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SUMMARY

The methods at present available for the estimation of the usual
longitudinal and lateral stability derivatives of an airoraf't are briefly
discussed for each derivative in turn,

This is preceded by an introductory seotion dealing with trends in
piroraft geometry and their implications regarding the stability derivatives.
To illustrate this further the general discussion of methods is followed by a
rather more detailed consideration of the estimation of these derivatives for
a slender-wing type airoraft, mainly at low speeds, when incidence effects are
shown to be important,
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1 INTRODUCTORY REMARKS

Tt is evident that the above topic is too broad to be dealt with
adequately within the scope of a single paper. The plan followed is to
avoid detailed discussion of each derivative by reference to a fairly
extensive bibliography.

We shall see later that the task of meeting the aerodynamic needs of
the flight dynamicist has changed considerably over the years. The problem
has become more integrated in that particular derivatives can no longer be
regarded as mainly arising from the action of some single component of the
aireraf't.

Lifting surface theories and more extensive use of computing machinery,
which enables the more elaborate forms of these theories to be applied with a
reasonable time outley, have contributed greatly to the estimation of wing
characteristics at subsonic and supersonic speeds., Although the sonic flight
condition has been treated theoretically on a linearised basis, this is
olearly unlikely to provide more than an indication of trends. Whilst this
state of affairs may not be too scrious a shortooming as regards the dynamics
of the rigid sircraft modes it is of greater importance in flutter and other
aeroelastic problems, for which the transonic speed range may often be the
most criticel flight condition.

In as much as it permits of treatment of wing, body, tail combinations
the subsonio and supersonic counterpart of the sonic theory, the slendex
body theory, has proved useful in overcoming some of the problems of deriva-
tive estimation and may well become increasingly so.

2  TRENDS IN ATRCRAFT GEOMETRY AND THEIR IMPLICATION REGARDING
DERLVATIVES

Before proceeding to a consideration of the position in respect of each
derivative it is instructive to examine the trends in aircraft geometry over
the years and see how these have reacted back on the problem of derivative
estimation, including changes in emphasis of particular derivatives.

At one end of the scale (see Fig.1) we have the aircraft with large
aspect ratio, unswept wing and with tail surfaces on a long tail arm. In
fact an aircraft which could be broken down to largely independent aero-
dynamic components, each making its contribution to the derivatives, but with
the contributions from one or two parts dominating in each derivative.

As the speed range of the aeroplane opened out to embrace the transonic
and supersonic, wings have become progressively more highiy swept and/or of
much lower aspect ratio (see Fige1)e The body has tended to become relatively
larger and so interference bLetween the various components much more important.
This implies more incidence dependence of some of the lateral as well as some
of the longitudinal derivatives, an effect that can be further emphasised by
occurrence of shock-induced separations.

Smaller wing aspect ratio reduced the damping-in=-roll; an effect which
is further emphasised by high sweepback. The same gecmetric features make
the rolling moment due to sideslip become numerically much larger.

To fully appreciate the changes and their significance we must look at

the dynemics of the aircraft. For many applications we can consider the
longitudinal and lateral motions separable.
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The derivatives involved in the longitudinal short period mode are
mq’ Mey 2. and m.s With respeot to these derivatives it has become
necessary to pay inecreasing attention to the contribution of the wing to

the moment derivatives and at transonic speeds, in particular, to the
oscillatory character of the flow in the estimation of e o The incidence

dependence of the derivative m, cen be marked at some flight conditions,

leading to the well~known piteh-up problem.

The lateral modes of motion are usually more complicated but we
can gain some insight into their nature and implication regarding the
importance of various derivatives by use of an approximate sclution of
the lateral stability equation, According to this approximation the
damping factor (-R = real part of root), R, of the lateral oscillation
is given by,
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At one end of the scale we have the aeroplanc with high aspect ratio

unswept wing for which iA and ic were of the same order and iE small,

There emerges in consequence tk- well-known approximations
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c e
provided -6v and CL are not large,

As sweepback increased, aspeot ratio became less, and bodies compara-
tively bigger, the importance of 6v and the dependence of &v and n_ on

incidence became more marked as is clearly indicated, Accompanying the
changes in geometry there was & tendency for the mass distribution to change,

For the conditions :°|.C >> i! and oppreciable incidence further conse-

quences emerge as we may ignore terms in iA and write iE:siC sine x = iCsﬁla,
if the differente between a and e (the inclination of forward principal axis
of inertia to the flight path) is small cnough to be neglected. This yields
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When in addition &v >> n_, as is of'ten the case, the last term may be
negleoted,
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These considerations show that the changes in airoraft layout are
refleoted in changing requirements regerding estimations of certain derivatives.
The larger —&v end its increase with incidence for swept wings as contrasted

with n and its tendency to decrease with ineidence are obvious examples.
Again in our final Torm for the demping it is clear that, as 6p becomes

numerically small in consequence of the geometric trends outlined, other less
well documented (np, Er) and sometimes neglected (ﬁﬁ) derivatives assume

greater importance.

Dependence of the derivatives on incidence is bound to be more marked
when the fin is subjected to the influence of a strong vortex system cast off
by the body, foreplane or the wing, in the extreme case of a slender wing
aireraf't,

Representation of the incidence dependence of derivatives require even
more careful consideration in problems involving coupling of the lateral and

longitudinal motions.

Some of these trends are found to a certain extent to be reflected in
the theoretical and experimental work. In the next section each derivative
will be considered in turn and the only evidence of any such trend will be in
the number of references associated with it, although it must be pointed out
that other considerations enter into the extent to which a particular deriva-
tive is documented, not least of which is ease of calculation or measurement.

3 DISCUSSION OF INDIVIDUAL DERIVATIVES*®

361 Derivatives due to change in forward velocity

so that if the engine characteristics are kmown the estimation of the
derivative involves the drag coefficient, and its variation with Mach number.
For a partioular aircraft, drag measurements are often made in the early stages
of the design, as they are important from the performance point of view,
However, if experimental results are not available, the Aerodynamic Data

Sheets of the Royal Aeronautical Society1 give fairly comprehensive methods

for estimating drag. At subsonic speeds, the profile drag at low CL for

wings of various cross-section are given, but the drag due to lif't is more
difficult to assess, That part due to the presence of trailing edge
vortices may be celculated from one of the 1lif'ting surface theories €.g.
Ref's.14, 15, 16 but the additional lift-dependent drag due to the boundary
layer has to be estimated from experimental data on similar wings. Drag
to body, nacelles eto., is given in Ref,1, but drag due to interflerence may

% This Section prepared in collaboration with Dr. A. J. Ross.
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nay also be appreciable. The transonic drag rise depends on wing thick-
ness distribution, sweepback, taper-ratio ete, and is best obtained from
experiment; results for rectangular wings of the NACA 65 series section
shapes are given in Ref.1. For supersonic speeds, the wave drag of

wings, and of bodies, and the 1lift dependent drag of wings are presented
in chart form in Ref.1. Area rule is used to estimate the wave drag of
wing body combinations, and the relevant literature is discussed in Ref,17.
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2z, 1s determined by the 1ift characteristios of the aircraft, and

is given by
z = = _M- ESEJ.
W, L - 2 oM

if aeroelastic effects and engine, jet and slipstrean effects are
neglected. The lift coefficient CL is known from the flight conditions

under consideration, and so only its variation with Mach number is
required for Z, The theory is essentially restricted to the similarity

laws for flows at different Mach numbers, These, used in conjunction
with the lifting surface theories discussed under the derivative Z,

yield the variation with Mach number.
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Under the same assumptions as for Zs the derivative m may be
written as
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and is estimated in the process of evaluating m, &t different Mach numbers,
as discussed in the following seotion.

342 Derivatives due to change in incidence

X aC
M. P e
s S = 2 3 fwy °

)
X, may be written as
W / 30,

1 JD‘

R P 2\%“5\&“’)'



The 1ift coefficient is known from the flight conditions, and the variation
of drag with incidence may be estimated from experimental data, if available,
or by the methods discussed for the derivative X, .
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Tn terms of lift and drag coefficients, Z becomes
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The estimation of the drag coefficient is disoussed under the derivative X,y

and it remains to evaluate the 1lift curve slope. The main contribution is
from the wing, and much work has been done to obtain reliable estimates.

A semi-empirical method by Collingbourne, which accounts for wing-thickness,
viscosity and compressibility effects at subsonic Mach numbers, has been used
to derive the charts in Ref.1. For thin wings, various sets of charts, based
on various lifting surface theories, have been prepared, e.g. by R.AE. (18,
19, 20) NACA (21 to 25, 31 to 33), although values of acn/aa for wings of

aspect ratio of the order of 2 are not reliable. Slender body theory has been
extendeg by Adam and Searsg, and applied to wings with curved leading edges by
Squire2 , giving satisfactory agreement with experiment for small angles of
incidence and wings of aspect ratio of the order of 1. For such wings, non-
linear effects caused by leading edge separation are treated in Refs.27, 28,

29 for narrow delta wings, and Ref,30 for slender wings with curved leading
edges. Another fairly recent development, the use of high 1lift devices for
VTOL and STOL aircraft, involves further parameters in the estimation of the
1ift curve slope, and theoretical results for full-span jet-flaps on an

unswept wing are given in Ref,3k.

Summing up, under subsonic and supersonic conditions, the theoretical
values of dCL/da are not too unrelisble, but at transonic speeds the effects

of planform, section shape etc. on the flow conditions, which involve break-
away, make the problem of estimation virtually intractable.

For the lift on the fuselage, slender body theory7 may be used at small
incidences, but non-linearities due to viscous effects should be considered
at high incidences.  Although the theory of Ref'e35 is not physically justi-
figble, it appears from experimental evidence that the results are reasonable,
Semi-empirical methods have been used to obtain the charts in Ref.1.

Wing-body interference can affect the lift, and has been studied using
various theories. These are reviewed in Ref,38 and further work is reported
in Refs.39 to L4b.

The tailplane contribution to z, depends on its lift-curve slope, and

the variation of downwash with wing incidence, In principle, the downwash
may be evaluated from any of the 1ifting surface theories, but the computation
required is often lengthy.* The relevant references are:- (i) Subsonic,

1, 46, 47, 48, (ii) Slender wings, 49 to 3hi, (iii) Supersonic 47, 55 to 61.

* Many of these theories are now programmed for the availeble digital
computers, which relieves the tediousncss of the numerical work,
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Spreiter and Sacks62 have discussed the effect of the rolling up of the
trailing vortex sheet, and give a criterion for deciding on the type of
flow to be expected at the tailplane position. At low speeds, an
analysis of experimental data, and comparison with theory, is given in
Ref',63,
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The pitching moment coefficient due to incidence is obtained in a
similar way to the 1lif't cocfficient, and so the references given in the
discussion on z apply. Further information on pitching moment is also

given in Refs.6l to 66,

343 Derivatives due to rate of pitch
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This derivative is small, having a small effect on the longitudinal
stability, and so is usually neglected.,
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Although the derivative zq may usually be neglected when assessing

the dynamic stability of an aireraft, its value may be required in
evaluating the chenge in the p’ tching moment derivative due to a change

in centre-of-gravity (i.e. reference axis) position. The wing contri-
bution may be calculated using Multhopp's lifting surface theory (Refs.1h,
67) at subsonic speeds, and Mengler has considered the sonic and supersonic
cases in Refs,19 and 68, Charts for various planforms covering a range
of supersonic Mach Eumgers are given in Ref.10, being based on linearised
supersonic theories by 33,

Where it is reasonable to assume that the body contribution is
additive, slender body theory/ may bec used to calculate it, but inter-
ference effects ought usually to be considered., For wings with AR, < 3,
the allowance for body can be applied ?s a factor based on the slender-
body theory, as suggested by Honderaon39, but in other cases we are forced
to a treatment on the lines of Multhopp or Schlichtin§65. At high inci-
dences viscous effects have also to be considered35,36,

The contribution from the tail depends on its location relative to
the wing; if it is sufficiently far from the wing trailing edge, the effcot
of downwash may be neglected, and the tail is considered to be at an
effective angle of incidence of ¢f/V. 1In present-day designs, the inter-
ference effects become important, and it is necessary to evaluate the down-
wash using the appropriate wing loading O, as is done in Ref.70 (for delta
wings) or Ref.59 (for rectangular wings) in supersonic flow., Similap
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calculations for subsonic speeds and for sonio speed, have been made in an
unpublished Ministry of Aviation report by Thomas and Spencers

Oscillatory motion in pitch has also been studied quite extensively,
e.8. Refs,67, 68, 71 to 82, If ¢ is the angular veloeity in pitech, in the
space fixed system of axes, we have the relationship, 2% = zq + Ze o The

majority of the theoretical papers use the assumption of low {requency, 80
that resulting derivatives are independent of frequency in subsonic and
supcrsonic flows, but not in the transonic re ion, Effects of frequency

are considered in Ref.75 (incompressible flow) and 7; (supersonic flow) for
‘triangular wings, and the method given by Richardson 9 for all speeds, can
be used for all planforms. The unpublished paper by Thomas and Spencer
mentioned sbove compares the various theories (excluding Richardson's method
at supersonic speeds) and experimental results, It can be concluded that at
suboritical subsonic speeds the lifting surface theory gives a reasonable
basis for estimation and at supersonic speeds the theoretical results are
generally scceptable for thin wings. Thigkness effects can become important
however, but available theoretical mcthods 3,84,85 are all essentially two-
dimensional, and so have to be applied cither by a strip enalysis or as a
correction factor to the thin-wing result, The same remarks apply for the

tail contribution to zj as for B, and z, (sce below), but at transonic speeds

the usual quasi-steady approximation does not apply end frequency effects
become large. The downwash has been evaluated for delta wings cscillating
in sonic flow using as a basis Mangler's theory68, and other planforms could
be dealt with in the samc way.
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My is the most important of the derivatives due to rate of pitch, and
may be estimated by the methods given for zq, although a few papers (Refs.86 to

90) deal more dircctly with damping-in-pitch. Experimental work on the
oscillatory damping (m& = mq + m%) has shown the importance of further para-

meters to those disocussed for 2% €.g. MCan incidence of the wing, and amplitude

of the oscillation, The former problem was considered by Jones?! some time
ago, and is currently being investigated with reference to non-linear effects
due to leading cdge secparation on slender wings, Amplitude effects are not
amenable to calculation, but should not be important for the range associated
with longitudinal stability problcms.

3,4 linear accelecration derivatives
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The force due to ascceleration in dircction of z-axis is usually con-
sidered in conjunction with the oscillatory motion in pitch (see above), but
quasi-steady results for wing contributions have becn evaluated for supersonic
£low?2»93, and the results are given in chart form in Ref.10. For tailed
aircraft, the tail contribution is the more important however, and some attempts
have been made to improve Glauertis approximation, which considers only the
time lag of the steady downwash, The subsonic and sonic theories are given by

.




Thomas and Spencer, and results for supersonic wing-teil combinations are
given in Refs.70 and 9%, the former containing charts for the derivatives
due to configurations with triangular tails benind triangular or rectan-
gular wings,

Other effects, such as wing-body interference and wing thickness,
have been discussed in the preceding paragraph, and Ref,95 gives additional
inf'ormaticn on thickness eff'ects,
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The information given for Zo also applies for the pitching moment,

3.5 Derivatives for longitudinal controls
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The estimation of the drag due to elevators is difficult and
experimental data has to be used, if available. Ref.1 gives some
inf'ormation for low speed conditions.
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For aircraft with a tail or canard, the 1lift due to elevator
defleotion can usuelly be neglected, but for taillcss aircraf't, the 1lift
associated with the required pitch%ng moment can be considerable,  Sub-
sonic lifting surface theories?4»9 op the experimental data which has
been reduced to chert form in Refs.1 and 97, form a satisfactory basis
for the estimation of zn due to elevators for all wing and tail planforms,

and wing-tip controls have been studied by Thomas and M&ngler98. At
transonic speeds, little information is available, and slender wing theory99
takes no acocunt of flap chord., At supersonic speeds, charts are given

in Ref,100, for rectangular and triangular tip controls, based on linearized
lifting surface theory.
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The same references as for zn'apply.

The derivatives duc to rate of change of elevator angle, qﬁ and mﬁ,
are important for control-free stability calculations, and may be obtained

from appropriate lifting surface theories.

3.6 Derivatives due to sideslip
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The wing contribution to - is small, of order a , and so its accurate

estimation is not vital. Theoretical values are given in Refs.2, 3, 11,
which cover the speed range and most current planforms, or experimental values
for similer wings may be used if available.

The estimation of the sidefcrce on the body alone is exactly the same
as for 1lif't (zw), end so the same Refs.1, 35 apply. The interference factor

between the wing and body has to be determined from slender body theoryy,

where applicable, or from experimental data.

The main contribution to y_ is that of the fin, and its estimation

reduced to evaluating the lift-curve-slope of the fin, allowing for inter-
fercnce effects due to the presence of the body, tailplane and wing., At
subsonic speeds, some progress has been made towards an acceptable method of
estimation for conventional aircraft designs (Refs.97, 101 to 105).
Jeaoobs106,107 has discussed the effects of sidewash due to delta wings, but
for fins mounted directly on the wing, satisfactory results are obtained by
assuming that the wing acts as a total reflection plate. At supersonio
speeds, the isolated fin, and some fin-tail configurations, have been treated
theoretically198 to 111, giving fin planform effects. The fuselage will
influence these values at all speeds, and corrections may be made as for the
fuselage interference on wing lift.  Further interfercence from vortices shed
by cenard, wing or fuselage will affect the sideforce on the fin, as dis-
cussed in Ref.112. Corrections to the fin contribution may be made on the
basis of slender body theory, following the techniques suggested for the
incidence case in Ref,54k, where interference factors are evaluated due to a
vortex and its body image. Spahr?13 has extended the method to include side-
slip for wing (or fin) panels in supersonic flow, and at large combined angles
of attack and sideslip, the sideforce becomes non-linear, since the angle of

inslination is given by (a2 + 62)5.
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The main contribution to &v comes from the wing, with wing-body inter-

ference also being importent. The wing contribution itself is a function
of planform, Mach number and dihedral angle. At subsonic speeds Ref.1 give

charts for the estimation of £_/C. for sweptback wings with taper ratio 0.5
T, P

and 1.0, and other planforms are considered in Refs.5,114,115. Transonically,
slender wing theory may be used, or Ref,115 for sweptback wings. Jones and
Mksne? have presented the supersonic results for a number of planf'orms, but
different rosults have been obtained by Harman!16 for rectangular wings (due
to his assumption that the Kutta-Joukowski condition does not hold at the
trailing tip). Refs.117, 118 give a more general treatment for sweptback
wings with streamwise tips, but the analysis is complicated and only a few
results have been computed as fer as is known. The ef'fect of dihedral has
alco beeg studied theoretically, and the results obtained by De Yonng119 and
Levacicl2! are given in Ref.1 for subsonic speeds. The approximate relation=-
ship between 6v due to dihedral and 6p suggested by Purser142 is supported by

available experimental data for wings et transonic and supersonic speeds.
Direct methods of calculation are available for delta wings with dihedral
(Refs.5, 123).
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The wing-body interference is determined largely by “the vertical
height of the wing on the body, and results are given in Ref,1 based on
the theories of Mul_thopp12 and Levacici?5,  These results, or those from
slender body theory/;120 must also be used for the supersonic case, as no
theoretical analysis has been published, as far as is known. The effect
of wing position is underestimated for a wing-body configuration which has
been tested at supersonic speeds.

For fins located at some distance from the wing, it is sufficient to
take the moment of the sideforce on the fin as an estimate of fin effect
at all speeds, and the wing-fin interference is estimated as for Yo The

horizontal tail also contributes to fv, end is treated subsonically in

Refse10k, 105, 125, and supersonically (for triangular horizontal tails)
in Ref.109.
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The n, of most aircraf't configurations is difficult to assess, in

that it is the balance between two large contributions, an unstable moment
contributed by the fuselage, and a stabilizing one from the fin., The
wing contributior is important only at large incidences, and may be
estimated for most planforms from Ref's.2, 3 and 11,

The fuselage contribution may be estimated from the same references
as given for the pitohing moment due to incidence on bodies, i,e. slender-
body theory! for small incidences and sideslip, or the charts in Ref.1
for large combined angles,

The fin contribution is readily obtained from the sideforce on the
fin if the tailarm is large, but if the fin is near the wing, more care
must be taken in the estimation of the position of the centre of pressure
on the fin, Agein, the references quoted for ¥y, are relevant, and the
same interference effects must be taken into consideration,

Other effects on n, which have been investigated experimentally,

such as wing height, tail height, and presence of a cenard, are found to
be small, but propeller slipstream and Jet exhaust may cause considerable
changes in n.

Dl Derivatives due to rate of roll

For most aircraft, it is sufficient to assume that the sideforce due
to rate of roll may be neglected, from the dynamic stability point of view,
but its value may be required for transformation of other derivatives to a
different system of reference axcs.

The wing contribution is given in Refs,2, 3, 11, and the fin contri-
bution may be obtained from Refs.105, 110, 111, 130, 131.
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The main contribution to damping-in-roll comes from the wing, and a
great deal of theoretical work has becn published, The oharts of Ref.1 have
been derived from De Young119 for the subsonic case, and from linearized
supersonic flow theory (Refs.19, 23, 25, 90). At low speed, effecots of
dihedral, incidence etc. are given in Refs.132 to 138, and the effect of
thickness in supersonic flow has been estimated by Martin and Gerber132,
Thickness effeots may also cause a loss in damping in the transonic region,
due to shock-induced separation, but this is difficult to predict
theoretically.

The effect of the presence of a body has been estimated from slender
wing theory135,140,141, and results for delta and rectangular wings are given
in Ref.1. For a body diameter less than a quarter of the wing span, the
interference effeot can be ignored.

The fin and tail contributions of £ ere usually sma11 11001 put
they may be appreciably affected by sidewash due to the rolling wing, An
empirical factor of % is suggested for estimating the tailplane contribution
from its damping as an isolated surface. For the fin, a method of estimating
sidewash effects subsonically is given in Ref,.130, and sidewash in super=-
sonic flow has been evaluated by Bobbitt for triangular and swept wingsGO-1h2;
both general methods require a knowledge of the wing loading in roll, e.g.
Refs,119, 120, 143. Slender body theory has also been applied, but there are
a few algebraic mistakes in the published paperi3l,

Addition of tip fins and fuel tanks increase the damping of the wing
at moderate incidences, and their effect is best assessed from available data.
For oylindrical tanks, the potential flow distribution of velocity may be
evaluated and used with strip theory to calculate the increment in damping,
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The wing contribution to nP arises from the drag foroces, At subsonic

speeds the contribution due to the induoced drag, which may be calculated from
1ifting surface theory, used to be more important, but for highly swept wings
with sharp leading cdges there is also an appreciable contribution due to the
variation of profile drag with incidence, There are often experimental data
for the profile drag, and the yawing moment has to be calculated from strip
theory. Charts for untapered wings are given in Ref,144, At high subsonic
speeds, the semi-empirical method suggested by Wiggins145,146 works well for
the planforms tested, The supersonic theories120,129 are based on the

assumption that the theoreticel leading edge suction force is attained.
Investigations for drag estimation, based on experimental data have shown that
this is not so in practice, and a correction factor of & is suggested, For
slender wings with leading edge seperation, it scems best to assume that the
suction force is negligible, so that the yawing moment arises from the component
of normal force,
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The only other aircraft component to contribute significantly to n, is
the fin, The isolated fin is considered in supersonic flow in Ref's.110,111,
but sidewash effects are again important, and are ecvaluated as for £&p.

Interference effects between the fuselage and wing, and fuselage and
fin, have to be assessed from slender body theory7.

3,8 Derivatives due to rate of yaw

F:SVi rb

As for yp, the accurate estimation of yp is usually unneocessary.
Wing contributions are given in Refs.1, 3, 11, and body contributions may
be obtained from slender wing theory!. As far as is known, no experimental
evidence existas to help in the estimation of interference effeccts, and so
at low speeds the fin contribution must be obtained from results for an
equivalent surface in pitching motion or from the sideslip derivatives due
to the fin, At supersonic speeds, charts are given in Refs,110 and 111 for
isolated fins, but these results should be corrected for interference effects
from wing, fuselage and tailplane on the basis of slender body theory.

L
1

PSV<:§')2 - /I‘b)

Lifting surface theories will give the subsonic wing contribution to
&p, for wings which are not too highly swept, as desoribed in Refs.125, 147
148. Charts for unswept wings are presented in Ref.1, including the effects
of wing twist, and corrections for sweepback, compressibility and dihedral
may be obtalned from Refs.2, 3, 121 respectively, A seml-emplrical method,
using experimental results of Ly, suggested by Campbell and Goodmanl49 gives
satisfactory results for the planforms tested experimentally. At super-
sonic speeds, linearized theory does not, in general, give a solution for a
wing in steady yawing motion. A modified strip theory has been used for
delta and rectangular planforms, from which it appears that the loading due
to yawing is related to that due to rolling for the two-dimensional flow
region, This result has been applied to other planforms in Ref.11, but
probably gives inaccurate results for low aspect ratio wings and at tran-
sonic speeds. Slender planforms may be treated using slender body theory7.

£ =

The only other contribution which needs to be oonsidered is that of
the fin, Results for fins with an appreciable tailarm are given in Refs,1,
125 (subsonic) and 110 (supersonic), but if the taeilarm is small the only
avaxla?le method of estimating interference effects is again slender body
theory'.

N aC

N = e—te o B
£ sV (22 (22
2 (2) 2V

The major part of the damping-in-yaw arises from the body and the fin.
The wing oontribution is small, being dependent on the drag, and may be
obtained from Refs,2, 3, or more accurately from Refs.147, 148 at subsonic
speeds, and from Ref 11 at supersonic speeds,

Slender body theorr7 gives satisfactory results for the contribution
of the body to ny at small incidences, independent of Mach number, but loss
in damping may cccur at large angles, especially for bodies with flattened
cross-sections, As for the damping-in-pitch, Refs.35 and 36 give some
information,
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The damping of the fin may be estimated from a knowledge of the sideslip
derivatives when the tailarm is large (c,fe estimation of the damping in pitch
due to tailplane), or by evaluating the damping in pitch of an effective wing
surface derived by reflecting the fin about its root. Refs.110 and 111 give
results for isolated fins in supersonic flow, and interference faotors should
be applied from slender body theory. Sidewash effects have not been investi-
gated thoroughly, but do not scem to be as important as for rolling wingse.

%3,y Derivatives due to acceleration in sideslip

These derivatives, Y., && and n, , have in the past often been neglected

in stability caloulations, but for present day designs their effect of the
latcral motion may be appreciable. Methods of estimation have not been
developed to any great extent;_ slender body theory may be used for suitable
configurations, although Sacks! restricts his results for acceleration deriva-
tives to zero incidence. The motion of the fin will be analogous to a wing

in vertical acceleration, SO that lifting surface theories could be used for
the estimation of the force and moments, as is done for isolated fins in super-
sonic flow in Ref,110, There will also be a contribution from the lag in
sidewash190, which can be evaluated provided that the spanwise 1ift distribution
in sideslip is knowg (see Refs.11k, 117 to 4120) and charts have been prepared
for supersonic flow 0,

Since the acceleration in sideslip is associated with the oscillatory
motion in yaw, frequency and amplitude effects may also have to be considered.
As far as is known, no theoretical work on such topics exists.

3,10 Derivatives due to lateral controls

Ailerons
Y oC
y = —‘—’52;'_ = - '1'2" -""X -
& pV S %

The side force due to aileron dcflection is small, and may usually be
neglected,

6 = LE = ﬂ .
B R e
As for the estimation of mos 1lif'ting surface theories, €.g. Multh0pp14,

143

De Young ~, may be used to estimate ngor ailerons, and are the basis of the
charts in Ref,1 for flap type controls at low speed, Tip controls are con-
sidered in Refs,98, 100 and 151, and some work on spoiler ailerons is given in
Ref.152. Results for controls on slender wings are given in Figs.11(a & b).

n = __Ngﬁ"— = f;—ca .
& Fp SV b &

The yawing moment arises from the drag due to the ailerons, amd s0 is
best estimated from experimental data,

Rudder
om—— Y aC
y :—3—2 =—1—1.
g 5V S 2 &

The sideforce due to rudder deflection is derived from a knowledge of its
1ift ocurve, and may again be obtained from lifting surface theory, as for the
elevator derivatives.

g ek e ey A
zp V 8D
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This derivative is usually spall, and involves estimating the height
of the centre of pressure on the fin from the spanwise loading due to
control deflection.

PR, SN "
< 1o V25 %

If the tailarm is large, an acourate estimate of the position of
the centre of pressure on the fin is not necessary, but for short tail-
arms lifting surface theories must be used, as for e

311 Derivatives associated with varying density

In certain problems the aireraft's speed and flight oondition may
be such that it is necessary to account for the variation of atmospherioc
density with altitude. These problens require, in addition to the above
aerodynamic derivetives, the evaluation of derivatives with respect to
height, or, more apprepriately, with respect to a non-dimensional form
of this, see for example Refs.q154 and 156.

L DIRTVATIVE ESTIMATION F(R A SLENDER WING AIRCRAFT

In this seotion we shall consider, by way of illustration of the
methods outlined and the trends in the derivatives, the case of & tailless
slender wing aircraft,

441 Longitudinal derivatives

To confine the discussion we restrict ocurselves to low speed
conditionss To obtain the derivatives %, We require the rclation between

the 1ift coefficient and incidence. Peckham (R.A.E,) has given an
empirical collapse of a large number of test rcsults, which is reproduced
here in Fig.2 and which can be represented with good approximation by the

relationship,
5 %
8 ) 5
CL = KO \/ o e & + K1 'é"- « O
e} 0

where Ko and K1 are essentially oonstant, independent of plenform (delta,

gothic and ogee are included in experimental points shown),

In view of the slender wing theory result that the linear term would
be expeoted to vary in proportion to él (strictly aspect ratio) rather than

ii the success of this empirical lew'is at first sight puzzling. if,

0
however, the results from the various lifting surface theories, which tie
in well with experiment, and slender wing theory, for the delta type wing
are plotted as in the inset figure of Fige2 (only one result was available
for other shapes) the reason, underlying the succesgs of what, on the basis
of slender wing theory, would be considered an inept parameter, is now clear.

ol . \ ;
Within the slenderness ratios g%) covered by the test results K0 éi is a
o 0




Pair approximation to the rate of ohange of the 1ift ocoefficient with incidence
Por small incidences as indicated by results covering a much wider range of
aspect ratie.

Theoretical results extending the slender wing theory to include the
non-linear contribution from the leading edge vortex sheets are available and
do not tend to confirm the form taken by the second term, The difference in
orler of o involved is expliceble on expeoted trends with finite thickness
wing (finite edge angle)., However, since at large aspect ratio a return to an
almost linear relation is to be expeoted, one would expect this to be
refleoted in the form of the second term.

To summarise, the empirical relationship could be modified so that the
linear term is taken from lifting surface theory results or semi-empirical
analysis based thereon. Thereby it could gain something in generality.

In view of the fact that the slender wing theory tends to over emphasise the

effeot of planform (in terms of gi, since A = % . gL)* on the linear term,
0 0
as oompared with the effeot for more practical values of ﬁL, it may be equally

0
misleading regarding the non-linear term. It is thus clear that there exists
less theoretical backing for a plausible form for this term.

To estimate the stiffness derivative, m_, we need in addition to the

1ift the ocntres of the two lift contributions. The linear part of the
pitching moment curve or strictly the aecrodynamic centre at near zero incidence
is oconsidered first, In Fig.3 the available experiment data are plotted
against three quantities (1) the centre of area (plain aymbols), (2) the aero-
dynamic centre caloulated on a slender wing theory basis (half-filled symbols),
and finally (3) the aerodynamic centre from lifting surface theory calculations,
where these were available. The degree of correlation as indicated by
deviation from the line of perfect correlation improves as we pass from (1)

to (3). The other two plots are of interest in that it seems that the aero-
dynamic centre trend scems to be simply related to the trends of (1) and (2).
For the correlation with centre of area (first proposed by workers at

Messrs. Handley-Page) there would seem to be no theoretical explanation.

There is indeed little more reason for expecting the success of the second
plot either, since it is known that the aerodynamic centre deviates fairly
quickly from the value for A -+ Q.

Some residual discrepancy remains which, though smell, is of considerable
practical importance. At present this differcnoce, which is probably a thick-
ness effect, must be allowed for on an empirical basis,

Returning to the basically non-linear character of the pitching moment
curve with incidence the data seemed to separate naturally into two groups,
those referring to delta wings and those referring to those wings having
streanwise curved tips. A simple plot of the displacement of the centre of
non-linear lift relative to its linear counterpart against the aerodynamic
centre at zero incidence is shown in Fige4. The latter property of the wing
was chosen as one embodying the effects of planform shape in a single variable.
In so far as the limited data allow one to judge there is an approximately
lineer relationship between the two quantities. An interesting feature is
that alleviation of pitch-up tendency by rounding the tips is clearly indicated,
as well as the fact that a wing designed to have a linearized aerodynamic
centre of about 57 per cent of the wing root chord (or what is approximately
equivalent from Fig.3 a centre of arca of around 66 per cent of the chord) is
expected to have an approximately linear rclation between pitching moment and
lift.

% Tn this expression, p is the ratio of wing area to that of the circumscribed
rectangle.
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From what has been said previously we have available methods of calculating
these, which have given encouraging results for a wide range of wing plan-
forms within a limited range of incidence and amplitude. It is seen from
Figs.5 and 6, (wherec experiment and theory are compared for the combined
derivative)that this is equally true for the type of wing we are con-
sidering at small values of incidence, However and not unexpectedly, we
have a marked incidence effeot on the derivatives as indicated by variation
of mse This cannot be reliably accounted for within the known theoretical

We next turn our attention to damping-in-pitch derivatives mq and m, .

treatments at present. We may investigate the extent to which the know-
ledge of incidence c¢ffects on z, and m . can help us. The transformation

from one axis to another is effected by means of the relationship,
c.f. Ref.153,

2
me = my = (Zéoq-mw0> (H-Ho) + ZW(H"HO)

whioch can be rewritten as

By % {méo-zéo (H_HO)J i [ZW(H—HO)(H-H&.G)J

where H is distance of axis to which m refers from the wing apex in terms
of mean chord,

Ho is the corresponding quantity for the datum axis chosen,

To make the most use of knowledge of the non-linear character of zZ, and m

we may attempt to fix Hy such that the contribution from first term is small.

It is immediately obvious that this procedure fails completely near H =Ha .
TV

Furthermorc we still rely on our theoretical method in so far as the value
of H0 and first bracket are corserned. For this reason we resist the

natural urge to define Ho by setting the thecrctical value of the first

bracket zero. This would result in often quite extreme and unreliable
values of Ho' We thus content ourselves to choose HO according to the
more general oondition previously mentioned. To define the values of me
for all axis positions we require only two specific values, since then all
coefficients of the parabolic relationship quoted above can be determined.
In view of the remarks made we choose axes on cither side of H

Writing a = - mg s b==22,0== z, we have the conditions,

o £
How H s> 2 i >
0 c |H-H 2 | + b R Aol - Bl
and
H-H > & with H<H , H<H.
o} ° (H& . H) -b 8eCe 0
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Using such a device Figs.5 and 6 were constructed, in which the variation
with ineidence of mg at three axis positions for each of two wings, & delta

and & gothic planform respectively, as estimated on the lines just outlined,
is comparcd with the experimentally determined variation.®  Although there
are significant differences the comparison shows that allowing for non-linear
incidence effcots in this way gives an indication of trends., At the sanme
time it shows that somu well worthwhile gains may result from efforts to
caloulate these effects direotly albeit for slender delta wings with conical
type flow (c.f. Ref.29).

b2 Lateral dcrivetives

fe commence a discussion of the lateral derivatives of such a layout by
considering the data available on the rolling moment and yawing moment pro-
duced by the wing alone in sideslip. There arc tests of a good number of
such wings, some flat plate, othcers with thickness and covering a range of
wing shapes - delta, gothic and ogee = availaoble. It is known from flow
obscrvation that sideslip does affect the vortex pattern both as regards
strength and position rclative to the wing. On the face of it there would
scem to be little hope that any theory not acoounting for these features would
be at all useful at any except the very small incidences. However, the
assembled experimental evidence in Fig.7 docs suggest that in spite of such
misgivings the slender wing theory™* %attached flow) yields results in
remarkably good agreement with experiments over a considerable incidence range,
thus indicating that counter effucts are present, Their mechanism is not
well understood at present and the matter is receiving further attention.

Turning to the yawing moment we may, sinoe the pressure distribution
is substantially normal to such wings, seck an approximate estimate of n
by writing 8

The validity of this p oecedure can be assessed from Fig.7, wherc the experi-
mental results arc displayed. The curve marked ﬂa2/2 corresponda to the
above equation.

No extensive tests have been made of the damping-in-roll (&P) derivative.

Such results as therc arc indicate that slender wing theory gives reasonably
relisble estimates at small incidence., At inocidenoce the wing=-chord body
nxes derivatives were estimated and transformed to the usual wing-body axes
without neglect of higher order incidence terms. This yields the fall off
of damping with inorcase of incidence in qualitative agreement with experi-
ment, sce Fig.8., Agreement with experiment is not materially improved by
attempts to allow for the presence of the leading edge vortices.

To estimate np, the yawing moment due to rolling derivative, we again

write

n =& tan a
P P

which reproduccs the experimental variation of n with a for incidences up
to about 15% P
# The experimental points are glven for three values of the frequency parameter V.

%% The parameter P in Flg.7 is as defined in the foot=note on Do18 and F 1Is a function of planform
shape and thickness distribution,

o ) -




Some test results are also available for wings fitted with fins.
Fin contribution terds to dominate in certain derivatives, in particular,
damping-in~yaw, side force and yawing moment due to sideslip derivatives
(in the absence of an aerodynamically significant body).

Consider the damping derivatives n, and Tgs which for our present
purpose we shall take in the form of the combined derivatives (nr -n%).

Here we essentially apply the methods discussed under the damping=in-pitch
of the wing, A rough ascessment indicated that refined attempts to allow
for wing-fin interference as outlined in the previous seotion of the paper
introduce only a small corrcotion to P and n, due to fin, as calculated .

on basis cf total reflection in the wing, Accordingly because of the
very limited nature of the theory-experiment comparison only those effects
indiceted on Fig.9(a) were token into account.

The experimental technique used to obtain the values of n, = ng

shown in Fig.9(a) was & free oscillation covering a renge of frequencies,
No marked frequency effects were noticed except at very large incidence.

Estimates and experimentel results for fin contribution to 6P and

n, ere shown in Figs.9(b) and (c). In all the fin contributions the

leading edge vortices will undoubtedly play an important part but as yet
we have insufficient experimental data for fins of different height to
wing semi~span ratio to display this effect satisfactorily., A

With this in mind we pass on to the side foroe derivative with
respect to sideslip, On the left-hand side of Fig.i0(b) is shown the
variation of Y with ircidence for the nodel configuration shown in

Fig.10(a) (with zero anhedrel), This is comparcd with the values
calculated assuming: (1) the fin effective aspect ratio to correspond
to total refleotion in the wing, (2) on the slender-body theory for the
wing=-fin combination,

It is seen that as the fin aspeot ratio decreases the two estimates
come together and are in good agreement with experiment throughout the
incidence range. This demonstrates two things:

(1) The wing-fin interference is small.
(2) The vortex-induced sidewash on the fin has a small nett effect,

If (1) is in fact estimated on the lines suggested in the previous section
of the paper we do find that it would be of the order of a tenth of vy, as

given by calculation on the basis of reflection in the wing. Insufficient

data exist at present to make a reliable estimate of (2). For the

acoompanying set of figures, which refer to the same layout with the wings

set at 20° anhedral, we have a rather different situstion. Here both (1) ,
and (2) are signif'icant effects, Three estimated values of y, are dis-

Played alongside the experimental results, They correspond to the two

basic calculations referred to above and to the correction of +he first

of these to allow for (1) on the lines suggested earlier. OFf these the
last menticned gives the generally best cstimate.

Note the effect of vortex flow as indicated by the repid inorease
of y, above & = 5%  No estimate of this effect was made,
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Fig.10(c) shows the correspondirg comparisons for the yawing moment
derivative, B whose cstimation is naturally linked to that of : for a

fin, Here, therefore, much the same remerks applys

From the y and n_ of fins on the aspect retio 1 delta wing we pass
on to the fir contribution to 8v (rolling moment derivative w.r,t. side-

slip) for the same set of fin-wing combinations,  Here comperison is
made agoin with the two basio calculations and the allowance of inter-
ference again brings the cstimates into closer agreement with experiment
(sce Fig,10(dD.

Let us now consider the position rcgarding the estimation of the
chernoteristics of flap type control surfaces fitted to the type of wing
under consideration. The lift and moment derivatives due teo control
deflcotion, meationed in Sections 3.5 and 3,10, can be predicted adequately
for a wide range of wing and control geomety on the basis of various

1ifting surface theories. Slenderness ratios <é1> in the range 0.25 -

o
0.50 implies, however, that we are working near the limit of appiicability
of many of these methods. On the other hand slender body theory yields
the physically unacceptable result that the effectiveness of a control is
independent of its chord-ratio. Tais result is in fact the direct
consequence of applying the slenderness ooncepts to both wing and control
surface or more strictly for that part of the wing over which deflection
of the control induces loads. This argument would apply in the true
limiting case of venishing span, but for wing of small but finite s/co and

for which the wing may be regarded as aerodynamically slender, the other
area mentioned is not siender, sece Fig.11. These thoughts suggested a
reformulation of the theory. According to this we regard the wing as
being slender and so deflection of the control does not produce load on
parts forward of the control surface. Since we no longer look upon the
area affected by control as slender the problem is in fact equivalent to
that of a control fitted to a wing defined by the shaded area of inset
figure of Fig.11, in many cases a large aspect ratioc wing., As an example,
we consider the calculation of rolling moment due to aileron deflection,

In Figs.11(a) and (b) charts are prepared for two outboard control
planforms giving the rolling moment derivative, 8%, the dash denoting that

it is based on the area and span of the shaded portion of the wing. From
these charts the rolling moment in its usual derivative form (85) can be
=

rendily estimated. This is done for two cases, in which the control plan-
form is rectangular, and for which there were some free flight test results.
A comparison of estimnted and neasured volues is made in Fig.12.

It is of interest to note that, as the control shape becomes slender,
the true slender wing theory result is approached.

L CONCLUDING REMARKS

No discussion of the present position on derivaetive estimation would
be complete without some examination of their adeguacy as a representation
of the aerodynamics required in current flight dynomic work.,  There are
two aspecots of this question that seem to call for comment.

The first concerns the inability of derivatives to give an exact
representation of the instantaneous aerodynonic forces, as they are

W
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independent of the history of the motion, Etkin (see Ref.155) has proposed
the use of aerodynamic transfer functions as an alternative presentation,
which would overcome the shortcomings of the derivative approach. The method
is restrioted to o linearized representation of the aerodynamic foroes, i,e,
we assume that the differcntinl equotions governing the unsteady pressurcs
over the aerodynomic surfaces are linear in the usual wing theory scnsc,

The prescnce of vortices of considersble strength above the wing and, as the
ccafigurations become cven more slender, in proximity to the tail surfaces
could be taken as pointers to the need Ffor a recssessment of the situation,
On the other hand no merked frequency uffcets of e consistent nature have
been noted,

The motter 1s, nevertheless, important in certein conditions and so
nceds to be kept under constant roview., The possibility of operating in
other than o constrained mode (ncoessary for particular derivatives) which
is offured by some experimental € quipment for derivative mneasurement, should
be exploited to give a dircet check on the extent to which the derivatives
fall short.

The second aspeot of the question concerns representotion of the aero-
dynemics at large incidences and amplitudes, This may indicate presentation
in coefficient form ns functions of the varicbles, which is, of course, the
normal presentation of experimental results. Such o representation of the
acrodynomics is particulerly suited to problems in which the static forces
and moments dominate, ns for example in missile dynamics, wherc the aero-
dynamic domping is relied upon only to a very small extent. The usual
derivative form may be sufficient approximation for these damping terms.

It is undorstandable that in the interest of simplicity the theory is
usually linearized, but there are possibly circumstonces in which this could
have been avoid=d thereby giving the results the desired generality, It is
suggested that a certain amount of ¢ffort should be directed towards this
generalization,

=a
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