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SUMMARY

The Note gives a concise treatment of the theory of parachute canopy
shapes and stresses. An analysis is made of the eguation

11 r ]
sin ¢ = :}-’:[7\-1+—-2’
8

where r is the radial distance measured from the axis of symmetry and a its
maximum value; ¢ is the anrle the tangent to the curve msakes with a plane
normal to the axis of symmetry and A is a parameter. By varying A a family
of elastic curves is generated representing the shapes of flat, conical and
annular parachutes and also those with an axial cord. General equations for
calculating the fabric surface area and canopy volume in the solid fabric
construction are included, together with equations for determining the gore
shapes for both the cords over canopy and solid fabric construztions. An
approximate analysis is given of the stress distribution in the two con=-
structions. A parachute with an axial cord is shown to have the minimum
bulk for a given inflated diameter but its merit on other parachute require-
ments is doubtful., ZExperiments are suggested to relate canopy shape and
volume with stability and a deep conical parachute is thought to have
several desirable stability characteristics.
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1 INTRODUCTION

During the investigation of the equilibrium configurations assumed by
some rotationally symmetric fabric structures subjected to certain forms of
loading and with a constanl pressure difference across the fabric it was
found that the shapes could be represented by an equation of the form

. 1 r2
sin¢ = 3 [:K -1+ ~§-J . (1)
a

In this equation r is the radial distance measured from the axis of symmetry
and a is its maximum value occurring when ¢ = n/2; ¢ is the angle the tangent
to the curve at a point distant r from the axis of symmetry mekes with a
plane normal to that axis and N is a parameter. By varying the parameter M\

a family of curves is generated, identicel with the elastica occurring in
the theory of the buckling of columng and struts as originally investigated
by Euler,

The following examples show the range of shapes arising in parachute
theory and which can be represented by equation (1):

(1) With N = 1 the eguation becomes

2
sin ¢ = £§ (2)
a

which gives the well-known Taylor shape; in a solid fabric construction it
is the shape theoretically taken up by e parachute when the fabric is about
to crinkle and the tension in the circumferential direction is zero1; for
the design with cords over the canopy it represents the shape taken up by
the cords?,

(i1) With N such that & < M < 1 equation (1) represents the shape of
the parachute with an axial cord and zero circumferential tension in a solid
construction3; it also represents the shape of the cords for the corresponding
design with cords over the canopy4.

(1ii) with N > 1 the equation gives a family of conical shapes very
similar to the ccnical parachute, although as far as the writer is aware no
use of this has been made for design purposes.

(iv) With 0 < N < % the curve does not meet the axis of symmetry and
can be used to represent an annular parachute; again no use has been made of
this in design.

(v) In the theory of some inflatsble lifting structures the whole
range of values of A is encountered?,

From these examples it is evident that equation (1) is of considerable
interest and a general investigation of its properties is of value for both
design purposes and in studies of canopy shapes and stresses.

In earlier work associated with particular values of N it has been
usual to determine the arc length s in terms of ¢, to give the intrinsic
equation, and to obtain the distance x measured along the axis of symmetry,
thus making it possible to plot the particular curves. The transfer to
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cylindrical coordinates is not difficult but can be made to appear unduly
complicated by retaining A in terms of certain geometric conditions and
not using a portmanteau symbol (e.ge Refel). When treated generally the
equation is quite easy to study although the information extracted is
mostly in terms of elliptic integralss For the benefit of those who are
not familiar with these integrals it should be remarked that for the
purposes of this Note the only parts of the theory required are to be
found in the elementary sections of any of the standard texts on the
subject (e.g. Refs.6 and 7).

The object of this Note is to present an analysis of eguation (1)
in as simple a form as possible; to consider the stress distribution for
different velues of N in a solid fabric construction; and to give the
methods for deriving the gore shape for both the solid fabric and cords
over canopy designs. The Note does not pretend to present any particularly
original matter, the design of parachutes of the shaped gore and cords over
canopy type is well-established, as is that for the parachute with an
axiel cord; however, this theory does not appear to have been applied to
either the conical or the annular parachute. The fact that all these types
of parachute can be described by one equation involving a parameter has not
been realised; it is convenient to discuss the equation generally as a
concise summary of the theory of parachute shapes has not been given
previously and meny of the original papers dealing with particular cases
are not readily available.

2 PRELIMINARY ANALYSIS

Consider equation (1):

1 r2
sin ¢ = Y [},— 1+ "5:]‘
a

It is known that Isin @I < 1 and hence

l 1 r2
s IM=-14 —-:}
AN

<1.

For this to be satisfied

2
<1 -2-2-> < 2. (3)

N

r
Hence, for =3 < 1,
a

A > 0. (%)

If the curve given by (1) is to meet the axis of symmetry (r = O) the
inequelity (3) must be valid for all a which implies that
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A
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With O < A < % the curve can only exist for values of r such that

2
%>1-2x. (5)
a

It is ap?arent that separate consideration must be given to the cases where
O<A<tand N2 3.

241 The case A > =

Suppose we take as origin O one of the points where the curve meets
the axis of symmetry and measure distance x along this axis and arc length s
along the curve from O. (See Fig.1a) Now, using ordinary differential
geometric relations

dr
ds = -C-E)?@ (6)

and on substituting from equation (1) and integrating between appropriate
limits

/e xa/{l)
i : =% )
e JU-@ - @)
a a/
This integral can be expressed in the standard form (1) given in Appendix 1

when the range of integration is separated so that the upper limits are
unity iece

feo

o

W2y :
[ [0[ )

the result is

L JQUE B0 B @

In equation (8) F[0,k] is the Legendre elliptic integral of the first kind
with argument 6 and modulus k.

For the coordinate x the geometric relations give

o aa _ sing
dx = sing ds = o8 ¢ dr (9)



and substituting in this from equation (1) and integrating between
appropriate limits the following expression is obtained:=~

/ v-w-um

©
1

Separating the range of integration as before the integrals in (10) are
again standard forms and on evaluation:

tem (B () B)
(oG B B o

In equation (11) E[G,kﬂ is the Legendre elliptic integral of the second
kind with argument 6 and modulus k.

To obtain the appropriate ranges for the arguments involved set

A

Yl <§> = £ = cos™! \/(x sing +1 = 12) , (12)
then for
-k pil x
< sin ( WEAKANE
%zg;o
. =1 /A=t
where E = 3 corresponds to ¢ = sin e

(which is the angle the curve makes with the axis of symmetry when r = O),

and £ = O corresponds to ¢ = % ;
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= . 7
for ¢ 23 0?6;,?-2
where E = O corresponds to ¢ = g
and & = - % corresponds to o =T - sinf4<L%1> .

Equation (11) enables the curves for A 2 & to be plotted in the
cylindrical coordinates r and x, using a set of tables of elliptic integrals,
eegs Ref.8., The coordinates for a range of values of A are given in
Appendix 2 and the curves are shown plotted in Fig.2. These curves are for
values of N corresponding to values of sin~'k at intervals of 5° from 25°
(N = 2:799) to 60° (N = 0:6667), and intervals of 10° from 60° to 80°
(A = 0:5156). The elliptic integrals are commonly tsbulated with sin"Tk at
intervals of 5°, to plot the curves for intermediate values of A more com=-
plete tables are required than those of Ref.8; the tables of Ref.9 give
sinx at intervals of 1° and are probably the best available. The co-
ordinates given include those for the values of N corresponding to
sin" 'k = L6°, 4,7° and 48° although, to avoid confusion, these have not
been plotted in Fig.2.

2,2 The case O < A < #

When O < A < 3 the curve does not meet the axis of symmetry; arc length
is measured glong the curve where it exists from an arbitrary point P say,
where r = Ty to a point Q where r = r, and the coordinate x is measured

along the axis of symmetry from the point where the plane through P normal
to this axis meets it, as is shown in Fig.ib.

In this case

® o

L EE—
1 1

Separating the range of integration so that

r/a . 1 . 1
IR

and using the appropriate standard form of Appendix 1, evaluation of the
integral (13) leads to:-



(14)
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where - (15)

and the suffix '1' refers to 'r' = Ty

Similarly:

oM
]

7/3 R (‘92} () - (16)
iR CJTCREREY

and integrating by means of the standard forms (iii) and (iv) of Appendix 1,

£ o Bz, VE) =Bz, V) - (1 -2 [F(z, , V) - F(z, V).
eee (17)

For the appropriate ranges of the arguments involved set
31

f, 2 1
)
<£\ - (1-2n
a/ 4
=1 -1 ( 1+ sin ¢?
Z = cos ¢ R . = cos 1 ,
2N 2
then for L )
-5ce<h
Erzso0
where ¢ = % corresponds to 9 = - lg
and &£ =0 corresponds to Q .—.% ;
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The coordinates for some values of A are given in Appendix 2 and the
curves shown in Fig.3. Figs.2 and 3 now show the wide range of shapes which
equation (1) represents and the curves for intermediate values of A can be
obtained using equations (11) and (17) and suitable tables of elliptic
integrals,

3 THE SOLID FABRIC CONSTRUCTION

In this form of construction the canopy is made up of a number of
gores cut from a plane sheet of fabric and seamed together, It is assumed
that, when inflated, the whole canopy forms a surface of revolution and the
gores do not bulge outward from the seams running between the apex and the
peripheral hem; in practice the gore fabric does tend to bulge outwards and
the theory of the stress distribution given can only be regarded as providing
an approximate guide.

With n gores the width of each at distance r from the axis is 2ar/n
and the length of the gore is 8 measured from either the canopy vertex or a
suitable origin. The tables of Appendix 2 give corresponding values of r/a,
s/a and x/a for a range of values of N and it is a simple matter to determine
the gore shape for a given 'n! and A from these. A few gore shapes are shown
in Pigelss

If it is desired the width of the gore at a given distance s from the
vertex or origin can be derived as follows:=-

Let =§ = cn (u,\/%) (18)

where cn(u, k) is the elliptic function usually denoted by those symbols and

N2 5. Then
R
= [%)

c
i

and in equation (8)

\/%(K-u)

- r(E, | L
where K = F<2,\/27\>.

ot



Hence u = K= % %
and in (18)

E—Cn{K- -2—-3- --1—
a ( * a’. o |

Thus the width of the gore at distance s from the vertex of the canopy is

278, . s 71 )
o= Heonjx- |24, % | (19)

where w is the semi-gore width and N > %.

For the cases where O < A < & the gore width is still 2rxr/n and a
similar analysis to that of the previous paragraph enables one to determine
the gore width for a given arc length s.

(<§>2 - (1 -2

1

|
Lot '  — = cn{u, VZX) . (20)

Then, from (14):

s
-é,- = 7\[111-'11]
where u, = F(é1, v2X), and thus
1 8
u = u1~.}\ go (21)

The width of the gore at distance s from the position where r = r, is then
e 4 1'22
& | 2/ -} -
ow = = sz cn (u,‘ = a,v"z'x.‘>+(1 zx)} (22)
where O<N< %,

3¢1 Stresses in the fabrie

In the solid febric construction the stresses in the fabric can be
obtained using ordinary thin membrane theory. Regarding the canopy as a
surface of revolution and supposing that the tension in the generator
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direction is T1 and in the circumferential or hoop direction is T2, it can

be shown (c.f. Ref.1) that

d -
L (r1) = T, (23)
and
a ., . . _
T, T 3o (sin ¢) + T, sin ¢ = pr (24)

where p is the pressure difference across the fabric, which is assumed to be
constant.

Substituting from (23) in (24):

d .
Ep (r T, sin ¢) = pr

2
therefore rT, sing = B%— +C (25)

where ¢ is a constant of integration. Substituting from equation (1) into
eguation (25)

AL 2,
T, = ; {24, 2} (26)
<h -1+ £§> r
a
and from (23)
22
T, = rﬂ[(x-ng-%}. (27)
(x -1+ 55 &
a

It is usual to determine the constant of integration ¢ by considering
the equilibrium of the axial forces acting on the system.
(i) For a parachute without vent or axial cord:

enrT, sing = pnrz . (28)

Evaluating this at r = a, ¢ = /2 and equating the value for T1 atr=a
with that given by (26):
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and hence
C = O. (29)

(ii) For a parachute with a vent of radius b but no axial cord:

orr T, sin ¢ = p'/t(r2 - b2) . (30)
Hence
2 2
pla”=b7) _ R,C
2a L B S
a
b2
and ¢ = = 2-2— . (3)

(iii) For the parachute with an axial cord:

orrT, sing + T = pnr2 (32)

where Tc is the tension in the axial cord. When ¢ = O:

T, = pra’(1 = 1) ; (33)

and when ¢ = 7-;-:
2na T, + pna2(1 -\) = pr;\:a2
Ir=a
therefcere T, = 22‘55 = a{ g + -22-} from (26),
(r=a) a
Hence
aZ
c = R"é'" (7\. - 1) . (BLI-)
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It is important to note that, as a consequence of equation (34), the circum-
ferential tension given by (27) is zero. The solid parachute with an axial
cord is thus on the verge of crinkling and it is to be expected that it would
be easily distorted by external aerodynamic forces resulting from, for
example, gusts of wind.

It is also possible to obtain the value for c¢ for the annular parachute
with both central and outer peripheral cords; the value depends on the inner
redius of the amulus and the angle the central cords make with the axis,
together with the number of cords used.

Equations (26) and (27) reveal several interesting features. For the
parachute without vent or axial cord

ADr
T1 = 5 (35)
2<x -1+ 5—2>
a
p - Ao 1)pr . (36)

2 - 2.2
/X -1+ £—>

\ o

If the parachute is on the verge of crinkling and is as flat as possible the
circumferential tension T, must be zero, this implies from (36) that A =0
or N =1, but A = O is inadmissible (see para.2) and hence N = 1 and the
parachute takes up the Taylor shape. With A = 1 it can be seen from
equation (35) that the generator tension T1 is always infinite when r = O

is.e. at the canopy apex; in practice this is not possible but there is a

high stress concentration at this point which is relieved to some extent by
the elasticity of the fabric'“. To avoid the stress concentration the para-
chute can be made slightly conical so that N > 1; the stress at r = O is then
theoretically zero and although the parachute is not on the verge of crinkling
the circumferential tension, which must exist with A # 1, is always positive
and can be kept small by a suitable choice of Ay Similarly the inclusion of
a vent helps to reduce the stress concentration near the apex of the canopy;
in t?is)oase, for the circumferential stress to be zero, from equations (275
and (31):

2
- 2\r, 1 PR ]
T, = rzzt(x-1)2+2a2}_o
<7\-1+--§>
a
for r 2 be This equation is satisfied if N = O, which is excluded, or
2

b

Moo= 1——-2-.
a

T, = &=t 2 (57)



and remains finite when r tends to b which is the minimum possible value
for r« The canopy equation is

r2 - b2

sin ¢ =
a2—b2

and this shows that the conopy is quite flat at r = b (¢ = O) where the
vent commences, Whilst the stress given by (37) still increases near the
vent this is not so serious as that in the Taylor shape.

It is desirable to have a slight positive circumferential tension in
the fabric so that there is some resistance to distortion of the canopy
shape by external forces; with zero or negative tension the canopy is prone
to a form of instability in which the gores cling together and only partial
inflation takes place. This should be overcome by making parachutes slightly
conicale

502 The surface area of the fabric

In the so0lid fabric construction the canopy is assumed to form a
surface of revolution and the surface area A is given by

A=27c/rds=27:/£-a£~.
cos ¢

Using equation (1)

o s
joT]

(
Ji-@3--3

©
Nds”

A 27:8.2)»/

(38)

1
[\
>
]
4]
S.
]

where the integral is evaluated between appropriate limits.

As an example, the area of the Taylor shape (A = 1) from the apex,
r = 0, to the maximum diameter, r = a, is

2.2
T a

L =117 _ nla”
+ sin ﬁj- 5 .

A)\=,l = 2Jca2 {— sin
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It is of interest to determine the particular design in which the sur-
face area of fabric is a minimum. Consider only those canopies which meet
the axis of symmetry, i.e. those for A > %, and the surface area lying between
=0 and r = a; it is assumed that below r = a all canopies require approxi-
mately the same amount of fabric before the peripheral hem and this particular
area is ignored.

Between r = O and r = a the fabric surface area is

2 Y 1
A = 2ma Asin 55

For a critical value
dA 2{ . =1 / 1T 1 :}
== = 2%a sin e ———— = 0.
an 2\ > sz -1

The relevant root of %% = 0, which gives a minimum for A, is found graphically

to occur when ’2% 0+92 or A # 0:5907. The canopy using the minimum fabric

area is thus one with an axial cord and its surface area between r = O and

r = a is A-336a2. If this is compared with a Taylor shape parachute with the
s%mg inflated diameter i.e, drag area of ma“ and fabric surface area of

)

2
about 13%; the total saving including the fabric between r = & and the peri-
pheral hem would be somewhat less than this and probably sbout 8—10%. If it
is assumed that the drag coefficients of the Taylor shape and the canopy with
an axial cord are the same under identical condltlons, an increase in drag of
about 13%, corresponding to a decrease of about 65 in the descent speed, might
be expected from the canopy with A = 0:5907 over the Taylor shape with the
same fabric surface area. Some experimental evidence tending to support these
conclusions appears in Ref.4; a direct comparison is not possible since the
experiments were conducted by varying the length of the axial cord, and hence
the parachute shape, on a parachute with cords over the canopy.

= 4~935a2, the canopy with A = 05907 represents a saving in fabric of

The Taylor shape was originally suggested1 as that which would be of
minimum bulk but from the present analysis it appears that the parachute with
an exial cord and A = 0-5907 is an improvement; however only conventional flat
parachutes were considered in Ref.1s The process of minimising the bulk of a
parachute could be carried further; one would expect an annular parachute,
capped over the vent by a canopy with A = 05907 and with an axial cord, to
use a smaller fabric area for a given inflated diameter than the parachute
with A = 0-5907 on its own, and by edding further annular rings it may be
possible to improve the ratio of fabric ares to drag area even more. The
improvements, if any, to be expected from modifications of this nature would
probably be marginal; both the Taylor shape and the parachute with an axial
cord are on the verge of crlnkllng (in the solid construction) and are lisble
to the instability mentioned in para.3.1; the presence of axial cords can
also result in canopy malfunctions since they prevent total inversion in the
case of a blown periphery. Research on parachutes with axial cords seems to
have ceased at the end of Vorld Var II and very little data are available
with regard to such factors as opening characteristics and stability and it
is difficult to make comparisons; if there is a requirement for a particularly
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low bulk parachute the more sophisticated experimental techniques now
available should enable an assessment to be mades It may be added that the
axial cord probably reduced the tendency for a parachute to breathe;
breathing is known to produce a considerable variation in descent speed -
in the case of the man carrying parachute this is of the order of

+3 ft/sec with a mean descent speed of 16 ft/sec - and this is a con~
tributory factor in landing injuries and damage.

343 The volume enclosed by the canopy

The volume enclosed by the canopy is given by

V = ]ﬂrzdx

/ﬂl"Ztan(p dr .

Using equation (1)

I‘2 I'2
5 A-1+ ,_§> =3 /
TR BN s ) (59

- zxd\a/
Ji-@l-es)

Care is needed to ensure the regions of integration give the volume
interior to the canopy and it is often necessary to separate the volume
into a sum of integrals taken between several limits with the correct
signs for each part of the total volume. The method of integration is
briefly outlined in Appendix 1 and there are two separate cases:

with A 2 7,

VvV = —7ta3i<j-:==)=‘-> «/'2?'E<oos-1£,-1:>+
| 3 & " V&
L

+/‘%-1>{§XF<COS-1§,“’1’>+

6 N
+ e 2~ - 22 |t/
r r { r \
Sefp-@E @l e
quo/a
taken between appropriate limits; and with O < \ < %
'( 1 1= 22
Vv = -xa’ ! (-—-551-7;) E(Z, V2% ) - (—-:3-—> (g, v2N) +
: r/a
1 r - A2 75\
S o) e
ro/a

between appropriate limits.
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For the Taylor shape with A = 1, the volume enclosed between the maximum
diametral plane, r = a, and the apex is

5742 AN L2z AN
-a 16 F(O, {2> ?F<2’f2'>‘§

3
= &gﬁx 18544 = O+437 xa> .

it

1

>
H

For the parachute with an axial cord and A = 0-5907 the volume enclosed
between r = O and r = a is found to be 0:284 1a3; and for the conical para-
chute with a semi-vertical angle of 60° (A =2) the corresponding volume is
0707 nad, To these volumes must be added the volume contained in the skirt
below r = a which can be assumed constant for a given inflated dismeter.

Whilst the volume of &ir contained in the canopy has no gravitational
effect it does contribute to the inertia of the canopy which is of importance
in considerations of stability: there are indications that stability is con-
siderably improved as the canopy volume increases, against this must be
balanced the facts that the large volume conical canopy requires more fabric
and is slower in opening. It is desirable that experiments should be made to
determine how canopy volume affects stability and opening; a deep conical
canopy, with A = 2 say, seems to offer several advantages in that the circum-
ferential tension in the fabric is always positive, there is no stress con-
centration at the apex, the inertia of the canopy and contained air is high
and should therefore produce less tendency for the parachute to breathe or
oscillate laterally, and the opening shock should be low on account of the
slow filling time for the canopye.

L THE CORDS OVER CANOPY DESIGN

In this design, in the case of a parachute, the rigging lines are con-
tinued from the peripheral hem and run right over the apex of the canopy.
The object is to relieve the stress in the fabric by having the cords taut
in comparison with it and thus bearing much of the load; a stronger canopy
than that given by the solid fabric construction is thus produced.

For the canopy to form a surface of revolution any cords passing over
it must be slack in comparison with the fabric and can perform no useful
function since they then might as well terminate at the peripheral hem. If
the cords are made tighter than the fabric the canopy no longer forms & surw
face of revolution and the gore fabric bows out between adjacent cords. The
tension in the fabric produces a force component to support the tension in the
cords and it is possible to arrange this so that the circumferential tension
in the fabric is approximately constant over the whole canopy. The basic
assumption made in the design theory is that by gathering the gore fabric
along the cords the stress in the generator direction can be made negligible
s0 that only circumferential tension exists in the fabric, the cords bearing
all the load in the generator direction. The problem essentially consists of
finding the shape taken up by the cords and then determining the shape of the
gore to be cut from a plane sheet of fabric which, when fitted, satisfies the
assumptions of the theory. A method for determining the gore shape for the
parachute has been given in Ref,2; this gore is generated by a circle of
constant radius lying in the plane containing the normals to a pair of
ad jacent generator cords at corresponding points equidistant from the vertex
and passing through these points, except for crinkles the gore surface 1is
swept out by the circle as it passes down the cords from the vertex to the
peripheral hem.
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In Ref.2 which only concerns parachutes without vent or axial cord,
it is shown that the cords cver the canopy take up approximately the
Taylor shape of equation (2); in an Appendix to Ref.5 a more accurate
approach is made to determining the shape which takes into account the
bowing out of the fabric between the cords, and shows that, depending on
the number of cords, the shape they take up is slightly conical and is
given by a member of the family of curves represented by equation (1).
According to the type of parachute and the loading the shapes taken up by
the cords can, in general, be represented by equation (1) with the
appropriate values for A. It is not intended to reproduce here the whole
of the theory of the cords over canopy construction; for parachutes without
vent or axial cord the reader is referred to Ref.2 and for parachutes with
an axial cord to Ref.4. For a more general discussion covering a wide
range of values of A Ref.5 gives full details of the derivation of the
cord and gore shapes. In this Note it is assumed that the cord shape is
given by equation (1) and the equations for calculating particular gore
shapes to satisfy the assumptions are only given.

It is shown in Ref.5, with a slight difference in notation, that if
the radius of the gore generating circle is h, and the gore length

measured along the mid-gore line is S, then the semi-gore width w is
given by

@ = h sin (—E sin %) (42)

where n is the number of cords, and the length of the gore, for the case
where A > 3, by

. a r Ir 2 /I'
s, iﬂz—g r/a 5\1 - +‘g7»<‘a'> “<Z> }(Z)Z d@

= —= / : e (43)
. - 2~ A2
@@
a a )
where s/a is given by equation (8). The method of evaluating the
integral in (43) is given in Appendix 1 and the result is
S - s 2m | /A=A 2 o/ ¢ [A
" = 8in o < S > \/K E Kcos s 2;) +
e ST AN -y N,
\ N INEY (°°s 2’ .o
2 ;N2
s i-5) )0 -@ 0
+{= = - 1 == A=t +(= -
\37\ a”2n). | “\z) | \
/\2 r/a
r L
a . =1 1 -5 € )
-5 (1 - \) sin { — } . (b4



Similarly, with O < A < &

4 a T T 2 r 2
so, st e (- (510)

T T L-a(£) 0 (s)
R TR

where s/a is given by equation (14).

On evaluating this integral the result obtained is

S=8 _ 51223 /A2 %) -
- = sin & ) E(Z, v2\)

G 8]0 - o)
o (§>2 L /e
¥

\

Ty

5 : (16)
t r1/é

A\) sin

i
ole
~~
-—
1

When the values of a/h and n have been chosen the gore shape may be worked

out using equation (42) and either equation (44) or (46) depending on the
value of A,

Consideration of the equilibrium of the axial forces determines the
tension in the cords and since it is assumed in the theory that the pressure
difference across the fabric is constant and the tension in the fabric in the
generator direction is zero the relation between hoop stress and pressure is
approximately

T
“ﬁg = P, (14-7)

for the radius of curvature of the fabric in the circumferential direction
is h if the elasticity of the fabric is neglected. The equation for the
equilibrium of the axial forces also provides a relation between the pressure
difference p, the loading and the geometric characteristics of the parachute
which, in conjunction with equation (47), enables an estimate to be made of
the tensile strength required in the fabric.
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The value of a/h determines the fullness of the gores. If the number
of cords for a parachute of meximum radius, a, is fixed, then the gore width
must exceed the minimum required to cover the surface. For relatively small
increases of width the rate of increase in the curvature is substantial but
falls progressively. Since, for a given pressure difference, the tension T2

and h are proportional, initial small increeses in fullness of the gore
enable the tensions, and consequently the fabric weight and thickness, to be
reduced. The exact relation between the tension and fabric thickness cannot
be formally represented for analytic use and the question of determining an
optimum velus for a/h has never been rigorously pursued. There is an element
of diminishing returns as the value of a/h is increased and, in practice,
values about two (2) have been chosen.

It should be emphasised that the approximate stress analyses given in
this Note, for both types of construction, are only applicable to parachutes
which are fully inflated and in steady descent; the assumption of constant
pressure difference is then reasonable,

5 CONCLUSIONS

An analysis has been given of the shapes represented by the equation

1 r2
sin ¢ = X [:X -1 +'—§:]
a

with particular reference to those factors which may be useful in parachute
design both in the solid fabric and cords over the canopy constructions.
The equation is shown to give a range of shapes including those taken up by
conical, flat and annular parachutes and those with axial cords.

There is apparently no simple physical meaning for the parameter \;
in any perachute it is largely determined by extraneous features: a particular
shape may be required; only certain materials may be available; the parachute
mey have to occupy a fixed spatial region so as not to interfere with the
structure to which it is attached; it may have to occupy a certain bulk and
so-one No rule can be given enabling a designer to choose a particular A,
this can only be decided in the light of experimental evidence of the most
suitable parachute to perform a particular task taeking into account any
extraneous features,

Approximate methods for calculating the fabric stresses in the solid
construction show that it is desirable, in order to avoid serious stress
concentrations and provide some resistance to deformation by external forces,
to make parachutes slightly conical. Consideration of the fabric surface area
required for the various canopy shapes in the solid construction shows that
the minimum emount of fabric is used by a parachute with an axial cord and
A = 05907, this gives sbout 1% more drag than a Taylor shape of the same
fabric surface area; some of the disadvantages of the parachute with an axial
cord are remarked on. The volume enclosed in canopies of solid fabric con-
struction is calculated and that of the conical parachute with A = 2°0 shown
to be considerably higher than that of a Taylor shape with the same inflated
diameter; this has the advantage of increasing the inertia of the system and
promoting stability but the disadvantage of requiring more fabrice. It is
concluded that experiments on the effects of canopy volume and shape on
stability and opening are desirable and that the deep conical parachute
merits particular investigation.

- 20 =



LIST OF SYMBOLS

A fabric surface area in the solid construction
E(6,k) the Legendre elliptic integral of the 2nd kind
F(6,k) the Legendre elliptic integral of the 1st kind

S arc length measured along the mid-gore line of the fabric in the
cords over canopy design

T1 generator tension

T2 circumferential or hoop tension

Tc axial cord tension

v volume enclosed by the canopy in the solid construction
a maximum radius of the canopy

b radius of the canopy vent

c ra constant of integration

(In Appendix 1 a, b and ¢ are not used in these contexts)

h radius of the gore generating circle

k modulus of the elliptic integrals

k! the complementary modulus defined by k2 + k'2 =1
n number of cords

P constant pressure difference across the fabric
r the radial coordinate

8 arc length

w the semi~gore width

X the axial coordinate

4 defined by equation (15)

) argument of the elliptic integrals

A a parameter
E defined by equation (12)
¢ the angle made by the tangent to the curve with & plane normal

to the axis of symmetry
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APPENDIX 1

ELLIPTIC INTEGRALS

The Legendre elliptic integrals of the first and second kind respectively
are defined by the relations

0
0,9 - [ e
o) 1 - k2 sinler
6 e 31 T S
E(6, k) = / ’1 - k2 sinzllf ay .
()

E(0, k) and F(6, k) are usually tabulated in temms of 6 and a, where
k = sin a, for the ranges 0 < 6 < /2, 0 € a € ®/2. The range of the tables
can be extended by using the following relations:-

E(-9, k) = -B(6, k)

P(-6, k) = ~F(0, k)
E(mx + 6, k) = 2m E<-’§‘ s k) + E(6, k)
Mmr £ 0, k) = 2m F(lg- R k> + F(e, k) .

In this Note most of the integrals involved can be evaluated using one
or more standard forms.

With

and A(0, k)

]
<
—
!
~
)
7]
e
o]
(@]
-

the required forms are:-

a
' dt 1
/ e < (0, k) (1)
X J(a - t2) (b2 + t2)
T X
where cos & = =3
a
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Appendix 1

fJ(i—;%—g->dt = ¢ E(0, k) (11)
X

where cos & = = s
a
c
/ e - Dw(e, x) (1i1)
r (42 -9 (2 - )
where A, k) = % ;

f S8 L o3, 6) (1v)
x \/(tZ _ b2) (02 _ t2)

where  A(0, k) = .

ol

The integral in equation (43) can be written as a combination of
integrals of the type

£ at _ / _cos.0.d6
BN
)

N :
(1-t2) (k'2+kt \[1-1:2 sin"0
j~cnp u du

cos & = ecnu

1]

where t

and k2 + k'2

1.

Recurrence relations for evaluating Cm are given in Ref.11; the method of

deriving these relations is given in Ref.6 but it should be noted that the
relations quoted there are incorrect due to misprinting.

The integral in equation (45) can similarly be written in terms of
integrals of the type

R m ,
D = - / =it - / an® v au
Ju-t%<¥-k@>
where t = dn u.

Recurrence relations for evaluating D, are again to be found in Refs11. The
integral in equation (39) for the cases A > 5 and O < A €  is evaluated
using these same recurrence relations.
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APPENDIX 2

CANOPY, CORD AND GORE COORDINATES

The coordinates r/a and x/a for the canopy or cord shape are given in
Tables 1 and 2. In order to determine the gore shape in the solid fabric
construction values of s/a for the gore length are given and the gore width
can be calculated from

m _ enfx
a  n \a

where n is the number of gores.
Teble 1 is calculated for several cases where A > %; the corresponding
values for A and sin-1k:= sin-1 fé% respectively are as follows:=-

0+5156, B80°; 0+566L4, 70°; 0-6667, 60°; 0-7500, 55°; 08522, 50°; 0:9055, 48°;
09347, 47°; 09664, 46°; 1.000, 45°; 1.210, 4L0°; 1+520, 35°; 2:000, 30°;
and 2:799, 25°, The intervals for r/a are those corresponding to values of

E (= cos™ r/a) from & = 90°, r/a = 0 to £ = 0, r/a = 1:0 at intervals of 5°,
these give the part of the curve lying between the point where it meets the
axis and the points r = a, ¢ =7/2; the continuation of the curve from ¢ = %/2
onwards until the axis of symmetry is met again is a mirror image in the

plane containing r = a as is shown dotted in for the curve A = 0:5156 in
Fig.2., The curves shown plotted in Fig.2 are at intervals for sin™'k of 5°
from 25° to 60° and then at intervals from 60° to 80° of 10°,

Table 2 is calculated for three cases where O < A < 3 and the curve
does not meet the axis of symmetry. The corresponding values for N and

sin" k= sin~| VZX are as follows:- 0-+4849, 80°; 0:4415,70°; and O+3750, 60°,
The intervals for r/a in each case are those corresponding to intervals of

10° from ¢ = -90° to ¢ = +90° and the continuation of the curve is a mirror
image in the plane containing r = a as shown dotted in for the case A = 03750
in Fige3; this figure shows the curves for the three values of A,

Some examples of the gore shape for the solid fabric construction are
shown in Fig.4. The gore shapes for A = 0+5156, 1:00 and 2:00 are to fit
canopies extending from a vertex r = O to the maximum radius r = as The gore
for M = 0:3750 is that for r/a = 0+5 to r/a = 1+0 since the curve does not
exist if r/a < 0+5.
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A o family of elastic curves 1s generated representing the shapes of flat,
conical and annular parachutes and also those with an axial cord, Gereral
equations for oaleculating the fabrle swrface area and canopy volume in the
solid fabric construction are ineluded, together with equations for
determining the gore shapes for both the cards over canopy and solid
fabric constructions, An approximate analysis is given of the stress
distribution in the two constructions, A parachute with an axial eord is
shown to have the minimum bulk for 2 given inflated dlameter but its merit
on other parachute requiraments is doubtful, Experiments are suggested

to relate ¢tnopy shape and Volume with stability and a deep conierl para=
chute is thought to have severel desirable stability characteristios,

A 2 fapily of elastic curves ls gencrated representing the shapes of flat,
conical and annular parachutes and also those with an axial eord, General
equations for calculating the fcbric swrface ared and eanopy volwie in the
solid fabric congtruction are included, together with equations for
determining the gorc shapes for both the cords over canopy and solid
tabric constructions, An aprroximate analysis is glven of the stress
distribution in the two constructions, A parachute with an axial cord is
shown to have the minimum bulk for a given inflated diemeter but its merit
on other parachute requirements is doubtful, Experiments are suggested

to relate conopy shape and volume with stability and a deep conical paras
chute 1s thought to have severcl desircble stability characteristics,

A 2 family of elastic curves is generated representing the shapes of flat,
conical and annular parachutes and also those with an axial cord, General
equations for calculating the fabrie surface area and canopy volutie in the
solid fabric construction are included, together with equations fcr
determining the gore shapes for both the cords over canopy and solld
fabric constructions, 4n approximate analysis 1Is given of the stress
distribution in the two constructions, A parachute with an axial cord is
shown to have the minimum bulk for a given Infiated diameter but its merit
on other parachute requirements is dowbtful, Experiments are suggested
to relate eanopy shape and volume With stability and o deep confcal para=
chute is thought to have severcl desirable stability characteristies,
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