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SUMMARY

The partial differential equations appropriate to certain approximate
theories of plasticity are derived and discussed with particular reference to
the determination of the stress distribution due to a transverse crack in a
sheet under tension, Even the simplest of theories results in a differential

equation whose solution will present great difficulties.

A Griffith-type analysis is also given to predict critical crack lengths
under static load in terms of material properties,
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1 INTRODUCTION

The classical theory ol plasticity (with work hardening) is given in
detail in Refl,1, A Teature of the theory is that the principal axes of the
plastic strain increment (and not the total strain) coincide with the axes of
principal stress, The classical theory is thus an "incremental theory" and
solutions generally can only be obtained by a step-by-step integration process,

A simplification of the classical theory is possible if there is no work
hardening, i,e, the material is "perfectly plastic”2. Solutions to a variety
of simple problems are possible3 if the elastic component of the strains can
be neglected, TFor the crack problem this is not so, and one of the ensuing
difficulties in this problem is the determination of the boundary between
elastic and plastic states, The shape of the boundary is, of course, a
function of the applied load.

The difficulties encountered due to the different behaviour of the
elastic and plastic regions may be overcome by assuming a smooth stress strain
relation for the materialk, The difficulties inherent in an "incremental
theory" are avoided if a simple deformation theory is used®, A deformation
theory is characterised by a one-one correspondence between stress and strain,
independent of the loading path. The partial differential equations
resulting from various deformation theories are derived in sections 3-6, It
is hoped that these will provide a springboard for future work in this field,

Griffith's work on microscopic cracks in glass1o has recently been
applied??,12 with some success, to cracks of moderate size in steel and light
alloy. A similar type of analysis is presented in sections 7-9 where physical
and engineering arguments are employed in an attempt to relate the "energy of
fracture” with material properties obtained from a simple tensile test, An
estimate is also made of the effects of plate buckling on the critical crack
length, The analysis of sections 7-9 is undoubtedly much simpler - and
possibly more realistic - than the more mathematical approach introduced in
sections 3-6, but further experiments are required before the results can be
accepted with confidence,

2 LIST OF 3YMBOIS

Sections 3-6:

X, ¥ = Cartesian coordinates

E = Young's modulus at low stress level

v = Poisson's ratio

Oy G&’Txy = direct and shear stresses

L = equivalent stress, defined by equation (1)
Sx’ay’ny = direct and shear strains

E = secant modulus



stresses
N

structure properties
Y
-

E/ES

stress functions defined by equations (5), (17)
transverse displacement

constants

introduced in equations (11), (20)

introduced in section 5.2

stress energy density

complementary energy

defined by equation (29)

Sections 7-9:

=

ult
fr
cﬁrit

o,
crit

Lgbuc

Young's modulus
thickness of sheet
length of crack
width of crack

is introduced in equations (45) and (L46)
length of neck in tensile test (see Fig.L)

angle of neck at failure (see Fig, L)

reduced thickness at neck after failure (see Fig,l)

uniformiy applied stress away from crack

ultimate nominal stress of material in tensile test

nominal stress at fracture of material in tensile test
(see Fig,2)

critical value of ¢ at which crack propagates

value of S if buckling is prevented

rit

value of o at onset of buckling
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ni e = elongation
o
% €p. = clongation of "neck" at fracture in tensile test
b4
]
—~ €., = elongation of "neck" at end of crack
) r,c
(V = vreduction of sirain energy due to crack

reduction of strain energy due to buckling

energies
N

N
= U,<1
| 1

= energy required to fracture sheet
q

K = (1/t)e, (see equation (44))
0 fr,t°
3
ga X = coefficient of buckling (see equation (53))
—
S<i k = coefficient ol buckling energy (see equation (57))
o
A
0 - t
5 f - Gbuc/bbrit
.5 -y / « b
T Terit/ %erit
)
8
L @,B = constants introduced prior to equation (45)
3 CRITARION POR YISLDING

For a material with a well defined yield point in simple tension o) say,

the von Mises criterion for yielding under combined stresses states that
yielding occurs when

2 2 2 2
Ox + O-y_ - O_XGy + BT}W - 61 . (1)

For a material with no well defined yield point the secant modulus under
combined loading may be identified with the secant modulus in tension under an

equivalent stress G& as defined by equation (1).

There are, of course, other yield criteria (such as the Tresca maximum
shear criterionj but thess require a prior knowledge of the relative magnitudes
of the principal stresses; in the crack problem there will be boundaries
defining regions in the plate in which the yield criterion assumes different
forms, andl the difficulties inherent in determining these boundaries will be
comparable to those in an "incremental theory".



L STRESS~-STRAIN RELATIONS FOR SINPLE DEFORMATION THIORY

The streéss components are related to the strain components as
follows:~

_l(g_¢)+/i~ 1(@’—@)‘\
€x B \9x7V9y \E, " E x 2% I
|
|
(s N (s 2
8y = 3 (oy_vok) + <Es - E> (oy g;x) (2)

B U A T A
ny -G xy BS nf 'xy*

L,4 Simplification to stress-strain relations

For the case of a circular hole in a plate under uniaxial tension” it
has been shown that the stress distribution is independent of Poisson's
ratio,

This would not, of course, have been so if the boundary conditions
were mixed®, but it does suggest a way Tor simplifying equation (2) for
holes of arbitrary shape, The simplifying asswmption is that if the
boundary conditions are not mixed we may take

;
V = 2,
so that equation (2) reduces to:
e. = = (o~ )
x ES x 27y
€ = ;,L(

to) f (3)

Further simplification of these equations for the crack problem will be
discussed later,

4,2 Lquilibrium and compatibility

The equations of equilibrium



aoi awx‘
— . =L - 9
Jx oy
and > (1)
oa. ot
A N SN
oy oxX )

are satisfied by introducing a stress function ¢ such that the stresses are
derived from it by the relations

C. = 'a‘ié & (5)

Xy =~ oxdy °

The equation of compatibility7 is

628, 628 aZY
S+ —% = L, (6)
ayz 5x Xy
5 THE GOVIERNING DIFFERENTTIAL EQUATION

The governing differential equation for the stress function ¢ is
obtained from equations (3), (5) and (6), and may be written in the form

ol (1102
27°(19°9) - 30*(H,4) = O (7)
where I = E/Es and, for convenience of presentation, we have introduced the
invariant "die-operator" (\LF defined by
b, - a2H 62¢ 32H a2¢ a2H a2¢
¢'(H,¢) = 2 2 " 2 oxdy oxdy T .. 2 2°
0% 0y dy  ox

Equation (7) is identical with that (Ref,1)) for an elastic plate whose
thickness varies as E%.

by



In deformation theory H is a function of the equivalent stress 61, and

it is therefore a function of ¢ in virtue of the relation

2
A = (V)7 -2 6"4,9) (8)
obtained from equations (1) and (5).

5.1 Relation between secant modulus Es and equivalent stress o,

The Es, Ty relation for a given material camnot generally be expressed

(even approximately) by a simple mathematical form, However, the approxi-
mate nature of the theory of plasticity, particularly the deformation theory,
does not Jjustify great accuracy in the mathematical formulation of this
relation,

One of the earliest mathematical relations between ES and c% is due to

Pragers, who proposed

OH ) E c%
E;——— = ‘tanh E_—ET__—
ult s “ult

but the resultant differential equation for ¢ is extremely complicated,

A simpler differential equation is obtained by assuming

. 2
H = E/...‘;s = exp (K0‘1n) (9)

where x and n are arbitrary constants, but probably the simplest relation is
that due to Ramberg and Csgood who proposed

i = B/E, = 1-+xo%n . (10)

Typical stress-strain graphs appropriate to equations (9) and (10) are shown
in Pig,1, where, for ease of comparison, the constant k has been chosen so
that all the curves pass through the point ¢ = 1, Ee¢ = 1,2,

The governing differential equation may now be expressed solely in

terms of ¢ in virtue of equations (7), (8) and (9) or (40). In this connec-
tion it is convenient to write

P - m{(vzst)‘? -3 o“(qs,qs)}n (11)

whence if equation (9) is adopted we find



L(1-F)T% + WP (ET%) = 6(1-F)o™(T, )

y 2 l
+ 2 {ﬁZ(FZ) - 2FY F} v2¢ - 30*(F2,¢) = 0, (12)
while if equation (10) is adopted:

2, 2 )
2vl‘“¢ + 29°(FY9) - 3(‘,4(5’,95) = 0. (13)
The simplest stress function equation for any (inelastic) deformation theory
is obtained by taeking n = 1 in equations (11) and (13), to give
L, 2" 2 \2 ) 2 = L 2 \2 .
bty ool (2% - 30,00 | P |- 30, 26707 - 0,0 ] - 0.

veoos (A4)

It need scarcely be added that the difficulties encountered in the solution of
this equation (possibly by finite difference representation)are formidable,

5.2 Turther simplification of the equation for the stress function

If the applied load acts in one direction only, as in the basic crack
problem, a reasonable assumption to make is that the transverse strain may be
neglected, If, in addition, the structure and the distribution of applied
load possess symmetry about a longitudinal axis the transverse displacement
will also be zero, Thus if the load is applied in the direction of the x
axis,

v = 0 (15)

and the equation of compatibility is

Je oy
= _ A _
5 s2- = 0. (16)
The single equilibrium equation
0 oT
L. A
— = QO
oxX oy

is satisfied by introducing a stress function ¥ such that the stresses are
derived from it by the relations

—I'A
O = oy }
(17)
-
Xy ox



The stress strain relations may be taken as

’ (18)

Yoy =

W =
ML;% w2
n ¥

and the "yield" condition may be taken aa
2 2
o + ZTXy = 0% . (19)

Now if the secant modulus is defined by equation (9) or (10) the
differential equation for ¥ may be determined from equations (16), (17),.(18)
and (19). In this connection it is convenient to refer tne operators VZ
and Oh to fresh coordinates %, Y given by

X
X:‘_\/'},
Y:y,
so that, in this context,
2 2
V2 = —25 + _QE , ete,
oX oY
We mey now write
2
an = J, say
(12,25 2 1%
= x{%v (¥7) - v w} ; (20)

whence if equation (9) is adopted we find

(2-J)v2¢ + vz(Jw) - wsz = 0, (21)
while if equation (410) is adopted:
(2+J)V2W + V2(J¢) - wsz = 0., (22)

If we restrict attention to the simplest forms of these equations, by
taking n = 1 in equation (20), we may recast equation (21) in the form

- 10 -
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1

K

Py (P00 - 2¢rv2w} Py - M) 200t = 0, (23)
while equation (22) becomes

1o+ 2 {vz(wz) - zqrvzﬂ;} Py - oME ) + 250t (,y) = 0. (@)
Although equations (23) and (24) are simpler than equation (14) they will

nevertheless present considerable difficulties in their solution,

6 STRAIN IMTURGY METHCDS

Tor deformation theories, the variational principles for the stresses
involve the stress-energy density, which in the plane stress case can be
written as

Oys s Ty

w(ok,a

y’Txy) = (Cx dGX4-8y do_ + ar_ ) (25)

y " Vxy “rxy
QO

where the strains are considered as functions of the stresses; these
functions are assuned to be such that the line integral in equation (25) is
indeperdent of the path, T'or a finite two-dimensional domain A having

stresses prescribed over its boundaries, the complementary energy is defined
as

U = f w dA (26)

The variational principle states that, when UC is written for the true
solution to the bourdary-value problem,

8U, = 0 (27)

for all stress variations 66&,56& and amxy that satisfy equilibrium and

provide no stress resultants on the boundaries,

It is shown in Ref.5 that if the domain A is infinite it is necessary
to replace equation (27) by the equation

§U! = 0O (28)

- 11 -



' R RS - . _0° .0 5
where U! = ],(w w )dA R%:?o {ﬁr (éf °r> + g <%r6 Tr6>:§ds (29)
A
and the superscript © indicates the solution of the elastic problem,
Now fram equation (1)
2
d(oy) = 20, do, + 20& dc& - O, dc& - 0, do, + 6Txy dTKY
= 28 (ex do‘x + ey do‘y + ny d'rxy) (30)
from equation (3),
The stress-energy density can therefore bhe written in the form:-
™
a(e)
1
W = 2[ i
s
1
s, > (31)
1
= _(-.—‘ dG ]
| 5o
o v
If we adopt expression (9) for the secant modulus and take n = 1, we find
1 “°%
W = m(e -1) 3 (32)
while if expression (10) is adopted we find, for any value of n,
0_2
1 K n
o = 5 {1 ; <n+1> o } : (33)

In terms of the stress function we therefore find, {rom equations (32), (8),

(26) and (27):

5 fexp x{<v2¢)2 - %ol*(sé,sb)}cm = 0
A

- 12 -
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while if expression (10) is adopted:

[(;232 3 b Mk (202 3 b 2Tl o o
) | {(V $) 5 Q (¢’¢)}} T+ {(V $) 20 (¢,¢)J —J aA 0

.A. LN (35)
Approximate solutions may now be obtained by substituting into equation
(34) or (35) an expression for the stress function that contains undetermined

parameters and by minimising the integrals with respect to these parameters,

If the simplified approach of section 5,2 is used, the variational
equations corresponding to equations (3k4) and (35) are, respectively

8 fexp K{B <%>2 + (—‘;—3‘%)2} dh = 0 (36)

A -
and
2 2 2 2 ~n-—
VAN EIANRE x (5 (3% 1) _
6{/ (3 <ax> + \ay Lj + T LB =, 5y ~J ar = o, (37)
A
7 CONDITIONS TOR CRACK PROPAGATION, - A GRIFFITH-TYPE ANALYSIS

A further approximate analysis is presented below for relating the
critical length of a transverse crack in a wide sheet under tension to the
material properties obtained from a simple tensile test,

If an elastic sheet is loaded in tension and the bounlaries rigidly
held, the introduction of a small transverse crack of length £ will cause a
reduction in the stored strain energy13 of an amount

2 2

7tl ¢
V = T . (38)

If the crack increases to a length £+ 04 the release of strain energy
is therefore

2
V= <£t§g——> 82 (39)

Although equation (39) is based on purely elastic considerations it can
be expected to be reasonably valid despite the presence of plastic regions at
the ends of the crack, = This is because the plastic regions are localised and
in part of them the stresses are falling and therelore following the elastic
unloading line,

- 13 =



The crack will be self-propagating if

o

v, 9
&Y » Y

52 (40)

where aW/a@ is the energy required per unit length to fracture the sheet.

iy
7.1 Approximate interpretation of aJ/bﬂ

Consider a long strip of the sheet loaded in tension with the ends
rigidly held, Failure occurs almost immediately after the onset of necking
when the stress in the sheet reaches Su1t During failure however the

localised necking becomes more pronounced and plastic work is required
before actual fracture occurs; if the strip is very short the release of
elastic energy may not be sufficient to deform the neck plastically and
failure will occw’ at a lower stress associated with a higher strain,

If the relationship between nominal stress and elongation of the neck
is as shown in FPig,2, the plastic work required per unit width of strip
during failure to cause {racture is the area shown shaded multiplied by the
sheet thickness, Now this area can be expressed very simply and with
negligible loss of accuracy by representing the ¢,e relation by the quadrant
of the ellipse shown in Fig,3; the plastic work required per unit width of
strip is then equal to

taﬁlt efr,t . (41)

+{a

¥
If we equate expression (41) to a’/ae it is possible to obtain a
formula for the critical crack length or for Oopit * Thus

ov T

N tdult efr,t
o (42)
~téo .
B crit
- 25

from equations (39) and (40), whence

orit & | 5C . (43)

hl 1
a. e 5
- r£ ult fr,tu}z

7.2 Interpretation of efr,t and efr.c

Equation (43) cannot be used without some modification, This is

because Srp + is the elongation in a simple tensile specimen where necking
b4

- ) ~



can occur more readily than at the end of a crack, That part of the sheet
which is adjacent to the edges of the crack and which is comparatively lightly
stressed, tends to resist the necking at the ends of the crack, and in doing
so introduces tensile stresses across the thickness of the sheet in the necking
regions, The effect of these induced tensile stresses is to raise the average
level of the hydrostatic component of the stresses and correspondingly lower
the deviatoric stress in the necking parts in the direction of the applied
loads; the final effect being that the effective rate of work-hardening is
increased and the material behaves in a more brittle manner, Let us now
attempt to relate €rr o with efr,t'

’

For a simple tensile specimen we would expect from geometrical similarity
that

Cop,g & Kb (4)

where K is some constant; but from the previous paragraph €or o at the ends
1

of a crack is less than Con ¢ by virtue of the restraining influence of the
H

adjacent lightly stressed parts of the sheet, For the case of a very fine
crack, let us represent the ratio e, _ : €, . by the factor 1/(a+ft)., If
? ’

we consider the limiting case as t tends to zero, the restraining influence
vanishes so that we must take a equal to unity. Furthermore, if when the

thickness is t1 the ratio of efr,c : efr,t is a half, we may write
e 3
o " fr,t

fr,o 14 t/t1

\ (45)

Kt
1 + t/t1
J

r

from equation (44), Equation (45) is, of course, empirical and by making %
tend to infinity it allows an alternative interpretation of t1. Thus

B o= <%> (s, 1arge & ° (56)

8 INFLUENCE OF CRACK WIDTH

Artificially made cracks may have a finite width at their ends and the
restraining influence of the lightly stressed parts of the sheet in resisting
the necking will be reduced, In a simple tensile test necking is confined to
a length ¢, say, and a possible modification to equation (45), to take

account of the inf{luence of crack width, would be to take



Kt
“frie T 1+ (t/t1k)[1-w/znj=l= (47)

H

where it is urderstood that the asterisked expression in square brackets is
zero if w exceeds 6n.

For many materials the shape of the neck after fracture in a tensile
test is similar to that shown in Pig.,l4 and {’,n can therefore be expressed in

terms of X, t and v, The fact that the volume of the material does not
vary significantly implies that

2
Ao s - ¥
0, siny = Kt
whence
2K
‘p’n = Ajsin vy (48)
and equation (L7) becomes
Kt
e = = % * (14-9)

fI‘,C 1 (t/-l N\ :'-—1 ‘E_ ’g}.n :\(
HA LN <

An aliternative scheme is to express X in terms of the fractional
reduction in thickness, 1 - tf./t, denoted by p. This gives

2
O LS
ko= 2 sin vy (50)

and equation (49) becomes

u21_;___\
2 siny)

(51)

— . —
1+ (/1)) bgomeiny S&{i '

Combining equations (43) and (51) gives

I_\

" - o‘ul‘b
2 (\8 sin vy

crit r . — %
(1 + (t/8)) 1 - LR s:: }

N

. (52)

INE
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9 BUCKLING OF TIE SHEET

If buckling of the sheet occurs equation (52) predicts a value for CA

which is too high, In this section a formula is developed for the necessary
correction factor,

9.1 Onset of buckling

The elastic stress distribution in the sheet is such that there is a
lateral compressive stress o at the edges of the crack, Buckling will there-
fore occur before the crack propagates if

Gbrit > 0;Duc (53>
where
2
%ue X}Etz/b (54)

and A is a constant which preliminary calculations show to be about 10,

9,2 Effects of buckling

The efTects of buckling are twofold and are difficult to estimate.
Tirst, the bending of the sheet introduces variations in stress across the
thickness of the sheet which, at the ends of the crack would facilitate crack
propagation, However, this effect is probably small because it is the
lateral stress distribution at the ends of the crack that is primarily

atfected, Ve shall note in passing that after buckling the curvature at a
point in the sheet will vary with increasing o approximately as
1
3
{o- o 1%, (55)

The second and probably more important effect arises from the fact that
in the buckled regions ABC of Tig,5 the middle surface compressive forces vary
little from their values at the onset of buckling, In the regions ABC the
lateral compressive stresses prior to buckling vary avproximately linearly to
zero at C, After buckling thersfore the stress distribution in the unbuckled
region can be regarded as composed of two parts: the Tirst part being that
which would exist if buckling did not take place and the second part being that
due to the self-equilibrating system shown in Fig,6, The peak values of this
linearly varying stress distribution occur at A and B and are of magnitude

. (56)

This self-cquilibrating system tends to "open up" the crack, an effect
which becomes particularly important if the sheet is of finite width and the
crack extends over a fair proportion of the width, (Similar reasoning
explains the drop in strength of a sheet with a crack in it, on the removal
of a circle of sheet whose diameter encompasses most of the crack length, )

-17 -



The influence of buckling on Corit will now be determined by its effect

on the release of stored strain energy ol the system, The onset of buckling
causes o reduction in the siored strain energy (as compared with an unbuckled
sheet) of an amount given by

2
kté
b = " LE CEL

(57)

where preliminary calculations indicate that k is approximately O, 3.

Referring back to equation (39) it will be seen that il the crack
increases to a length £ + 04 the total release of strain energy is given by

. wt208 ¢ 2 . 2
8(V +V£) = T (0 +'L(O"Gﬁuc) i, (58)
1f we denote by o' _., the value obtained for o .  if the erfects of
crit crit
buckling are ignored (i.e. v, is zero) and write
% h
0 = odh? , necessarily less than unity
crit
and r (59)
. %erit
L = .1
Scrit J
we find from equations (42) and (58) that
K+ V(4 + k= K05
L = . (60)

1+ k

For example, if

1/3

0. 9%

@)
)

T

]

According to the present theory the greatest reduction in Oorpit due

to buckling occurs when Q tends to zero, whence

SN
L VTTZTET . (61)

Tt must be realised however that the effect of buckling will be more
marked for a sheet of finite width,

-~ 18 -
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10 7o RAL COWCIUSIONS

Two possible analytical approaches have been presented to the problem of
estimating the static strength of a plate containing a transverse crack, In
3-6 the effects of plasticity in the plate are included by the adop-
tion of a deformation theory together with appropriate stress-strain relation-
The simplest of the resulting governing differential equatioms wiil
present considerable difficulties in its solution, and this has not been

sections

ships,

attempted here,

A simpler and more promising approach is presented in

scctions 7-9 where an attempt is made to rclate the strength of a cracked

plate to the material properties measured in a simple tensile test,

Sredic-

tions of strengths from the resulting formula are of the corvect order, but
further confirmatory experimental results are required,

W
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