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Introduction 

The zmportance of an adequate knowledge of the forces acting on 
wings m oscillatory motion hardly needs stressing s3nce It plays a vital 
part in the study both of flutter and of the prebction of the motion of 
an zurcraft as a whole. The subject has been stud%4 for many years but 
naturally the early investigators were mainly concerned nlth incompressible 
flow and unswept ~lngs. With the rise m alrcraft speeds and changes 111 
planform It became necessary to investigate the effects of compresslbllity 
and sweepback and this began about twenty years ago. There has been 
subsequent steady development of expermental techniques and theoretical 
methods, the former being greatly advanced by the lntroductlon of ventllated 
tunnels for transonzc speeds while the approach to the latter was rad.Xally 
altered by the use of electronic computers. Even so the range of 
parameters which now has to be covered is so large that the amount of 
informatIon ava-llable is sometimes quite lnadequate. 

Some experunental information has been obtained from flight tests 
of aircraft, or from models mounted on rockets or azcraft, but most has been 
obtained XI wind tunnel measurements using n&d models of wings or rigid 
controls. Measurements with distorting models, although not &own, are 
uncommon, due to experimental difficulties. Thus for a knowledge of the 
forces due to modes involving &stortion we are dependent on theory and it is 
therefore essential that any theory used should have been checked by 
comparison with whatever experimental evzdence 1s avaCl.able. The 
experimental information usually takes the form of overall forces and moments 
and we still for the most part be concerned with the comparison of therr 
non-dimensional values. Measurements of pressure distrlbutlon over the wrng 
also tend to raise experimental difficulties but a few experiments of this 
sort have been performed. 

Almost/ 



-3- 

Almost all theoretical work 1~s within the framework of 
linearised theory, so that it applxs to small osoillations of very thin 
wings in a fluid of negllgS.3le viscosity. Thx means that much of the 
experimental data can only be expected to agree approximately with theory. 
In only a few cases has an attempt been made to take account of the thdcness 
of the wing or the viscosity of air. Even for linearised theory the 
calculations required may be very lengthy, especially xn the later 
developments dealing with three-dimensional wzngs, and because of thu It has 
not always been possible to give a theoretical compsx~son with an experiment. 

Ecperimentd work on oscillatory wugs tends to be difficult and 
inaccurate, moreover the calculation of wmd-tunnel xnterference IS often a 
formidable task, so that many values are uncorrected. Coupled with the 
approximations of theory thu means that the standard for what constitutes 
"good" agreement has to be set fazrly low; errors of 10% nught be 
oonsdered small XII this context. 

The general procedure XII this chapter is to take each flow rigime 
1~1 turn, to consider briefly first the relevant theories, and then see what 
experlmentd data can be found to check them. The survey of experimental 
work is not intended to be exhaustxve. The quantltles compared are usually 
the derivatxves for r&d modes, defined below, whxh strictly apply only to 
sustained simple harmonx motxon, but the error due to usng experimental 
values obtained from the decaying oscillation technique are probably not 
S~IYLOUS . Where suffxient endence exxts for conclusions to be drawn they 
are given at the end of the relevant sub-sectxon, and summarised LII Section 8. 

Notation 

a speed of sound 3x3 free stream 

A aspect rat10 of wing, A = 24-6 

B wxith of wz.nd-tunnel wor!ung section 

-E geometru mean chord of wing 

c r root chord of wing 

% pltchrng moment coeffuxnt; pltchrng moment = &pVaSFCm 

calculated by free stream linearxea theory 
% 

value of cm 

d width of slot in a slotted wall wrnd tunnel 

f frequency of oscd.lation (cycles per unit time) 

i5 dxstance CIP pitching axu downstream of the lead3.ng edge of 

the centre section, non-&unensionalued with respect to c 

h z' he, "E; 

3 
non-dimens3.onal derivative coef%.clents for hinge mODElIt, 

see under "Defmitions" 
hi, he, % 

'iz,/ 
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xz9 see under "Definitmns, C" 

H 'height of wind-tunnel working sectmn 

local loading coefficient, (pressure difference) x (&P)-' 

3 
non-dimensional derivative coefficient for lift, see under 

"Definitions" 

see under "Defmitions, C" 

I 
non-dimensional derivative coefficients for pitohing moment, 

see under "Defmitlons" 

see under "Definitions, C" 

free stream Mach number 

number of slots on roof or floor of a wuul tunnel with 
long~tudxml.ly slotted roof and floor 

Reynolds number, R = pVz/p where )I is the coefficient 
of viscosity 

semi-span of wing 

area ofwing planform 

time 

free stream velocxty 

component of perturbation velocity in the e direction 

rectangular Cartesun co-ordinates, x in the tireotlon of 
the flow of air relative to the undisturbed position of the 
wing, y to starboard, z upwards. It is assumed that 
thewmg always l.r~esnes.rthe plane 2; = 0 

value of x at the pitching sxis 

value of x at the axis of rotation of a control surface 
(at the Junction between mng and controls unless stated to 
be elsewhere) 

mean moidence in a pitching oscillation 
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iwt a So" is the downward. displacement of the reference axis 
(see Fig.1) 

oscillatory angle of incidence, positive traiLing edge down 
(see Fig.1) 

frequency parameter, T; = &i/V 

critx.cal frequency parameter for tunnel resonance 

angle of defleotlon af a trsLl.ing edge control, positive 
trading edge down (see Fig.1) 

free stream density 

thxkness rat10 of wing section 

velocity potential of flow round wing 

# = qeiwt for osciilatory flow 

phase angle of p2tchxng moment, arc tan (En$n,) 

angular frequency of oscillation, 2xf 

(A) Modes of Oscillation 

The modes considered XII this chapter can be specifred 
suffxxntly accurately by giving the position of the wmg surface in the 
form e = f(x, y, t). 

* 
"heaving" is defined by iot z = - zzoe 

"pitching" is defuuzd by E = - (x- xoNoe ii& 

"control rotation" IS defined by z = - (x - zy)goeiWt on the control 

and z e 0 off the oontrol 

5xiUing" IS defined by * iwt z = y$oe 

"flapping" 1s defined by ?. = lyl$oeiwt 

Unless othetise stated we shall be considering only controls hinged 
at the junction between the wing and control. A typical section of a lAlng 
heaving and pitch with control rotation is shown in Fig.1. 

(B)/ 
*Often referred to as Nplunging". 
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(B) Derivatives 

The representative length and area for the wing are taken to be 
0 and s. Then for a rigid pitchingwing fitted with a hinged aileron 

Pitching Moment (positive if it tends to raise the leading edge) . 
= pv"STeiwt{ (m, + i~m;)so+(mg + iGm~)tI, + (% + ii7 $Col 

Control Hinge Moment (positive if it tends to depress the trailing edge 

= pVsSxeiwt{(hz + iyh;)so+(hg + ichb)eo + (hE; + i&,$o] 

The configuration envisaged in these definitions is that the wing 
has a symmetrical planform, and that them are two symmetrically situated 
trailing edge oontrols, one on the starboard half-wing and one on the port 
half-wing, and that these controls are oscdlatlng in phase. The control 
hinge moment is the total moment exerted on the wing by the controls, and 
the lift and pitching moments are also taken to include the effect of both 
controls. 

The general scheme of defining derivative coeffkclents for other 
modes should be apparent from these formulae. 

For two-dimensional wings S must be replaced by c (which is 
of Course equal to 0 the constant chord) and the forces and moments then 
have their values per uut span. 

As defined above both the modes of oscillation and the forces and 
moments are assumed to be simple harmonic. In practice of Course the latter 
will not be simple harmonic, and the expressions above represent merely the 
first terms in their Fourier series expansions. 

(C) Acceleration Derivatives 

Some authors divide the stiffness derivatives into two parts, thus 

and similarly for CO, e 
5' mss me, mg> hZ, he ami %. Here the "acceleration 

derivatives" Z;, etc., are taken to define the stiil-air virtual inert&as, so 
that in still aQ Lift = - pSZaw'Z;s;+st; they are thus independent of 

M and ii,. in fact -Q = - (es/j"). Tabulated values for 
v-a, 

two-dimensionsl flow may be found in Ref.1. 
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2. Two-Dimensional Incompressible Flow 

2.1 Rigid aerofods 

The peclpal scu1‘ces of data for comparison in incompressible flow 
ape the theorles developed by Theodorsen, Kussner and others which are 
?&scribed in Chapter 2 of Part I of this Manual. Early work in this field 
is reviewed m Ref.2. Mobfied forms of the theory whxh-allow for the 
presence of wind tunnel walls are also avadable, for example Refs.3 and 4. 

The theory may be expected to apply when vrscosx.ty 1s negllglble, 
the aerofoxl 1s tti, and its amplxtude of oscillation is small. When these 
restrxtlons are borne 1n mud the degree of agreement with experiment may be 
regarded as satufactory. As an example Fig.2 shows the direct pitching 
derivatives, no o.na I!+, cbtauxed for aa aerofoil of conventional section, 
7.3% thick,pltching about the quarter-chord axis, during the extensive 
experimental investigation by Gre~.danus, -van de vooren, and Bergh (Refs.5 to 8). 
The experimental pouts plotted were cbtaued from Table 5 of Ref.8. The 
systemtlc differences between theory and experiment ape cbvuus; the other 
derlvatlves measured (&,, 84, mZ, a;, ez and 4;) also show systemstx 
tiferences especially at the higher end of the frequency range. _ 

Apart from experimental scatter, 
similar sort of compsnson. 

the data shown III Fq.3 show a 
These were obtained from Table II of Ref.Y, and 

apply to a wing of NACA 0012 sectlcn p~tctig, with amplitude 6.740, about m 8x1s 
0.37c downstream of the leading edge. To avoid overcrowbng Fxg.3 some of the 
messured values have been ormtted. Ref.9 also contams values of the 
derlvatlves for heaving oscillntlons and other amplitudes of pltchlng 
oscillat~cn. 
that m Flg.3. 

The lifts and moments show much the same sort of agreement as 

Other experxmental investlgatuns (Refs.10 to 13) lead to the same 
c~nclus~cn, that theory wdl give a fair apprcxunatux to the truth for 
ccnventlonal aerofoils with moiierately small thickness and amplitude of 
osc~llaticn. If these ccn&txons itrc not satufxd the theory may lffer 
widely from experiment. Bratt and WIghtI' found that for a model with elliptic 
section the pitching damping varxd. with frequency x.n a way radual.ly different 
from that for conventional aerofals. The same authors also found that mea,, 
incidence and ampliixde of oscdlatun could lead to wde divergences If the 
aerofoil approached its stalling incidence. The agreement may also be 
adverSely affected (Ref.5) if the Reynolds number is such that the 
boundary-layer lammar-turbulent transltlon pornt moves during the csclllaticn; 
in fact the expermental values plotted m Fig.2 were obtained with a transitlcn 
wire near the leading edge. 
Chapter 5 of Part V. 

A ~scuss~on of these effects may be found a.n 

2.2 Controls 

The theory also applies to aerofoils wLth controls, although its 
accuracy is much less satisfactory. FXpcnmentd data for controls IS scanty 
but points to the conclusion that theory cverestlmates control stiffness and 
damping derivatives by a factor which may be as large as 2.5. 

Fig.4/ 
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Fig.4 shcws theory compared. with the hinge moment derivatives 
and 

% 
measured by Wlght14. The control chord was 20% of the chord 

of the wing which was 15O thick. At the test Reynolds numbers the transition 
point was well forward of the hinge line. The changes witi frequency 
parameter are relatively small and experiment sndthemy are roughly in the 
ratio 0.6 for i$ and h$. Further measurements described in Part II of Ref.14 

for a small tab with chord 4.2% of the wing chord gave even smaller ratios, 
about 0.5 for the direct tab hmge moment derivatives and all the cross 
derivatives except the aileron binge strffness due to tab oscillation for which 
it was about 0.4. The effect of varyrng the Reynolds number is small but 
there is a perceptible effect on the damping. It was found that varying the 
positloon of transitmn could have effects of simlar magnitude, but these are 
negligible compared with the discrepancy with theory. Inclusion of the 
acceleration derivatives wouldbe unlikely ta affect the comparison 
signrficantly. 

Ref.15 describes experunents cn s thrnner sercfcil (NACA 0010 profile) 
with a larger (40%) aileron and larger (10%) tab. The measured values of the 
aileron hinge moments tended to be only slightly smaller than theory but the 
measured tab derivatives and cross derivatives were considerably smaller 
although the ratios were not as small as for the masurements of Ref.12. 

Presumably the different ratios of theory and experiment in the two 
sets of experiments reflect ddferent profiles, thicknesses and ccntrcl sizes. 
The tendency seems to be the smaller the control the smaller the ratio of 
experiment to theory but there 1s not enough experimental evidence t0 make it 
possible to give with any confidence a rule by which the right relation could 
be predicted.. It is in any case unlikely to be simple, s~ce for steady flow, 
for which much mare data is available, the effects on control denvatlves of 
control chord, incidence, p rofiLe and Reynolds number are large and complicated, 
see for example Ref.16. In particular if the treilrng edge angle IS small, 
as opposed to the faly large angles used in the experments cited above, the 
experimental hinge moments, 

-v 
tend to be hzgher than the theoretical. 

2.3 Semi-Empirical Methods 

Various devices have been adoptedto improve the theoretical estimates 
of derivatives by incorporating experimentsl results to account for the effects 
of thickness andviscosity. A discuss~cn of these has been even by 
van ae Vccren'7. 

The most straightforward is the "equivalent profile" or "skeleton line" 
technique in which the thick aerofoil is replaced by one of serc thickness whose 
mode of oscillation is determinea from the measured forces acting on it in 
steady flow or from charts such as those 111 Ref.16. An appticaticn of this 
method to the calculation of control derivatives is described in Ref.18; the 
resulting values have been plotted in Flg.4. The improvement in the 
agreement for -9 in Flg.lc(b) is striking. 

34 
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3. Two-Dxnensional Compressible and Transonic Flow 

3.1 Theoretical background 

The theory which has to be checked in this dgime consists of the 
solution of the linearised equation of subsonic compressible flow or of the 
integral equations by which it may be replaced, e.g., Poss~o's equation. 
(See Part I, Chapter 2.) Many authors have worked on this-problem and 
extensive tables of derlvatlves are avadable. Methods are also extant for 
calculating tunnel interference '9~20, but the results have not been tabulated 
as extensively as for iucompressible flow, although relatively sunple formulae 
exist for low-frequency oscillations20. Aerofoils oscd.latmg in wed tunnels 
may be affected by "tunnel resonance" m whxh the model and the air in the 
tunnel form a resonating system so that the interference effect becomes very 
large21. The critxal frequency for resonance is grven by 

u = -._ = 5 
HM r's 

. ..(3.1) 

and the phenomenon is therefore most ser~~ous when M 1s near to one and 
p 1s small. 

For sonic flow solutions of the "l~earzsed transonic flow equation" 
(equation 6.8)) are avaIlable; see, for example, Refs.22 and 23. The 
calculation of interference effects for M near to one 1s a practxcally 
unknown StiJeot, oomplxated by the fact that the tunnels used have slotted or 
perforated walls. 

3.2 Rigid aerofods at subcrrtxd Mach numbers 

To illustrate the phenomenon of tunnel resonance and to gave an idea 
of the sort of agreement found z.n the compressible but subcrltlcalflow r&gxme 
we may quote the results gven xn Ref.19. h Fig.5, which IS 111 fact Flg.lc(c) 
of that report, the experImental points refer to NACA experments on a 10% 
thlok aerofod (NACA 65-010 section) pltd~~g about Its md-chord axis at a 
Mach number M = 0.6, in a tunnel for which H = 3.8z. The moment ratlo 
is obtained by cV~vd.ing the modulus of the pitching moment by its theoretxal 
free-stream value, and the frequency ratlo by d~ztig the frequency parameter 
by Its crltloal vslue for resonance. 
just given, Fres = 1.10. 

By equation (3.1) for the parameters 
The full-17ne curves represent the theoretical 

pztchxng moment for the wmg zn the tunnel calculated by the method put forward 
111 Ref.19. The loss of pltchmg moment corresponding to resonance IS obvious. 
The phase angle is well predxted by theory but the actual msgnltude 1s 
overestunated, but near resonance there 1s a large wall effect on the phase 
angle corresponding to large discrepancies 3.n m 4' Slmdar effects were found 
for M = 0.35, 0.5 and 0.7, for both lift aud pltchmg moment. 

One inference is that tunnel interference on forces and moments is 
appreciable for values of H/E as large as 3.8 and that allowance should be 
made for it; indeed At 1s hewn (Ref.20) that the interference corrections 

to/ 
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to e,J and m (J tend to infinity as ? tends to zero, however large w 
my be although the sot&i forces of course remain finite. 

It might also be expected from consideration of Fig.5 that the 
ma&tudes of the lift and pitching moment would generally be overestimated by 
theory, but the evidence from other experimental investigations is that the 
relationship is by no means so simple. Since according to theory the centre 
of pressure for a wing at steady incidence is the quarter-chord point, 
comparison of theoretical and experimental pitching moments for this axis may 
be one between small quantities; it was in fact found (Ref.24),Tor subcritical 
M and v up to 0.9, that the ratio of the experimental and theoretical values 
of me + ii&~ 1 was nearer two than one, the amount of the discrepancy 
depending on the thicknes and thic 
system. The ratio for 7 $ 

ess distribution without any obvious 
4, + 586 was found to be near to, and usually 

greater than, one, but again with no obvious system. The experimental phase 
angle showed only rough agreement mth theory. In the experiments reported in 
Ref.25, also for oscillation about the quarter-chord axis, the ratio for lift 
was less than one, and again there was rough agreement on phase angle. 

When the axis of oscillation is not near the quarter-chord point and 
the frequency parameter is small, the phase angles will also be small and the 
in-phase denvvatives, and m l~lll not differ much from 

kl + ib8 1. 
ee 8' le,+GZil and 

The damping derivatives "6 and "6 will be approtinately 
proportIonal to the phase angle and therefore liable to greater experimental 
error. Fig.6 shows the comparison of derivatives taken from Ref.26 for a 10% 
tklok aerofoil of conventzonal section (RAE 104), pitching about an axis 0.4455 
downstream of the leading edge. The theoreticsl -mg is in good agreement 
with ex eriment up to the critical Mach number (about M = 0.78 for this 
section P after which the experimental value undergoes rapd fluctuations, but 
the theoretical -m; is much too large. This comparison is not materially 
affected by tunnel interference. Somewhat similar results were obtained for 
a 7;s thickbioonvex aerofoil in the experiments described in Ref.27. 

In the tests of Ref.28 measurements were made with a 6% thick wing 
for translational motion and pitching about three different axes of rotation, 
in the range M = 0.3 to 0.9 and 5 up to about 0.5 for M = 0.3 and 
0.3 for M = 0.9. Fair agreement, allowing for expemmental scatter, was 
obtained with theory for the derivatives &s, d;, de, m; and m 8, but there 
were serious discrepancies in "E, aa “F, especially for the higher Mach 
numbers and lower frequencies. These differences were ascribed partly to 
tunnel interference ma partly to experimental error. 

It may be concluded that the in-phase derlvatlves wdlbe fairly well 
predicted by theory, but the out-of-phase derivatives can only be relied on to 
be a rough approximation. 

A semi-empirical approach can of oourse be usedin compressible flow 
as well as inoompresslble and Fig.6 includes points showing how greatly the 
predictian of dsmping can be improved by the use of the eqmvalent profile 
method. (See Section 2.3.) 

3.3/ 



- 11 - 

3.3 Non-linear effects and supercr~tical Mach numbers 

The experiments already cited show that theory may be applicable for 
small oscillations about low mean incidences. If the mean incidence approaches 
the stalling angle the agreement rapidly breaks down. The effects of high mean 
incidence have been examined in Refs.29 and 30. Again as maybe seen from 
Fig.6 the agreement breaks down when the Mach number exceeds the critical value. 
There appears to be no theory by which derivatives may be calculated 
satisfactorily under these conditions. 

The data necessary for an adequate check on the transonic theory are 
not available. 

3.4 Controls 

As is well known, trailing-edge controls are particularly liable to 
oscillatory instability in the transcnic speed range generally described as 
"control surface buzz". Theory predicts that for M greater than or equal to 
one the tige moment damping may become negative, so that it might be expected 
to be negative for M less than but near to one. However the instabilities 
are known to be caused in many oases by mechanisms involving shock-wave 
movement and boundary-layer shock-wave interaction so they are outside the scope 
of linearised theory. Some theoretical work has been done (Ref.22) but as yet 
the subject IS really only tractable by experiment. 

Since incompressible theory gives forces on a control which are of 
the right order of magnitude, this very rough agreement should persist for 
scme part of the subsonic Mach number range, 
be assumed for M near the critical value. 

although obviously it should not 
Published data for checking this 

YEW 1s very scanty as far as purely two-dunens~~nal experiments are concerned, 
but we may refer to some measurements made by Wyss and Sorensen3~ for a 25% 
control on a 13% thick aerofoil. Fig.7 show a comparison between the 
theoretical hinge-moment derivatives and corresponding experimental values 
derived from Table I of Ref.31. There is rough agreement on 
experimental values for M = 0.2 are higher than theory pres k 

although the 
ably because of 

the slightly cusped trailing edge. Apart from those for M = 0.2 the 
experimental values of the damping coefficient, - %, differ widely from theory 
aa the frequency increases and in fact is negative for some frequencies 
when M = 0.6. 

-9 
This loss of damping persists at the higher Mach numbers. 

Since the critical Mach number was M = 0.7, the theory breaks down for the 
damping at Mach numbers well below the critical. Although the data were not 
corrected for tunnel interference it seem8 unlikely that it could account for 
all the discrepancy. Far thinner aerofoil sectioretheory is likely to give 
better results. For example the experiments of Ref.32 give some agreement up 
to M = 0.9 for a 4% thick profile with a 25% control. Although the theory 
and experiment referred to slightly different configurations this does show that 
the agreement is not always so bad aa might be supposed from Fig.7. 

4./ 
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4. Two-Dimensional Supersonic Flow 

4.1 Theoretical background 

Linearised two-dimensional supersonic flow theory is formally 
applicable for a~ frequency and moae of oscilla~cn at any Mach number 
greater than one, but for any particular profile it will lose accuracy as 
M tenas to one. For M near to one the sonic solution is-to be preferred. 
The relation between the sonic and supersonic scluticns is discussed by 
Jcrdan33, who gives formulae and tables of derivatives. Further tables may 
be found in Ref.%. 

Van Dyke35 has extended linearised theory to account for fust order 
thickness effects; the theory IS restricted to small oscillations superimposed 
on flaws for which the leading-edge shock wave z.s attached. Finally 
piston theory36 is avadable provided. the Mach number 1s sufflcxently high. 

4.2 Rigid aerofoils 

One of the fu-st points observed from the linearued theory was that 
it predicted that the pitching damping couldbe negative for a range of forward 
poslticns of the pitching axu, depending on the Mach number and frequency 
parameter. Thus smgle degree of freedom flutter was theoretlcally possible. 

27 Measurements by Bratt and Chlnneck of the pltchzng moment 
derivatives for a 7$$ thick biocnvex model pitching about Its mid-chord sx.u 
gave values of the damping much tigher than those predictedby either 
linearised theory or Van Dyke's theory, but these measurements may be regarded 
as superseded by the supersonic tests in Ref.26. In thu later work also 
blconvex models were used, and the pltchlng d.er?vatives measured for M = 1.42 
and M = 1.61, for several posituns of the pitching axis, and a range of 
small frequency parameters 6 up to about 0.04). Fig.8, taken from Ref.26, 
shows how the pitching derivatives varied with axis posltun, specif~d by the 
parameter Ii, for M = 1.42. The stiffness ilenvatlve, -mg, is 
overestimated by lzi.nearised theory, but the agreement is much improved by the 
use of Van Dyke's theory. The picture for the danplng denvatlve, -m;, 1s 
more complzcated; Van Dyke's theory again produces an unprcvement except for 
;o~$ $y~ of 5 .near the quz+rter-chord axis. Lt should be added that 

2. D thick bucnvex profile the leadmg-edge shock wave is detached 
for M less than about 1.38, so the theory can be regarded as only margually 
applzable. At M = I.61 sinular ccmparucns mere cbtamed, and in this 
case the curve of experimental -m* 

9 
was much nearer the parabola predzted by 

theory although a considerable dif erence remauw?i. From these results it 
appears that the theoretical damping 1s not reliable for the forward axis 
positions, but the stiffness is approxunately correct except near the mid-chord 
axis positlcn where it is small. 

A further series of experiments, by Scrvtcn et 37 al usea moaels 0f 
double wedge' section, y.plth thickness ratios 8$, 12% and I6 o, and involved + 
the measurement of the pitching moment derivatives for pitching with small 
frequency parameter about a range of pitching sxes, - 0.25 4 5 G 1.25, for a 
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range of Mach numbers 1.37 d M 6 2.43. The conclusion is that Van Dyke's 
theory gives good agreement with experunent for the higher Mach numbers. 
As M decreases this agreement deteriorates until. that value of M for 
which the leading-edge shock becomes detached is approached, and then theory 
and experiment differ wxdely, especu.lLy as regards the damping derlvatlve, - mh. 
Piston theory agrees well for M greater than two. 

Martucelli38 measured the pressure dislnbution on thin smgle-wedge 
profiles, pitchug at low-frequency parameters, for h = 0.6 and M = 1.4 
and 1.8. He found that the amplitude of the measured pressures was near to, 
or slightly above, that predicted by lwearised theory, but the phase angle, 
theoretically just less than 180°, was found experimentally to be much less, 
especuI.ly towards the traKling edge. Comparuon with Van Dyke's theory 
gives only slightly better agreement. 

Most of these experiments dealt with proflles for whxh the 
leadzng-edge shock wave was attached. Pugh and Woodgate3Y measured the 
pitching moment derivatives for pltchmg smgle-wedge profiles of angles ll+O 
and 9' with rounded leading edges. For M = 4.75 and 2.47 -mO was 
pre&cted very well by first order puton theory. The agreement on damping 
was less goodbut as the difference decreasea markedly as M was ulcreased to 
its ktgher value it appears that the theory would be satisfactory for M above 
about three. 

We may conclude that for sharp-nosed sections performing small, 
low-frequency parameter pitching osclllntz.ons Van Dyke's theory wzJ1 be farly 
satisfactory provided M is well above its value for shock detachment. First 
order puton theory will give rOugh agreement for round-nosed sections for hzgh 
Mach numbers. Lack of exper-Lmental lnformatlon prevents an assessment Of 
theory except for low-frequency parameters. There 1s no theory whxch IS 
adequate for sharp-nosed sectlons if M 1s so low that the shock IS detached, 
or for round-nosed sectlons lT1 the lower supersoruc range. 

4.3 Controls 

Since there is no upstream influence xn supersonIc flow an osclllatmg 
trallmg-cage control on a two-timenslonal Wang wouldbe expected to behave like 
a two-dimensional wu~g pltchlng about an axis at its l.ea&ng edge, and therefore 
to be liable to negative damprng at low supersonrc Mach numbers. Purely 
two-dimensional evidence on thu point 1s not available but the measurements 
described III Ref.40 are for conditions suffxlently close to two-dxmenslonal 
to shed some light on the SubJect. In thu work the main "~ng models were 
two-dimensional, spanning the tunnel, but the controls were rectangu&%r mt.h 
chord equal to one third of the wing chofi, and span equal to 1.45 wing chords, 
so that the control surface was a rectangle of aspect ratlo 4.35. The 
experimental values of the hinge moment derivatives for M = 1.3 and M = I.6 
were compared with those from two-dimensional theory and. from two-dimensional 
theory corrected for end effects by three-dimensional llftlng surface theory. 
Both theorxes predict negative damping for M = 1.3 zn the frequency range 
covered by the experiments, ij = 0.2 to 0.45, but the end effects halve the 
amount of negative dampmg. In fact the dampmg for M = 1.3 was found to be 
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either positive or, for one test only, marginally negative; the 
disagreement decreased with increasing frequency. For M = 1.6 both 
theories predict only slightly different amounts of positive damping, and 
the experimental values agree well with both estimates. Again the values 
of the stiffness derivative given by the theories differ very little for 
either M = 1.3 or 1.6, and the experimental values were in good 
agreement, although consistently smaller than theory. In these tests the 
wings were fairly thin, either of 5% hexagonal section or NACA 65ACO4 
profile. The evidence therefore indicates that for thin wings theory 
becomes satisfactory if M is high enough (M 2 1.6 i.n this case),.but for 
M nearer to one it predicts negative damping which either does not occur 
or is less severe than predicted. These conclusions must be regarded as 
only tentative as they are based solely on one series of experiments. 

5./ 



- 15 - 

5. Three-Dunensional Low-Speed and Subsonx Flow 

5.1 Theoretical background 

The theoretical estimates with whxh the experimental data 
consdered in thx sectlon are compared are derived from linearised 
subsonx theory, that is essentially the solution of the equation 

I 

( 

a a 

va7J = z 
v-+1w 5, 

> 
. ..(5.1) 

ax 

with appropriate boundary conditions. The mathematical details of Its 
solution are treated at length elsewhere in this manual, and It 1s only 
necessary to say here that the solutions are 111 fact rarely obtained 
drrectly from the dlfferentlal equatzon but more connnonly from one or other 
of the integral equations whwh may be derived from It. For exsnple 8, 
the unknown lift dutrlbutlon over the wmg, and w, the known vertxal 
velocity d~strlbutlon prescribed by the wmg's motion are related by the 
equation 

“(X,Y,O) 
= 8(x',y') . K(x-x', y-y', M,w)dx'*' . ..(5.2) 

v 

where the lntegratlon 1s over the wing planform and K 1s a rather 
complicated kernel fun&Ion, whxh 1s duxussed m Ref. 41. 
Several systematx numerxal procedures have been densed for obtammg 
8 from equation (5.2). These differ 111 detail but all are of the type 
known as the "kernel function" or "collocation" method, which involves 
replacing equation (5.2) by a set of simultaneous linear equations. 
Refs. 42, 43 and 44 are examples; the special case of small frequency 
parameters 1s treated in Ref. 45. Similar methods may be applied to the 
eternatlve xntegral equation 111 which 8 
h',Y',+o) 

in equation (5.2) 1s replaced by 
and K IS a dlff'erent kernel, but this equation 1s not used 

as often as (5.2). 

The practzcablllty of these solutions depends on the avaxlabllxty 
of electronic computers, whose use has made unnecessary some of the 
slmplifylng assumptions used 1~1 earlier theones. For the present purpose 
we shall describe any solutions of equations (5.1) or (5.2) as "lifting 
surface theory" without dutlnguxhrng between the techniques used, 
pronded that the solution has a satisfactory (mathematxal) accuracy for 
the conflgwation for whxh It has been obtamed. 

The parametrx restrxtlons on llftrng surface theory are 
dxvxssed zn Refs. 22 and 46. It may be expected to become inaccurate for 
M near to one, depending on the thuzkness dlstnbution of the wing, and, 
suxze it 1s essentially a small perturbation method, for thick wings, 
high mean incidence and high amplitudes of osclllatlon. The theory 
ennsages a flow which is continuous except on the wing and xn the wake, 
and must therefore be regarded wxth suspicion If leadmg-edge separation 
and vortex formation occurs. Since this phenomenon 1s associated especuilly 
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wxth slender planforms the oscillatory version of slender wing theory, 
e.g., Ref. 47, requires investigation as regards its physxal assumptions as 
well as for Its validity as a mathematxal approximation. 

5.2 Rectangular and unswept wings at low speeds 

Fig. 9 contalns the theoretical curves of the stiffness and 
dsmplng derlvatwes -me and -mb for rectangular wings pltohing about 
the md-chord axis. These curves were obtained from the theories of 
Refs. 45, 48 and. 49. The general trend of their variation with -A and i 
1s obvious. This partxulsr pltchlng axis was selected as being the most 
convenxnt for comparison with experunent but the theoretical data could be 
plotted for any other axis. 

There is a large amount of experimental data available and only 
an outline of it will be given here. 

Ashley, Zartarlan and Neilson5' carned out an extenswe 
experimental investlgatlon for rectangular vrlngs of conventional section 
1576 thlok of aspect ratio IO and 6 pitchmg about the mid-chord axis and in a 
flapping oscillation, and of aspect ratio 4, 2 and 1 pitching about the 
mid-chord s.xls a$. in a plunging oscdlation. The frequency range covered 
was up to about v = 0.7, and the Reynolds number was about 0.9 x IO'. 
Their plots of pltchlng moment smplltude and phase angle are subJect to 
consdx-sble experimental scatter and the curves 111 Figs. T(a) and V(b) must 
be regarded as rough means; the stiffness derlvatlve follows roughly the 
trend of theory, but the damplng derlvatlves tend to be much lower. For 
A = 4, 2 and 1 the degree of scatter 111 the phase angle 1s such that all 
that can be sad IS that -mh 1s much smaller than theory predxd-s, and is 
even negative for small ; when A = 1. The amplitude of the lift due 
to pltchmg, and the lift and moment due to plungmg are m good agreement 
with theory; the corresponding phase angles have a large expermental 
scatter but allcwlng for this scatter there 1s rough agreement for the higher 
aspect ratios, but this cannot be relied on for A = 2 or 1. Much the 
same 1s true of the forces due to flappmg; there is good agreement on 
amplitude, and the phase angle shows rough agreement when allowsnce 1s made 
for experimental scatter. The theorxes used for comparison u1 Ref. 50 were 
due to Kussner, Blot and Wasserman and are probably satisfactory for the 
higher aspect ratlo wings. 

Guy&t and PouZLter5' measured the pitching moment for a series of 
rectangular wings with aspect ratro ranging from 2 to 8 osclllattig about 
axes at the leading end trail% edges for frequency parameters ; = 0.13 
to 0.4 and Reynolds numbers 0.38 x IO' to 0.13 x IO'. The agreement with 
theory was generally good, although at the higher end of the frequency range 
the damping for pltchlng about the leading edge tended to be lower than 
theory but this frequency parameter of course corresponded to a very low 
Reynolds number. A further serxs of measurements by Guyett and CZI.U.T~~~~ 
concentrated.on the rectangular wing of aspect ratio 3.35 with 103 RAE 101 
section, but now, as well as pitchmg, included rolling of the half-model 
about an axis about one tenth of the span inboard of its root, that IS, a 
motion effectxwly flapping superimposed on heaTq. The Reynolds number 
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varied from I.5 x I O6 for C = 0.4 to 0.4 x IO6 at v = 1.3. The 
full set of derivatwes ~8s measured, so that since two pltchlng axes were 
usea, plmglng was effectively mOluaea. Theoretxal ccmparxsons have 
not been worked out for the lxft and moment due to flapping but the dvect 
aerlvatlves are in good agreement with theory (Ref. 49). 
ana 46 calculated fmm Ref. 52 are plotted 111 Figs. 9(a) 

Values of mg 
and 9(b); 

mg fits UI well with theory, but -mb 1s rather high. 

A mass of data On pltchmg rectangular wings was accumulated by 
Bratt and his collaborators in the expervnents of Refs. IO, 11, 53, 54 and 55. 
No attempt ~711 be made to describe 1.t all 111 d&all as much of the work was 
concerned with osclllatlons of large amplitude or osclllatlons about high 
mean lncldence for which theory is not adequate. It appears that Reynolds 
number can have a sl@fxant effect on the air forces, particularly the 
pltchlng dsmpmg, and especially for the higher aspect ratios and frequency 
parameters when the Reynolds number IS small, say less than 0.5 x IO". As 
examples of the sort of agreement found Figs. IO(a) and IO(b) contaln 
some derivatives found 111 Ref. 11 for a Reynolds number R = 0.283 x IO'; 
both stiffness and dsmprng agree quite well with theory although the theory 
tenas to be too small. Also plotted are values of damprng from Ref. 55 
for a Reynolds number R = 2 x IO', in thu case theory 1s slightly h@. 

Refs. 56 and 57report measurements of the flapping moment 
stlffnesseand damping derlvatlves for a 15,; thxk rectandar wng of aspect 
rat10 6 in a flapping osclllatlon; 
(Ref. 49) for v 

both are 111 good agreement with theory 
m the range 0 to 1.5 (R = 1.26 x IO' to 0.42 x 106). 

Measurements of JZ, for 20,; thxk rectangular wings of aspect rat.10 3, 4 and 5 
% 

aescrlbOa in Ref. 58 gave value s slightly lower than theory for v upto 
0.5 (R = 0.35 x 10' to 0.1 x 10'). 

The lift, pltchmg moment, and flapping moment on a 10% thxk 
rectangular wing osclllatlng 1~1 a flappmg mode were measured by Noolston 
et al59, for v = 0.4 to 1.8 and R = 2.85 x IO6 to 0.65 x IO6 and 
compared wth llftlng surface theory. Theu 8mpiltuaes were xn good 
agreement with theory, with only small dtiferences whxh varxd systematically 
mth frequency parameter, but the phase angles showed differences which 
although also systematic were up to about 40$ of the theoretxcal value. 

All the experimental work mentloned above has been concerned with 
the measurement of overall forces and moments. The pressure dxtrlbution 
over an oscillating wing has received less attention but some lnformatum 
exists. MO~~I~UX and xuaalesae&o measured the pressure dlstrlbutzon on a 
pitching rectangular wing with R = 2 x IO" ana found fairly good 
agreement with theory for the integrated overall forces, though no comparison 
was made with lifting surface theory for the pressures. Laldlav&,62 
measured pressures on pztchlng and plunging rectangular wings of aspect ratio 
1 and 2 and found reasonable agreement with a theory he developed for 
rectangular wags of moderate aspect ratlo. Slender wing theory, 
Lawrence and Gerber's theory48, and high aspect ratlo theories were found 
to be unsatufactory for predicting lrft distrlbutlons. 
Lessmg, Troutman and Menees63 measured pressures on a rec";z& -g (A = 3) 
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oscxllating in It.8 first symmetrical bending mode and found good 
agreement with lifting surface theory for M = 0.24. !l!he somewhat less 
good agreement for the spsnwise distribution of lift and pitching moment was 
attributed to unsatisfactory treatment by theory of lift distributions near 
theleadrng edge. 

The chief jmpression obtained from the comparisons sunrmsrised 
above is of the absence of any obvious regularity. While swe of the larger 
discrepancies may probably be explained by experimental error or low 
experunental Reynolds numbers it does appear that for unswept wings of 
moderate or large aspect ratio theory cannot be relied on with any certainty 
to be in more than rough agreement with experiment, say within 3%. Again 
theory does not seem to be consistently too large or too small. 

5.3 Unswept wings ~TI ocnnpressible subsonic flow 

me amount of data avaIlable here is comparatively small. 
Fig. II shows the pitching moment derlvatlves for a rectangular wing of 
aspect ratio 4 compared with low-frequency and fmite-frequency theory. 
The experimental values were taken from Ref. 26 and refer to a 1% thick 
section with critical Mach number M = 0.78 approximately. Low-frequency 
theory slightly overestunates the stiffness and seriously overestimates the 
damping. A similar trend is apparent for subsonic Mach number in Fig. 17 
(see Ref. 64). Including the effect of the experimental frequency m the 
theory removes the dlscrepanoy for the stiffness but only partialry removes 
it for the dampug. 

In Ref. 42liftlng surface theory is colnpared with the experimental 
results reported in Ref. 65 for a rectangular wing of aspect ratlo 2 pitching 
about the ml&chord axis in the range M = 0.2 to 0.7; the experimental 
lift and pitching moment show a considerable experimental scatter but it can 
be seen that they follow the vsnations predIcted by theory fairly well. 
Ref. 42 also colnpares theory with the lift and pitching moment for the 
same wing in a flapping oscdlation, obtained in Ref. 59, for M = 0 to 0.4; 
the experimental scatter is relatively small and the agreement with theory is 
good for both amplitude and phase angle. 

Lessing63 measured pressures on a rectangular wing of 5% thuk 
biconvex se&Ion in Its first benaing mode for M = 0.24, 0.7 ana 0.8. 
The agreement with theory was good for M = 0.24 but at M = 0.7 the 
phase angles were poor, although the amplitudes of the pressures were 111 
good agreement; this was ascrlbed to tunnel resonance. At M = 0.8 
the agreement was poor for both amplitude and phase angle but at &sMach 
number the flow contalned shock waves. 

From this evdence one might expect that for subcritical Mach 
number just as for incompressible flow theory for unswept wmgs would give 
at least a rough approxlmatlon to the derlvatlves although as appears from 
Fig. 11 the For may be as large as 30%. 

5.4 Swept wings III low-speed flow 

Although several investigations (Refs. 50, 58, 66, 67, 68) have 
been made on this type of planfom at low speeds, not all have had the 
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comparable theory worked out; these are lIsted for reference only and 
not duxussed below. 

50 Ashley, Zartar~an and Neilsen measured the lift and pltchlng 
moments on constant chord wings of aspect ratio 4 and angles of sweep 35' 
and 50" , pitching and plunging with frequency parameters v = 0 to 0.6, 
and compared their values WI'& a theory of thexr own for untapered swept 
wings whxh is probably sufficiently accurate for the present p&-pose. 
Except for the quantities corresponding to "z and mZ whxh are 
theoretically small the agreement 1.9 farrly good although the experimental 
values show considerable scatter. 

Fig. 12 shows the pitching damping and stiffness derivatives 
measured by Soruton, Woodgate and Alexander& for a wng of arrowhead 
planform. The trends of the varlatxons wth frequency are predIcted falrl;r 
well by the theory of Ref. 69 although for me, which IS small the actual 
magn1tuae 1s not good. The low-frequency theory of Ref. 45 gives slightly 
better apeement. The lift derrvatives gave discrepancies of the ssme order 
of magnitude, but as these are not small the percentage dtiference is only 
of order 1%. 

Flapplng osoillatlons have been lnvestlgated by Bratt and Wlght57 
for a constant chord wing of aspect ratlo 6 wzth 41.3" sweepback. The 
stlfmess and &xnplng derlvatlves for the rolling moment on the half-wmg 
model us-ed are in good agreement with theory (Ref. 70) for frequency parameters 
up to v = 1.5. The Reynolds number varied from 0.42 x IO6 to 2.2 x IO6 
and It appeared that Its znfluence on the derivatives was negllglble. 

One concludes that for swept wings at low speeds theory-is likely 
to give a fairly good estimate of derlvatlves (say wlthln 20;:) except those 
which are small. 

5.5 Swept -gs in compressible flow 

The few experimental results wadable show that theory can 
predxt the pitching derivatives with some degree of success. Ref. 6 4 gives 
the comparison between low-frequency theory (method of Ref. 45) and 
experxnental pitching derxvatlves for a series of swept wings of aspect ratio 
2.64 and taper ratio 7/18 with leadmg-edge angles of sweepback 33.7", 49.4' and 
59.0°. The comparxson for 49.4" is shown 1~1 Fxg. 13. The stiffness 
derivatue, -mg, 1s correctly predIcted. by theory for the forward pltchmg 
axis but consxstently overestimated for the rearward. pitching axis. The 
damping derivative, -mb, 1s approximately correct for M = 0.6 but 
shows scme dlscrepsncy for other Mach numbers. This comparison was 
duplicated to a remarkable extent by the other two wags. 

Pitching derivatives for a much more unconventional swept wing, 
of the "M-wing" type, are dmxssed m Refs. 71 and 72. Although theory 
overestimates the damping derivative by up to 259 the agreement IS good 
for such a complxated planform. 
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For swept wings the approximate agreement of theory and experiment 
persists up to much higher Mach numbers than for unswept. This 19 of course 
consistent with thy fact that the onset of trsnsonic effects is delayed by 
sweepback. 

5.6 Delta wings in low-speed flow 

As already mentioned the steady flow round a wing%ith highly 
swept leading edges often conta3ns strong vortxes in the flow over the 
upper surfaces when the wrng 1s at incidence, especx~Ily when th% leading 
edges are sharp. If such a wing is osctilating about a non-sem mean 
~ncdence or through a large enough amplitude or rnnth a high frequency, 
the resulting vortloes might be expected to influence the oscdlatory 
forces; then both or&nary liftmg surface theory and the slender wing 
approxlmatlon would be suspect. There is however some evidence to show 
that llftmg surface theory can correctly predict the pitching aamplng 
for slender wings provded the mean incdence and amplitude of oscillation 
at-e small. Fig. 14 shows the damping derivative, -s, as a function of 
axis posxtxm for a trzangular wing of aspect rat10 1.0. The experunental 
values (unpublished) were measured by the Bristol Aircraft Co. and the 
Royal Aircraft Establishment and for zero mean incidence agree very well 
with those calculated by low-frequency lifting s&ace theory. This agreement 
breaks down when the mean lncdence is raxed to non-zero values. 
Fortunately the effect of posdxve mean lncxdence appears to be an increase 
in damping. Slender wing theory (Ref. 47) seriously overestvnates the 
damping; evidently the planform 1s not suffxlently slender to Justify 
the mathematical approximations 1~1 the theory. Somewhat similar comparisons 
also hold for a gothzc wing of aspect ratlo 0.75. (See Ref. 61c) 

Ladlaw G2 found that for a delta mng of asp&t rat.10 1.07, 
heaving or pitching about the mid-root-chord axis slender wing theory 
overestimated the magnitudes of the lift. force and pltchlng moment by a 

,factor of 2 or more; the lifting surface theory of Lawrence and Gerber 48 
gave much better agreement. For a delta wl"g of aspect ratlo 2.31 the 
same author sgau~ found very poor agreement mth slender -g theory; 
Lawrence and Gerber's theory was in good agreement for the amp11tude.s but 
much less so for phase angles. Evidently slender \nng theory csnnot be 
relied on for aspect ratios as large as A = 1; Laidlaw suggests that 
this is due to the fact that It does not satisfy the Kutta-Joukanrski 
condition at the trading edge, and XII fact he obtains much better agreement 
by intmducmg a sample modrfxatlon which ensures that it does. 

Scruton, Woodgate and Alexander 66 measured the lift and pitching 
moment derivatives for a delta wing of aspect ratio 1.6 and a cropped delta 
-g (taper ratlo I/7) of aspect ratlo 1.2, for pltchmg about axes near the 
mid-chord point for frequencxs up to G about 0.6. The thichess rat10 
was 6$ for both -gs and the Reynolds number 1.0 x IO' to 1.5 x IO'. 
Apart from small values of V, when the experimental values were sometimes 
uncertain,the agreement with theory was good, the discrepsncles being of 
order 1% or less. Agaxn slender -g theory was in poor agreement. 
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Finally in this sectwn we wxll refer to scme measurements by 
Moss67 on the pitching derivatives of a cropped delta wng (taper ratlo l/7), 
leadmg-edge sweep 45", and aspect ratlo 3.02. (The tips were slightly 
curved ; for straight tips A would have been 3 exactly.) The model 
had I@ thick conventional sectlcn (RAE 102) and the Reynolds number was of 
order 1 x IO6 to 3 x 106. In the frequency range covered by the tests, 
ii -c 0.2, the agreement with theory was good for "6, mg and Je; there 
were dx4crepancies of order 2Ojb for 66, but all the derlva&ves except rnb 

were measured when the wing was l'ltted with a body so that exact-agreement 
could not be expected. 

One may conclude that llftlng surface theory may be expected to 
give the pltchlng derlvatlves reasonably well for small osclllatlons about 
zero mean mcdence, unless of course the derJvatx.ve ccnoerned 1s small. 
If the flow contains leadlrtg-edge separatlcn vortices theory 1s unreluble. 
Slender wxng theory should not be used for wlrlgs of aspect ratios greater than 
0.5. A further observatlcn 1s that, smce the pltchug derlvatlves tend to 
vary very little with frequency parameter m the range 0 < V < 1, when A 
1s less than about 3, calculatlcns for small ij may often be sufflclently 
accurate. 

5.7 Delta wl~l~s m compressible flew 

It seems reasonable to expect that as lxf'tlng surface theory 1s 
satlsfaotcry for delta wags m umcmpresslble flow It ~111 continue to be 
satrsfactory for at least part of the subsonx. Mach number range. FT& 15 
shows that thx expectation 1s at least sometimes Justlfled. Here the 
theoretxal curves are those obtazned by the method of Ref. 45 for a cropped 
delta wing of aspect ratlo A = 2, and the experimental values mere 
measured m N.P.L. experiments. We may note the relative lnsensltlvlty of 
the derlvatlves to Mach number for the forr~ard axw posltlon for M up to 
about 0.9, and the general sxnilarlty to Fig. 13. Very slmllar diagrams were 
obtained for delta wings with the same taper ratlo (l/7) but aspect ratlo 
I.5 and 3.0 (Ref. 64). Some measurements for the delta wing of the same 
series of aspect ratlo A = 1.6 (Ref. 73) gave damplng derivatives for 
low frequency xn good agreement with theory, but agaam the theoretIca 
stlfmesa derlvatlve, -mg, was too negatwe for the rearward axis 
(6 = 1.2) by about 30$ and too posltxve for the forward axis (6 = 0.55) 
by about 153. 

The lnsensltlvlty to M had prevuusly been observed by 
Leadbetter and Clevenscn%who measured 1st and pitchlng moments on complete 
delta wings of aspect ratlo 2 and 4 pltchrng about their mid-chord axes for 
0.2 < M < 0.8 and 0.08 < ; < 0.81. Theu experimental scatter was 
suffxlently large to mask the varlatlcn with Mach number in the range 
M = 0 to 0.8, and they ccnfuxxl themselves to comp~-lscns with Lawrence and 
Gerber's lnccmpresslble flow theory (Ref. 1&), and, for A = 2 only, 
slender wing theory. The latter greatly overestimated both sn-phase and 
out-of-phase parts of the pxtchlng moment, mdeed. Its only success was for 
the amplitude of the ltit. Lawrence and Gerber's theory overestimated the 
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pitchmg damping by about 20$, and very much underestimated the pitchmg 
stiffness whxh IS small for this axis position. For A = 4 the lift was 
fairly well predicted but for A = 2 its amplitude was underestmated by 
about 3C$ to 50% and Its phase angle overestmated by about 30". 

Ref. 75 reports an extensive series of measurements of the 
pitching deravataves of a cropped delta wing of aspect ratio 2.045 and 
taper rat10 0.1. This planform as close to the cropped delta wing of 
aspect ratio 2 shown in Fig. 15. Points were therefore read off the mean 
curves of derivatwes given an Ref. 75 and the pltchmg moment de&vatives 
calculated for pitching axes 1~1 the same posataon relatave to the root 
chord as those of the wing mth A = 2; these values have been plotted 
in Fig. 15. In view of the way in which the expermental pomts plotted 
were obtained from the report at would be unwme to attach much mportance 
to the detaals of the compamson but at may be observed that for the 
rearward axis both -IUC and -III* lae very close to the theoretical -es, 
while for the forward axes they are both consasten'cly hl&er than theory 
but only by about lO,b to 209. This comparison may be regarded as reasonably 
satisfactory. 

Tobsk, Reese and Beam m and Besm77 carried out experiments usang 
a delta wang model of aspect ratao 4 fltted with a slender body. Tobak 
found that for M rn the range 0.2 to 0.9 the patching dsmpmg for an axis 
near the root mad-chord was doubled when the Reynolds number was ancreased 
from about 0.4 x IO6 to 0.8 x IO', and was an faarly good agreement wath 
theory for the higher value of R, being about 20,5 too low at M = 0.2 
and III almost exact agreement for M = 0.9. At about M = 0.9 the 
dsmpmg suddenly dropped to negative values. The frequency in these d 
experiments was small. The theory constructed by Tobak an Ref. 76 appears to 
overestmate the dampang slightly for low Mach numbers. Bean was ma-Lnly 
concerned wath effects of smplatude of osclllatxon and mean incidence but his 
results for zero mean lncldence support Tobak's. 

In general then lifting surface theory gaves correct values of 
pitching deravataves for delta or cropped delta wings up to high subsonx 
Mach numbers, although the agreement cannot be relaed on completely, 
dlscrepancaes of 20$ being quate typacal. 

5.8 Controls on three-dimensional wings in subsonic flow 

Although there has been no lack of experimental u-crestlgatxon of 
three-damensional control derivatives, for example, Refs. 78 to 85, the 
princapal drfflculty here IS the absence of any rigorous llftlng surface 
theory for direct control derivatives. The boundary conditaon LII linearised 
theory has dzscontinuataes at the edges of the control and the shape of the 
wang cannot be correctly represented by the flnxte number of conditions 
assumed in "kernel function" ("collocataon") theoraes. Two methods of 
overcoming thas difficulty have been proposed although neither can be 
regarded as completely satxsfactory. The first is the anclusion in the 
assumed lift dastrabutlon functaons of one havrng sangularitaes at the 
wing-control Junction of the type indicated by two-diaenslonal theory; 
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this approach has not yet been exploited for oscillatory flow. The 
second is to replace the control oscillation mode by an equivalent smooth 
mode constructed in some plausible manner. For example we may calculate 
the sectional lifts, pitching moments and hinge moments by two-dimensional 
theory, and then take the equivalent smooth mode to be that whxh gives the 
same sectional lifts and moments. Comparisons may of course be made 
with two-timenslonal theory, but their significance must obviously depend 
on the planform. 

The indirect control derivatives, for example, total lift or 
pitching moment due to control oscdlation may be calculated from linearised 
theory for smooth modes by the reverse flow theorem, but for trailing-edge 
controls this procedure involves an integration ever a reglcn near the 
leading edge of the reversed wing, where existing lifting surface theorles 
are least satisfactory. 

It should however be remembered that a trailing-edge control 
operates in that part of the flow most affected by viscous effects so that 
even if mathematically correct solutions of the linearised equations were 
available they might well give derivatives different from those occurring in 
either tunnel experiments or in full scale. As in two-dimensional flow, 
and for similar reasons, there is a tendency for a loss of damping to occur, 
often quite suddenly, as the Mach number increases above the critical value. 

From the evidence of twc-dimensional flow it may be expected 
that for low speeds experimental hinge moment derivatives for controls of 
high aspect ratio on unswept wings would also be low compared with 
two-dimensional theory, and that there would be only small variations with 
frequency parameter. This expectation is in the main supported by 
experiment. For example the experiments of Ref. 78 on an outboard 
trailing-edge control on a high aspect ratio tinswep;t:wing,gsve h4 ad h$ 
about 0.6 of two-dimensional theory. Somewhat similar ccmparlscns were 
found by Lsmbourne, Chinneck and Betts 79 for a horn-balanced elevator, and 
by Mclyneux80 for a full-span control on a rectangular wing of aspect ratio 4. 

Some rough measure of agreement would be expected to persist for 
higher Mach numbers up to the point at which transonic effects become 
dominant. This view is supported for an unswept wing by the experiments of 
Ref, 32. Trailing-edge controls on delta wings have been investlgated 
in experiments desorlbed in Refs. 81, 82, 83 and 84. Bratt, Miles and 
Johnso& found fairly god agreement with lifting surface theory of the 
equivalent smooth mode type described above for a full-span trailing-edge 
control on a cropped delta wing of aspect ratio 1.8 and 6% thick RAE 102 
section. The frequency range covered was g = 0.15 to 0.58 at M = 0.4 
falling to 5 = 0.07 to 0.26 at M = 1, but in fact the derivatives hg 
and % varied only slightly with frequency parameter. Fig. 16 shows 
the comparison with theory for the lowest frequency. On this evidence one 
would expect theory to be fa>?l$ goo!t.fordiach numbers up to that for which 
the sudden drop in damping cccurst in this instance for M less than 0.95. 
From the remaining papers this appears likely to be the characteristic 
behaviour. 

6J 
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6. Three-Dimensional Wansonic and Low-Supersonic Flow 

6.1 Theoretical background 

The chief d1ffxcult.y in the theoretical treatment of oscillating 
wings in transonic flow 1s that when M is near to one the lutearised 
partul differential equation for the relocity potential which 1s comnonly 
used for subsonx and supersonic flow, that IS 

29 
(‘-Ma)#c + #yy + #zz - - #xt - ; $tt = 0, 

U 
. ..(6.1) 

becomes inaccurate. Its ranges of valdity as given by @mdahl** are 

II-MI >> T’ . ..(6.2) 

for two-dimensional flow, and 

; (I-M( >> A T log(A-' T--) . ..(6.3) 

for slender planfont~s, where T is the thxkness ratio of the wing. It 
may be helpful to put some numbers rnto the forrmiLse(6.2) and (6.3); thus 
for a wing having T = 0.03, (6.2) becomes 

II-MI >> 0.097, . ..(6.4) 

snataklng T = 0.03 and A = 1, (6.3) becomes 

II-MI >> 0.035. . ..(6..) 

It is important to observe that the symbol >> means "is very much larger 
than", so that even taking this phrase to imply a factor as small as two, 
(6.4) becomes 

M < 0.806 or M > 1.194, . ..(6.6) 

and (6.5) becomes 

M < 0.93 or M > 1.07. . ..(6.7) 

For thicker wings these restrxtions on M will of course be more severe. 
It may be observed from Figs. 6, 11, 13 and 15 that lrnesrised theory based 
on equation (6.1) does in fact break down at a lower Mach number for the 
two-dmenszonal and rectangular wvlgs than for the swept or delta ppmgs. 

This breakdovm of ordinary llnearlsed theory may to some extent 
be overcome by using the equation 

. ..(6.8) 
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instead of (6.1) when the Mach number is near to one. Landahl" has shown 
that a sufficient, though not always necessary, condition for equation (6.8) is 
that the frequency parameter is large compared with the ratlo of the maximcm 
steady longitudinal perturbatxon velocity to the free-stream velocity. 
For two-dunenslonal flow this condition becomes 

3 
; >> 2, . . . (6.9) 

and for a slender wing 

,' ; >> A T log(K' T--). . ..(6.10) 

If M = 1 equations (6.1) and (6.8) are Identical, but of M 
is not equal to one and the mode of osclllatlon 1s z = g(x,y,t) then 

#kw,z,t; M) = M-' dx,W,Mz,t; 1) . ..(6.11) 

where in the r&t hand side $ 1s the velocity potentzsl for M = 1 for 
the planform altered 1~1 the spanwlse dlrectlon by the factor M, 
(shrunkif M<l, 

:andahl 
= .e&f-iy,t). 

stretched if M > I), and osclllatmg 111 the mode 
This line of attack has been extenswely treated by 

who gives solutions for various planforms. 

The alternative approach 1s via the integral equation obtained by 
letting M tend to one m equation (5.2). A method of detennmmy, this 
lunit is described. in Ref.41 and Its applxatlon to a collocation method 
in Ref. 06. The solutions obtained by thxmethod should be ldentxal with 
those of (6.1) but 111 fact there are differences (Ref. 22) due to the 
anthmetical approximations xn the collocatxm method and algebrax 
appronmations X-I the analytxal solutions of the differential equation. 

87 It should also be added that Mangler has derived an integral 
equation for M = 1 and obtained solutions for low frequency pltchLng of 
delta wags. 

One of the characteristics of the oscillatory trsnson~c solutions 
wallable is that near M = 1 the effect of frequency parameter 1s very 
much greater than elsewhere. As ~~11 appear below this predIctIon 1s to 
some extent conf'ixmed. by experiment, but 111 view of the complicated 
phenomena occurring in transonx flow It seems unlikely that any llneansed 
theory ~111 be sufflolently accurate unless some empirxal corrections are 
mtroduced. 

6.2 Unswept wings 

There has been comparatively little experimental work on unswept 
mngs in transonic flow. We may however cite the data plotted III 
Figs. 17a andAD which show respectively -me and -mb for a rectangular 
wing of aspect ratio 2 pltchlng about an ans 4% of the chord downstream 
of the leading edge. The experimental results were obtained 111 same 
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unpublished experiments at the N.P.L. and refer to a model of I@ RAE 102 
section. Except near M = 1 there is only a small effect of varying 
the frequency-parameter, but at M = 1 the damping shows a distinct 
decrease as v increases. The subsonic theoretical curves nere obtained 
by the method of Ref. 45 for c --) 0 and by that of Ref. 43 for ; = 0.3 
and 0.6. The low-frequency supersonic curve labelled "Miles" was obtained 
from that author's solution of equation (6.1) for the low aspect ratio 
rectangular wing, given in Ref. l,f3 and mathematically valid for small values 
of PA. The other supersonic curves were obtained from Ref. 88. The 
curves labelled "Landahl" are those given by his solution of the transonic 
differential equation (6.8) (Ref. 22, Chapter 6). 

As regards the damping (Fig. 17b) subsonic and transonic theory 
agree fairly well especially for the highest frequency parameter, but both 
overestimate the damping near M = 1 although, as predicted by theory, 
the error decreases as the frequency parameter increases. In Fig. 17~1 the 
sign of the frequency effect near M = 1 is correctly predicted but the 
actualma~itude of -mC is very different. It must be pointed out that 
the experimental results were not corrected for tunnel interference, and for 
the highest frequency may be affected by distortion of the model. Even so 
the comparison is generally poor m the transonic region. Experimental 
derivatives have also been determined for the same planform by Ccurbil89 
but no theoretical comparison is given. Rnerson and Robinsony"measured the 
pitching damping for an unswept tapered wing of aspect ratio 3 for‘M = 0.6 
to 1.18 but again no comparison was made with theory. 

On this basis one would not expect transonic theory to give more 
than the order of magnitude of the forces in the transonic region, but to 
improve rapidly as M Ucreases from one. 

6.3 Delta wags 

Most experimental work with these planforms consists of 
measurements for rigid pitching, in particular of the damping derivative. 
This quantity is characterised by a steady rise nith M, followed by a 
very sudden drop in the range M = 0.9 to 1, often to negative values, 
followed by a rise to positive damping for supersonic flow. 

, a Emerson and Robinson 90 also measured the pitching damping for a 
triangular wing of aspect ratio 2 mounted on a slender body. 
Ls11dah1~~ compares their values with transonic theory. 

In his book 
Ihe agreement IS 

not good smce theory fails to reproduce the curiously sharp maximum in 
the curve of damping versus Mach number which occurs at about M = 0.98. 
Nevertheless as M is increased from M = 0.98 the experimental damping 
decreases so rapidly that for M about 1.05 the agreement is good. 
Evidently some transonx phenomena violate the assumptions of theory until 
M has reached values greater than one. Low supersonic theory is in rough 
agreement wzvth the experiments of Ref. 90. 

Landahl also compares his transonic theory for a delta wing with 
some values of the pitching dsmprng measured by Orlik-Riickemsnn and Olsson 91 
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for a triangular wing of aspect ratio 1.45 pitching with E = 1.2. 
In Fig. 18 experimental values of the pitching damping frcm Ref. 91, 
lactually those for f = 70 c.p.8. from Fig. 9 corresponding to 
v c 0.07 for M near to I), are compared with theory for a slightly 
different aspect ratio - A = 1.5. The measured values fit in fairly 
well up to M = 0.95, but the transonic theories for M = 1 of 
1andahl2* and Mangler87 overestimate the damping. For M greater than 
one theory fails to reproduce the low values of -m* m the range 1 < M < I.I., 

47 
0 

Smple slender-wing theory gives a gross overestimate of damping. 

In Ref. 92, Rose reports wing-flow measurements of -mu, for a 
delta wing of aspect ratio 4 mounted on a slender body and pitchsg about 
an axis near the mid-root chord with frequency parameter about v = 0.05. 
Agreement with subsonic theory was good up to M = 0.9 when the 
characteristic sudden reduction of damping occurred. '&is behaviour was 
confumed by flight tests and the results of Ref. 77. Sonic theory (Ref. 87) 
predicted strongly negative damping at M = 1 but the observed values 
were negative only in a small range near M = 0.93 and rose again to 
positive values at M = 1 and remained positive up to M = 1.1, the 
maxmum experimental Mach number. Supersonic theory predicted negative 
damplngupto M = 1.4. 

D'Aiutolo in Ref. 93 gives values of -m+ e for delta wags of 
aspect ratio 2 and 3 mounted on slender bodies measured U-I experiments with 
rocket-powered models. No canparison is made with transonic theory 
although the low supersonic values of M at which -m. 

0 recovers to 
positive values after becoming negative in the trsnsonic range are fairly 
well predicted by theory. As these are so near to one (M = 1.01 and 1.05- 
respectively) and as -me e varied so rapidly with M when M was near to 
one it is possible that this agreement was purely fortuitous. 

Agam Miles, Sratt and Rridgeman 73 found generally poor agreement 
between measured values of La and ma 

0 a 
for a cropped delta wing with 

A = 1.8 and taper ratio l/7 and low supersonic theory (M ^I 1.1). The 
in-phase derivatives agreed slightly better. 

6.4 Tunnel interference ~fl transonic flow 

Taken together the experuaental evidence is not favourable for 
transonic or low-supersonic linearised theory particularly the latter. 
Although good agreement with experiment is sometimes found, it appears 
that theory is not capable of reliably predicting the rapid changes with M 
which occur near M = 1. It must however be added that there is reason 
to suppose that derwative measurements for some planforms may be strongly 
affected by tunnel interference, which is not yet adequately understood 
in the transonic r;glme particularly for slotted tunnels. As evidence 
for this consider Fig. 19 which shows the direct pitching derivatives for 
a model of M-type planform as measured in the N.P.L. 25 in. by 20 in. wind 
tunnel (see Ref. 71). This tunnel has a rectangular working section with 
longitudinal slots in its roof and floor. T, one of the parameters 
commonly used in connection with slotted tunnels, is defined by 

I-T 
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I-T B ma 
- = - log cosec - . ..(6.12) 
l+T XNH 2B 

where B is the width of the tunnel, H is its height, d is the width 
of a slot and N 1s the number of slots in the roof or floor. Fig. 19 
(taken from Ref. 6!+) shows the large vsrlation in the derivatives which occurs 
when N is varied. (N is shown at the top of the figure.) The effect 
is largest for -mb at the higher Mach numbers, and is then large enough to 
mesn that there is a large uncertainty in the measured values. 'It must be 
admitted that this 1s a very unusual planform and added that similar 
experiments mth a model of delta plsnfonn gave a much smaller effect. 
Even so Fig. IV shows that in some cases at least tunnel interference may 
have a signifwant effect, and it would therefore be unwise to dumlss 
linearised theory as unsatufactory untdmuch more experimental evdence of 
hewn reliability has been accumulated. 

6.5 Controls 

As in two-dimensIona flow controls on three-dimenslonal.wmgs have 
a strong tendency to lnstabdlty in the transonlc range end for the same 
reasons. Evidence of the non-linear nature of the phenomena involved may 
be found in Refs. 32, 83 and 94. Lan~Iahl~~ has given a theoretical 
investxgatxon of control surface buzz, based on equation (6.8), for a 
rectangular trading-edge control surface whxh predicts negative dsmplng for 
certain comblnatlons of frequency and aspect ratio when M is near to one. 
Comparison may also be made wzth two-dimensional linearised theory but the 
agreement with experiment, although sometimes~good, 1s not to be relled on. 
In fact there seems little point in adding to the discussion of Section 3.4. 
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7. Three-Dimensional Supersonic Flow 

7.1 Theoretical background 

Linearised potential theory for supersonic flow is governed by 
equation (6.1) with M greater than one. The restrictions on thickness 
and aspect ratio necessary for this equation to be applicable are discussed 
in detail in Refs. 22 and 46. The principal restriction is on the 
thickness ratio; the smaller T is, the wider is the range of Mach number. 
A rough rule aught be stated as follows: 

1 
7: << (M-l) << -, . ..(7.1) 

T 

with some relaxation at the lower end of the range for wings of slender 
planfozm. 

As in subsonic flow solutions are often obtained by the use of 
integral relations corresponding to equation (6.1). There are III fact 
equations of the form 

dX,Y,O) 
= C(x',y') K&x', y-y', M,(~)dx'dy', . ..(7.2) 

V 
and 

"(X,Y,O) 
= $(x',y'+O) K(x-x', y-y', M,w)dx'dy', . ..(7.3) 

v 

corresponding to those in subsonic flow such as equation (5.2), but there 
is in supersonic flow an additional inte@x1 relation of the form 

il 

h,Y) 
fJ(X,Y,O) = . X(x-x , y-y', M,w)ax'dy'. . . . (7.4) 

u 

Smce there is no upstream tiluence u1 supersonIc flow the region of 
integration in equations (7.2), (7.3) and (7.4) is the Mach wedge 
upstream of the point (x,y). The kernels, K, have of course different 
forms ~TL each equation; expressmns for them may be found in Refs. 95, 
96 and 97. The chief advantage of these ln'cegral relations lies in their 
use for x-regular planfoxnm for which solutums of the dzfferentlal 
equation are hard to obtarn. In thmconnection the modifications to 
equation (7.4) due to -498 and Stewartson are of great Importance. 
An extensive account of solutions which have been worked out for supersonic 
flow may be found in Miles' book46 By using these together with 
equations (7.2) to (7.4) the forces on alxnost any wing in any mode of 
oscillation can be calculated given suf'ficlent computation. 

Controls on wags present no particular diffuxlty for supersonic 
speeds, since the dlscontlnuous boundary condition may now be allowed. to 
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cause discontinuitiea z.n the flow. Moreover if the hxnge line 1s 
supersonic the control has no upstream influence on the wmg. 

There is no Umx-y claimmg to account for thxkness effects III 
three-dmens~cnal supersonic flow, although as we shall see, rmprcved 
agreement with experiment can often be cbtalned by applying Van Dyke's 
two-dimens~cnal method to modify the three-dimensional linearised solution, 
or by usxng piston theory in the 881118 way for the higher Mach numbers, 

7.2 Unswept w3.n.e$ 

From the results for two-dimensional wings It could be 
anticipated that theory would be fairly successful for wings of moderate 
aspect ratlo and small sweepback prcvCied they were suffxiently thm. 
Thx? VEW is supported by the measurements reported ~fl Ref. 99. ThWXZ 

experments were carried cut with a series of models of the planfonns shown 
in Fig. 20 for rlgd pitching about varx~s axes. 
5s thxk double wedge sectvan; 

The basx pmfde was a 
when the tip was cut off at an angle, it was 

m mne cases machined down so that the section was a double wedge ever the 
whcl.e span and in others left wth a vertxal face. The latter type of 
model is designated "blunt raked edge" in Fig. 20, whxh shows the varlatwn 
of the pitching damprng derivative with the angle of rake for pitching with 
low frequency parameter, v = 0.02, about the mid-chord axis at M = a 
The agreement with llftlng surface theory IS only moderate but the addxtxm 
of a thickness correction, calculated from Van Dyke's theory by strip theory, 
improves it greatly, especially for the two larger spans (see Ref. 100). 
It may be noted that sharpenzng the sde edge can have a signrficant effect 
on the dersrative. This series of experlmen'azn fact covered the Mach number 
range M = 1.4 to 2.5 and the lmprcved agreement mlth theory was 
malIltamec3 at the higher V~U~S of hi. Fig. 21 shows the varlatrcn of 
-m 0 and -In- 

8 
with M for the largest model, and the comparison with 

llnearxsed llftlng surface theory, and with theory corrected for thdaess 
effect by Van Dyke's theory and also by pxton theory. The degree of 
agreement 1s very satisfactory. 

The success of theory appears however to depend on the fact 
that the "vlg is thm. Similar measurements for rectangular planfoxm models, 
A = 1, 2, 3, 4 and 5, with 12% thxk double wedge section pdchlng about 
the mid-chord axis agan with small frequency aarameter m the Mach number 
range M = 1.8 to 2.4 are reported II~ Ref. 101. Theory was much less 
successful in predxting the pltchmg derlvatwes, underestlmatlng both 
thxkness and damping by as much as 503. 

Mentlcn must also be made of the experiments of Tcbak lo2 who 
measured the pltchrng damping for an unswept tapered wing of aspect ratlo 3 
and thxkness parameter 0.03 zn the range M = 1.2 to 1.9, and found fairly 
good agreement with the theoretical value for a rectangular wing of the 
same aspect ratio for M greater than 1.4. For M less than 1.4 the 
agreement was poor presumably because a deferent planform was used for the 
theory. Again the frequency parameter was very small. 

It may be concluded that for thm, slowly oscillating unswept 
-gs theory is likely to be satisfactory for M well above one, M greater 
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than 1.4 say, especially if some allowance is made for thickness effects. 
Increasing the thickness may cause this agreement to be lost, Little 
informatmn IS wallable for higher frequency parameters or M nearer to 
one. However Fig. 17 shows that the experimental pltchlng derivatives 
plotted there tend to fair agreement with theory at M = 1.2. 
(This figure is more fully discussed in SectIon 6.2.) 

7.3 Swept -as 

Not much experimental lnfoxmatlon 1s available for swept wings 
other than those of delta and similar planf'oxms. (See Section 7.4.) 
However Tobakjo2 found fairly good agreement with theory for the pltchmg 
damping of a model with swept tapered planform (leadmg-edge sweep 45', 
root chord 12.4 m., tip chord 5 zn., A = 3), and thin section (bxonvex 
3$ thick), pltohing about axes near the mid-root chord for Mach numbers in 
the range 1.2 to 1.9. Theory overestimated the damping for the lower 
Mach numbers, but this may have been due to the fact that the wmg was 
mounted on a slender body. 

Measurements by Moorelo on a thin model with the same aspect 
ratio and leading-edge sweep, but taper ratlo 0.3 pltchlng about axes near 
0.7 root chord, showed that at a Mach number of 3.92 the damplng for low 
frequency pitching was again werestunated slightly by theory. In this 
lnvestlgatlon lncreaslng the mean lncldence through angles up to IO' was 
shown to mcrease the dsmplng and lncreaslng the frequency to reduce It. 

7.4 Delta wags 

A larger amount of experimental work has been done for thu type 
of planform and the general conclusion 1s that supersonic luxsrised theory 
1s fairly satisfactory for slow pltchmg osclllatlons for Mach numbers 
greater than about M = 1.4. 

The theory predxts that for Mach numbers less than 2' the 
pltchlng damplng of a triangular wmg may be negatxve for low frequency 
osclllatxms about any axu IJJ a range depending on M and A (see Ref. 46). 
In comparing theory with experiment we shall be concerned mostly mth axis 
posltlons near to the middle of the root chord. For these axes the 
Mach number below whxh the damping 1s negative decreases rappldly with A, 
from about 1.4 for A greater than 4 to M = 1.1 for A = 3. 
Although thx occurrence of negative damping 1s confumed by experiment 
the precise Mach number at which the transltwn occurs cannot be expected 
to be the same in theory and experiment. For example, Tobak, Reese and 
~esm761.n experments on trmnguhr wags with A = 4 found that 
according to theory (mcludug a correction for the slender body on whxch 
the wmg was mounted) the dampmg became negative for M less than 1.13 
when E was I.27 whereas experiment gave M about I .I5 for a model havmg 
a 63 thxk section wth sharp leading edge and M about 1.2 for a model of 
the same .thicbess ratlo but with a rounded leading edge. For E = I.13 
the oorrespondlng figures were M = 1.27, 1.36 and 1.39. Another 
predxtion of linearued theory is that cutting off the tips of a trlsngular 
wing ~111 reduce its tendency to have negative pltchlng dampmg. 

Experiments,/ 
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Experiments, also reported in Ref. 76, support thxs conclusion; m these 
the model was a delta wing with the same leading-edge sweep but having a 
tip-chord l/5 of the mot chord. 

In a further series of experiments 102 Tobak extended these 
measurements to triangular wings of aspect ratio 2, 3 and 4 all with 3$ 
thick sectlons. The frequency parameter was again small. The agreement 
w1t.h theory in the range M = 1.2 to 1.9 was generally good for the 
pitching dampmg. For A = 2 he found little change with Reynolds number 
for R = 1.2 x IO6 to 1.9 x IO'. Henderson~O4 found that for thin 
trlmgulw wings of aspect ratlo 1.865, 2.309 F& 2.801 both the pltchlng 
stxffness and damping derivatives were predxted satisfactorily for 
M = 1.6, 1.9 and 2.4 and that increasing the amplitude of oscillation from 
O" to 3O,generally rncreased -ma slightly while having only a very small 

effect on -ma. Moorelo found that for trxxngular wings of aspect ratlo 2 
and 3, 4y6 thxck, at Mach numbers 2.96 and 3.92 the pitchlng damprng was 
smaller than theory by about 15% for zero mean lncxlence but rncreased as 
the mean inc~%~~ce was mcreased. Measurements by Orllk-RiickemannY1 gave 
pltchmg damping only about 60,; of its theoretxal value III the range 
M = 1.4 to 2 for a trlanylar wing of aspect ratlo 1.45. 

Taken together this evidence Justifies the conclusion stated at 
the beglnnrng of thus sectlon. For Mach numbers less than 1.4 theory can 
become very inaccurate although It seems rather less so for the lower aspect 
ratios. The effect of frequency varlatlon has not been investigated 
suffxxently for any conclusions to be given. 

There 1s much less experimental data for modes other than wtchmg, 
but we may refer to some experiments by Conl~n and Orllk-Riickemann105 on the 
dampmg in rollmg osclllatlons of a triangular wing of aspect rat10 2 and 
NACA 0003-63 se&Ion mounted on a slender body. The measurements were 
carned out for M = 1.35, 1.57, 1.78 and 2.03 and +JVO frequency parameters 
for each M, ; = 0.32 and 0.45 for M = 1.35 to ; = 0.25 and 0.35 for 
M = 2.03. The experimental values of the rolling damping derivative 
quadratically extrapolated to zero frequency parameter were conswtently 
about 3Ob less than the theoretIca value. 

7.5 Controls 

As already mentxoned the linearised theory of control surfaces for 
supersonic speeds contalns no special dlffxulties, but m fact only a few 
direct experimental comparisons are avaIlable, moreover comparison 1s made 
with theory for conflgwatlons not exactly the same as those used XI the 
experiment but resembling them more or less closely. 

Orl~k-Riickemann106 measured the hinge moment sttifness and drvnprng 
derivatives for an reboard constant chord traxlmg-edge control on a $ thick 
model of roughly delta planform (the trallmg edge was swept back II'), 
for M = 1.35, 1.57 and 2.02 and ; of order 0.2. Two-dlmenslonal theory 
greatly overestxnated the stiffness and underestimated the dampmg; the 
theory for a trallmg-edge rectangular control overestimated the stiffness by 

about/ 
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about 50$ at M = 1.35 decreasm~ to abcut 20;: at M = 2.02 but was 
ln good agreement on the aampmg. Mcdlfymg the latter theory by takmg 
the Mach number as Its campcnent normal to the trading edge unproved. the 
agreement slightly for the stxf'fness and made It slightly wcrse for the 
damping. 

ReesP ' 02 measured the hinge moment for oscdlatrng full span 
controls on the trailing edge of a trungular mng of aspect rat10 2 and 
NACA 0005 sectlcn. For each serxes of expervnents the hinge line was 
unswept but the control-chord/root-chord ratlo was 0.107 zt.n the frrst and 
0.067 in the second. The Mach number varied from M = 1.3 to 1.9 and 
the frequency parameter based on control chord was small. Cornpax-1son was 
ma&e with two-dlmensxnal theory and also some allowance was made for the 
tip effect by using the theory of a pitching rectangular wmg. In both cases 
the agreement on damping was very poor; theory predxted that It should be 
negative for M = 1.3 and rue to a posltxve value as M increased, but 
the experimental values whde sometunes agreeing roughly at M = 1.3 
persIsted III remamxng smaL1 or even negative as M ma-eased. Thx type 
of ccmparuon was affected only xn detad by lncreaslng the angle of attack 
up to 100, the emplltude of oscdlatlon up to 5", or the frequency parameter 
up to ii of order one. Theory overestimated the stiffness by up to 20)6. 

On thu evidence lmearlsed theory cannot be relied on for control 
damping derlvatlves, and is llkelg to give a consderable cverestlmate of 
stiffness denvatlves. 
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8. Swnmary of Conclusions 

In this section the success or fallwe of theory 1~1 predxting 
derivatives is summarised for the two commonest experimental sltuatvms, 
namely pitching of a rigid wing and rotation of a rxgid tmllmg-edge 
control. Unless otherwise stated theory means linearlsed thin wing 
potential theory (equation (5.1)). The amplitude of osclllatlon and the 
mean incidenceareassumed to be small. 

These conclusions are to be regarded as general unpresslons, 
sanetlmes based on tenuous or even conflicting evidence. The termrnology 
is necessarily rather vague; "satisfactory" agreement means wlthln about 
20% when applied to quantztzes whxh are not small. 

8.1 Two-dimensional flow - ru@ p1tchln.g aerofolls 

(>) Low-speed flow 

(il) Compressible flow 

(iii) Transonic flow 

(IV) Supersonic flow 

Theory 15 satisfactory for aerofozls of 
conventional section and moderate or small 
thickness (say up to I$), for ; up to 2 
and R large enough to avoid large 
movements of the transltlon point durmg 
the osclllatlon. 

As for lncompresslble flm, except that theo'ry 
may be less accurate for out-of-phase 
derlvotlves, and the range of ; for whxh 
evxlence 1s wallable 1s smaller, up to 
I; = 1. 

In both lncompresslble and compressible flow 
theory may be improved by lntroducrng a 
semi-emplrxal approach. 

Ordinary lmearised theory breaks down. 
"'Pransonic" llnearxsed theory may be better 
but cannot be checked for lack of evidence. 

If the leadmg-edge shock wave 1s detached 
theory 1s unreliable. For low iY Van Dyke's 
theory gxves good results provxded M 1s 
well above Its value for shock detachment. 
There 1s no lnformatlon for high frequency 
parameters. 

8.2 Two-dunens1one.l flow - controls 

(i) Low-speed flow For wedge-shaped trallmg edges theory 
consx,tently overestimates hinge moment 
derlvatlves by a factor as large as 2 or 3, 
but this relatlonship cannot be relied on 
for cusped trallmg edges. 

Theory CM be much unproved by a 
semi-emplrxal approach. 
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(11) Compressible flow Little data 1s wallable, but It lndxates 
that the degree of agreement found for 
incompressible flow may soon be lost as M 
u~creases and fa&completely well below 
crltlcal hr. 

(111) Transon~ flow No reliable theory 1s available. 

(m) Supersonic flow For thin wings theory is satufactory for 
high M, but for low .superson~- M 
(M = 1.3 say) theory tends to predict 
dampmg more negative than occurs 111 practice. 

8.3 Three-dlmenslonal flow - rlp,ld pxtchlng WU-IJ-W 

(A) Rectangular and unswept wings 

(1) Low-speed flow Theory should be at least roughly correct 
for wmgs or conventional section for ij up 
to about 2, and large enough R. 

(li) Compressible flow As for lncompresslble flow but agreement 
breaks down as M approaches Its crltlcal 
value. 

(iii) R-ansonlc flow No theory of known rellablllty 1s wallable. 

(1v) Supersonic flow For M hlgb enough for leadmg-edge shock 
waves to be attached theory 1s fauly good 
for thin wrngs and low V especially If 
allowance 1s made for thickness effect. 

Agreement deteriorates as M decreases, 
falling altogether for M near to one. 

(B) Swept wmgs 

(I.) Low-speed flow Theory should be fatly good for small 
mean mcldences and frequencxs up to c = 1. 

(II) Compressible flow Theory should be f'auly good up to some M 
Just less than 1 (dependmg on sweepback and 
proflle), and better than for unswept vrmgs. 

(id) Transonx flow No reliable theory 1s wallable. 

(iv) Superson~ flow Theory is fairly 
for M near to 

(C) Delta wings 

good for low ; except 
1. 

(i) Low-speed flow Theory 1s good for small mean lncldence but 
agreement deteriorates of leadmg-edge 
vortices OCCUI‘ 111 the flow. 

Slender wing theory should not be used for A > 4. 
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(ii) Compressible flow Theory is fairly good, and there 1s some 
evidence for svstematic differences wdh 
experiment. - 

(iii) !rransonic flow No reliable theory is wadable. 

(iv) Supersonic flow For thrn wings, low v and high M theory 
is good, but it becomes inaccurate for 
M < I:4 especially for low A. 

8.4 Three-dimensional flow - controls 

(i) Low-speed flow For controls of high aspect ratlo on hl& 
aspect ratio unswept wings two-dimensional 
theory overestimates the derivatives 
(as for two-dimensional flow). 

For controls of high aspect ratio on swept 
wings two-&menslonal theory may give 
satufactory agreement. 

There 1s no mathemat3xlly satufactory 
lrfting surface theory for controls, although 
the approach using equivalent smooth modes 
can gwe good agreement. 

(ii) Compressible flow The sort of agreement described III (i) persists 
up to some M depending on wing profde and 
planform, but near M = 1 control 
derlvatlves are usually highly non-lmear. 

(iii) Transonic flow There is no theory of lcnown rellabdlty. 

(iv) Supersonic flow Theory 1s not reliable. 

References/ 



- 37 - 

No. Author(s) 

1 I. T. Mlnhinnick 

2 H. Drescher 

3 W. P. Jones 

4 E. M. de Jager 

5 J. H. Gredanus, 
A. I. van de Vooren 
and 
H. lkrgh 

6 A. I. van de Vooren 
and 
H. Bergh 

7 H. Bergb 

a H. Bergh 
and 
A. I. van de Vooren 

References 

Title, etc. 

Subsonlc aerodynamx flutter derivatives 
for wings and control surfaces 
(compressible and incompressible flow). 
R.A.E. Report StIuotures 07. 
A.R.C.14,228, July 1950. 

Modern unsteady aerofoil theory - 
Experimental determination of unsteady lift. 
Part G.2 of AVA Monograph on unsteady 
processes, Ed. H. G. Kcssner. 
Translation avaIlable as Brltlsh A.R.C. 
paper 11,843, 1948. 

Wwnd-tunnel IIlterference effects on 
measurements of aerodynamic coefficients 
for osc111atmg aerofo1ls. 
A.R.C. R.&M. 2706, September 1950. 

The aerodynm~c forces and moments on an 
oscdlatlng aerofod with control surface 
between two parallel walls. 
N.L.L. Report F. 140, 1953. 

Experunental deternnnatlon of the 
aer‘odynsmx coeffuxents of an oscdlatlng 
wing ~TL lncompressxble, two-dlmenslonal 
flow. Part I - Wing with fued axx of 
revolution. 
N.L.L. Report F.101, 1952. 

Experimental determlnatlon of the 
aerodynamic coeffxznts of an osclllatlllg 
wmg in lncompresslble, two-dlmenslonal flow. 
Part II - Wmg mth oscillating axx of 
revolution. 
N.L.L. Report F.102, 1952. 

Experimental determination of the 
aerodynamic coefficients of an oscillating 
w.ng in incompressible, two-dimensional 
flow. 
Part III - Experiments at zero arrspeed. 
N.L.L. Report F.103, 1952. 

Experimental determination of the 
aerodynamic coefficients of an oscillating 
wing in incompressible, two-climenslonal flow. 
Part IV - Calculation of the coefficients. 
N.L.L. Report F.104, 1952. 

9/ 



- 38 - 

No. Author(s) 

9 R. L. Halfman 

10 J. B. Bratt 
and 
c. scnlton 

11 J. B. Bratt 
and 
K. C. Wight 

12 E. G. Reid 
and 
w. vlncenti 

13 A. Silverstein 
and 

TJ. T. Joyner 

14 K. C. Wight 

15 T. C. AndreopotiLos, 
H. A. Chedek 
and 

A. F. Donovan 

16 H. C. Garner 

17 A. I. van de vooren 

18 c. s. sinnott 

Title, eto. 

Experimental aerodynamic derivatives of a 
.3inus03.adiy oscillating airfoil in 
twc--dimensional flow. 
N.A.C.A. Report 1100, 1952. 

Measurements of pitching moment derivatives 
for an aerofoil osoillatlng about the 
half-chord axis. 
A.R.C. R.&M. 1921, November 1938. 

The effect of mean incidence, amplitude of 
oscillatum, profile and aspect ratio on 
pitching moment derivatives. 
A.R.C. R.&M. 2064, June 1945. 

An experimental determination of the lift of 
an osclllatug a&oil. 
Journal of the Aeronautxx.1 Sciences, 
Vol.8, No.1, pp.l-6, November 1940. 

Fxperlmental verdication of the theory 
of oscillating airfods. 
N.A.C.A. Report No. 673, 1939. 

Measurements of two-dunensional derivatives 
on a -g-aileron-tab system v~lth a 1541 
section aerofoll. 
Part I - Direct aderon derivatives. 
A.R.C. R.& M. 2934, October 1952. 

Part II - Drrect tab and cross aileron-tab 
derivatives. 
A.R.C. R.&M. 3029, 1955. 

Measurements of aerodynamic hinge moments 
of an oscflatlng flap an& tab. 
U.S.A.F. Technuxl Report No.5784, 
April 1949. 

Charts for low-speed characteristics of 
two-dimensional trailing-edge flaps. 
A.R.C. R.& M. 3174, August 1957. 

Unsteady Airfoil Theory. 
Advances xn Applied Mechanics, Vol. V, 
~p.35~89. Academic Press Inc., 
w.37 York 1958. 

Hinge-moment derivatives for an oscillating 
control. 
A.R.C. R.&M. 2923, 1953. 

lY/ 



- 39 - 

No. 

19 

20 

21 

22 M. T. Lsndahl 

23 H. C. Nelson 
and 
J. H. Berman 

24 

25 

26 

27 

28 

Author(s) 

H. L. Runyan, 
D. S. Woolston 
ana 
A. G. Rainey 

W. I'. Jones 

H. L. Runyan 
and 
C. E. Watkins 

J. A. Wyss 
and 
J. C. Monf'ort 

S. A. Clevenson 
and 
E. Wdmayer 

J. B. Bra'tt, 
W. G. Raymer 
and 
K. C. Wight 

J. B. Bratt 
ma 
A. Chinneck 

R. Dat 
and. 
M. I'rubert 

Title, etc. 

Theoretxal and experimental investigation 
of the effect of tunnel walls on the 
forces on an osclllatlng wmg m 
two-dimensional subsonic compressible flow. 
N.A.C.A. Report 1262, 1956. 

Wind-tunnel wall interference effects on 
osodlatlng aerofoils xn subconx flow. 
A.R.C. R.&M. 2943, 1953. 

Conslderatlons of the effect of wuld-tunnel 
walls on oscillating air forces for 
two-dimensional compressible flow. 
N.A.C.A. Report 11.50, 1953. 

Unsteady Transonlc Flow. 
Pergamon press, 1961. 

Calculations on the forces and moments for 
an oscdlatlng wmg-allwon comblnatxon in 
two-dunenslonal potential flow at sonw 
sped. 
N.A.C.A. Report 1128, 1953. 

Effects of airfoil profile on the 
two-dlmens~0ns.l flutter derlvatlves for 
wings osclllatlng ~TI pitch at high 
subaonx Mach numbers. 
N.A.C.A. Research Memorandum A54C24, 1954. 

Experunentalmeasurements of forces and 
moments on a two-dlmenslonsl osclllatlng 
rylng at subsonic speeds. 
N.A.C.A. Technical Note 3686, June 1956. 

Measurements of the direct pltchlng moment 
derivatives for two-dunens~onal flow at 
subsonic and supersonIc speeds, and for a 
-g of aspect ratio 4 at subsonic speeds, 
A.R.C. R. & M.3257, January, 1959. 

Measurements of muI-chord pitching moment 
derivatives at high speeds. 
A.R.C. R.&M. 2680, 1947. 

Applxation d'une m&hode de ddtermmatlon 
exp6rmentale des forces aerodynsmzques 
rnstatzonnalres relatives a une alle rlgde 
oscillant en soufflerle. 
O.N.E.R.A. Note Teohnlque No.&, 1958. 

29/ 



-w- 

No. Author(s), 

29 J. A. Wyss 
and 
R. Hen-era 

30 A. G. Rainey 

31 J. A. Wyss 
and 
R. M. Sorenson 

32 D. J. Martin, 
R. F. Thompson 
and 
C. W. Marts 

33 P. F. Jordan 

34 I. T. Minhinnxk 
and 
D. L. Woodcock 

35 M. D. Van Dyke 

;6 M. J. Lighthill 

Title, etc. 

Effects of angle of attack and airfoil 
profile on the two-dimensional flutter 
derivatives for airfoils oscillating in 
pitch at high subsonx speeds. 
N.A.C.A. Research Memorandum A54H12, 1954. 

Measurements of aerodynamic forces for 
various mean angles of attack 01) an 
airfod oscdlatrng XI pitch and on two 
finite-span wings oscdlating in bending 
with emphasis on damping in the stall. 
N.A.C.A. Report 1305, 1957. 

An investigation of the control-surface 
flutter derivatives on an NACA 651-213 
airfoil 111 the Ames 16 foot high speed 
wind tunnel. 
N.A.C.A. Research Memorandum A51J10, 
December 1951. 

Exploratory lnvestlgation of the moments 
on oscillating control surfaces at . 
transonlc speeds. 
N.A.C.A. Research Memorandum L55E3lb, 
August 1955. 

Aerodynsmx flutter coeffxlents for subsonxc, 
son32, and supersonic flow. 
(Lmear two-dlmensionsl theory). 
A.R.C. R.&M. 2932, 1953. 

Tables of aerodynamic flutter derivatives 
for thin wings and control surfaces 111 
trvo-dlmenslonal supersonIc flow. 
A.R.C. C.P. No.392, October 1957. 

Supersonic flow past &cdlatmg atiods 
includmg nonlrnear thickness effects. 
N.A.C.A. Report 1183, 1954. 

Oscdlating aerofods at hqh Mach numbers. 
Journal of the Aeronautical Sciences, 
Vol.20, p.402, June 1953. 

37/ 



- 41 - 

k Author(s) 

37 c. scruton, 
L. wooagate, 
K. C. Lapworth 
and 
J. Maybmy 

38 J. R. Martucelli 

Title, etc. 

Measurements of pitching moment 
derivatives for aerofo&3 oscillating in 
two-dimensional supersonic flow. 
A.R.C. R.& M. 3234, 1959. 

39 P. G. FYI& 
and. 
L. Woodgate 

40 W. J. Tuovila 
and 
R. W. Hess 

41 C. E. Watkins, 
H. L. Runyan 
and 
D. s. Woolston 

4.2 C. E. Watkins, A systematic kernel function procedure 
Il. s. Woolaton for detemdng aerodynsmx forces on 
and osodlatlng or steady finite wings at 
H. J. Cunningham subsonic speeds. 

N.A.S.A. TR R-48, 1959. 

43 J. R. Richardson 

44 W. E. A. Acm 

Measurement of pressure dxstributlon on an 
oscdlatlng wedge in supersonx flow. 
Aemelastlc and Structures Research 
Laboratory, Massachusetts Institute of 
Technology, Technloal Report 71-2, 
October 1958. 

Measurements of pltchlng moment 
derlvatlves for blunt-nose aerofoils 
osclllatlng 3.n two-dlmenslonal supersonic 
flow. 
A.R.C. R.& M. 3315, July, 1961. 

Aerodynamx dsmplng at Mach numbers of 
1.3 and 1.6 of a control surfaoe on a 
two-dimensional wing by the 
free-osclllatzon method. 
N.A.S.A. Techmcal Note D.116, 
February 1960. 

On the kernel fun&Ion of the integral 
equation relating lift and downwash 
dlstrlbutions of osclllatmg wings zn 
subsonic flow. 
N.A.C.A. Report 1234, 1955. 

A method for calculating the llftlng forces 
on wags (Unsteady subsonxc and 
supersonx lifting surface. theory). 
A.R.C. R.&M. 3157, 1955. 

Theory of ld%.ng surfaces oscxllatlng 
at general frequencies 3.n a stream of 
hi& subsonic Mach number. 
A.E.C. 17,824, 1956. 
(See also A.~.~.18,63~ (1956); 
19,229 (1957) and 20,771 (1959).) 

45/ 



- 42 - 

No. Author(s) Txtle, etc. 

Multhopp's subsonic lifting surface theory 
of wings in slow pitching osclllatlons. 
A.R.C. R.&M. 2885, 1952. 

The potential theory of unsteady 
supersonic flow. 
CambrIdge University Press, 1959. 

45 H. C. Garner 

66 J. W. Miles 

47 

4-8 

49 

50 

51 

52 

53 

54 

55 

I. E. Garrick 

H. R. Lawrence 
and 
E. H. Gerber 

W. P. Jones 

H. Ashley, 
G. Zartarmn 
and 
D. 0. Nellsen 

P. R. Guyett Measurements of pltchlng moment derlvatlves 
and for a series of rectangular wings at 
D. E. G. Poulter low wind speeds. 

A.R.C. C.P.249, June 1955. 

P. R. Guyett 
and 
J. K. Curran 

J. B. Bratt, 
K. c. w@lt 
and. 
A. Chlnneck 

J. B. Bratt, 
W. G. Raymer 
and 
C. J. W. Miles 

J. B. Bratt, 
W. G. Raymer 
and 
C. J. W. Miles 

Some research in high-speed flutter. 
Anglo-American Aeronautical Conference, 
Eirlghton, 1951. 

The aerodynamic forces on low aspect 
rat10 wings osolllatlng 1TI an 
incompressible flow. 
Journal of the Aeronautical Sciences, 
Vol.19, No-II, p.769, November 1952. 

Theoretxal air-load and derivative 
coefficients for rectangular wings. 
A.R.C. R.& M. 2142, 1943. 

Investlgatum of certain unsteady 
aerodynamlo effects on longltudlnal 
stabllxty. 
U.S.A.F. TechnIcal Report No. 5986, 
December 1951. 

Aerodynsmx derivative measurements on a 
rectangular wing of aspect ratio 3.3. 
A.R.C. R.&M. 3171, 1958. 

Free oscillations of an aerofoil about 
the half-chord axis at hqh incidences, 
and pltchvlg moment derivatives for 
decayrng oscxllatlons. 
A.R.C. R.&M. 2214, 1940. 

Interlm note on the measurement of 
torsional derivatives zn the Compressed 
Air Tunnel. 
A.R.C.6339, 1942. 

Interun report on further measurements of 
torsIona damping m the Compressed 
Air Tunnel. 
A.R.C.6716, 1943. 

56/ 



- 43 - 

No. 

56 

57 

58 

59 

60 

61 

62 

Author(s) Title, etc. 

J. B. Eratt 
and 
C. J. Davis 

The influence of aspect ratio and taper 
on the f'undamental damping deruatlve 
coeffxient for flexural motion. 
A.R.C. R.& M. 2032, 1945. 

J. B. Pratt The effect of sweepback on. the 
and fundamental derivative coeffxcient for 
K. c. w1ght flexural motion. 

A.R.C. R.&M. 2774, 1950. 

A. L. Buchan, 
K. D. Harru 
and 
P. M. Somervail 

D. S. Woolston, 
S. A. Clevenson 
and 
S. A. Leadbetter 

W. G. Molyneux 
and 
F. Puddlesden 

w. R. Ladlaw 
and 
R. L. Halfman 

w. R. La1dlaw 

63 H. C. Lessing, 
J. L. Troutman 
and. 
G. P. Menees 

64 W. E. k Acum 
and 
H. C. Garner 

The measurement of the derivative 
for an oscdlatmg aerofoll. 
A.R.C. C.P.52, June 1950. 

Analytzcal and experimental investlgatlon 
of aerodynsmx forces and moments on low 
aspect rat10 wings undergoing flapplng 
osclllatlons. 
N.A.C.A. Techucal Note 4302, August 1958. 

A technique for the measurement of 
pressure dlstrlbutlon on oscdlatlng 
aerofods, with results for a rectangular 
wmg of aspect rat10 3.3. 
A.R.C. C.P.233, June 1955. 

Experimental pressure dxtrlbutlons on 
osclllatmg low aspect rat10 wags. 
Journal of the Aemnautxal Sciences, 
Vol.23, No.2, p.117, February 1956. 

TheoretIcal and experxnental pressure 
dlstrlbutlons on low aspect ratlo wings 
oscdlatmg ~fl lncompresslble flow. 
Aeroelastx and Structures Research 
Laboratory, Massachusetts Institute of 
Technology, Technxal Report 51-2, 
September 1954. 

Experunental determination of the 
pressure distrlbutlon on a rectangular 
wmg osclllatlng in the fast bending mode 
for Mach numbers from 0.24 to 1.30. 
N.A.S.A. Technical Note D-344, 
December 1960. 

The estunation of oscillatory wing and. 
control derivatives. 
N.P.L. Note/Aero/423, March 1961. 
AGARD Technxal Note No.340. 

65/ 



-&- 

No. Author(s) Title, etc. 

65 E. Widmayer, 
S. A. Clevenson 
and 
S. A. Leadbetter 

Some measurements of aerodynamic forces 
and moments at subsonic speeds on a 
rectangular wing of aspect ratio 2 
oscdlating about the mdchord. 
N.A.C.A. Technical Note 4240, May 1958. 

66 C. Scruton, 
L. Woodgate 
and 
A. J. Alexander 

Measurements of the aerodynamx 
derlvatlves for swept wzngs of low aspect 
ratlo descrlblng pitching and plunging 
osozllatlons zn lncompresslble flow. 
A.R.C. R.&M. 2925, 1953. 

67 G. F. Moss Low-speed wmd-tunnel measurements of 
longitudinal oscxllatory derlvatlves on 
threewmgplanforms. 
A.R.C. R.&M. 3009, 1952. 

68 G. E. Whitmarsh The measurement of the derivative z 
for oscdlatlng sweptback wags. w 
College of Aeronautics, Cranfield, 
Report No.92, 1955. 

69 D. E. Lehrisn Calculation of flutter derlvatlves for wrngs 
of general planform. 
A.R.C. R.&M. 2961, 1954. 

70 D. E. Lehrlan Calculation of the dsmplng for rolling 
oscdlatlons of a swept pnng. 
A.R.C. C.P.51, October 1950. 

71 J. B. Firatt 
and 
K. C. Wight 

Measurements of the pitchmg oscdlation 
derlvatrves at subsonic and transonx 
speeds for an Id-wmg. 
A.R.C.21,661, February 1960. 

72 H. C. Garner TheoretIcal subsonx derlvatlves for an 
and osclllatlng M-wmg. 
W. E. A. Acum A.R.C. R.& M. 3214, 1959. 

73 C. J. W. Miles, 
J. B. Bratt 
and 
K. B. Erldgemsn 

Measurements of pltchlng oscdlation 
derlvatlves at subsonx and transonic 
speeds for a cropped delta wing of aspect 
rat10 1. a. (Interim Report). 
A.R.C. C.P.534, February 1960. 

74 S. A. Leadbetter 
and 
S. A. dvenson 

Some measurements at subsonw speeds of 
the aerodynamic forces and moments on 
two delta wings of aspect ratios 2 and 4 
oscillating about the mulchord. 
N.A.C.A. Research Memorandum L53J26a, 
December 1953. 

75/ 



- 45 - 

No. Author(s). Title, etc. 

Determrnation des coefflclent aerodynamiques 
instationnalres sur une alle delta de 
Mach = 0 a Mach = 1.35. 
O.N.E.R.A. Note Technique No.52, 1959. 

Experimental damping 111 pitch of 45" 
trxangular wmgs. 
N.A.C.A. Research Memorandum A50526, 
December 1950. 

The effects of osclllatlon amplitude and 
frequency on the experimental damping m 
patch of a triangular wing having an 
aspect rat10 of 4. 
N.A.C.A. Research Memorandum A52G07, 
September 1952. 

Experimental detennuatlon of the 
aerodynamic derlvatlves for flexural-alleron 
flutter of B.A.C. wing type 167. 
A.R.C. R.&M. 2373, 1945. 

Measurements of the aerodynemx 
derlvatlves for a horn-balanced elevator. 
A.R.C. R.&M. 2653, 1949. 

75 R. Dat 
and 
R. Destuynder 

76 M. Tobak, 
D. E. Reese 
aa 
B. H. Beam 

77 B. H. Beam 

78 c. scruton, 
W. G. Raymer 
and 
Miss D. V. Dunsdon 

79 N. C. Lembourne, 
A. Chinneck 
and 
D. B. Betts 

80 W. G. Molyneux 
and 
F. Ruddlesden 

81 D. E. Reese 

82 D. E. Reese 
and 
W. C. A. Carlson 

83 C. W. Martz 

Derlvatlve measurements and flutter tests 
on a rectangular-g wth a full-span 
control surface osclllatlng 111 modes of 
wmg roll and aleron rotatxon. 
A.R.C. R.&M. 3010, 1955. 

An experimental uwestlgatlon at subsonx 
and supersonx speeds of the torsional 
demplng characterlstxs of a constant-chord 
control surface of an aspect rat10 2 
+xlangular wmg. 
N.A.C.A. Research Memorandum A53D27, 
July 1953. 

An experunental lnvestlgation of the 
huge-moment characterlstux of a 
constant-chord control surface osclllatrng 
at high frequencies. 
N.A.C.A. Research Memorandum A55J24, 
December 1955. 

Experimental hmgi moments on freely 
oscillating flap-type control surfaces. 
N.A.C.A. Research Memorandum ~56~20, 
October 1956. 



- 46 - 

& Author(sl 

84 J. B. Ejratt, 
C. J. W. M~lles 
and 
It. F. Johnson 

85 c. scruton 
(Editor) 

86 IL L. mmyan 
and 
D. s. Woolston 

87 K. W. Mangler 

88 H. C. Nelson, 
Ruby A. Rainey 
and 
C. E. Watkins 

89 L. Courbil 

90 H. F. Ehzrson 
and 
R. C. Robinson 

91 K. Crlz.k-Riickemsnn 
and 
c. 0. Olsson 

92 R. Rose 

Title, etc. 

Measurements of the direct hmge-moment 
derivatives at subsonic and transonw 
speeds for a cropped delta wing with 
oscdlatlng flap. 
A.R.C. R.& M. 3163, 1957. 

Experiments on tail flutter. 
A.R.C. R.& M. 2323, 1949. (Appendix IV). 

Method for calculating the aerodynamic 
loading on an oscillatmg finite w3ng in 
subsonic and sonic flow. 
N.A.C.A. Report 1262, 1957. 

A method of calculating the short-period 
longitudinal stabdity derivatives of a 
wing in llnearlsed unsteady compressible 
flow. 
A.R.C. R.& M. 2924, 1952. 

Lift and moment coefflclents expanded to 
the seventh power of the frequency for 
osclllatmg rectangular wags in 
supersonx flow and applied to a speoifx 
flutter problem. 
N.A.C.A. Technical Note 3076, April 1954. 

Coefficient aerodynamiques instatlonnaires 
en soufflerle transsonlque d'ades coui-tes 
munles ou non de corps fuse&. 
La Recherche Ae'ronautlque, 
January-February 1961, p.55. 

Experimental wmd-tunnel investlgatxm 
of the trsnsonx damping 111 pitch 
characterlstxs of two wmg-body combmatxons. 
N.A.S.A. Memo II-JO-58~, December 1958. 

A method for the determinatvm of the 
dsnpmg-in-pitch of semi-span models II~ 
high-speed wind tunnels and some results 
for a triangularwmg. 
F.F.A. Report 62, Stockholm 1956. 

Wing flow measurements of the damping in 
pitch derivative of a 45" delta wing-body 
combination and with a tadplane ~TI two 
positions. 
A.R.C. C.P.432, August 1957. 

93/ 



- 47 - 

Title, etc. 

Law-amplitude damping in pitch 
characteristics of tallless delta-wmg-body 
combinations at Mach numbers from 0.80 
to 1.35 as obtained with rocket powered 
models. 
N.A.C.A. Research Memorandum L54D29, 
June 1954. 

Oscillating hinge moments and flutter 
characteristxs of a flap-type control 
surface on B &percent thxk wing wxth 
low aspect ratio at transonic speeds. 
N.A.C.A. Research Memorandum L55K17, 
February 1956. 

On the kernel function of the integral 
equation relating lift and aownwash 
distributions of oscillating wings in 
supersonic flow. 
N.A.C.A. Report 1257, 1956. 

Supersonx theory for osclllatlng wrngs 
of any planfonn. 
A.R.C. R.&M. 2655, 194.8. 

On the linearized potentxal theory of 
unsteady supersonx motion II. 
Quarterly Journal of Mechanics and 
Applied Mathematics, Vol. V, p.l37, 19.52. 

Use of source dutrlbutums for evaluatjng 
theoretical aercdynamlcs of thin finite 
wags at supersonlc speeds. 
N.A.C.A. Report 951, 1950. 

Measurement of the pitching moment 
derivatives for rlgd tapered wings of 
hexagonal planforms oscillating in 
supersonic flow. 
A.R.C. B.& M. 3294, March, 1961. 

Calculation of stability derivatIvea for 
tapered wags of hexagonal plsnfonn 
osclllatlng Itl a supersonx stream. 
A.R.C. R. &M. 3298, September, 1960. 

Measurements of the pitching moment 
derlvatlves for rigia wings of 
rectangular planform oscillating about 
the ml&chord axis 111 supersonx flow. 
A.R.C. C.P. 594, March, 1961. 

102/ 

K Author(s) 

93 C. T. D'Aiutolo 

94 R. F. Thompson 
and 
W. C. Moseley 

95 C. E. Watkins 
and 
J. H. Berman 

96 W. P. Jones 

97 K. Stewsrtson 

98 J. C. Evvard 

99 L. Woodgate, 
J. F. Maybrey 
ana 
C. Scruton 

100 Doris E. Lehrian 

10-i c. Scmton, 
L. wooagate, 
K. C. Lapworth 
and 
J. F. M. Maybrey 



-LB- 

No. Author(s) 

102 Id. Tobak 

103 J. A. Moore 

lOl+ A. Henderson 

105 L. T. Conlin 
end 
K. J. Orlik-Riickemann 

106 K. J. Orllk-Riickemsnn 

Title, etc. 

Damping in pitch of low-aspect-ratio 
wings at subsonic and supersonic speeds. 
N.A.C.A. Research Memorandum A52LO4a, 
April 1953. 

Experimental determination of dfunplng in 
pitch of swept and delta wings at 
supersonic Mach numbers. _ 
N.A.C.A. Research Memorandum L57GlOa, 
December 1957. 

Investigations at Mach numbers of 1.62, 
1.93 and 2.41 of the effect of oscillation 
amplitude on the damplng in pitch of 
delta-wing-body combmations. 
N.A.C.A. Research Memorandum L53H25, 
October 1953. 

Comparison of some experimental and 
theoretlcal data on dsmpmg-in-roll of a 
delta-wing body configwatlon at aupersonx 
speeds. 
N.R.C. (Canada), Aeronautrcal Report 
L&266, December 1959. 

Some data on elevator dsmplng ad sttifness 
derlvatlves on a delta wmg aircraft 
model at supersonic speeds. 
N.R.C. (Canada), Aeronautical Report 
LR-250, June 1959. 



FIG. I 

V 

axis 
Win;-control 
hinge line 

Quantities defining the oscillatory motion of a 

rigid wing with a control 



FIG. 2 

O-3 O-3 

0.2 0.2 

0-I 0-I 

0 0 

-0-I -0-I 

-0.2 ’ -0.2 ’ 

-0.37 -0.37 x x x x * x Y x * x Y x * x x x * x x x 

me me 

-04 -04 

-0*5- -0*5- 
0 0 0.5 0.5 I-0 I-0 I-5 I-5 2-O 2-O 

7 7 

Direct pitching derivatives for a 7.3% thick aerofoil 

( Tl = o-25) 



i 

I 

C 

-I 

FiG. 3. 
‘ 

I 

Theory (Flat plate) 

Experiment 
R = I.0 x 106 + 

(Rd. 9) 
R =o.g x ,06 o 

R=O-8~10~ x 

Lift derivatives for a pitching aerofoil (ii= O-37) 



FIG. 4 (a) 

I.2 

x 
9 

I.0 
, 

-z* x Id 
‘* 

0.8 

0.6 

0.4 

0.2 

O_ 

Theory (Flat plate) 

Equivalent profile method ----em- 

(Ref. 10) 

Experiment 
R = I x IO6 X 

(Ref. 14) 
R=2 x IO6 0 
R-3~10~ + 

0 I 7 2 3 

Hinge moment derivatives for a 20’/0 control on a IS’/0 thick aerofoii 

(a) Stiffness derivative, -$ 



FIG. 4(b) 

o-9 

-hi x IO’ 

o-5 

0.4 

0.3 

o*t 

0. 

+ 

0 

++ p*‘--- 
._--- 

Y 

+d 
. 

/’ 
/ 

Theory (Flat plate) 
ItI 

Equivalant profila method -----em 
(Ref 18) 

Experiment 
R - I x I06 x 

(Ref. 14) R==2x106 0 
R-3x106 + 

Hinge momant darivativas for a 20"/0 control on a IS?0 thick aerofoil 

(b) Damping darivativa , -hi 



Cm 
I-1 cm T 

Moment ratio Moment ratio 

0.6 I I 
I 

t 

Theory, wall 
0.4 effect 

included 
(Ret. 191 t-f-i 

0 

0 Phase angle 

-d,{ 
-20JA-Lu-u 

% A I TQJ=\l- lo I 
-sot I I \I 1-1 I 

I 

--- Free 0 

-7 0’ - 
stream 
theory 0 

0 O-2 0.4 O-6 0.8 I.0 I.2 
G/3res 

Direct pitching moment for an aerotoil at frequencies through tunnel resonance 

( ‘;=0*5 , hbO.6) 



FIG.6 

-0.4 -0.4 

-9 -9 

-0.8 -0.8 

-- -- 

-1.2 -1.2 

o-2 

G 

0 

o-3 0.4 O-5 
M 

O-6 0.7 0.8 0.9 

3. 0 

-m . 
8 

2.0 

Theory (flat plate) 

Equivalent profile theory o Equivalent profile theory o 

Pitchina moment derivatives for a loo/o thick aerofoil 



O-04 I I M=OA 

-“# 

0.02 

I Theory I I 

0.01 
t 

0 

X M=O*4 I Experiment l-i 

0.01 - 0 

X 

A A M=0*6 (Ref. 31) 

a a M--O* r 
0 0 

,I , 

0 0 o-4 o-4 08 08 7 I-2 7 I-2 I-6 I-6 2-O 2-O 

Hinge moment derivatives for a 2S”/o control on a IS’/0 thick wing - 



FIG.8 

, 

0. 6 

-m 8 

0.5 

0 

-0-J 

-0.6 

0 0.2 5 
il 

O-5 0.75 

I.2 
Linearisad thaory 

-.- Van Dyka’s theory (7’/2% thic 

Van Dyka’s thaory(S’/o thic 
0.8 

0 

--- 

-0.4 
0 0.25 5 o-5 0.75 

-0 

*O 

Diract pitching darivatives for biconvex oarofoils 

( M = 1.42, v=o~o25, so*) 



O-8 

0-I 

0 
0 o-2 o-4 O-6 O-8 J I.0 I.2 I. 4 I.6 I.0 i 

Direct pitching derivatives for rectangular winqr (M c 0, 5 = 0.5) (a) Stiffness derivative mg 



0.6 

o-5 

0.4 

-me 
e 

0.8 

0.2 

o- I 

0 

Theory 
-A- - Experiment (Ret. 50) 

0 

I 
Experiment A = 3.3. (Ref. 52) 

I 

o-2 0.4 0.6 04 v 

4. 

I4 
I 

I I2 I.4 I.6 I.8 

Direct pitching derivatives for rectangular wings (M = 0, I=. 0.5) (b)Domping derivative,-rnb 



0.8 

0 -7 

0.6 

Theory I 

X. 
--- ---Experiment (Ref. II) x 

\ 

L-J-J-z 
i 

i -I----+ 
q+- 

-m=- 
Ikt 

- 

0 0.2 0.4 0.6 0.8 7 I-0 I.2 I-4 I.6 1.8 

Direct pitching derivatives for rectangular wings (M = 0.3 I 0.5) 

2.0 

(a) Stiffness derivative, me 



0.6 

0.5 

-mm 0 
0.3 

I I I 

Theory 
_- -- * Experiment (Ref. II) 
-- -- + Experiment (Ref. 55) 

I I / h =4. 
0 I 

0 0.2 0.4 0.6 O-8 y I-0 I-2 I-4 l-6 I.8 

Direct pitchinq derivatives for rectonqulor wings (M = 0, ‘h -0.5) 
(b) Dampinq derivative,-rn,g 



FIG. II. 

0 

U’L 

---_ ii 

0 

-- 

0*75 

-mg 

O-5( 

0 

0.21 

0 

- 
) 6 3 

> 

5 04 0.5 0.6 M 0.7 0.8 o-9 

Direct pitching derivatives for a rectangular wing 

( A=4,% =o 445) 



FIG. 12. 

-m 8 

0 

00 000 0 0 C 
36 T\ - I.063 0 0 

I L I 

0 o-2 F 0.4 0.6 0.8 

0.3 ii = 0.883 3t 

0 0 
0 0 0 Oo 00 0 

0 

o-2 0 
0 -i I I.063 

-md 3t 
00 O 0 0 0 0 

I I I I 
0.1 I I 

Theory (Ref.69) 

* Theory (Ref. 45) 

0 Experiment 

0 
(Ref. 67) 

0 0.2 5 0.4 0.6 0.8 

Direct pitching derivatives for a tapered swept winq 
(A- W, M-o) 



I.5 

I-0 

O-5 

-me 

0 

-0.5 

-I *o 

2.0 

I-5 

I-0 

-Ill* 8 

O-5 

0 

FIG. I3 

Theory (G-O) I I 
0 ii Experiment 
+ ii v’ * 0.04 lvl-’ 

oO 
I I 

I 
0.2 0.4 M 0.6 0.8 I.0 I.2 

Direct pitching derivativus for a tapered swept wing (A = 2.64) 



FIG. 14 

3.5 3.5 

3.0 ’ 3.0 ’ 

y, A y, A 

\ \ 
\ \ 
\ \ A-l A-l 
\ \ 

2.5 ’ 2.5 ’ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 

2.0 2.0 

-Illi -Illi 

I-5 ’ I-5 ’ 

I.0 I.0 

o-5 

0 LI 
0 0.4 0 I. 8 ii 1.2 I.6 2.0 

Theory @- 0) 

Lifting -surface 
--- Slender-wing 

Experiment (C c 0.71 

k 

+ 

-e-m 
-- 

Bristol 
Aircraft Ltd. 

‘\ \ 

K\ ‘\, 

Effect onmean incidence of pitching damping for a triangular wlng 

(A= I, M-0) 



FIG.15. 

0.8 0.8 

-m -m e e 

0.4 0.4 

0 0 

il= I&l 
-0.4. -0.4 Cl ,nnn 

x rl Y .“c- 

0 0 0.2 0.2 0.4 0.4 0.6 M 0.6 M 0.8 0.8 I I 

x 

=I= 

x 

,oo 00 - ---- 
- A r 10 00 x 

I-2 

Theory (P -0) 

0 Experiment (7 fi 0.05 M’ 
X Experiment,A=2.045, 

4 

I 
0 0.2 0.4 0.6 M O-8 I.0 I.2 I- 4 

Direct pitching derivatives for a cropped dalta wing (A = 210) 



FIG.16. 

0.08 
0 Theory (9 -0) 

-x- Experiment 

0.06 - ( 2 e 0*065M-') 

-h 
(Ref. 64) 

t 

0.04 

0 
0*02cr VX-xCX-X- 

0 

0.04 

0.03 

o-02 

-h* 
t 

0.01 

!g >,// !g >,// .-------- .-------- r r 

AL- AL- /*-* /*-* 

0.2 0.2 0.4 0.4 0.6 M O-8 0.6 M O-8 
I I 

0.2 

Direct hinge moment derivatives for a delta wing (A = 1.8) 
with a full spun control 



O*I 

0 

-O*i 

-me 

-0.2 

-0.3 

-0.4 

-0.5 

FIG. 17(a) 

Experiment Theory 

x ?*O-I5 M-’ F-0 
0 v’rO.30 M-’ - - c = 0.3 
b G==0.43 M-’ ------ i? = 0.6 

0.6 0.7 0.8 0.9 I-0 I-I 1.2 I.3 I 4 

/ 

LandahlL /’ 
-9’ 
/ 

I- 

I: 
/ ’ Ref. 88 

I 

Direct pitching derivatives for a rectangular wing at transonic speeds 

(A "2, ii = 0.42) 

(4 Stiffness derivative, -mg 



FIG. 17 (b) 

Experiment 

X Ta 0.15 -I M 

0 ;=% 0.30 M-’ 

A 
-I iiaO.43 M 

Landah! 

0.7 0.8 0 ) I.0 
M 

Theory 

F-0 

-- 5 = o-3 

----- 7 = O-6 

Miles (Ref. 46) 1 

I 

I 

t 

\ 

*2 I.3 I.4 

Direct pitching derivatives for a rectangular wing at transonic speeds 

(A=& i; = 0.42) 

(b) Damping derivative, - mi 



23,640 
FIG.18 

0.7 

O-6 

0-J 

0.2 

0. I 

0 

-0 I 
E 

S 

, 

lender wing theor] 

Lifting surface 
theory 3 = o., --- 

3 = 0.5 ----- 

Landahl’s theory (Ref. 22 ) 0 

Mangler’s theory (Ref. 87) 0 

Experiment, A=I*45, %0-I (Ref.91 ) -------- 
I I , 

O-8 o-9 I.0 M I.1 I.2 3 

Pitching dampina for a trianaular wina at transonic 

speedscA=I,S ,6= I-2) 



FIG. 19 

0 Number of slots l 3 5 7 II 

I- 5 

I.4 

-me 

I-3 

I- 2 -: 
I 

1 -0.5 I.0 I.0 

Direct pitching derivatives for an M-wing measured in a 
rectangular tunnel with longitudinally rlotted roof and 

floor (A=5*02, ‘Fi=O*4644) 



o-2 

-md 

0-I 

0.2 

-mb 

0.1 

0 

FIG. 20. 

--- With thickness correction 

0 Experiment (5%double wedge) 

-me’ 
---_ 

0-I 

0 
-45O -3OO 

Trailing 
side edge 

-I9 0 Pi0 30° 4s” 
Strcamwise 

tip 
Lpading 
side edge 

Effect of tip rake on pitchmg damping for unswept tapered wings 

pitching about the mid chord axis (MP MI) 



FIG.21 

I.5 
I 
I 
I 

I.0 

F 

\ 

\ 
\ 

0.51--+ 
Tl= 0.948 

/’ 7 

-9,- 

rrtr 

-Theory p--to) 

o Experiment (7CO.02) 

Theory corrected for thickness 

m-e by Van Dyke’s theory 

x by piston theory 

Direct pitching derivatives for a 5’/0 thick unswept wing (Az4.33) 
in suoersonic flow. 





A.R.C. C.P. No.681 
March, 1962 
Acum, W. E. A. - Nat.'Phys. Lab. 

THE COMPARISON OF THEORY AND EXPKRIMENT 
FOR OSCILLATING WINGS 

The report discuses the comparison between 
experimental ad tbeoretnal values of the 
aerodynamc derivatives for wmgs and controls 2.n 
oscillating motion for subsonic, transoruc and 
supersoluc flight in two or three duoenslons. 

A.R.C. C.P. No.681 
March, 1962 
Acum, W. E. A. - Nat. Phys. Lab. 

TEE COMPARISOP! OF THXORY AN' EXPERIMENT 
FOR OSClLLAiIs~G JINGS 

The report d?.scusses the comparison between 
experlnental and theoretxcal values of the 
aerodpauc derlvatrves for v73.q~ and controls xn 
oscillating motion for subsonx, transoruc and 
supersoluc flight zn two or three timenslons. 

I I 

A.R.C. C.P. No.681 
March, 1962 
Acum, W. E. A. - Nat. Phys. Lab. 

!t'HX COMPARISON OF THEORY AND MPERIMENT 
FOR OSCILLATIXG WINGS 

The report discusses the comparison between 
experimental and theoretical values of the 
aerodynamic derlvatlves for wings and controls in 
osciilatzng motion for subsonx, transonxc and 
supersotllc flqht in two or three dxnension.3. 







C. P. No. 681 

0 Crown copyrrghr 1963 

Printed and publlshed by 

HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
York House, Kmgsway, London w c 2 

423 Oxford Street, London w 1 
13A Castle Street, Edmburgh 2 

109-Q Mary Street, CarddT 
39 Kmg Street, Manchester 2 

50 Falrfax Street, Bristol 1 
35 Smallbrook, Rmgway, Blrmmgham 5 

80 ChIchester Street, Belfast 1 
or through any bookseller 

Printed m England 

s.0. Code No 23-9013-81 

C. P. No. 681 


