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1 INTRODUCTION 

The classical theory of plasticity (with work hardening) is given in 
detail in Hef.1. 1: feature of the theory is that the principal axes of the 
plastic strain increment (and not the total strain) coincide with the axes of 
principal stress, The classical theory is thus an "incremental theory" and 
solutions generally can only be ootained by a step-by-step integration process. 

A simplification of the classical theory is possible if there is no work 
hardening, i.e. the material is "perfectly plastic'*. Solutions to a variety 
of simple problems are possible3 if the elastic component of the s-trains can 
be neglected, Por the crack problem this is not so, and one of the ensuing 
difficulties in this problem is the determination of the boundary between 
elastic and plastic states. The shage of the boundary is, of course, a 
function of the applied load. 

The difficulties encountered due to the different behaviour of the 
elastic and plastic regions may be overcome by assuming a smooth stress strain 
relation for the material&. The difficulties inherent in an "incremental 
theory" are avoided if a simple deformation theory is used5. d deformation 
theory is characterised by a one-one correspondence between stress and strain, 
independent of the loading path. The partial differential equations 
resulting from various deformation theories are derived in sections 3-6. It 
is hoped that these Will provide a springboard for future work in this field. 

GriffithIs work on microncopic cracko in glass 10 has recently been 
applied'i,l* with some success, to cracks of' moderate size in steel and light 
alloy. 4 similar type of analysis is presented in sections 7-9 where physical 
and engineering arguments are employed in an attempt to relate tbc "energy of 
fracture" with material properties obtained from a simple tensile test, An 
estimate is also made of the effects of plate buckling on the critical crack 
length. The analysis of sections 7-9 is undoubtedly much simpler - and 
possibly more realistic - than the more mathematital approach introduced in 
sections 3-6, but further er;periments are required before the results can be 
accepted with confidence. 

2 LIST 03' SYMBOLS - 

Sections 3-6: 

XYY = Cartesian coordinates 

E = Young'a modulus at lov< stress leve1 

V = Poisson's ratio 

~xIoy>~xy = direct and shear stresses 

= equivalent stress, defincd by equation (1) 

& PE >Y = direct and shear strains 
x Y XY 

E = secant modulus 
S 
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H 

b,JI 
v 

KYn 

P,J 

x,x 
bl 
uc 
?i 

= E/!iTs 

= stress functions defined by equations (5), (17) 

= transverse displacement 

= constants 

introduced in equations (Il), (20) 

intrcxduced in section 5.2 

= stress energy density 

= complementary energy 

defined by equation (29) 

Sections 7-9: 

Young's modulus 

thickness of' sheet 

length of crack 

width of crack 

is introduced in equations (45) and (46) 

length of neck in tensile test (see Fig.&) 

angle of neck at failure (see Tig.&) 

reduced thickness at neck after failure (see Fig.&) 

unif'0~i.y applied stress away from crack 

ultimate nominal stress of material in tensile test 

nominal stress at fracture oi material in tensile test 
(see Fig.2) 

critical value of 6 at which crack propagates 

value of o- crit if buckling is prevented 

value of 6 at onset of buckling 
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= elongation 

elongation of "neck" at fracture in tensile test 

elongation of "neck" at end of crack 

= reduction of strain energy due to crack 

= reduction of strain energy due to buckling 

= energy required to fracture sheet 

= W)efr t , (see equation (1+4)) 
, 

= 1 - t,/t 

= coefficient of buckling (see equation (53)) 

= coek'ficient oi buckling energy (see equation (57)) 

= obuc crit /o' 

= 6 /CP crit crit 

= constants introduced prior to equation (45) 

3 GRILJ~ION POR YI.rC!XNG 

For a material with a well defined yield point in simple tension c, say, 
the von Mises criterion for yielding under combined stresses states that 
yielding occurs when 

o-; + o* - 2 2 
Y co- i3T 

XY xy = Ol l 

(1) 

For a material with no well defined yield point the secant modulus under 
combined loading may be identified with the secant modulus in tension under an 
equivalent stress o, as defined by equation (1). 

There are 
I 

of course, other yield criteria (such as the Tresca maximum 
shear criterion but these reqüire a prior knowledge of the relative magnitudes 
of the principal stresses; in tne crack problem there Will be boundaries 
defining regions in the plate in mhich the yield criterion assumes different 
forms, and the difficulties inherent in determining these boundaries ni11 be 
comparable to those in an "incremental theory". 



4. STRXS-ST!?AIN RELATIOXS FOT< SIE.Ii?LE DEl?oFJ\~~TION THXOBY 

The stress components are related to the strain components as 
follows:- 

4.1 Simolification to stress-otrain relations 

For the case of a circular hole in a plate under uniaxial tension5 it 
has been shown that the stress distribution is independent of Poisson's 
ratio. 

Thisgwould not, of course, have been so if the boundary conditiorrs 
were mixed , but it does suggest a way for simplifying equation (2) for 
holeo of arbitrary shape. The simplifying assumption is that if the 
boundary conditions are not mixed we may take 

so that equation (2) reduces to: 

(3) 

Further simplification of t!lese equations for the crack problem ilil be 
discussed later, 

4.2 Lquilibrium and compatibility 

The equations of equilibrium 
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and 

are satisfied by intrcducing a stress function $ such that the stresses are 
derived fron? it by the relations 

OY 
=ih 

ax* 
i 

&- I 
%Y = - axsy j 

The equation of compatibility 7 : LS 

a2Ex a2c a2y 
-7-k-J = -* . 

a/ aX 

(5) 

(6) 

The governing differential equation for the stress function # is 
obtained from equations (31, (5) and (6), and may be written in the form 

202(H02$) - 304(W) = 0 (7) 

where II = E/Es and, for convenience of presentation, we have introduced the 
invariant "die-operator" Q4 defined by 

Equation (7) is identical with that (Ref.14) for an elastic plate whose 
thickness varies as Xs. 
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In deformation theory H is a function of the equivalent stress bl, and 

it is therefore a function of Q in virtue of the relation 

2 
"1 = (v2$)2 - + 04ho (8) 

obtained from equations (1) and (5). 

5.1 Relation between secant modulus Es and equivalent stress 6, 

The E s, o+, relation for a given material cannot generally be expressed 
(even approximately) by a simple mathematital form. However, the approxi- 
mate nature of the theory of plasticity, particularly the deformation theory, 
does not justify great accuracy in the mathematital formulation of this 
relation, 

One of the earliest rrathematical relations between Es and 0, is due to 
Prager', who proposed 

but the resultant differential equation for $ is extremely complicated. 

A simpler differential equation is obtained by assuming 

(9) 

where K and n are arbitrary constants, but probably the simplest relation is 
that due to Samberg and Csgood who proposed 

Ii = &/Es = 

Typical stress-strain graphs appropriate to 
in Fig.l, where, for ease of tomparison, the 

1 -l- .ån 
1 l 

m 

equations (9) and (10) are shown 
constant IC has been chosen so 

that all the curves pass through the point 0 z 3, Pc = 1.2. 

The governing differential equation may now be expressed solely in 
terms of # in virtue of equations (7), (8) and (9) or (10). In this connec- 
tion it is convenient to write 

n 
F = m 

whence if equation (9) is adopted we find 
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4(1-F)V49 + 4V*(PV'$) - 6(,-F)$4(F,$) 

r 4. 2 iev2(F2) - 2FV*F V2$ - 30'+(,*,#) = 0, (12) 

while if equation (10) is adopted: 

2V4$ + 2v2(sv2~) - 3,4(F,$) = 0. OS> 

The simplest stress function equation for any (inelastic) deformation theory 
is obtained by taking n = 1 in equations (II) and (13), to give 

4 v”-4 + *$‘j‘a(o’$)* - 3&$,3)] v'a- - 304 $, *(v*#)* - 3041~,~) = 0' 
_ . -J c 3 

l . , . .  04) 

It need scarcely be added that the dif'ficulties encountered in the solution of 
this equation (po ssibly by finite differente representation)are formidable. 

5.2 J?urther simplification of the equation for the stress function 

If the applied load acts in one direction only, as in the basic crnck 
problem, a reasonable assumption to make is that the transverse strain may be 
neglected. If, in addition, the structure and the distribution oi applied 
load possess symrfietry ahout a longitudinal axis the transverse displacement 
Will also be zero. Thus if the load is applied in the direction of the x 
axis, 

v = 0 (15) 

and the equation of compatibility is 

a& ay 
-- 2% 
3y ax = 0. 

The single equilibrium equation 

acx 0~ 
-2x 

3x’ ay = 0 

is satisfied by introducing a stress r'unction $ such that the stresses are 
derived from it by the relations 

(16) 

(17) 
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The stress strain relations .may be taken as 

and the "y5el.d" condition may be taken as 

(19) 

secant modulus is defined by equation (9) or (10) the 
differ$$ig igation for JI may be determined from equations (16), (17),,(18) 
and (19). In this connection it is convenient to refer the operctors VL 
and (& to fresh coordinates X, Y given by 

so that, in this tontext, 

v2 = --l-- a2 a2 
ax2 i3Y2 ’ 

etc. 

We may now write 

2n 
"5 

= J, say 

= Kpv2($2) - qv2g: 

whence if equation (9) is ado@ed we Find 

(2-J)V2$ + V2(J$) - $V2J = 0, 

(20) 

(21) 
while if equation (10) is adopted: 

(2+J)V2$ + V2(J$) - JiV2J = 0 . (22) 

If we restritt attention to the simplest forms of these equations, by 
taking n = 1 in equation (20), we may recast equation (21) in the form 
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; V2$ + f-v2($2) - 2$V2$ V2$ - 04($2,$) + 2W4(W) = 0 9 (23) 
! 3 

while equation (22) becomes 

v2(Jr2) - 24fV2$ 
3 

v2qf - Q4($2,$) + 2$C4($,$) = 0. w 

Although equations (23) and (21~) are simpler than equation (14) they will 
nevertheless present considerable difficulties in their solution, 

6 STRAIN LXTGY KETHQDS 

For deformation theories, the variational principles for the stresses 
involve tbc stress-energy density, which in the plane stress case can be 
written as 

4Q gi’zxy) = s (“x - doY+eY doy+y 
XY 'l"xy ) 

0 

(25) 

where the strains are considered as functions of the stresses; these 
functions are assumed to be such that the line integral in equation (25) is 
independent oi the path. For a finite two-dimensional domain A having 
stresses prescribed over its bounilaries, the complementary energy is defined 
as 

f 
uc = 

i 
WdA. (26) 

A 

The variational 2rinciple states 
solution to t'ne boundary-value -problem, 

that, when Uc is written for the true 

6Uc = 0 (27) 

for all stress variations 6ox,6cry and 0~~~ that satisfy equilibrium and 
provide no stress resultants on the boundaries. 

It is shown in Ref.5 that if the domain A is infinite it is neceosary 
to replace equation (27) by the equation 

"U; = 0 W) 
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and the superscript ' indicates the solution of the elastic problem. 

Now from equation (1) 

ab-;) = 2c-5 dox + 25 do - ox dG - Gy dGx + 67 Y Y XY 
dTq 

= 2xs (cx dax c .zY Wy + yxy d”xy) 

from equation (3). 

The stress-energy density can therefore be written in the form:- 

If we adopt expression (9) for the secant modulus and take n = 1, we find 

mhile if expression (10) is adopted xe find, for any value of n, 

(30) 

(32) 

In terms of the stress i'unction we therefore find, irom equations (32), (8), 
(26) and (27): 

6 
i I 

exp x (P2#)2 - 2 04($,#) dJl = 0 
3 

(34) 

h 
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while if expression (10) is adopted: 

Approximate solutions rnay now be obtained by substituting into equation 
(34) or (35) an expression for the stress f'unction that contains undetermined 
parameters and by minimising the integrals with respect to these parameters. 

If the simplifred approach of section 5.2 is used, the variational 
equations corresponding to equations (3&) and (35) are, respectively 

and 

7 COJXDITIONS POR CXUCIC PROPAGATION, - A G??IFPITH-TYPS AIVALYSIS 

(36) 

(37) 

A further approximate analysis is presented below for relating the 
critical length of a transverse crack in a wide sheet under tension to the 
material properties obtained from a s&ple tensile test. 

If an elastic sheet is loaded in tension and the bounlaries rigidly 
held, the introduction of a small transverse crack of length -3 will oause a 
reduotion in the stored strain energy '3 of an amount 

(33) 

If the craok increases to a length 4t64 the release of strain energy 
is therefore 

6V = (39) 

Although equation (39) is based on purely elastic considerations it can 
be expected to be reasonably valid despite the presence of plastic regions at 
the ends of the crack. -This is because the plastic regions are localised and 
in part-of them the stres'ses are falling and thereiore following the elastic 
unloading line. 
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The crack will be self-propagating if 

mhere aw/ae is the energy required per unit length to fracture the sheet. 

7.1 Approximate interpretation of avia 4 

Consider a long strip of the sheet loaded in tension mith the ends 
rigidly held. Failure occurs almost ismediately after the anset of necking 
when the stress in the sheet reaches G ultl' During Pailure however the 

localised necking becomes more pronounced and plastic work is required 
before actual fracture occurs; if the strip is very short the release of 
elastic energy may not be sufiicient to delorm the neck plastical.lJ and 
failure Will occu1' at a lovver stress associated with a hiyhcr strain. 

If the relationship between nominal stress and elongation of the neck 
is as shown in Fig.2, the plastic work required per unit width of strip 
during failure to cause fracture is the area shown shaded multiplied by the 
sheet thickness. Now this area can be exyressed very s-imply and with 
negligible loss of accuracy by representing the o-,e relation by the quadrant 
of the ellipse shown in Fig.3; the plastic work required per unit width of 
strip is then equal to 

E tom 

4 ult efr,t . 

If we equate expression (41) to ""/a& it is possible to obtain a 
formula for the critical crack length or for ocrit. Thus 

017 
ae.“4 ' %lt eir t 7 1 

ntw2 orit = 2ll i 

from equationa (39) and (l+O), whence 

rJ; -0. 1 

0 crit z I 
ult ePr,t'2 

24 I 
. 

-J 

7.2 Interpretation of efr t and efr c 
, . 

(42) 

(43) 

Equation (43) cannot be used without sorne modification. This is 
because efr t is the elongation in a simple tensile specimen where necking 

> 
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can occur more readily than at the end of a crack. That part of the sheet 
which is adjacent to tlle edges of the crack and which is comparatively lightly 
stressed, tends to resist the necking at the ends of the crack, and in doing 
so introduces tensile stresses across the thickness of the sheet in the necking 
regions. The effect of these induced tensile stresses is to raise the average 
leve1 of the hydrostatic component of the stresses and correspondingly lower 
the deviatoric stress in the necking parts in the direction of the applied 
loads; the final effect being that the effective rate of work-hardening is 
inoreased and the materialbehaves in a more brittle manner. Ut us now 
attempt to relate efr,c 

with ep5 t* 

For a simple tensile specimen we would expect from geometrital similarity 
that 

'fr,t z K-t md 

where K is some constant; but from the previous paragraph efr c at the ends 
of a crack is less than c fr t by virtue of the restraining inf~uence of the 

adjaoent lightly stressed pLts of the sheet, For the case of a very fine 
c rack, let us represent the ratio efr c : efr t by the factor l/(a+pt). If 

. . r  

we consider the limiting case as t tends to eero, the restraining influence 
vanishes so that we must take a equal to unity. Purthermore, if when the 
thickness is t, the ratio of efr c : 

? 
ePr t is a half, we may mrite 

# 

efr,o z 
efr,t 

1 -+ %, 1 1 (45) 
Kt l z 

1 + %*~ 
J 

from equation (ut), Equation (45) is, of course, empirital and by making t 
tend to infinity it allows an alternative interpretation of t,. Thus 

tl = K 0 
J-(e ) - fr,c large t . (4.6) 

8 IHFLAfi3NC% CF C&gCK !i'DTiI 

Artificially made c;rackti 0 may have a finite width at their ends and the 
restraining influence of the lightly stressed parts of the shcet in resisting 
the necking Will be reduced. In a simple tensile test necking is confined to 
a length Gn, say, and a possible modification to equation (1~5), to take 
account of the influence of crack width, would be to take 
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Kt 
efr,c = 1 + (t/tJl-w/4J~~ 

(47) 

where it is urderstood that the asterisked ex-ression in square brackets is 
zero if w exceeds 4n. 

For many materials the shape of the neck after fracture in a tensile 
test is similar to that shown in Fig.4 and 4 n can therei'ore be expressed in 

terms of K, t and y, The fatt that the volume of the material does not 
vary significantly im@ies that 

2 
&Cn sin y = Kt2 

whence 

e n 

and equation (47) becomes 

Kt e fr,c = 
1 + (t/t, j : 7 - -Y: t  

L 
2 

pq* l 

nn alternative scheme is to express K in terms of the fractional 
reduction in thickness, 1 -tf/t, denoted by p. Th?ls gives 

2 
K= il 

2 siny 

and equation (LkZ;) becomes 

2 
(Ltd 1 

\ 2 siny i I e 
fr,C 

= 7. 
-7 :': 1 ,. (i;/t,) r, - IV "$ '( 

- J 

Corribining equations (4.3) and (51) gives 

2 (ly qllt s- 
\ sin y > 0 crit = * 

r 
- .C 

i- (t/t,) !-, - w y; y 
il 

5 
. 

1 
i. 

cm 

(43) 

(50) 

(51) 

(52) 
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9 BUCKLJNG OF TID SIEET 

If buckling of the sheet occur s equation (52) predicts a value for d arit 
which is too high. In this section a formula is developed for the necesseiry 
correction factor. 

9.1 Onset of bucklinq 

The elastic stress distribution in the sheet is such that there is a 
lateral cornpressive stress B at the edges of the crack. Buckling will there- 
fore occur before the crack propagates if 

0 crit ' cbuc 
where 

%LlC = ?LE t2/C2 (54) 

and h is a constant which preliminary calculations show to be about 10. 

9.2 Effects of buckling 

The ci'fects of buckling are twofold and are difficult to estimate. 
Pirst, the bending oi the sheet introduce, 0 variations in stress across the 
thickness of the sheet which, at the ends OJ? the crack would facilitate crack 
propagation. However, this eîfect is probably smallbecause it is the 
lateral stress distribution at the encis of the crack that is primarily 
aLi'ected. We shall note in passing that after buckling the curvature at a 
point in the sheet Will vary with increasing d approxinately as 

i o- - bbuo+ . (55) 

The second and probably more important effect arises from the fatt that 
in the buckled regions .ABC of Fig.5 the middle surface compressive fortes vary 
little from their values at the onset of buckling. In the regions ABC the 
lateral compressive stresses prior to buckling vary a?proximately linearly to 
zero at C. After buckling thereiore the stress distribution in the unbucklcd 
region can be regarded as composed of tyro parts: the first part being that 
which would exist if buckling did not tnke place and the setond part being that 
due to the seli-equilibrating system shown in Fig.6. The peak values of this 
linearly varying stress distribution occur at A and E and are of magnitude 

c-obuc' 

This seli-equilibrating system tends to "open up" the crack, an effect 
which becomes particularly important if the sheet is of finite tidth and the 
crack extends over a Pair proportion of the width, (Similar reasoning 
explains the drop in strength of a sheet with a crack in it, on the removal 
of a circle of sheet whose diameter encompasses most of the crack length.) 
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The influence of buckling on ocrit vill now be determined by its effect 

on the release of stored strain energy oi the system, The onset of buckling 
causes a reduction in the stored strain energy (as compared nith an unbuckled 
sheet) of an amount given by r> 

nkt& 
'b = &E ( >* o-cbuc (57) 

where preliminary calculations inlicate that k is approximately 0.3. 

Ref'erring back to equation (39) it will be seen that ii' the crack 
increases to a length 4 +64 the total release of strain energy is given by 

h(vIvb) = % io-*+k(+- Gbuc)*] . 

lf we denote by oArt the value obtained for ocrit if the eifects of 

buckling are ignored (i.e. Vb is xero) and write 

Obuc 
(1 = & - , necessarily less than unity 

crit 

and 
0 crit 11 = - 
0" crit 

we find from equations (4.2) and (58) that 

1 ‘1 = 
1rR + T(,+k-M*) 

1 i k l 

Por example, if 
R = 1/3 

Accol-ding to the present theory the greatest reduction in bcrit due 

to buckling occurs when R terids to Bero, whence 

(58) 

(59) 

(60) 

It must be realised however that the effect of buckling Will be more 
marked for a sheet of finite Mdth, 
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10 Gm XAL COZICLUSICm - 

Two possible analytical approaches have been presentcd to the probleJf~ oi 
e s tipa$i qv _/ (, the static strength oi' a plate containiilg a transvcrse mack. In 
sections 3-6 the eEiects of plLo q0ticit.y in the plate are incluZed by tha adop- 
tion of' a deformation theory together with appropriate stress-strain relation- 
skips. The simplest of the resulting ti voverning differential eqlzations wi.11 
present considerable difficulties in its solution, and this has not been 
attempted here. 4 sirrpler and more promising approach is presented in 
scctions 7-9 where an attempt is nmde to rclate the strvngth of a craclccd 
plate to the material properties measured in a si;nple tensile test. Predic- 
tions of' strengths from the rcsultin:; formula are 0: the correct order, hut 
further confirn?atorg experimental results am required. 

X0 -’ 

1 

2 

3 

k 

5 

6 

7 

8 

9 

10 

11 

Autlior 

Hill, R. 

Prager, il, 
Ilodge, P.G. 

Nadai, k, 

Eudiansky, C. 
Vidensek, R.J. 

Timosherko , s. 

Timoshe-nlko, S, 

Prager, V. 

Ramberg, 'J. 
Osgood, V.R. 

Griffith, A.R. 

Irwin, G.R. 

PlasticitJ. 
Clarexxlon Eress, Oxfoid (1950). 

Theory of perfectly plastic solids. 
iiiley (1951). 

Theory of flom and fracture of' solids. 
Val. 1 , 2nd 'Zd. XcCraw-Kil1 (1350). 

R..A.e.S. Data Shee-ts, 

Analysis 0 f stresses in the plastic range around 
a circular hole in a plate subjccted to uniaxial 
tension. 
x.A.c..k. T.N. 3542. October, 1955, 

Theory of elasticity. 

Theory oi elasticity. p.22. 
XcGraw-Ilill . 

proc, 5th Inte Cong, App, Mech., Cambridge, 
Mass. (1yy3). 

Dcscription of stress-strain curves by three 
parameters. 
?<,A. C.A.. T.N. 902 (194.3). 

Phil. Trans, Roy. Sot,, Series k, 221, 163 (1921) 

Tsaris. -mer. Sot. Metals, &, 14.7 (ly@). 

- ly - 



TJO -0 14utllor 

LIST 03' R+X~-3?Z3JCX3 (Cont'd.) 

Title, etc. 

12 iyelding l!esearch, V01.7, fq0.2, &3@ (1953). 

13 Timoshenko, 8, Theory oL Elasticity, 1st edition, p.144. 
F.!cGraw-iii11 Book Co. (1934). 

On the canaljrsis of elastic planes or' variable 
thickness. 
Quai+. Jour, Mech. and Appl. Laths. (1962). 

- 20 - 

bT.2078 C. P. 688 X3. Pdnted in Englad 



/ , n=z _-___ .__---- 0’ / _’ -iiT=3CL 
/ , 

// 

zA+ 
--- n=3 

t 

----- - - - - - - _ - -- _ _ ---- -- 
/ __---- _----L 

, 

EE = 6(I + xbzn) 

------ EE = 6 eY+ (ic62n) + 
l-- 

I l I 
0 I 2 3 4 5 6 7 8 

Ee 
9 

-- 
---- /- 

-c-- C-- 

_-----. 

------ 

I 

FIG. i. THEORETICAL STRESS - STRAIN RELATIONS 



0 

0 e 

FIG. 2. TYPICAL CT, Q RELATION FOR THE NECK. 

6 

\ 
\ 
\ 

0 e eff,t 
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FIG. 4. TYPICAL SHAPE OF NECK. 

FIG.5. THE BUCKLED REGIONS IN THE SHEET. 
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FIG. 6. THE SELF - EQUILIBRATING SYSTEM. 
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