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1. Introduction

The importance of an adeguate knowlcdge of the forces actang on
wings in oscillatory motion hardly needs stressing since 1t plays a vital
part in the study both of flutter and of the prediction of the motion of
an aircraft as a whole. The subject has becn studied for many years but
naturally the early investigators were mainly concerned with incompressible
flow and unswept wangs. With the rise 1n arrcraft speeds and changes in
planform 1t became necessary to investaigate the effects of compressibality
and sweepback and this began about twenty years ago. There has been
subsequent steady development of experimental techniques and theoretical
methods, the former being greatly advanced by the introduction of ventilated
tunnels for transonic speeds while the approach to the latter was radically
altered by the use of electronic computers. Even so the range of
parameters which now has to be covered is so large that the amount of
information available is sometimes quite inadequate,

Some experimental information has been obtained from flight tests
of aircraft, or from models mounted on rockets or aircraft, but most has been
obtained 1n wind tummel measurements using rigid models of wings or rigid
controls. Measurements with distorting models, although not unknown, are
uncommon, due to experimental difficulties. Thus for a knowledge of the
forces due to modes involving distortion we are dependent on theory and it is
therefore essential that any theory used should have been checked by
comparison with whatever experimental evidence 1s available. The
experimental information usually takes the form of overall forces and moments
and we shall for the most part be concermed with the comparison of thexr
non-dimensional values. Measurements of pressure distribution over the wing
also tend to raise experamental difficulties but a few experiments of this
sort have been perforned.
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Almost all theoretical work lies within the framework of
linearised theory, so that it applies to small oscillations of very thin
wings in a fluid of negligible viscosaty. This means that much of the
experimental data can only be expected to agree approxamately wath theory.

In only a few cases has an attempt been made to take account of the thickness
of the wing or the vigcosity of agir. Even for linearised theory the
calculations required may be wvery lengthy, especially an the later
developments dealing with three~dimensional waings, and because of' this 1t has
not always been possible to gave a theoretical comparison with an experiment.

Experimental work on oscillatory wings tends to be difficult and
inaccurate, moreover the calculation of wind-tunnel interference i1s of'ten a
formidable task, so that many values are uncorrected. Coupled with the
approximations of theory this means that the standard for what constitutes
"good" agreement has to be set fairly low; errors of 10% might be
considered small in this context.

The general procedure in this chapter is to take each flow régime
in turn, to consider briefly first the relevant theories, and then see what
experimental data can be found to check them, The survey of experimental
work is not intended to be exhaustaive. The quantities compared are usually
the derivatives for rigid modes, defined below, which strictly apply only to
sustained simple harmonic motion, but the error due to using experamental
values obtained from the decaying oscillation technique are probably not
serious, Where sufficient evidence exists for conclusions to be drawn they
are given at the end of the relevant sub-section, and summarised in Section 8.

Notation

a speed of sound in free stream

A aspect ratio of wing, A = 2s/c

B width of wind-tummel working section

T geonetric mean chord of wing

c. root chord of' wing

Cm pitching moment coefficient; pitching moment = %pVQSECm
c value of Cm calculated by free stream linearised theory

width of slot in a slotted wall wind btunnel

oo o

frequency of oscillation (cycles per unit tame)

=1

distance of pitching axis downstream of the leading edge of
the centre section, non-damensionalised with respect to ¢

hys By hﬁ ] non-dimensional derivative coefficients for hinge moment,
. . see under "Definitions"
hss hé’ hE

B,/
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he, hE
H

&

66, 8€
66, 8é
56, 6€
me, IIIE
mg, m
Mg, i
M

N

R

8

S

t

v

w

X, ¥ %
X

O

see under "Definitions, GV

height of wind~-tunnel working section

-1
local loading coefficient, (pressure difference) x (%pve)

non—~dimensional derivative coefficient for 1ift, see under
"Definitions"

see under "Definitions, C"

non-dimensional derivative coefficients for piteching moment,
see under "Definitions"

see under "Definitions, G"

free stream Mach number

number of slots on roof or floor of a wind tunnel with
longitudinally slotted roof and floor

Reynolds number, R = pVc/u where u is the coefficient
of viscosity

semi-span of wing

area of wing planform

time

free stream velocity

component of perturbation velocity in the 2z direction

rectangular Cartesian co-ordinates, x in the dairection of
the flow of air relative to the undisturbed position of the
wing, y to starboard, z upwards. It is assumed that

the wang always lies near the plane z = O

value of x at the pitching axis

value of x at the axis of rotation of a control surface
(at the junction between wing and controls unless stated to
be elsewhere)

mean incidence in a pitching oscillation

(1 - e )2
&/
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Z 'Ezéuﬁt is the downward displacement of the reference axis
© (see Fig.1)
eoelmt oscillatory angle of incidence, positive trailing edge down
(see Fig.1)
v frequency parameter, v = wo/V
Bfes critical frequency parameter for tunnel resonance
goelwt angle of deflection of a trarling edge control, positive
tra1ling edge dom (see Fig.1)
p free stream density
T thickness ratio of wing section
¢ velocity potentisl of flow round wing
-~ dwt
¢ ¢ = ¢e for oscillatory flow
Yo phase angle of pitching moment, arc tan (Emé/me)
w angular frequency of oscillation, 2nf
Definitions

(A) Modes of Oscillation

The modes considered in this chapter can be specified
sufficiently accurately by giving the position of the wing surface in the
form z = f(x, y, t).

* s

"heaving" 1is defined by Z = = c%§}Wt

Wpitohing" is defaned b = - (x - x )8 "

P g" is defaned by zZ = x - x )6 e

"econtrol rotation™ is defined by 2 = = (x - xh)goelmt on the control
and z = 0 off the control

rolling" 1s defined by - z = y¢oe1‘*’t

"flapping" 1s defaned by z = Iy|¢oelmt

Unless otherwise stated we shall be considering only controls hinged
at the junction between the wing and contrel. A typical section of a wing
hegving and pitching with control rotation is shown in Fig.d.

(®)/

*0f'ten referred to as "plunging".



(B) Derivatives

The representative length and area for the wing are taken to be
G and S, Then for a rigid pitching wing fitted with a hinged aileron

iwt {

Lift = pVPSe (sz + 1365):;0 + (se + ﬁeé)eo + (&E + iUcE-)E,o}

Pitching Moment (positive if it tends to raise the leading edge)
— dwt e .= =
= pV¥Sce 1§ (mz + :Lvmé)zo + (me + :l.umé)e0 + (mE + J.vmé)ﬁol
Control Hinge Moment (positive if it tends to depress the trailing edge
— dwt = - -
= p¥¥Sce {(hZ + lvhé)zo'+(hﬁ + 1vhé)60 + (hE + ivgé)go}

The configuration envisaged in these definitions is that the wing
has a symmetrical planform, and that there are two symmetrically situated
trailing edge controls, one on the starboard half-wing and one on the port
half-wing, and that thesge controls are oscillating in phase. The control
hinge moment is the total moment exerted on the wing by the controls, and
the 1ift and pitching moments are also taken to include the effect of both
controls.

The general scheme of defining derivative coefficients for other
modes should be apparent from these formulae,

For two-dimensional wings S must be replaced by ¢ (which is
of course equal to ¢ the oonstant chord) and the forces and moments then
have their wvalues per unmxt span.

As defined above both the modes of oscillation and the forces and
moments are assumed to be simple harmonic. In practice of course the latter
will not be simple harmonic, and the expressions asbove represent merely the
first terms in thelr Fourier series expansions.

(C) Acceleration Derivatives

Some authors divide the stiffness derivatives into two parts, thus
£ = £ =Pl
z Z Z

and similarly for 69, -6g, m_ s By, mE,’ he and hE.' Here the "acceleration
derivatives" &--, etc., are taken to deflne the still~air virtual jnertias, so

that in sti1] a:l..r Lift = - pSclw &--zoe t they are thus independent of
M and U, in fact -2'.2- = lim (¢ /7). Tebulated values for

V>0

two-dimensional flow may be found in Ref.1.
2./
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2. Two-Dimensional Incompressible Flow

2.1 Rigid aerofoils

The principal sources of data for comparison in incompressible flow
are the theories developed by Theodorsen, Kussner and others which are
described in Chapter 2 of Part I of this Manual. Farly work in this field
is reviewed in Ref.2, Modafied forms of the theory which-allow for the
presence of wind tunnel walls are also available, for example Refs.3 and L.

The theory may be expected to apply when viscosity is negligible,
the aerofoil 1s thin, and iis amplatude of oscillation is small. When these
restrictions are borne in mind the degrce of agreement with experiment may be
regarded as satasfactory. As an example Fig.2 shows the direct pitching
deraivatives, N and sy obtained for an aerofoil of conventional section,

7.3% thick,pitching about the quarter-chord axis, during the extensive
experimental investigation by Greidanus, van de Vooren, and Bergh (Refs.5 to 8).
The experimental points plotted were obtained from Table 5 of Ref.8. The
systematic differences between theory and experaiment are obvious; the other
deravatives measured (86, &é, m,, M, 53 and 5;) also show systematic

differences especially at the higher end of the frequency range. -

Apart from experimental scatter, the data shown in Faig.3 show a
similar sort of comparison. These were obtained from Table II of Ref.9, and
apply to a wing of NACA 0012 section patching, with amplatude 6.74°, about an axis

0.37c downstream of the leading edge. To avoid overcrowding Fig.3 some of the
measured values have been omitted. Ref.9 also contains values of the
deravatives for heaving oscillations and other amplitudes of pitching
oscillation. The 1ifts and moments show much the same sort of agreement as
that in Fig.3.

Other experimental invesiigations (Refs.10 to 13) lead to the sane
conclusion, that theory will give a falr approximation to the truth for
conventional aerofoils with moderately swall thiclmess and amplitude of
oscillation. If these conditions arc not satasfied the theory may differ
widely from experiment, Bratt and.W1ght11 found that for a model with elliptic
section the pitching damping varied with frequency in a way radically different
from that for conventional aerofoils., The same authors also found that mean
incidence and amplitude of oscillation could lead to wide divergences if the
aerofoil approached its stalling incidence. The agreement may also be
adversely affected (Ref.5) if the Reynolds number is such that the
boundary-layer laminar-turbulent transition point moves during the oscillation;
in fact the experimental values plotted in Fig.2 were obtained with a transition
wire near the leading edge. A dascussion of these effects may be found in
Chapter 5 of Part V.

2.2 Controls

The theory also applies to aerofoils with controls, although its
accuracy is much less satisfactory. Experaimental data for controls i1s scanty
but points to the conclusion that theory overestimates control stiffness and
damping derivatives by a factor which may be as large as 2.5.

Fig.l/
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Fig.l shows theory compared with the hinge moment derivatives ‘}\;E
and hs measured by Wight™*, The control chord was 20% of the chord

of the wing which was 15° thick. At the test Reynolds numbers the transition
point was well forward of the hinge line, The changes with frequency
paranceter are relatively small and experiment and theory are roughly in the

ratio 0.6 for ?1'5 end ht. Further measurements described in Part II of Ref.il

for a small tab with chord 4.2% of the wing chord gave even smaller ratios,
about 0.5 for the direct tab hinge moment derivatives and all the cross
derivatives except the aileron hinge staffness due to tab oscillation for which
it was about O.4. The effect of varying the Reynolds number is small but
there is a perceptible effect on the damping. It was found that varying the
position of transition could have effects of similar magnitude, but these are
negligible compared with the discrepancy with theory. Tnclusion of the
acceleration derivatives would be unlikely to affect the comparison
signaficantly.

Ref.15 describes experiments on a thinner aerofoil (NACA 0010 profile)
with a larger (40% ) aileron and larger (10% ) tab. The measured values of the
aileron hinge moments tended to be only slightly smaller than theory but the
neasured tab derivatives and cross derivatives were considerably smaller
although the ratios were not as small as for the measurements of Ref.q12.

Presumably the different ratios of theory and experiment in the two
sets of experiments reflect different profiles, thicknesses and control sizes.
The tendency seems to be the smaller ihe control the smaller the ratio of
experiment to theory but there is not enough experimental evidence to make it
possible to give with any confaidence a rule by which the right relation could
be predicted. It is in any case unlikely +to be simple, since for steady flow,
for which much mare data is available, the effects on control deravatives of
control chord, incidence, profile and Reynolds number are large and complicated,
see for example Ref.16. In particular if the trailing edge angle 1s small,
as opposed to the fairly large angles used in the experiments cited above, the
experimental hinge moments, --»hE » tend to be higher than the theoretical.

203 Semi-Empirieal Methods

Various devices have been adopted to improve the theoretical estimates
of derivatives by incorporating experimental results +to account for the effects
of thickness and viscosity. A discussion of these has been given by

van de Vooren17.

The most straightforward is the "equivalent profile™ or "skeleton line"
technique in which the thick aerof'oil is replaced by one of zero thickness whose
mode of oscillation is determined from the measured forces acting on it in
steady flow or from charts such as those in Ref.16. An application of this
method to the caleculation of control derivatives is described in Ref.18; +the
resulting values have been plotted in Fag.h. The improvement in the
agreement for "hé in Fig.k(b) is striking.

3./
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3. Two-Dimensional Compressible and Transonic Flow

3.1 Theoretical background

The theory which has to be checked in this régime consists of the
solution of the linearised equation of subsonic compressible flow or of the
integral equations by which it may be replaced, e.g., Possio's equation.

(See Part I, Chapter 2.) Many authors have worked on this- problem and
extensive tables of deravatives are available. Methods are also extant for
calculating tunnel interference??:20) but the results have not been tabulated
as extensively as for incompressible flow, although relatively simple formulae
exist for low-frequency oscillations2C,  perofoils osciliating in wind tunnels
may be affected by "tunnel resonance" in which the model and the air in the
tunnel form a resonating system so that the interference effect becomes very

large2l, The critical frequency for resonance is gaven by

= T cee(3.1)

Ires

v o=

et
M

o | ol

and the phenomenon is therefore most serious when M 13 near %o one and
f 15 small.

For sonic flow solutions of the "linearised transonic flow equation"
(equation 6.8), are available; see, for exanple, Refs.22 and 23. The
calculation of interference effects for M near to one 1s a practically
unknown subject, complicated by the fact that the tunnels used have slotted or
perforated walls.

3.2 Ragid aerofoils at subcratical Mach numbers

To illustrate the phenomenon of tunnel resonance and to give an idea
of the sort of agreement found in the compressible but suberatical flow régime
we may quote the results given an Ref.19, In Fig.5, which 15 1n fact Fig.h(c)
of that report, the experimental points refer to NACA experiments on a 10%
thick aerofoil (NACA 65-010 section) piiching about 1ts mad.chord axis at a
Mach number M = 0,6, in a tunnel for which H = 3.8¢. The moment ratio
is obtained by davading the modulus of the pitching moment by its theoretical
free-stream value, and the frequency ratio by dividing the frequency parameter
by 1ts eritical value for resonance, By equation (3.1) for the paraneters
Just given, lvfes = 1+10. The full-line curves represent the theoretical

pitching moment for the wing in the tunnel calculated by the method put forward
in Ref.19. The loss of pitching moment corresponding to resonance i1s obvious.
The phase angle is well predicted by theory but the actual magnitude as
overestimated, but near resonance there 1s a large wall effect on the phase
angle corresponding to large discrepancies an M « Similar effects were found

for M = 0.35, 0.5 and 0.7, for both 1lift and pitching moment.

One inference is that tunnel interference on forces and moments is
appreciable for values of H/c as large as 3.8 and that allowance should be
made for it; indeed 1t 1s known (Ref.20) that the interference corrections

to/
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to £s and ms tend to infinity as v tends to zero, however large H/c
may be although the actual forces of course remain finite,

It might also be expected from consideration of Fig.b that the
magnitudes of the 1if+$ and pitching moment would generally be overestimated by
theory, but the evidence from other experimental investigations is that the
relationship is by no means so simple. Since according to theory the centre
of pressure for a wing at steady incidence is the quarter-chord point,
comparison of theoretical and experimental pitching moments for this axis may
be one between small quantities; it was in fact found (Ref.24), “for subcritical
M and v up to 0.9, that the ratio of the experimental and theoretical values

of |me + ivms | was nearer two than one, the amount of the discrepancy

depending on the thicknesT and thicﬁness daistribution without any obvious

system. The ratio for [£, + ivéxa| was found to be near to, and usually
v 0 6

greater than, one, but again with no obvious system. The experimental phase
angle showed only rough agreement wath theory. In the experiments reported in
Ref.25, also for oscillation about the quarter-chord axis, the ratio for 1ift
was less than one, and again there was rough agreement on phase angle.

When the axis of oscillation is not near the quarter-chord point and
the frequency parameter is small, the phase angles will also be small and the
in-phase derivatives, tq and Dgs will not differ much from ’&e + iu&é| and

|me + i3m5|. The damping derzvatives 86 and m3 will be approximately

proportional to the phase angle and therefore liable to greater experimental
error. Fig.6 shows the comparison of derivatives taken from Ref.26 for a 10%
thick aerofoil of conventional section (RAE 104), pitching about an axis O.hkb5c
downgtream of the leading edge. The theoretical —g is in good agreement

with experiment up to the oritical Mach number (about M = 0,78 for this
sections after which the experimental value undergoes rapid fluctuations, but
the theoretical -mg is much too large. This comparisen is not materially

af'fected by tunnel interference. Somewhat similar results were obtained for
a 7+ % thick biconvex aerofoil in the experiments described in Ref.27.

In the tests of Ref.28 measurements were made with a 6% thick wing
for translational motion and pitching about three different axes of rotation,
in the range M = 0,3 to 0.9 and v up to about 0,5 for M = 0,3 and
0.3 for M = 0.9. Fair agreement, allowing for experimental scatter, was
obtained with theory for the derivatives &z’ 85, 66, m. and oy, but there

were serious discrepancies in Eé and mg especially for the higher Mach

numbers and lower frequencies. These differences were ascribed partly to
tunnel interference and partly %o experimental error.

It may be concluded that the in-phase derivatives will be fairly well
predicted by theory, but the ocut~of-phase derivatives can only be relied on to
be a rough approximation,

A semi~empirical approach can of course be used in compressible flow
as well as incompressible and Fig.6 includes points showing how greatly the
prediction of damping can be improved by the use of the equavalent profile
method. (See Section 2.3.)

3.3/
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3.3 Non—linear effects and supercritical Mach numbers

The experiments already cited show that theory may be applicable for
small oscillations about low mean incidences. If the mean incidence approaches
the stalling angle the agreement rapidly breaks down., The effects of high mean
incidence have been examined in Refs.29 and 30. Again as may be seen from
Fig.6 the agreement breaks down when the Mach number exceeds the critical value.
There appears to be no theory by which derivatives may be calculated
satisfactorily under these conditions,.

The data necessary for an adequate check on the transonic theory are
not available,

3.4 Controls

As is well known, trailing-edge controls are particularly liable to
oscillatory instability in the transonic speed range generally described as
"control surface buzz". Theory predicts that for M greater than or equal to
one the hinge moment damping may become negative, so that it might be expected
to be negative for M less than but near to one. However the instabilities
are known to be caused in many cases by mechanisms involving shock-wave
movement and boundary-layer shock-wave interaction so they are outside the scope
of linearised theory. Some theoretical work has been done (Ref.22) but as yet
the subject 1s really only tractable by experiment.

Since incompressible theory gaves forces on a control which are of
the right order of magnitude, this very rough agreement should persist for
some part of the subsonic Mach number range, although obviously it should not
be assumed for M near ihe critical value. Published data for checking this
view 138 very scanty as far as purely two-dimensional experiments are concerned,
but we may refer to some measurements made by Wyss and Sorensen3! for a 25%
control on a 13% thick aerofoil. TFig.7 shows a comparison between the
theoretical hinge-moment derivatives and corresponding experimental values
derived from Table I of Ref.31. There is rough agreement on EE, although the
experimental values for M = 0.2 are higher than theory presufiably because of
the slightly cusped trailing edge. Apart from those for M = 0,2 the
experimental values of the damping coefficient, - hé’ differ widely from theory

as the frequency increases and in fact -~ he is negative for some frequencies

when M = 0,6, This loss of damping persists at the higher Mach numbers.
Since the critical Mach number was M = 0,7, the theory breaks down for the
damping at Mach numbers well below the critical. Although the data were not
corrected for tunnel interference it seems unlikely that it could account for

all the discrepancy. Far thinner aerofoil sectiomstheory is likely to give
better results. TFor example the experiments of Ref,.32 give some agreement up

to M = 0.9 for a 4% thick profile with a 25% control. Although the theory
and experiment referred to slightly different configurations this does show that
the agreement is not always so bad as might be supposed from Fig.7.

L./
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L. Two-Dimensional Supersonic Flow

41 Theoretical background

Linearised two-dimensional supersonic flow theory is formally
applicable for any frequency and mode of oscillataon at any Mach number
greater than one, but for any particular profile it will lose accuracy as
M tends to one. For M near to one the sonic solution is.to be preferred.
The relation between the sonic and supersonic solutions is discussed by
Jordan33, who gives formulae and tables of derivatives. Further tables may
be found in Ref.3.

Van Dyke35 has extended linearised theory to account for first order
thickness effects; the theory 1s restricted to small oscillatlions superimposed
on flows for which the leading-edge shock wave 1s attached. Finally
piston theory36 is available provided the Mach number 1s sufficiently high.

L.2 Rigid aerofoils

One of the farst points observed from the linearised theory was that
it predicted that the pitching damping could be negative for a range of forward
posrtions of the pitching axis, depending on the Mach number and frequency
parameter. Thus single degree of freedom flutier was theoretically possible.

Measurements by Bratt and Ch:l_nneck27 of the pitching moment
derivatives for a 75% thick biconvex model pitching about i1ts mid-chord axas
gave values of the damping much higher than those predicted by either
linearised theory or Van Dyke's theory, but these measurements may be regarded
as superseded by the supersonic tests in Ref.26. In this later work also
biconvex models were used, and the pitchang deravatives measured for M = 1.42
and M = 1,61, for several positaons of the pitching axis, and a range of
small frequency parameters (v up to about 0.04). Fig.8, taken from Ref.26,
shows how the pitching derivataves varied with axis position, specified by the
parameter h, for M = 1.42. The stiffness derivative, -my, is

overestimated by linearised theory, but the agreement is much improved by the
use of Van Dyke's theory. The picture for the damping deravative, -3, 18

more complicated; Van Dyke's theory again produces an improvement except for
a small range of h near the quarter-chord axis. It should be added that
for the 75t% thick biconvex profile the leading-edge shock wave is detached
for M less than about 1.38, so the theory can be regarded as only marginally
applicable, At M = 91,61 similar comparisons were obtained, and in this
case the curve of experimental -mg was much nearer the parabola predicted by
theory although a considerable d:l.f‘?erence remained. From these results it
appears that the theoretical damping i1s not reliable for the forward axis
positions, but the stiffness is approxaimately correct except near the mid~chord
axis position where it is small.

A further series of experiments, by Scruton et al 31 used models of
double wedge section, wath thickness ratios 8%, 12% and 16 e, and involved
the measurement of the pitching moment der:i.vatlves for pitching with small
frequency parameter about a range of piilching axes, — 0.25 < h < 1.25, for a

renge/
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range of Mach numbers 1.37 < M <€ 2.43, The conclusion is that Van Dyke's

theory gives pgood agreement with experiment for the higher Mach numbers.

As M decreases this agreement deteriorates until that value of M for

which the leading-edge shock becomes detached is approached, and then theory

and. experiment differ wadely, especially as regards the damping deravative, - ma.
Piston theory agrees well for M greater than two.

Martucelli38 measured the pressure distribution on thin single-wedge
profiles, pitching at low-frequency parameters, for h = 0.6 and M = 1.4
and 1.8. He found that the amplitude of the measured pressures was near to,
or slightly above, that predicted by lanearised theory, but the phase angle,
theoretically just less than 180°, was found experimentally to be much less,
especlally towards the brailing edge. Comparison with Van Dyke's theory
gives only slightly better agreement.

Most of these experiments dealt with profiles for which the
leading-edge shock wave was attached. Pugh and Woodgate39 measured the
pitching moment derivatives for pitching single-wedge profiles of angles 14°
and 9° with rounded leading edges. For M = 1.75 and 2.47 ~g  Was

predicted very well by first order paston theory. The agreement on damping
was less good but as the difference decreased markedly as M was increased to
its higher value it appears that the theory would be satisfactory for M above
about three,

We may conclude that for sharp-nosed sections performing small,
low-frequency parameter pitching oscillatrons Van Dyke's theory will be fairly
satisfactory provided M is well above its value for shock detachment. First
order paiston theory will give rough agreement for round-nosed sections for high
Mach numbers. Lack of experimental information prevents an assessment of
theory except for low-frequency parameters. There 1s no theory which 1s
adequate f'or sharp-nosed sections if M 1s so low that the shock 1s detached,
or for round-nosed sections 1n the lower supersonic range.

4.3 Controls

Since there is no upstream influence in supersonic flow an oscillating
trailing-cdge control on a two-dimensional wing would be expected to behave like
a two-dimensional wang patchang about an axais at its leading edge, and therefore
to be liable to negative damping at low supersonic Mach numbers.  Purely
two-dimensional evidence on this pointi 1s not available but the measurements
described in Ref .40 are for conditions suf'ficiently close to two-~dimensional
to shed some light on the subject. In this work the main wang models were
two~dimensional, spanning the tunnel, but the controls were rectangular with
chord equal to one third of the wing chord, and span equal to 1.45 wing chords,
s0 that the control surface was a rectangle of aspect ratio 4.35. The
experimental values of the hinge moment derivatives for M = 1.3 and M = 1.6
were compared with those from two~dimensional theory and from two-dimensional
theory corrected for end effects by three-dimensional lifting surface theory.
Both theories predict negative damping for M = 1.3 an the frequency range
covered by the experiments, v = 0,2 to 0,45, but the end effects halve the
anount of negative damping. In fact the damping for M = 1.3 was found to be
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either positive or, for one test only, marginally negative; the
disagreement decreased with increasing frequency. TFor M = 1.6 both
theories predict only slightly different amounts of positive damping, and
the experimental values agree well with both estimates. Again the values
of the stiffness derivative given by the theories diff'er very little for
either M = 1.3 or 1.6, and the experimental values were in good
agreement, although consistently smaller than theory. In these tests the
wings were fairly thin, either of 5% hexagonal section or NACA 65A00L
profile. The evidence therefore indicates that for thin wings theory
becomes satisfactory if M is high enough (M = 1.6 in this case),-but for
M nearer to one it predicts negative damping which either does not occur
or is less severe than predicted. These conclusions must be regarded as
only tentative as they are based solely on one series of experiments.,
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b. Three-Dimensicnal Low-Speed and Subsonic Flow

5.1 Theoretical background

The theoretical estimates with whach the experimental data
considered in this section are compared are derived from linearised
subsonic theory, that is essentially the solution of the equation

1 3 3
Ve = —-< V — + 1w > ¢, ve. (5.1)
a® ox

with appropriate boundary conditions, The mathematical details of 1ts
solution are treated at length elsewhere in this manual, and 1t i1s only
necessary to say here that the sclutions are in fact rarely obtained
directly from the differential equation but more commonly from one or other
of the mntegral equations which may be derived from it. For example £,
the unknown lift distribution over the wing, and w, the known vertical
velocaty dastribution prescribed by the wing's motion are related by the
equation

w(x,y,0)
v fj g(x':yt) . K(x-x", y-v', M,w)dx'dy' "'(5'2)
v

where the integration 1s over the wing planform and K 1s a rather
complicated kernel function, which 1s discussed in Ref. 41.

Several systematic numerical procedures have been devised for obtaining
£ from equation (5.2). These differ in detail but all are of the type
known as the "kernel function" or "collecation" method, which involves
replacing equation (5.2) by a set of simultaneous linear equations.

Refs, 42, 43 and L) are examples; the specral case of small frequency
parameters 1s treated in Ref. 4.5. Similar methods may be arplied to the
alternative integral equation in which £ in equation (5.2) 1s replaced by
$(x",y',+0) and K 1s a different kernel, but this equation 1s not used
as of'ten as (5.2).

The practicability of these solutions depends on the availabilaty
of electronic computers, whose use has made unnecessary some of the
simplifying assumptions uged in earlier theories, For the present purpose
we shall describe any solutions of equations (5.1) or (5.2) as "lifting
surface theory" without distinguishing between the techniques used,
provided that the solution has a satisfactory (mathematical) accuracy for
the configuration for whaich 1t has been obtained.

The parametric restrictions on lafting surface theory are
discussed in Refs. 22 and 4 6. It may be expected to become inaccurate for
M near to one, depending on the thickness distribution of the wing, and,
since it 1s essentially & small perturbation method, for thick wings,
high mean incidence and high amplitudes of oscillation, The theory
envisages a flow which is continuous except on the wing and in the wake,
and must therefore be regarded with suspicion 1f leading-edge separation
and vortex formation occurs. Since this phenomenon 1s associated especially
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with slender planforms the oscillatory version of slender wing theory,
e.g., Ref. L7, requires investigation as regards its physical assumptions as
well as for 1ts validity as a mathematical approximation,

5.2 Rectangular and unswept wings at low speeds

Fig. 9 contains the theoretical curves of the stiffness and
damping deraivatives -mg and -mp for rectangular wings pitehing about
the mid-chord axis. These curves were obtained from the theories of
Refs. 45, 48 and 49. The general trend of their variation with A and v
1s obvious. This particular pitching axis was selected as being the most
convenlient for comparison waith experament but the theoretical data could be
plotted for any other axis.

There is a large amount of experimental data available and only
an outline of it will be given here.

Ashley, Zartarian and Neilsano carried out an extensive
experimental investigation for rectangular wings of conventional section
15% thick of aspect ratio 10 and 6 pitching about the mid-chord axis and in a
flapping oscillation, and of aspect ratio 4, 2 and 1 pitching about the
mid-chord axis and in & plunging oscillation. The frequency range covered
was up to about v = 0,7, and the Reynolds number was about 0.9 x 10°,
Their plots of pitching moment amplitude and phase angle are subgect to
considerable experimental scatter and the curves in Figs, 9(2) and 9(b) must
be regarded as rough means; the stiffness derivative follows roughly the
trend of theory, but the damping derivatives tend to be much lower, For
A = 4, 2 and 1 the degree of scatter in the phase angle is such that all
that can be said 1s that -my 18 much smaller than theory predicts, and is
even negative for small v when A = 1, The amplitude of the 1lift due
to pitching, and the 1lift and moment due to plunging are i1n good agreement
with theory; the corresponding phase angles have a large experimental
scatter but allowing for this scatter there is rough agreement for the higher
agspect ratios, but this cannot be relied on for & = 2 or 1. Much the
same 15 true of the forces due to flapping; there is good agreement on
amplitude, and the phase angle shows rough agreement when allowance 1s made
for experamental scatter. The theories used for comparison in Ref, 50 were
due to Russner, Biot and Wasserman and are probably satisfactory for the
higher aspect ratio wings,

Guyett and Poulter51 measured the pitching moment for a series of
rectangular wings with aspect ratro ranging from 2 to 8 oscillating about
axes at the leading and trailing edges for frequency parameters v = 0.13
to 0.4 and Reynolds numbers 0.38 x 10° to 0.13 x 10°,  The agreement with
theory was generally good, although at the higher end of the frequency range
the damping for pitching about the leading edge tended to be lower than
theory but this frequency parsmeter of course corresponded to a very low
Reynolds mmber, A further series of measurements by Guyett and Curren2
concentrated on the rectangular wing of aspect ratio 3.35 with 107 RAE 101
section, but now, as well as pitching, included rolling of the half-model
about an axis about one tenth of ihe span inboard of its root, that 1s, a
motion effectively flapping superimposed on heaving, The Reynolds number
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varied from 1,5 x 10° for v = 0.4 to Q.4 x 10° at v = 1.3. The
full set of derivatives was measured, so that since two pitching axes were
used, plunging was effectively included. Theoretical comparisons have
not been worked out for the li1f't and moment due to fiapping but the direct
derivatives are in good agreement with theory (Ref. 49). Values of My
end -my calculated from Ref. 52 are plotted in Figs. 9(a) and 9(b);

0 fits 1n well with theory, but My 1s rather high,

A mass of data on patching rectangular wings was accumulated by
Bratt and his collaborators in the experiments of Refs. 10, 11, 53, 54 and 55.
No attempt wall be made to describe 1t all in detail as much of the work was
concerned with oscillations of large amplitude or oscillations about high
mean 1ncidence for which theory is not adequate, It appeargs that Reynolds
nunber can have a significant effect on the air forces, particularly the
pitching dsmping, and especially for the higher aspect ratios and frequency
parameters when the Reynolds number 1s small, say less than 0.5 x 10%., As
examples of the sort of agreement found Figs. 10(a) and 10(b) contain

some derivatives found in Ref., 11 for a Reynolds number R = 0,283 x 10°;
both stiffness and damping agree guite well with theory although the theory
tends to he too small. Also plotted are values of damping from Ref. £5
for a Reynolds number R = 2 x 10%, in this case theory 1is slightly hagh.

m

Refs. 56 and 57 report measurements of the flapping moment
stiffness-and damping derivatives for a 15, thick rectangular wing of aspect
ratio 6 1n a flapping oscillation; both are in good agreement with theory
(Ref. 49) for v 1in the range O to 1.5 (R = 1.26 x 10° to 0.42 x 10°).
Measurements of ﬂ% for 20, thick rectangular wings of aspect ratio 3, 4 and 5
described in Ref, 58 gave values slightly lower than theory for v wup to
0.5 (R = 0.35 x 10° to 0.1 x 10%),

The 1ift, patching moment, and flappang moment on a 107 thick
rectangular wing oscillating in a flapping mode were measured by Woolston
et al59, for v = Q.4 to 1,8 and R = 2,85 x 10° to 0,65 x 10° and
compared with lifting surface theory, Their amplitudes were 1n good
agreement with theory, with only small differences which varied systematically
with frequency parameter, but the phase angles showed differences whach
although also systematic were up to about 407 of the theoretical value.

A1l the experimental work mentioned above has been concerned wath
the measurement of overall forces and moments.,  The pressure daistrabution
over an oscillating wing has received less attention but some information
exists. Molyneux and Ruddlesden®0 measured the pressure distribution on a
pitching rectangular wing with R = 2 x 10° and found fairly good
rgreement with theory for the integrated overall forces, though no comparison
was made with lifting surface theory for the pressures. TLaidlawb1,62
measured pressures on piiching and plunging rectangular wings of aspect ratio
1 and 2 and found reasonable agreement with a theory he developed for
rectangular wings of moderate aspect ratio. Slender wing theory,

Lawrence and Gerber's theoryhfl and high aspect ratio theories were found
to be unsatisfactory for predicting 1lift distributions. TFainally
Lessing, Troutman and Menees®3 measured pressures on a rectangular wing (A = 3)
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oscillating in 1ts first symmetrical bending mode and found good

agreement with lifting surface theory for M = 0.24. The somewhat less
good agreement for the spanwise distribution of 1ift and pitching moment was
attributed to unsatisfactory treatment by theory of 1lift distributions near
the leading edge.

The chief impression obtained from the comparisons summarised
sbove is of the sbsence of any obvious regularity. While some of the larger
discrepancies may probably be explained by experimental error or low
experimental Reynolds numbers it does appear that for unswept wings of
moderate or large aspect ratio theory camnnot be relied on with any certainty
to be in more than rough agreement with experiment, say within 304,  Again
theory does not seem to be consistently too large or too small,

5.3 Unswept wings in compressible subsonic flow

The amount of data available here is comparatively amall,
Fig, 11 shows the pitching moment derivatives for a rectangular wing of
agspect ratio 4 compared with low-frequency and fanite~frequency theory,
The experimental values were taken from Ref. 26 and refer to a 10% thick
section with critical Mach number M = O0.78 approximately, Low-frequency
theory slightly overestimaies the stiffness and seriously overestimates the
damping. A similar trend is apparent for subsonic Mach number in Fig. 17
(see Ref, 6L). Including the effect of the experimental frequency in the
theory removes the discrepancy for the stiffness but only partially removes
it for the damping.

In Ref. 42 lifting surface theory is compared with the experimental
results reported in Ref. 65 for a rectangular wing of aspect ratio 2 pitching
about the mrd-chord axis in the range M = 0.2 to 0.7; the experimental
lif't and pitching moment show a considerable experimental scatter but it can
be seen that they follow the veristions predicted by theory fairly well.

Ref, 42 also compares theory with the 1if't and pitching moment for the

same wing in a flapping oscillation, obtained in Ref, 59, for M = 0 to 0.4;
the experimental scatter is relatively small and the agreement with theory is
good for both amplaitude and phase angle,

Leass:i_ng63 measured pressures on & rectangular wing of 5% thick
biconvex section in 1ts first bending mode for M = 0.24%, 0.7 and 0,8.
The agreement with theory was good for M = 0,24 but at M = 0.7 the
phase angles were poor, although the amplitudes of the pressures were in
good agreement; this was ascribed to tunnel resonance. At M = 0,8
the agreement was poor for both amplitude and phase angle but at fthisMach
number the flow contained shock waves,

From this evidence one might expect that for subecritical Mach
number just as for incompressible flow theory for umawept wings would give
at least a rough approximation to the derivataves although as appears from
Fig. 11 the error may be as large as 30%,

5.4 Swept wings in low-speed flow

Although several investigations (Refs. 50, 58, 66, 67, 68) have
been made on this type of planform at low speeds, not all have had the
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comparable theory worked out; these are listed for ref'erence only and
not discussed below,

Ashley, Zartar:ien and Neilsen’C measured the 1ift and pitching
moments on congtant chord wings of aspect ratio 4 and angles of sweep 35°
and 50°, pitching and plunging with frequency parameters v = O to 0,6,
and compared their values with a theory of their own for untapered swept
wings which is probably sufficiently accurate for the present purpose,
Except for the guantities corresponding to 6Z and m, which are

theoretically small the agreement 1s fairly good although the experimental
values show considerable scatter,

Fig. 12 shows the pirtching damping and stiffness deraivatives
measured by Scruton, Woodgate and Alexander©6 for a wing of arrowhead
planform. The trends of the variations with frequency are predicted fairly
well by the theory of Ref. 69 although for mg, which 1s small the actual

magnitude 18 not good. The low-frequency theory of Ref. L5 gives slaghtly
better agreement. The 11ft derivatives gave discrepancies of the same order
of magnitude, but as these are not small the percentage difference is only

of order 10%.

Flapping oscillations have been anvestigated by Bratt and nght57
for a constant chord wing of aspect ratio 6 with 41, 3° sweepback. The
stiffness and damping derivatives for the rolling moment on the half-wing
model used are in good agreement with theory (Ref. 70) for frequency parameters

up to v = 1,5,  The Reynolds number varied from 0.42 x 10% to 2,2 x 10°
and 1t appeared that i1tz influence on the derivatives was negligible.

One concludes that For swept wings at low speeds theorydls likely
to give a fairly good estimate of derivatives (say within 205} except those
which are small,

5.5 Swept wings in compressible flow

The few experimental results available show that theory can
predict the pitching derivatives with some degree of success. Ref., 6.4 gives
the comparison between low-frequency theory (method of Ref, L 5) and
experimental pitching derivatives for a series of swept wings of aspect ratio
2,64 and taper ratio 7/18 with leading-edge angles of sweepback 33,7°, 49.,4° and
59.0°  The comparison for 49.4° is shown in Fig. 13. The stiffness
derivatave, ~g, 18 correctly predicted by theory for the forward pitching

axis but consistently overestimated for the rearward pitching axis. The
damping derivative, -y, 18 approximately correct for M = 0,6 but

shows some dascrepancy for other Mach numbers. This comparison was
duplicated to & remarkable extent by the other two wings.

Pitching derivatives for a much more unconventional swept wing,
of the "M-wing" type, are dascussed in Refs, 71 and 72. Al though theory
overestimates the demping derivative by up to 25% the agreement 1s good
Tor such a complicated planform,
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For swept wings the approximate agreement of theory and experiment
persists up to much higher Mach numbers than for unswept. This 13 of course
consistent with the fact that the onset of transonic effects is delayed by
sweepback, N

5.6 Delta wings in low-speed flow

As already mentioned the steady flow round a wing with highly
swept leading edges often contains strong vortices in the flow over the
upper surfaces when the wing 1s at incidence, especially when the leading
edges are sharp. If such a wing is oscillating about a non-zero mean
incidence or through a large enough amplitude or wath a high frequency,
the resulting vortices might be expected to influence the oscillatory
forces; then both ordinaxry lifting surface theory and the slender wing
approximation would be suspect. There is however some evidence to show
that lifting surface theory can correctly predict the pitching damping
for slender wings provided the mean incidence and amplitude of oscillation
are small. Fag., 14 shows the damping derivative, -my, as a Tunction of

axis position for a triangular wing of aspect ratio 1,0. The experimental
velues (umpublished) were measured by the Bristol Aircraft Co. and the

Royal Aircraft Establishment and for zero mean incidence agree very well

with those calculated by low-frequency lifting surface theory, Thas agreement
breaks down when the mean incidence is raised to non-zero values,

Portunately the effect of positive mean incadence appears to be an increase
in damping. Slender wing theory (Ref. 47) seriously overestimates the
damping; evidently the planform is not sufficiently slender to Justify

the mathematical approximations in the theory, Somewhat similar comparisons
also hold for a gothic wing of aspect ratic Q,75. (See Ref. 6l.)

Laldlaw}szfound that for a delta wing of aspéct ratic 1,07,
heaving or pitching about the mid-root-chord axis slender wing theory
overestimated the magnitudes of the 1lift force and pitching moment by a
Jfactor of 2 or more; the 1lifting surface theory of Lawrence and Gerber
gave much betier agreement. For a delta wing of aspect ratio 2.31 the
same author again found very poor agreement with slender wing theory;
Lawrence and Gerber's theory was in good agreement for the amplitudes but
much less so for phase angles. Evidently slender wing theory cannot he
relied on for aspect ratios as large as A = 1; Laidlaw suggests that
this is due to the fact that 1t does not satisfy the Kutta-Joukowski
condition at the trailing edge, and 1n fact he obtains much better agreement
by introducing a simple modification which ensures that it does.

48

Scruton, Woodgate and Alexander66 measured the lift and pitching
moment derivatives for a delta wing of aspect ratio 1.6 and a cropped delta
wing (taper ratio 1/7) of aspect ratio 1.2, for pitching about axes near the
mid-chord point for frequencies up to VvV about 0.6. The thickness ratio
was 6/% for both wings and the Reynolds number 1.0 x 10° to 1.5 x 108.

Apart from small values of v, when the experiamental values were sometinmes
uncertain,the agreement with theory was good, the discrepancies being of
order 10% or less. Again slender wing theory was in poor agreement,
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Finally in this section we will refer to some measurements by
M03367 on the pitching derivatives of a cropped delta wing (taper ratio 1/7),
leading-edge sweep 45°, and aspect ratio 3.02. (The tips were slightly
curved; for straight tips A would have been 3 exactly, ) The model
had 10} thick conventional section (RAE 102) and the Reynolds number was of
order 1 x 10° to 3 x 10°. In the frequency range covered by the tests,

v < 0,2, the agreement with theory was good for mys D and 66; there

but all the derivafives except m:

were discrepancies of order 20} for <& 3

69
were measured when the wing was Titted with a body so that exact -agreement
could not be expected,

One may conclude that lifting surface theory may be expected to
give the pitching derivatives reasonably well for small oscillations about
zero mean incidence, unlesgs of course the derivative concerned is small.
If the flow containg lesading-edge separation vortices theory is unreliable,
Slender wing theory should not be used for wings of aspect ratios greater than
0.5. A further observation is that, since the pitching derivatives tend to
vary very little with frequency parameter in the range 0 < v < 1, when A
1s less than about 3, calculations for small v may often be sufficiently
accurate,

5.7 Delta wings in compressible flow

It seems reasonable to expect that as lifting surface theory is
satisfactory for delta wings in incompressible flow a1t will continue to be
satisfactory for at least part of the subsonic Mach number range. Fig. 15
shows that this expectation 1s at least somctimes justified. Here the
theoretical curves are those obtained by the method of Ref. 45 for a cropped
delta wing of aspect ratio A = 2, and the experimental values were
measured in N.P,L. experiments. We may note the relative insensitavity of
the derivatives to Mach number for the forward axis position for M up to
sbout 0.9, and the general similarity to Fig. 13. Very similar diagrams were
obtained for delta wings with the same taper ratio (1/7) but aspect ratio
1.5 and 3,0 (Ref. 6h). Some measurements for the delta wing of the same
series of aspect ratio A = 1.8 (Ref, 73) gave damping derivatives for
low frequency in good agreement with theory, but again the theoretical
stiffness deravatave, “Mgs  Was too negative for the rearward axas

(h = 1.2) by about 30/% and too positive for the forward axis (h = 0,55)
by about 15%.

The insensaitivity to M had previously been observed by
Leadbetter and Clevenson/4 who measured 1if't and pitching moments on complete
delta wings of aspect ratio 2 and 4 patching about their mid-chord axes for
0.2 <M < 0,8 and 0.08 < v < 0,81. Their experimental scatter was
sufficiently large to mask the variation with Mach number in the range
M = 0 to 0.8, and they confined themselves to comparisons with Lawrence and
Gerber's incompressible flow theory (Ref. ,8), and, for A = 2 only,
slender wing theory, The latter greatly overestimated both in-phase and
out-of-phase parts of the pitching moment, indeed 1ts only success was for
the amplitude of the 12ft, lawrence and Gerber's theory overestimated the
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pitching demping by sbout 20%, and very much underestimated the pitching
atiffness which 1s small for this axis position., For A = 4 the lift was
fairly well predicted but for A = 2 its amplitude was underestimated by
sebout 30% to 50% and 1ts phase angle overestimated by about 30°,

Ref. 75 reports an extensive series of measurements of the
pitching derivatives of a cropped delta wing of aspect ratio 2.045 and
taper ratio O.1. This planform 1s close to the cropped delta wing of
aspect ratio 2 shown in Fig., 15. Points were therefore read off the mean
curves of derivatives given in Ref, 75 and the pitching moment derivatives
calculated for pitching axes in the same positzon reletive to the root
chord as those of the wing wath A = 23 these values have been plotted
in Fig. 15. In view of the way in which the experimental points plotted
were obtained from the report 1t would be unwise to attach much importance
to the details of the comparison but 1t may be observed that for the
rearward axis both -y and - lie very close to the theoretical curves,

while for the forward axis they are both consistently higher than theory
but only by about 107 to 20/4.  This comparison may be regarded as reasonably
satisfactory,

Tobak, Reese and Beam76 and Beam?7 carried out experiments using
a delta wing model of aspect ratio 4 fitted with a slender body. Tobak
found that for M an the range 0.2 to 0.9 the pitching damping for an axis
near the root mrd-chord was doubled when the Reynolds number was increased
from about 0,4 x 10° to 0.8 x 10°, and was in fairly good agreement with
theory for the higher value of R, being about 20, too low at M = 0,2
and in almost exact agreement for M = 0.9, At about M = 0.9 the
damping suddenly dropped to negative values, The frequency in these ,
experiments was small. The thecory constructed by Tobak in Ref. 76 appears to
overestimate the demping slightly for low Mach numbers. Beam was mainly
concerned with effects of amplitude of oscillation and mean incidence but his
results for zero mean incidence support Tobak's,

In general then l1fting surface theory gives correct values of
pitching derivatives for delta or cropped delta wings up to high subsonic
Mach mumbers, although the agreement cannot be relied on completely,
discrepancies of 20#% being quite typical.

5.8 Controls on three-dimensional wings in subsonic flow

Although there has been no lack of experimental anvestigation of
three~dimensional control derivatives, for example, Refs. 78 to 85, the
principal diffaculty here is the absence of any rigorous lif'ting surface
theory for diarect control derivatives. The boundary condition an linearised
theory has discontinuities at the edges of the control and the shape of the
wing cannot be correctly represented by the finite munber of conditions
assumed in "kernel function" ("collocation") theories, Two methods of
overcoming this difficulty have been proposed although neither can be
regarded as completely satisfactory. The first is the inclusion in the
assumed lif't distrabution functions of one having singularities at the
wing-control gJunctiom of the type indaicated by two-dimensional theory;
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this approach has not yet been exploited for oscillatory flow. The
second is to replace the control oscillation mode by an equivalent smooth
mode constructed in some plausible mamner. For example we may calculate
the sectional 1lifts, pitching moments and hinge moments by two~dimensional
theory, and then take the equivalent smooth mode to be that which gives the
same sectional 1lifts and moments. Comparisons may of course be made

with two~dimensional theory, but their significance must obviously depend
on the planform,

The indirect control derivatives, for example, total 1lift or
pitching moment due to control oscillation may be calculated from linearised
theory for smooth modes by the reverse flow theorem, but for trailing-edge
controls this procedure involves an integration over a region near the
leading edge of the reversed wing, where existing lifting surface theories
are least satisfactory.

It should however be remembered that a trailing-edge control
operates in that part of the flow most affected by viscous effects so that
even if methematically correct solutions of the linearised equations were
available they might well give derivatives different from those oceurring in
either tunnel experiments or in full scale. As in two~dimensional flow,
and for similar reasons, there is a tendency for a loss of damping to ocecur,
often quite suddenly, as the Mach number increases above the critical value.

From the evidence of twc—-dimensional flow it may be expected
that for low speeds experimental hinge moment derivatives for controls of
high aspect ratio on unswept wings would also be low compared with
two~-dimensional theory, and that there would be only small variations with
frequency parameter. This expectation 1s in the main supported by
experiment. For example the experiments of Ref. 78 on an outboard
treiling=edge control on a high aspect ratio unswept wing. gave hg and hE

about 0,6 of two-dimensional theory., _Somewhat similar comparisons were
found by Lambourne, Chinneck and Betts/9 for a horn-balanced elevator, and
by Molyneux 0 for a full-span control on a rectangular wing of aspect ratio 4.

Some rough measure of agreement would be expected to persist for
higher Mach numbers up to the point at which transonic effects become
dominant, This view is supported for an unswept wing by the experiments of
Ref, 32. Trailing~edge controls on delta wings have been investigated
in experiments described in Refs. 81, 82, 83 and 84, Bratt, Miles and
JohnsonB4 found fairly good agreement with lifting surface theory of the
equivalent smooth mode type described above for a full-span trailing-edge
control on a cropped delta wing of aspect ratio 1.8 and 6% thick RAE 102
section, The frequency range covered was V = 0.15 to 0.58 at M = 0.k
falling to ¥V = 0.07 to 0.26 at ¥ = 1, but in fact the derivatives h

and h;'varied only slightly with frequency parameter, Fig., 16 shows

the comparison with theory for the lowest frequency. On this evidence one
would expect theory to be faxrPlj: gool .ForuMach numbers up to that for which
the sudden drop in damping occurs, in this instance for M less than 0.95.
From the remaining papers this appears likely to be the characteristic
behaviour,
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6. Three-Dimensional Transonic and Low-Supersonic Flow

6.1 Theoretical background

The chief difficulty in the theoretical treatment of oscillating
wings in transonic flow is that when M is near to one the linearised
partial differential equation for the velocity potential which 1s commonly
used for subsonic and supersonic flow, that is

. o iy
(1-—M )¢H+¢yy+¢zz__[r¢xt‘;};¢tt = 0, .--(6.1)
becomes inaccurate, Its ranges of validity as given by Landah122 are
3
[1-M] >> +° ..o (6.2)
for two-dimensional flow, and
-3
|[1-m]| >> A T log(a? 7 3) ... (6.3)

for slender planforms, where 71 1is the thickness ratic of the wing. It
may be helpful to put some numbers into the formulee (6,2) and (6,3); thus

for a wing having 7 = 0,03, (6.2) becomes

|14} »>> 0.097, veo(6.4)
and teking 7 = 0.03 and A = 1, (6.3) becomes

|1-M| »>> 0.035. ...(6.5)

It is important to observe that the symbol »>> means "is very much larger
than", so that even taking this phrase to imply a factor as small as two,
(6.4) becomes

M< 0.806 or M > 1,194, eee(6.6)
and (6.5) becomes

M<095 or M>1,07. e (6.7)
For thicker wings these restrictions on M will of course be more severe,
It may be observed from Figs. 6, 11, 13 and 15 that linearised theory based
on equation (6,1) does in fact break down at a lower Mach number for the

two-dimensional and rectangular wings than for the swept or delta wings.

This breakdown of ordinary linearised theory may to some extent
be overcome by using the equation

a7 M?
¢yy+¢zz-_{]-¢xt"u_a¢tt = 0 -.-(6-8)

instead/
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instead of (6.1) when the Mach number is nesr to one. Landehl“® has shown
that a sufficient, though not always necessary, condition for equation (6.8) is
that the frequency parameter is large compared with the ratio of the maximum
steady longitudinal perturbation velocity to the free-stream velocity.

For two-dimensional flow this condition becomes

;)) Ta, co¢(6o9)

and for a slender wing

_ -1

v >> AT log(at r?). ... (6.10)

If M = 1 equations (6.1) and (6,8) are 1dentical, but 1f M
is not equal to one and the mode of oscillation 18 z = g(x,y,t) then
¢'(x,y’zst; M) = M* ¢'(X,MYaMZJt; 1) ---(6-11)

where in the right hand side ¢ 1s the velocity potential for M = 1 for

the planform altered in the spanwise direction by the factor X,
(shrunk 1f M < 1, stretched if M > 1), and oscillating in the mode
z = g&x,M’iy,t). This line of attack has been extensively treated by
Landzhl<2 who gives solutions for various planforms, ’

The alternative approach 1s via the integral equation obtained by
letting M +tend to one in equation (5.2). A method of determining this
limit is described in Ref, 41 and 1ts application to a collocation method
in Ref. 86. The solutions obtained by this method should be 1dentical with
those of (6.1) but in fact there are dafferences (Ref. 22) due to the
arithmetical approximations in the collocation method and algebraic
approximations in the analytical solutions of the dafferential equation.

It should also be added that Mangler87 has derived an integral
equation for M = 1 and obtained solutions for low fregquency piiching of
delta wings.

One of the characteristics of the oscillatory transonic solutions
avarlable is that near M = 1 the effect of frequency parameter 1s very
much greater than elsewhere, As will appear below this predaction 1s to
some extent confirmed by experiment, but in view of the complicated
phenomena occurring in transonic flow 1t seems unlikely that any linearised
theory will be sufficiently accurate unless some empirical corrections are
introduced.

6.2 Unswept wings

There has been comparatively little experimental work on unswept
wings in transonic flow, We may however cite the data plotted in

Figs., 17a and 17b which show respectively - and ~ig, for a rectangular

wing of aspect ratio 2 pitching about an axis 42% of the chord downstream
of the leading edge. The experimental results were obtained in some

unpublished/
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unpublished experiments at the N.P.L, and refer to a model of 10% RAE 102
section. Except near M = 1 there 1s only a small effect of varying
the frequency parameter, but at M = 1 the damping shows a distinct
decrease as v increases. The subsonic theoretical curves were obtained
by the method of Ref.45 for v -+ 0 and by that of Ref, 4L3for v = 0,3
and O, 6. The low-frequency supersonic curve labelled "Miles" was obtained
from that author's solution of equation (6.1) for the low aspect ratio
rectangular wing, given in Ref. 46 and mathematically valid for small values
of FA. The other supersonic curves were obtained from Ref. 88,  The
curves labelled "Landahl" are those given by his solution of the transonic
dafferential equation (6.8) (Ref. 22, Chapter 6).

As regards the damping (Fig. 17b) subsonic and transonic theory
agree fairly well especially for the highest frequency parameter, but both

overestimate the damping near M = 1 although, as predicted by theory,
the error decreases as the freguency parameter increases. In Fig., 17a the
sign of the frequency effect near M = 1 is correctly predicted but the

actual magnitude of g is very different, It must be pointed out that

the experimental results were not corrected for tunnel interference, and for
the highest frequency may be affected by distortion of the model. Even so
the comparison 1s generally poor in the ftransonic region. Experimental
derivatives have also been determined for the same planform by Gourb1189

but no theoretical comparison i1z given. Emerson and Robinson?" measured the
pitching dampaing for an unswept tapered wing of aspect ratio 3 for*M = 0,6
to 1.18 but again no comparison was made with theory,

On this basis one would not expect transonic theory to give more
than the order of magnitude of the forces in the transonic region, but to
improve rapildly as M 1increases from one,

6.3 Delte wings

Most experimental work with these planforms consists of
measurements {or rigid patching, in particular of the demping derivative,
This quantity 1s characterised by a steady rise with M, followed by a

very sudden drop in the range M = 0.9 to 1, often to negative values,
followed by a rise to positive damping for supersonic flow,
90

s Emerson and Robinson” ™ also measured the pitching damping for a
trlangular wing of aspect ratio 2 mounted on a glender body. In his book
Landah122 compares their values with transonic theory. The agreement 1s
not good since theory fails to reproduce the curiously sharp maxamum in
the curve of damping versus Mach number which occurs at about M = 0,98,
Nevertheless as M 1s increased from M = 0,98 the experimental damping
decreases so rapidly that for M about 1,05 the agreement 1s good.
Evidently some transonic phenomena violate the assumptions of theory until
M has reached values greater than one. Low supersonic theory is in rough
agreement with the experiments of Ref. 90.

Landahl also compares his transonic theory for a delta wing with
some values of the pitching damping measured by Orlik-Ruckemsnn and Olsson

for/
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for a triangular wing of aspect ratio 1,45 pitching with h = 1.2,

In Fig. 18 experimental values of the pitching damping from Ref. 91,
(actually those for f = 70 c.p.s. from Fig, 9 corresponding to

v ~ 0,07 for M near to 1), are compared with theory for a slightly
different aspect ratio - A = 1.5. The measured values fit in fairly
well up to M = 0,95, but the transonic theories for M = 1 of

Landahl?2 and ManglerS/ overestimate the damping. For M greater than
one theory fails to reproduce the low values of -my 1n the range 1 <M < 1.1,

7

Simple slender-wing t‘.h.e::sr:,rl+ gives a gross overestimate of damping.

In Ref, 92, Rose reports wing-flow measurements of - for a

delta wing of aspect ratio 4 mounted on a slender body and pitching about

an axis near the mid-root chord with frequency parameter about v = 0,05,
Agreement with subsonic theory wes good up to M = 0.9 when the
characteristic sudden reduction of damping occurred, This behaviour was
confirmed by flight tests and the results of Ref, 77. Sonic theory (Ref. 87)

predicted strongly negative dampaing at M = 1 but the observed values
were negative only in a small range near M = 0,93 and rose again to
positive values at M = 1 and remained positive up to M = 1.1, the

maxamum experimental Mach number.  Supersonic theory predicted negative
damping up to M = 1.4,

D'Arutolo in Ref. 93 gaves values of —mé for delta wings of

aspect ratio 2 and 3 mounted on slender bodies measured i1n experiments with
rocket-powered models, No comparison 1s made with transonic theory
although the low supersonic values of M at which -mp Tecovers to

positive values after becoming negative in the transonic range are fairly
well predicted by theory. As these are so near to one (M = 1,01 and 1,05~

respectively) and as —mg, varied so rapidly with M when M was near to

one 1t 1s possible that this agreement was purely fortuitous.

Again Miles, Bratt and Bridgeman73 found generally poor agreement

between measured values of 66 and mé for a cropped delta wing with

A = 1,8 and taper ratio 1/7 and low supersonic theory (M =~ 1.1). The
in-phase deravatives agreed slightly better.

6.4 Tunnel interference in transonic {low

Taken together the experimental evadence is not favourable for
transonic or low-supersonic linearised theory particularly the latter,
Although good agreement with experiment 1s sometimes found, it appears
that theory 1s not capable of reliably predicting the rapid changes with M
which occur near ¥ = 1, It must however be added that there i1s reason
to suppose that deraivative measurements for some planforms may be strongly
affected by tunnel interference, which 1s not yet adequately understood
in the transonic régime particularly for slotted tunnels., As evidence
for this consader Fig. 19 which shows the direct pitching derivatives for
a model of M-type planform as measured ain the N.P.L, 25 in. by 20 in. wind
tunnel (see Ref. 71). This tunnel has a rectangular working section with
longztudinal slots an its roof and floor. T, one of the parameters
commonly used in connection with slotted tunnels, 1s defined by

1-T
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1-T B ANd
—— = - log cosec — ee(6.12)
14T TNH 2B

where B is the width of the tunmel, H 1is its height, 4 is the width

of a slot and N 1s the number of slots in the roof or floor. Fig. 19
(taken from Ref. 6, ) shows the large variation in the derivatives which occurs
when N is varied, (N 4is shown at the top of the figure.) The effect
is largest for -ms at the higher Mach numbers, and is then large enough to
mean that there is a large uncertainty in the measured values., *It must be
admitted that this 1s a very unusual planform and added that aimilar
experiments with a model of delta planform gave a much smaller effect.

Even so Fag. 19 shows that in some cases at least tunnel interference may
have a significant effect, and it would therefore be unwise to dismiss
linearised theory as unsatisfectory until much more experimental evidence of
known reliability has been accumulated.

6.5 Controls

As in two-dimensional flow controls on three-dimensional wings have
a2 strong tendency to instabilaity in the transonic range and for the same
reasons, BEvidence of the non-linear nature of the phenomena involved may
be found in Refs. 32, 83 and 94  Landahl®? has given a theoretical
investigation of control surface buzz, based on equation (6.8), for a
rectangular trailing-edge control surface which predicts negative damping for
certamn combinations of frequency and aspect ratio when M is near to one.
Comperison may also be made with two-dimensional linearised theory but the
agreement with experiment, although sometimes good, i1s not to be relied on,
In fact there seems little point in adding to the discussion of Section 3.4.

7./
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7. Three-Dimensional Supersonic Flow

7.1 Theoretical background

Linearised potential theory for supersonic flow is governed by
equation (6.1) with M greater than one. The restrictions on thickness
and aspect ratlo necessary for this equation to be applicable are discussed
in detail in Refs, 22 and L6. The principal restriction is on the
thickness ratio; the smaller r is, the wider is the range of Mach number,
A rough rule might be atated as follows;

3 1
< (M1) << -, eed (7.1}
T

with some relaxation at the lower end of the range for wings of slender
planf orm.

As in subsonic flow solutions are often obtained by the use of
integral relations corresponding to equation (6.1). There are in fact
equations of the form

W(x,y,O)
Ty ff e(x',y') K(x_x" y=y', M,w)dx'dy', '-'(7-2)
A
and
W(xsy'so)
v ) /j ¢(X',y'+0) K(X'—x', y_y') M,”)dx'dy's "'(7'3)

corresponding to those in subsonic flow such as equation (5,2), but there
ig in supersonic flow an additional integral relation of the form

W(xs )
¢(X,_Y,0) = [[*{_ . K(X—'X', .V"'y" M,w)dx'dy'. "'(704)

Since there is no upstream influence in supersonic {low the region of
integration in equations (7.2), (7.3) and (7.4) is the Mach wedge
upatream of the point (x,y). The kernels, K, have of course different
forms in each equation; expressions for them may be found in Refs, 95,

96 and 97. The chief advantage of these aintegral relations lies in their
use for irregular planforms for which solutions of the differential
equation are hard to obtain, In thas connection the meodifications to
equation (7.4) due to Evvard I8 and Stewartson?! are of great importance,
An extensive account of solutions which have been worked ocut for supersonic
flow may be found in Miles' book #8 By using these together with
equations (7.2) to (7.4) the forces on almost any wing in any mode of
oscillation can be calculated gaven sufficient computation.

Controls on wings present no particular difficulty for supersonic
speeds, since the dascontinuous boundary condition may now be allowed to

cause/
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cause discontinuities in the flow, Moreover if the hinge line is
supersonic the control has no upstream influence on the wing,

There is no theory claiming to account for thiclkmness effects in
three-dimensional supersonic flow, although as we shall see, improved
agreement with experiment can often be obtained by applying Van Dyke's
two-dimensional method to modify the three-dimensional linearised solution,
or by using piston theory in the same way for the higher Mach numbers,

7.2 Unswept wings

From the results for two-dimensional wings 1t could be
anticipated that theory would be fairly successful for wings of moderate
aspect ratio and small sweepback provided they were sufficiently than,
This view is supported by the measurements reported in Ref. 99. These
experiments were carried out with a series of models of the planforms shown
in Fig, 20 for rigid paitching about various axes. The basic profile was a
5% thick double wedge section; when the tip was cut off at an angle, it was
in some cases machined down so that the section was a double wedge over the
whole span and in others left with a vertical face, The latter type of
model is designated "blunt raked edge" in Fig. 20, which shows the variation
of the piiching damping derivative with the angle of rake for pitching with
low frequency parameter, v = 0,02, about the mid-chord axis at M = V2.
The agreement with lifting surface theory i1s only moderate but the addition
of a thickness correction, calculated from Van Dyke's theory by strip theory,
improves it greatly, especially for the two larger spans (see Ref. 100).
It may be noted that sharpening the side edge can have a significant effect
on the derivative. This series of experimentsan fact covered the Mach number
range M = 1.4 to 2.5 and the amproved agreement with theory was
maintained at the higher values of 1, Fig. 21 shows the variation of
Mg and —mé with M for the largest model, and the comparason with

linearised lifting surface theory, and with theory corrected for thickness
effect by Van Dyke's theory and also by piston theory. The degree of
agreement 1s very satisfactory.

The success of theory appears however to depend on the fact
that the wing is thain, Samilar measurements for rectangular planform models,
A = 1,2, 3, 4 and 5, with 124 thick double wedge section pitching about
the mid-chord axis again with small frequency parameter ain the Mach number
range M = 1.8 to 2.4 are reported in Ref. 101. Theory was much less
successful in predicting the pitching derivatives, underestimating both
thickness and damping by as much as 50/.

Mention must also be made of the experiments of Tobak102 who
measured the pitching damping for an unswept tapered wing of aspect ratio 3
and thickness parameter 0,03 in the range M = 1,2 to 1.9, and found fairly
good agreement with the theoretical value for a rectangular wing of the
same aspect ratio for M greater than 1.4, For M less than 1,4 the
agreement was poor presumably because a different planform was used for the
theory. Again the frequency parameter was very small.

It may be concluded that for thin, slowly oscillating unswept
wings theory is likely to be satisfactory for M well above one » M greater

than/
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than 1.4 say, especially if some allowance is made for thickness effects.
Increasing the thlckness may cause this agreement to be lost, Inttle
information is available for higher frequency parameterz or M nearer to
one, However Fig., 17 shows that the experimental pitching derivatives
plotted there tend to fair agreement with theory at M = 1.2,

(This figure is more fully discussed in Sectaon 6,2, )

7.3- Swept wings

Not much experamental information is available for swept wings
other than those of delta and similar planforms. (See Section 7.4 )
However Tobak102 found fairly good agreement with theory for the paitching
damping of a model with swept tapered planform (leading-edge sweep 45°,
root chord 12,4 in,, tip chord 5 1n., A = 3), and thin section (biconvex
3% thick), pitching about axes near the mid-root chord for Mach numbers in
the range 1.2 to 1.9. Theory overestimated the damping for the lower
Mach numbers, but this may have been due to the fact that the wing was
mounted on a slender body.

Measurements by Moore1o3 on & thin model with the same aspect
ratio and leading-edge sweep, but taper ratio 0,3 pitching about axes near
0.7 root chord, showed that at a Mach number of 3.92 the damping for low
f'requency pitching was again overestimated slightly by theory. In this
investigation increasing the mean incidence through angles up to 10° was
shown to increase the damping and increasing the fregquency to reduce 1%,

7.4 Delta wings

A larger amount of experimental work has been done for this type
of planform and the general conclusion 1is that supersonic linearised theory
1s fairly satisfactory for slow pitching oscillations for Mach numbers
greater than about M = 1,4,

1
The theory predicts that for Mach numbers less than 2° the

pitching damping of a triangular wing may be negative for low frequency

oscillations about any axis in a range depending on M and A (see Ref. L6).

In comparing theory with experiment we shall be concerned mostly with axis

positions near to the middle of the root chord. For these axes the
Mach number below which the damping 1s negative decreases rapidly with A,
from about 1.4 for A greater than 4 to M = 1,1 for A = 3,

Although this occurrence of negative damping 1s confirmed by experiment

the precise Mach number at which the transition occurs cannot be expected
to be the same in theory and experiment. For example, Tobak, Reese and
Beam 76 1n experiments on triangular wings with A = 4 found that
according to theory (including a correction for the slender body on which
the wing was mounted) the damping became negative for M less than 1,13
when h was 1,27 whereas experiment gave M about 1.15 for a model having
a 6% thick section with sharp leading edge and M about 1.2 for a model of
the same thickness ratio but with a rounded leading edge. For h = 1,13
the corresponding figures were M = 1,27, 1.36 and 1.39. Another
prediction of linearised theory is that cutting off the taps of a triangular
wing w1ll reduce its tendency to have negative pitching damping.

Experiments,/
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Experiments, also reported in Ref. 76, support this conclusion; 1in these
the model was a delta wang with the same leading-edge sweep but having a
tip-chord 1/5 of the root chord.

In a further series of experiments102'robak extended these
measurements to triangular wangs of aspect ratio 2, 3 and 4 all with 3%
thick sections. The frequency parameter was again small, The agreement

with theory in the range M = 1.2 to 1.9 was generally good for the
pitching damping. For A = 2 he found little change with Reynolds number
for R = 1.2 x 10° to 1.9 x 10, Hendersoni10L found that for thin

trianguler wings of aspect ratio 1,865, 2,309 and 2,801 both the pitchang
stiffness and damping derivatives were predicted satisfactoraily for

M = 1.6, 1.9 and 2,4 and that increasing the amplitude of oscillation from
0° to 3° generally increased ~mg slightly while having only a very small

effect on -mg. Moore105:found that for traangular wings of aspect ratio 2
and 3, 4% thick, at Mach numbers 2,96 and 3.92 the pitching damping was
smaller than theory by about 15/ for zero mean inciadence but increased as
the mean incidence was increased. Measurements by Orlik-Ruckemann91 gave
pitching damping only about 604 of its theoretical value in the range

M = 1.4 to 2 for a triangular wing of aspect ratio 1,45.

Taken together this evidence justifies the conclusion stated at
the beginning of this section. For Mach numbers less than 1.4 theory can
become very inaccurate although 1t seems rather less so for the lower aspect
ratios, The effect of frequency variation has not been investigated
sufficiently for any conclusions to be given,

There 1s much less experimental data for modes other than pitching,
but we may refer to some experiments by Conlin and Orlik-Riickemann 105 on the
dampaing an rolling oscillations of a triangular wing of aspect ratic 2 and
NACA 0003-63 section mounted on a slender body. The measurements were

carried out for M = 1.35, 1,57, 1,78 and 2.03 and two frequency parameters
foreach M, v = 0,32 and O, 45 for M = 1.35 to v = 0,25 and 0.35 for
M = 2,03, The experimental values of the rolling damping deravative

quadratically extrapolated to zero freguency parameter were consistently
about 304 less than the theoretical value.

7.5 Controls

As already mentioned the linearised theory of control surfaces for
supersonic speeds contains no special difficulties, but in fact only a few
direct experimental comparisons are available, moreover comparison 1s made
with theory for configurations not exactly the same as those used in the
experiment but resembling them more or less closely.

Orllk—Rﬁckemann1O6 measured the hinge moment stiffness and domping
derivatives for an ainboard constant chord trailing-edge control on a 3. thick
model of roughly delta planform (the trailing edge was swept back 11°),
for M = 1,35, 1,57 and 2,02 and v of order 0.2. Two-dimensional theory
greatly overestimated the stiffness and underestimated the damping; the
theory for a trailing-edge rectangular control overestimated the stiffness by

about/
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about 504 at M = 1.35 decreasing to about 20, at M = 2.02 but was
in good agreement on the dsmping,. Modifying the latter theory by taking
the Mach number as 1ts component normal to the trailing edge 1mproved the
agreement slightly for the stiffness and made 1t slightly worse for the

damping,

Reasg1 ’anwasured the hinge moment for oscillating full span
controls on the trailing edge of a triangular wing of aspect ratio 2 and

NACA 0005 section. For each series of experiments the hinge line was
unswept but the control-chord/root-chord ratio wag 0.107 in the first and
0.067 in the second. The Mach number varied from M = 1.3 to 1.9 and

the frequency parameter based on control chord was small. Comparison was
made with two-dimensional theory and alsoc some allowance was made for the

t1p effect by using the theory of a pitching rectangular wing. In both cases
the agreement on damping was very poor; theory predicted that i1t should be

negative for M = 1.3 and rise to a positive value as M 1ncreased, but
the experimental values while sometimes agreeing roughly at M = 1.3
persisted in remaining small or even negative as M increased, This type

of comparison was affected only in detazl by increasing the angle of attack
up to 10°, the amplitude of oscillation up to 5°, or the frequency parameter
up to v of order one. Theory overestimated the stiffness by up to 204

On thas evidence linearised theory cannot be relied on for control
damping deravatives, and is likely to give a considerable overestimate of
stif'fness derivatives,
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8. Summary of Conclusions

In this section the success or failure of theory in predicting
derivatives is gummarised for the two commonest experimental situations,
namely pitching of a rigid wing and rotation of a rigid trailing-edge
control, Unless otherwise stated theory means linearised thin wing
potential theory (equation (5.1)). The amplitude of oscillation and the
mean incidence are assumed to be small,

These conclusions are to be regarded as general impressions,
sometimes based on tenuous or even conflicting evidence, The terminology
iB necessarily rather vague; "satisfactory" agreement means within about
207 when applied to quantities which are not small,

8.1 Two-dimensional flow - rigid pitching aerofoils

4

(1) Low-speed flow Theory 1s satisfactory for aerofoils of
conventional section and moderate or small
thickness (say up to 15%), for v up to 2
and R large enough to avoid large
movements of the transition point during
the oscillation,

(i1) Compressible flow As for incompressible flow, except that theory
may be less accurate for out-of-phase
derivatives, and the range of v for which
evidence 1s available 1s smaller, up to

v o= 1,

In both incompressible and compressible flow

theory may be improved by introducing a

seml-empirical approach.

(1ii) Transonic flow Ordinary linearised theory breaks dowm,
"Iransonic" linearised theory may be better
but cannot be checked for lack of evidence.

(1v) Supersonic flow If the leading-edge shock wave 1s detached
theory 1s unreliable. For low v Van Dyke's
theory gives good results provided M 1s
well above 1ts value for shock detachment.
There 1is no information for high frequency
parameters,

8,2 Two-dimensional flow -~ controls

(1) Low-speed flow For wedge-shaped trailing edges theory
consistently overestimates hinge moment
derivatives by a factor az large as 2 or 3,
but this relationship camnot be relied on
for cusped trailing edges.
Theory can be much improved by a
seml-empirical approach.

(21)/
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(11) Compressible flow ILittle data 1s available, but 1t indicates
that the degree of agreement found for
incompressible flow may soon be lost as M
increases and fails completely well below
critical M.

(111) Trensonic flow No reliable theory 1s available,

(1v) Supersonic flow For thin wings theory is satisfactory for
haigh M, but for low supersonic M
(M = 1.3 say) theory tends to pred:ict
damping more negative than occurs in practice.

8.3 Three-dimensional flow - rigid pitching wings

(A) Rectanpular and unswept wings

(1) Low—speed flow Theory should be at least roughly correct
for wings of conventional section for v wup
to about 2, and large enough R.

(11) Compressible flow As for incompressible flow but agreement
breaks dovn az M approaches 1%s craitical
value.

(ii1) Transonic flow No theory of known reliabilaty 1s available,

(zv) Supersonic flow For M high enough for leading-edge shock
waves to be attached theory i1s fairly good
for thin wings and low vV egpecially if
allowance 1s made for thickness effect.

Agreement deteriorates as M decreases,
failing altogether for M near to one.

(B) Swept wings

(1) Low-speed flow Theory should be fairly good for small
mean incidences and frequencies up to v = 1,

(11) Compressible flow Theory should be fairly good up to some M
Just less than 1 (depending on sweepback and
profile), and better than for unswept wings.

(11i) Transonic flow No reliable theory is available,

(iv) Supersonic flow Theory is faarly good for low v except
for M near to 1,

(C) Delte wings

(1) Low-speed flow Theory 1s good for small mean incidence but
agreement deteriorates 1f leading-edge
vortices occur in the flow.

Slender wing theory should not be used for A > 3.

(21)/
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(ii) Compressible flow Theory is fairly good, and there 1s some

(1ii) Transonic flow

(iv) Supersonic flow

evidence for systematic dafferences with
experiment.

No reliable theory is available.
For thin wings, low v and high M theory

is good, but it becomes inaccurate for
M < 1J4 especially for low A.

8.4 Three-dimensional flow -~ controls

(i) Low-speed flow

(ii} Compressible flow

(i1i) ‘Transonic flow

(iv) Supersonic flow

For controls of high aspect ratio on high
aspect ratio unswept wings two-dimensional
theory overestimates the derivatives
{as for two-dimensional flow).

For controls of high aspect ratio on awept
wings two-dimensional theory may gave
satisfactory agreement.

There 1s no mathematically satisfactory
lifting surface theory for controls, although
the approach using eguivalent smooth modes
can give good agreement.

The sort of agreement described in (i) persists
up to some M depending on wing profile and

planform, but near M = 1 control
derivatives are usually haghly non-linear,

There is no theory of known reliabilaty.

Theory 1s not reliable.
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