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Summary

This notc briefly introduces a non-linesr thecry of
wings in slow pltching oscillation with lcading-cdge
geparation in incompressible flow., The oscillatory 1ift
and pitching moment become lincar functions of mean incl-
dence,

Comparisons with measured piltching derivatives are
made for a gothic wing of espect ratio C.7Dh.

Replaces NPL Aero Note No,1010-A.R.C.24,537.

Published with the permission of the Director, National
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1. Introduction

It is known that leading-edge separation occurs on
wings of low aspect ratio at incidence, particularly when
the leading edge is sharp; 1n consequence, the steady eero-
dynamic forces are non-linear with incidence. There is a
corresponding effect of mean incidence on oscillatory deriva-
tives, as experimental datal,2 have already shown.

f'or pitching oscillations of small amplitude and
frequency shout zero mean incidence, measured values of the
damping derivative at low speeds are usually in satisfactory
agreement with_values as calculated by linear lifting-
surface theory’. This remsins true for wings of low aspect
ratio, as shown by Figs. 11 and 12 of Ref. 4 for delta
(h = 1) and gothic ?A = 0,75), planforms. TFurthermore,
the comparisons of the measured'! and theoretical values for
the gothic wing, reproduced in Fig. 1, show that slender-
wing theory 1s inadequate.

In steady incompressible flow, the overall forces at
high incidence can be estimated theoretically by using
Gersten’s) mathematical model of the flow (Fig. 2) as the
basis of a non-linear theory. In Rel,_6 this vortex model
is used in conjunction with Multhopp's7 linear theory for
steady flow, to give a numerical method for wings of arbitrary
planform. Although the vortex model fails to provide the
load distribution on swept wings with separated flow, the
comparisons® between calculated and measured 1ift and piltching
moment 1ndicate that in this respect the non-linear theory
is a decisive improvement on linear theory for wings in steady
flow., The non-linear effects grow as aspect ratio demreases
and become important for the delta (4 = 1) and gothic
(A = 0.75) wings at fairly low incidences,

Clearly we need a theoretical method of calculating
pitching derivatives, which allows for mean incidence. An
extension of the liTting-surlace method of Ref. 6 to low-
freguency pitching oscillations is now in preparationa. This
can also be regarded as an extension of the linear oscillatory
theory of Ref. 3, compatible with Gersten's® vortex model,

The basic equation is set out in Section 2, +hile Section 3
summerizes the steps of the calculation in matrix notation.

In the final Section L4, comparisons of the oscillatory
1ift and pitching moment are made for the gothic wing tested
by Bristol Aircraft Limited in Ref. 2. These experiments
support the use of a theory in which effects of frequency
and amplitude of oscillation are ignored, and they go some
way towards Jjustifying the assertion, that pitching deriva-
tives should show a linear dependence on mean incidence,
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2. Basic Theory

A non-linear lifting-surface theory for wings in slow
pitching oscillation can be developed with the aid of
Gersten’s simplified model of steady incowmpressible separated
flow (Iig. 2). The trailing vorticity is supposed to be
sonvected from the wing in planar sheets inclined at half the
instantaneous angle of incidence, i.e. #[a + 6(t)], to the
wving surface, It 1is possible to derive an expression for the
upwash at the wing, in which «3®, o286, a62, 62 and higher
order terms are neglected, but o2 and aof are included as
vell as the linesr terms in o and 6., In fact the non-
dimensional wing loading is written as

where o 1s the mean incidence, 6 = Re[eoeiwt], 2, and

444 are complex gquantities.

Let the wing descraibe pitching oscillations of ampli-
tude 6, and angular frequency ® about an axis x = he,
where © 1s the geometric mean chord., Then the boundary
conditions &t the wing surface require that the upwash angle

i

over the planform S. In Ref. 8 it will be shown that the
upwash angle is related to the wing loading in equation (1)
by

1l

1
% 8% j (0 + €4,02)K(x - x', y - y')ax'dy'
S

X
- Z %35( [ Lyo(x - x')dx')

=00

8
+ Re {gi‘/“/‘(z" + E11Cﬂ)1{(x - x', y - y')d_x‘dy’f
S

- E%%]](Z, + 31,a)<[%k(xo -x', y - y')dxo>dx'dy'
S L0
- g %ga(/¥%1(x ) x')[1 . 1@1%;Kll}dxf>
- g %35([x61(x - X')dx'ﬂeoei‘”t , cee (3)

e



where
K(x-x', y-y') = -1 —[1 + mmmm———- ot SR 7J.
’ (y-y")2 y2] 2

It can be seen that equation {3) involves four distinct
operators
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The first of these, A{¢], arises in steady linear 1lifting-
surface theory and is fully discussed in Ref. 7. The
operator B{<4{, together with A{¢}, forms the basis of
Ref. 3. The third, C}{¢}, is derived from Gersten's model
of steady separated flow and, together with A}l¢l, forms the
basis of Ref. 6, The remaining operator, D{£¢{, 1is peculiar
to thg unsteady non-linear theory and will be discussed in
Ref. O,

3. Solution in Matrix Notation

In terms of the operators of equation (4), equations (2)
and (3) combine to give
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afedo + afe . Jo2 - Ciesle?

+ Re ( e,] + A{Z,,Ja - 1vB{E€,] - 1vB{?E, ]
- ¢c{Z,}a + 1vD{Z,la - Ccle,} ) iwt
[(1 + ivE - ivﬁ)eoeiwﬁ] ere (5)

where £ = x/€ and the frequency parameter v = wz/U, The
steady and oscillatory parts of equation (5) become respectively

Afe ] + Afegya - Cieyla = 1 eon (6)
and

A{e,1 + AlZ, Ja - cley + Ela
- iv(B{%,} + B{Z,,la - D{Zla) = 1 + Lv(E=-h). eee (7)

In a collocation method, equations (6) and (7) are replaced
by sets of equations and the operators (L) are treated as
matrices. Then the right hand side of equation (6) becomes
a column {a1} = {1] representing unit values at specified
collocation p-ints. Similarly the right hand side of
equation (7) becomes

(1 - ivh){ayd + iviasl,
where {a,] denotes a column of values of & = x/€ at the
specified collocation points.

Equation (6) leads to the steady solution ol Ref. 6,
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Similarly the real parts of [Ztl and {Z,,}, determined

by setiing v = 0 in equation (7), are respectively [4,}
and 2{¢,,]. Hence we may write
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where the real quentities {4i} and {¢{,] remain to be
chosen so that equation (7) is satisfied identically to
first order in v, Thus

Afell + Alel la - Citila

= Bl&,] + 2B{¢,,la - D{&,da - hia,] + {ayl.
.se (10)

The terms independent of « in equation (10) lead to the
linear solution of Ref. 3

{21 = -nie,} + A-1{a,} + A-'Bie,]. e (11)

It then follows that

fel,1 = A-1ci{ell + 2a-'Bie,,} - a-'Die,}, ... (12)

where {£;}, {¢,,1 and {¢}] are given in eguations (8)
and (11).

The unsteady part of the non-dimensional wing loading
in equation (1) is expressed as

{¢'] = [251} + 2{’511}0’33 + [i‘“} + i&‘hla]‘ﬁ‘:
eer (13)

where © = d6/dt. The pitching derivatives are then derived
Trom the 1ift and moment integrals
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b, Comparisons with Experiment

Oscillatory cxperiments cn several shorp-cdged models
of the same gothic planform (A = 0,75) are described in
Refs., 1 and 2. The earlicr mcasurcments of Ref. 1 were made
on two uncambered models ol diffcrent maximum thicknesses
(0.082 c, and 0.050 cr) by obscrving the decay of pitching

oscillations about each of three axes h = 0.499, 0.724,
0.949: only the damping derivative was obtained., The later
measurements of Ref. 2 on another uncambered model of the
smaller maximum thickness ©.050 c, Wwere carricd out hy

forced pitching oscillation about two axes h = 0,499 and O.949;
the results are presentcd as complete scts of pliching and
heaving derivatives for the axis h = 0.724. Tho effcets of
amplitude and frequency parameter on the pitchung derivatives
are small and within experimental error, but significant
effcets of mean incldence are found. Relative to the lcading
apex the planform is delfined as Teollows:

leading cdge X = X, = crL1 - 41 - (Y?B)}
t

trailing edge X = X

1

c

r , ees (15)

scmi-span s = zC,

mean chord c =

where Ch denotes the root chord. Calculations Tor this
planform havc been made with 7 spanwvise and 3 chordwise
collocation stations, i.c. 12 collocation points on the halfl
wing.

The results in Figs., 18 and 19 of Ref, 2 include static
measurcments of lift and pitching moment about the axis
X = he = 0.724c, The cceflicients

- 4p_ dx!dy!
Cp, = ] [ Io6Z T B
S
vee (16)
o = Ap_ (he-x') dx'dy'
m zpU= T S
)

from experiment and from cguation (8) are comparcd in Fig. 3.
The two sets of experimental data correspond to some previous
balancc measurcements (1) avout the axis h = 0.724 and a
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mean (x) from the wind-tunnel balance measurements of Ref. 2
gbout the two axes h = 0.499 and h = 0.949. The graphs
of CL against o snd Cm show how greatly the non-linear

steady theory of Ref. 6 improves on the results of linear
theory.

As we have already seen in Fig, 1, the linear pitching
damping Irom the theory of Rel. 3 is in good agreement with
the various experimental results from Refs. 1 and 2 for &
zero mean incidence, Also shovm in Fig. 1 is a less satis-
factory curve from slender-wing theory, which gives

~Zg = IRA
-2z = 1_‘;ICA(2-3 - h)
0 * . eee (17)
“mg = imA(0,7 - h)
-my = ZzmA(1.5 - h)?

It is important to realise how wide of the mark this
attractively simple linear theory can be, even for an aspect
retio as low as A = 0,75.

Relating to the gothic planform, Figs. 12, 13, 20, 21,
4O to 42 of Ref, 1 show 1ittle consistent effect of Lre-
quency parsmeter ever the available range 0< v = we/U < 0.7,
but there are indications of a systematic dependence of
-mx» on . The values of the pitching damping for o = 20°
arg plotted against axis position in Fig. L. The formula (13)
corresponding to the non-linear theory cof Ref., 8 represents
a significant improvement on the linear theory of Ref. 3 for
the experamental range of sxis position. For the rearmost
axis h = 0.949, however, the new theory is not entirely
satisTactory., The nature of this deficiency becomes clearer
when both 1ift and pltching-moment derivatives are considered,

Figs. 10 to 13 of Ref. 2 give the four derivatives for
the pitching axis h = 0.724; the full curves against mean
incidence adequately represent smoothed experimental values
for any frequency parameter in the range 0< v < 0.7. The
1ift derivatives ~2Zg ang -~z of eguation (14) are
presented in Fig. 5, the experimental points (x) corres-

pronding to the full curves in Figs. 10 and 12 of Ref. 2.
For zero mean incidence the stiffness derivative -z shows

satisfactory agreement with equation (17) from slender-wing
theory and with the non-linear l1lifting-surface theory which
for o = 0 reduces to Ref. 3; non-linear theory and

experiment show fairly consistent large effects of «, and



values of ~Zg at o = 15° are more than double those at

o = 0, On the other hand, the cross damping derivataive
~Zp is lcss satisfactory. Only fair agreement is obtained

between linear theory and experiment at o = 0, and slender-
wing theory gives a serious overestimate; morecver, linecar
theory, giving ~Zy = C.711 for all o, scems preferable

tc the non-linear thecory in this case, The direct deriva-
tives -mg and -my of egquation (14) ore presentcd similarly

in Fig. 6. Both derivatives show Tair agrecment betwoen
theory and experiment at o = 0, except that slender-wing
theory greatly overestimates the pitching damping. Non-
linear theory and experiment show 1dentical cffcets of o on
-mg. Por both pitching-moment derivativegs the non~lincar

theory offers a marked improvement on the linear theory of
Ref. 3.

5. Concluding Remarks

Theoretical and experimental considerations point to
large efrects of mean incidence on oscillatory pitching
derivatives for wings of moderate to low aspect ratio, For
incompressaible flow, a significant advance on linear lafting-
surface theory has been made by mecans of CGersten's simplified
model of separated flow, although it is recognised that this
model is unrealistic and unreliaoble for the prediction of
lead distribution. The usce of a theory for slow pitching
oscillations 15 not too restrictive, since the expcriments
indicate that frequency cfleets are small., Although the
calculated values of —2Z4 Tor thc gothie wing leave scope
for furthcr aimprovement, the othoer three pitching derivatives
show a fairly good agrecment between experiment and non-
linear theory. It is intcnded to examine the conseguences of
modirfying the elementary vortcex shects of Gersien's model to
represent rolled-up vortex elcments.
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