, be written down. However, 

m 
it will be given by some Mach number ratio - = @%(m,, Ovib, Ri), and by 

ms 
scaling the various quantities with respect to therr values at the freezing 
point it can be shown that the generalised equation corresponding to (13) is 

1 Er 
-- 

0% c 
where &J = f q(E) = 2 

. . (29) 

1 ae r 00 
q = -Ri Ff 'pi, F = --) 

2 ri v 

and the suffix f denotes conditions at the freezing point. The evaluation 
of this mtegrsJ. is carried out as before, the result being given by 

equations/ 
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equation8 (14) and (15) provided that in those expressmns the above relations 
af a$ 

(29) are used and the factor + - is replaced by g(S) -. 
at, dtl 

The solution downstream of the fan is again given by (19) provided 
that Xc is suitably redefined, i.e., 

and that the modified expression for e (Pi) is used in computing ee (Eel. 
The value of m8 (and hence Ee for a given $) is obtained frcm the full 

isentropic Frandtl-Meyer relations &long the tail of the fan. 
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