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SUMMARY

A method for making an approximate thickness correction to slender
thin-wing thesry is presented. The methed is tested by applying it to cones
with rhombic cross-sections and the agreement is found to be good if the
cones are not toco thick. It is then suggested that the thickness correction
to slender thin-wing theory may be applied unchanged to linear thin-wing
theory. This suggesiion is compared with some experiments on delta wings

and it is found that there is considerable improvement over thin-wing theory

near the centre line, but that this improvement is not maintained as the wing

tips are approached.
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1 INTRODUCTION

In order to calculate the flow of air past slender pointed wings the
equations of motion are usually linearized, that is, the squares and products
of the derivatives of the perturbation velocity potential are ignored. This
method may be called "linear theory". A further simplification is usually
introduced by applying the boundary conditions not on the wing surface but
on a plane which is never far away from the surface of the wing. This we
may call "linear thin wing theory”.

Another approximation is "slender body theory" in which a term is
dropped from the linearized equation of motion leaving the velocity
potential ¢ to satisfy the equatien

20 52

29,29 - o (1)
2 2
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at each station x = constant. With this we may also apply if we wish the
same simplified boundary conditions as described above, and the result in
this case is called "slender thin-wing theory". So far most calculations
have used the second and fourth of these simplifications, namely "linear
thin~-wing theory" and "slender thin-wing theory". Both of these apply the
boundary conditions in the same way, that is on some plane close to the
surfaces of the wing, supposing that the wing is so shaped that it is
possible to find such a plane. What one would like to do is to solve the
linearized potential equation using the correct boundary conditions, since
this would make the fullest use of the theory, which is still of course an
approximaticn.

In this paper we do not do this directly, but we solve approximately
the easier problem which we have called slender body theory. This provides
a correction to slender thin wing theory, and it is suggested that by the
principle of the "independence of small corrections" this correction may be
epplied to linear thin wing theory to give an improved solution of the
linearized equation. That this is practicable at least in some cases may
be shown by Fig.1, taken from Ref.1, which shows that, in the case of a thin
slender ellipsoid in subsonic flow, thce method gives better overall results
than any of the other methods. ’

This paper gives an approximate solution of the slender body problem
in supersonic flow. This is done by finding an approximate relation which
transforms the wing section into a circle. Once this is done the problem
is virtually solved, and the transformation may be improved by iteration if
necessary, but we shall not do this here. The results are tested in the
case of & cone with symmetric rhombic cross sections (for which the full
slender body solution is known).

2 GENERAL
The wing is supposed to be close to the xy plane, the x axis being
along wind or inclined to it at a small angle of incidence. We write

2;=y+iz (2)

and suppose that the section of the wing by a plane x = constant is a curve
symmetrical about the z axis. The velocity at infinity is V. Then to
determine the perturbation velocity potential in slender body theory we must
solve the equation (1) subject to the condition that
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%ﬁ = v 2z/9x 5 (3)
{1+ (3z/0y)7]

rol-

on the boundary, where z = z(x, y) is the egquation of the wing surface’.

In slender thin wing theory this is replaced by

9 _ yiz (w)

at a point P' on some plane near to the surface of the wing. See Fig.2.

The Z-plane is transformed into a T plane (T = Y + iZ) such that
the section becomes a circle of radius r. See Fig.3. If the section
were a slit the transformation would be

2
z,=T+%—, (5)

and if the section differs only slightly from a slit the transformation
will differ only slightly from this.

We shall consider two cases(both of which are symmetrical about
the z-axis;) (1) the symmetrical case, when the section is symmetrical
about the y-axis as well as the z-axis, and (2) the unsymmetrical case,
corresponding to a cambered section. In both cases we consider only the
case where the incidence is such that there is no flow around the cdges.

If the transformation is known, then according to Weber':2 we shall

have in the symmetrical case, if s(xs is the semi-span at any section
x = constant, and the flow is supersonic,

@ = 9t 9, (6)

%] azggcx,x') log 21X(r) -S-Y(y')! ', (7)

-2%‘- {S'(x) log 7 Bs - fo"(X') log(x - x') dx'} . (8)

0

-5
N
]

In equation (8) the function S(x) is the area of a section of the
wing, its derivatives are denoted by primes, and

2
8% = Wl -1,

where M is the Mach number at infinity. If the flow is subsonic ¢, is
not changed. ?5 has a different value, however, and is given by Weber
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in Ref.1. The present method is concerned only with ?, and applies equally

to supersonic or subsonic flow. In thin wing theory Z{Y(y) - Y(y')[ is
replaced by Iy - y'l.

In the unsymmetrical case Y(y) = Y(y') must be replaced by Z2(y) - Z(y'),
as may be shown by a method similar to that of Weber!. Since in both cases
the section is symmetrical about the z axis, the latter form could be used
in both cases. We shall not do this because it is more convenient not to,
although it makes our treatment appear unsystematic.

3 FULLY SYMMETRICAL SECTIONS AT ZERO LIFT

31 General

We denote the ratio z X/semi--span at any section by & and assume that
. ma
8 is small.

We write
3
2 a.r a.r
o r . B D N,
L o= T+ 7 or ( T T5 + ...> , (9)

. . 10 |, . . .
in order to transform the circle T = re’ into the required section in the
Z plane. This gives on the section

y = 2r cos 6 - 2r(a1 cos O + a3 GOS8 30 + 4es) s (10)
z = Qr(a1 sin © + aB Sin 36 + ee.) s (11)
2Y = 2r cos O .

This form of expansion gives ilhe double symmetry required, since
z(=0) = ~z(8), y(x - 0) = -y(8), y(-0) = y(8). We write

-zc(e) = 2rfa, cos 8 + a_ cos 30 + ...} ,

1 3

the latter being known as the "conjugate of z". Thwaites3 shows that

~

2 [ z(0') sin 8' 30"

Zc(6> - T ]3 cos 6 = cos 6! (12)
(@]

if z(¢) is an odd function of ¢. This may be written

1
s = -1 [ dwdan (13)
-1

if n=cos 0, n' = cos ©',
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Equation (10) becomes
y = 2r cos 6 + zc(ﬁ) . (1)
When 6 = O we have y = s and so
s = 2r + zc(O) . (15)

We write y = s cos ¢ and so we have

4 (6)
%f cos 6 = cos ¢ - =2 . (16)

[
bt

It is possible to find the relation between 6 and ¢ by iteration, in much
the same way as is done in the well-known Theodorsen two-dimensional wing
theory3. This iteration is not necessary if we only require to go to one
higher order in 9.

The a's in equation (11) are small quantities of order 8 and hence
8 and ¢ differ by a quantity of the first order in &.

Now 20(6)/5 and zC(O)/s are both 0(8) and so to this order we may

write
z ()
er cos & = cos ¢ = < s
s s
where
—zc(¢) = s{a1 cos ¢ + 8y coS B3d 4 eaed .

This means that z is found frow the equations

s cos ¢ ,

e
1

(17

ISR
i

s{a1 sin ¢ + a, sin 3¢ + eea}

3

and then the conjugate of z is determined. From now on we shall drop the
bar over z and Z,

Bearing in mind that 2Y = 2r cos 6 we may write equation (7), to
order &

' / dz(x.v! ZC(¢) Z(‘(¢')
= - - t _ Y t
@1 x | pyn log lcos ¢ cos ¢ " + " dy' ,
-3
... (18)

where y' = s cos ¢'.



Since z, and zé are 0(8) we may write this

. z(¢)-z(¢) 2
v ; ] ]
;/ _i%;u{log[cosq;-ws(bl‘s(cos ¢-oos¢)j ’

eee (19)

on expanding the logarithm.

The first term is that which would have been obtained by the usual
slender thin wing theory. To this would be added 5 to give the full value

of ¢. The present analysis does not change Pps since 95 does not depend on

the shape of the cross—section.

Thus our method produces a correction term of the next higher order
in &, and we shall denote this by Bg,s 80 that

v ey 28 - 3 @)
A¢1 T x /s 0% s(cos ¢ -cos ¢! ) dy

-S

1

4 - o (!
_Y [ aalxm') 2,(m - 2,(n') an!
v ax n~-n' d
-1

if y' = sm' = s cos ¢', and this may be written
n

0% oz
" LEE] o

where fc is defined as

£ (n) = ,__[ Jn_)_:i_n_'_ (21)

which follows from equation (13).
Thus the thickness correction to ¢ may be found.

We show in Appendix 1 that an alternative method of writing

equation (20) is
w7 ()]




This has the advantage that one less conjugate need be calculated,
3.2 Details

There seem to be at least three methods of proceeding. Firstly we
may actually determine the a's by fitting a finite Fourier series to a
finite number of points on the wing section using equations (17). One
would hope that the a's would soon become small. All the necessary,
functions can then be calculated. Sccondly we mey note that Watson™ has
given a method of determining conjugates and their derivatives without
actually finding the a's; the details are also given by Thwaites).
Finally consideration might also be given to finding conjugates by
direct numerical integration of eqguaticn (21) in the form

1
_1A [ ) - fn') o0 2 1+n
fc = x /‘ S—— dn o f(n) log -7 . (23)
-1

The derivative of fc with respect to n is given by

1
0
Fo | _afe@), 2G), 1 £) 2 4
o7 T{lt-mn  t+m) = n -1
-1

1 e l+n
- f (n) log Fper

Primes attached to f denote derivatives.

If £'(n') is infinite at m' = *1 we may write this

1
of -~ B
o 1 | ( 1 1
= = £ - £'(n! - dn'
e IO P
o
o
11 ( N 1]
ol .f'()-f'(';} - an’
-1
L) (—— - 1Ng-“f"()log"“—ﬂ
pe L1 -n 1+ n} N 1 -7
_2 £00)_
g 2
1=
If £'(n) has a logarithmic singularity at m = *1, the integrands in
this equation will now vanish at n' = *1. m = 1 itself must of course be
excluded.



3,3 Singularities

Very often we deal with scctions which have sharp edges at np = *1.
This leads in general to logarithmic singularities in P, and @y; ¢ itself

is finite, but its derivatives are not so. The same appliecs to the
correction term Ag. The procedure used is in fact not uniformly valid at
n = *1, and we are using a singular perturbation procedure in going from
equation (18) to equation (19) near n = *. As explained by Lighthill”,
the next term will usually contain a singularity of higher order. It was
found, however, in examples that the results quite near to m = 1 were as
accurate as elsewhere. Attempts in these special examples to render the
result uniformly valid led to finite velocity components at the edge, but
except very near the edge the results were no more accurate than the direct
procedure given above. As there scemed no simple extension of Lighthill's
procedure to more general cases no further attempt to use it was made, since
the results ssemed to be sufficiently accurate without it.

L UNSYMMETRICAL SECTIONS

A transformation to a circle in the T plane is made as before, but it
is now more convenient to write

.16
T = =ire R

This makes © = O at the centre of the lower surface. See Figel.
The transformation is

which leads to

N
H

2r a + 2r(a1 cos O + a, COS 20 + .ue)

o
it

2r sin 0 + 2r(a1 sin 8 + a, sin 20 + v =2r sin 9 + z .

e.e (25)

If the section is thin we shall have y = s when 6 = %ﬂ -« B, where B
is order &. Hence, ignoring terms in < and higher orders we have

it

s = 2r cos B+ zc(%W) 2r + ZC(%W) . (26)

We let y = s sin ¢, and suppose that © = ¢ + A¢d. Hence, from
equations (25§,

s sin ¢ = 2r [sin ¢ + AP cos ¢} + zc(e) ,

keeping only first order terms in A¢. Using equation (26) we find to
order &

-0 -



sin ¢ 2 (zx) - 2 (¢)

h¢ = s cos ¢ !

where
z (¢) = 5 {a1 sin ¢ + 2, sin 2¢ + R

As before we shall drop the bar over z and Ze

We note that P, is given by equation (7), with Y(y) replaced by
Z(y), etc. DEquation (7) modified in this way, reads
2

{ dz(x,v") Loz 2

v aly) = 2G4
T T T ox g 5 oy

where the limits are to be such that the path DAB in Fig.2 or Fig.3 is
to be followed.

In the modified equation (7) the expression inside the logarithm
is

_ 212(y) ; z(y")]| = %? |cos & = cos 6'] .

Now

cos ® = cos ¢ - AP sin ¢
)
= cos ¢ = sin2 2 ZG(EW) + tan ¢'i~8£1
= ¢ cos ¢ s '
Hence we have
r, s 7(#) Al
E = (1~ } cos ¢ = cos ¢' + tan ¢ - tan ¢' ”
L
5 (% 1
_ sin” ¢ “c(zﬂ) . sin’ ot Z (zx)
cos ¢ s cos o' s :

On substituting in equation (7) and expanding, assuming that zc/s

is small, we find on putting y = s sin ¢, that

- 10 =



T
|}
¢, = Xi'j' 3E£££2~l log |cos ¢ - cos ¢'| cos ¢' de!
1 (A X
)

+
ox cos ¢ = cos ¢! cos ¢ cos ¢'

i ' ' 1
y:/v 32(x.8") {tan ¢ Zc(¢) - tan ¢! zc(¢ ) ZC(EW) } cos o' ' .
=

C

... (27)

Here z is even, z_ is 0dd and 3z(x,¢')/dx is even., The first term is the

slender thin wing value and the second term is evaluated in Appendix 2.
Once more writing the correction to ¢, as A¢1 we find that

. -z (i)
_ 32 3z sin ¢ ZC(¢) z \2R
by = ¥ {—zc (a%)c * <zo a%)c b cos ¢ , (28)

where

In this equation the conjugate of an odd function of ¢ is given by
equation (12) and the conjugate of an even function U($) is given by

cos ¢ = cos ¢'

)8
U (4 = -2 ¢f Sl e (29)
0

We show in Appendix 3 that equation (28) may be written

. 1
_ 32 37 sin ¢ z_ - z_(z)
o (@) ) e

where
s Fis

1 1 [ oz

0 0

5 AN EXAMPLE, THE RHOMBIC CONE

In this case an exact conformal transformation is possible and Maskell
(unpublished) has worked out the results for the symmetrical case for various
edge angles. It is also possible to give an analytical solution of this
problem by the present method.

-11 -



We suppose the cone to be of unit length, that is, x is equal to
unity at the base, which is situated downstream of the apex, the cone
being at zero incidencc. We write

s(x) = sx, mn = y/sx,

so that 3 is the semi-span at the base. We further denote half the
maximum thickness of any section x = constant by Os.

Hence we have
z = 0s(1 - |n}), dz/ox = bs .

Using equation (22) we find, as shown in Appendix L, that

\

v 5252x 2
A(p = """“:é:""“{:iz-g‘z(1 _2‘71‘) +—32<10g'1;%‘:']1> +L§-10g2—’r]W}L
=
(31)
v 6?§2x
= T B
s )
where
oW 2 1 2
F 2log 2 , W(o) = 0.
n 1-7 4n
We have evaluated W in Appendix 4, in terms of Powell’gs"RE"
functions or Mitchell's’! "f" functions.
Ve find
2 2 N
V &8s 2
oA - 2 1 - 2
ax¢ - 5 {% ®° 4 4 log 2+ % <log 14_6) 5 2 - log (1-7)
T
(32)
2 Ly 2
- =0 lag (1-+n) + —~n——-log 2n
1= 1”n2
v 6%
= = E, y
s
2
V 8%s 2 )
SA@ = é- {-wz sgn 1 + *—ELE-log'%%fn - W+ —~gH§ log l$;%—
J = 1=n 1=-7n 4n
) > (33)
V &7s
22 5 D.
v
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These are infinite at n = #1, and we see that the singularity in Ao
is of higher order than that in the slender wing value of ¢, as was to be
expected. It is easy to show that slender thin-wing theory leads to

V6§2

2 - {108(1 =n) + log(14n) + 2 log 3 Bs} ’

X 7 -
Vés

-a—qz = log 1+n .

Maskell has expressed the derivatives of ¢ on the cone in terms of two
integrals G and F. We have

:

Vds
Se (1og l+m, 8 ﬁ} >
oy T 1-n =

and Maskell equates this to

- — G . (34)

Hence we have

and so our results can be compared directly with those of Maskell.

Maskell also writes

N 2 2
- Bs 28 s 268
19_‘2=?=552$10g—-+1 + nG + —~————=—F , (35)
vV ox =] A s ﬂx(1+-62)5
where
A = E% cot + nx -TEL~—§ ’ (36)
2 [(Zn)!]
8§ = tan & n% . (37)

Hence we have

F o= x(1+-62)§ {log 2A=1+2(14+m) log(1+m) + 2(1=7) log(1-7) + (5/2x) B} ,

where B is defined in equations (31).



We have plotted these results in two cases, corresponding to edge
angles of 40° and 60°, and in Pigs.) and 5 they are compared with the
thin-wing values. It will be seen that the latter are considerably in
error. Since thin-wing theory gives logarithmically infinite valucs of
the velocity components at the leading cdge, Weber® has modified the
formulae of slender thin-wing theory so as to produce uniformly valid
results correct to the [irst order in 8. The effect is to replace the
logarithmic term in G by

W W

) o
~~§§1 - (1-7) “j - (1 =m)" 10g(1+m) ,
o

-

where

1

w = 2 tan b ;

the F term is not changed. Values of G by her method are shown in

Figs.4 and 5. The values ncar to the edge are improved, as is to be
expected. The G curves show that we may go very close to the edge with-
out the singularity causing any serious divergence from the correct
solution, although actually the lattor is finitc at m = 1 whilst the
approximation is infinite. Indeed, as the singularity is of higher order
than that of the thin wing and as D is negative ncar m = 1 our approximate
solution will tend to plus infinity at the edge, but it seoms necessary to
go very near to the edge before the curve turns, unless the scetion is
very thick.

Thus we see that our approximation gives good results, even for cones
with edge angles as large as 60°.

As shown above it wes possible in this case to find F and G by direct
integration and the use of tabulated functions. In a gereral case this
would not be possible, and so Watson's method scems to be the best to use.
This was done for comparison in our rhombic conec example.

It involves fitting o trigonomctrical series of N terms to the
section and then carrying out & simple numerical routine to find the
conjugates. The velucs used were N = 20, 4O and 60, and near to the
singularity the results differed from each other and from the correct
integrated value by amounts which were larger than expectecd; howcver in
the casc N = 40 the error, in the worst casc, was not enough to displace
the curves for G(n) and F(n) in Figs.4 and 5 by more than onc quarter of
the amount they are already in error. That the discrepancy in Watson's
method is as large as this is due to the singularity at the cdge. However
the approximation is improved by taking larger values of N; N = LO scems
to be adequate. Up to m = 0.8 the error for N = 40 is negligible. After
that the curves for F and G oscillate, but it is possible to fair in
curves which are sufficiently accurate for the purpose required.

6 PRESSURE DISTRIBUTION

The relation between the pressure coefficicnt ¢ and the local

velocity, on the assumption of zero shock or weak shock, is

_1}+_



ks

N

1
P-P - ,
¢ = — :—%}£1+—’2-w-1)M2<1—%>] -1(,
P %oV YM L v

where p, V and M are the density, velocity and Mach number at infinity and
g is the local velocity. This may be expanded in the form

A\ 1.2 5132 1 933 (38)
= (1 -3=) 4+ =¥ (1 - + 1 = >+
°p < v2> b < v2> L0 ( v

for v = 1.4

If ¢ is the perturbation velocity potential we have

2 2 2 2
o= (e e v, (39)

where subscripts denotc partial derivatives.

In linear or slender thin wing theory squares of P, @y and ¢, are

neglected and so there is no justification in going beyond the first term
in equation (38); hence

In slender body theory ¢§ and @i are of the same order as ¢x and

cannet be ignored. Hence

- _ 1 2 2
cp = V2 <2'V¢& + @y + ¢z> . (40)

Another point to be borne in mind is that our ¢ has been given as a
function of x and y only, that is ¢ is known for the point on the body whose
X and y coordinates are given. What has in effect been done is that
z = z(x, y) has been substituted in @(x,y,z) to preduce a function

(91(Xs.Y) + (92(X) = (P{X’y,z(x’y)} ’

¢ being the perturbation velocity potential.

Now the velocity components on the body surface are V + P, ¢y, ?,°

The velocity vector is perpendicular to the normal to the body surface and
hence

v - = .
( + @X) zx + ?Y %Y @z 0

- 15 =~



In slender theory, where ¢ is small, this leads to

sz + @y zy = @Z .

Since on the body

1

‘P{X:y:z(x:y)} (P1 (X:Y) + ‘PZ(X)

we find

P ¥ Py T P TV, B

Z .
?, ¢y t 9,

y y

These equations lead to the results

¢, =Vz 2

o = Ay XY
- 3
Y 1 + 22
y
o - Vz + 2 ¢1V
2 14+ 3z
Vz_ + z_ ¢
_ - 1y
P = Pypt Py T 2y
1+ 2
To the first order in & these values are
~
%% T Pax t Pax
= & (41)
‘Pz = sz s J

where o and ¢1y are the uncorrected values. To the sccond order in & we

may write
% T Yx t A(P’lx TPy T Vzi ’ )
?y = @1y + A@1y - sz %y s > (42)
¢, = sz + zy ¢1y . J

- 16 -



Thus we find that in addition to the corrcctions A@1 already made in
the main body of this paper there must be included further corrections as
set out in equations (42).

When we wish to calculate the pressure coefficient we note that in
slender theory

2 2 2 2
g = V + 2‘Vq>1x + 2‘VA(p1x + 2'ch>2x 2V Z

2 22
+ ¢1y + V Z,

keeping only the second order in & and ignoring second and higher powers
of Py and Poy®

Hence the correction to Cp from slender thin wing theory to give

slender not-so-thin wing theory is

2 1 2 2
Acp = Ty AQ1X V2 cP1y toiy e (u3)

We may note that ?, is given by the first term in equations (19) or

(27). By differentiating with respect to y we find that

oQ

11 . _fez .

Vv 3y = <a%>c s (symmetrloal case)
3
%

i1

h tan ¢ + <§E> , (unsymmetrical case)
¢

1
V oy ox

where h is defined in equations (4.3.3).

Equation (43) gives the correction to be made to 1 = qg‘/'\l2 to account
for the thickness. We now say that the same correction can be applied to
linear thin-wing theory to give what we might call linear not-so-thin wing
theory. Finally we make the correction shown in equation (38). It is not
easy to Jjustify this last correction except that it seems to give better
results; as other workers have found. (Sec for instance Ref.9.) We make
nc other attempt to justify its inclusion, The simplest way to do it is to
take the ¢, calculated bg linear theory, incorporate the correction given
in (43) ang then add 4 M C; to this, where the °p in this last formula may

logically be any of those so far calculated; we shall take it as the
Cp + Acp obtained as just explained.

Hence we find that our estimate ¢_ for the pressure coefficient is
given by p

- 2
- - . 1 2
° = [Cp(thin) " Acpj R [Cp(thin) * Acp] ()

where Ac, is calculated from equation (43) and S5 (thin) means the pressure
coefficient obtained by linear thin wing theory.

- 17 -



7 EXAMPLES

The method of this paper has been applied to determinc the pressure
distribution on two delta wings with rhombic cross-sections, which were
tested in the 8 ft tunnel at Bedford. The linear thin-wing values were
worked out by Eminton'O., The wings were such that

0.18 x(1~x), (Newby )
)

Wing I: 2z(x,0)

Wing V: z(x,0) 0.0105 x(1 = x) (= 6x4 & x°= x°).  (Lord V)

]

The results for a Mach number of 2 are shown in Figs.6 and 7. It
will be seen that near the centre line there is considerable improvement,
but that as one moves outboard there is little or no improvement over
linear thin~wing theory.

One is tempted to ascribe the discrepancy to the effect of the
boundary layer. Some crude calculations for wing V have been done in
some unpublished work and it was found that the boundary layer effects
were of the correct sign, but not of sufficient magnitude to account
entirely for the discrepancies. In the region of interest the correction
to Cp which can be ascribed to the boundary layer is about +0.002 to

+0.,003, and this is too small. However the calculations were of a very
crude nature and it may well be possible to ascribe the discrepancies to
the effect of the boundary layer. However, they may be due to errors in
small perturbation theory itself, and it may be necessary to apply second
order corrections to that theory in order to obtain further improvement.

It should be pointed out that linear thin wing theory in the cases
under consideration (in which the maximum thickness—~chord ratios are as
high as 9% and 11%) gives very good results, even before correction, much
better than it did in the case of a two-dimensional aercfoil in subsonic
flow. This is in spite of the fact that the basic equation (Laplace) was
exact and not linearized as it is here. Moreover the effect of the
boundary layer is greater in the subsonic case than it is here, mainly
owing to the fact that in subsonic flow, inviscid theory demands strong
adverse pressure gradients and a stagnation point at the trailing edge
(unless the edge is a cusp) and the boundary layer has a strong effect
there, making the velocity close to that of the main stream instead of
its theoretical value zero. In supersonic flow the inviscid velocity at
the trailing edge is already near to that of the main strcam and the
boundary layer only affects it slightly.

It should perhaps be pointed out that in some cases slender thin-wing
theory gives quite good results compared with experiment, as indeed it does
in the case of Wing I. When this happens it must be regarded as a fortunate
cancellation of errors, such as that due to thickness and that due to non-
slenderness.,

8 CONCLUSTIONS

The method given herc gives the next higher order term in the
thickness ratio & in slender theory, and the examples show that, provided
the wing is not too thick, it gives better values than the first
approximation,

A further procedure is then suggested. This is to work out the not-
so-thin correction to slender thin wing and apply the same correction to
linear thin wing theory. The procedurc is found to be quite successful in
some cases. Logically it seems to be a legitimate operation provided that

- 18 -



the linear and slender theories do not produce results which differ widely
from one another. There are, however, cases in which such a large difference
does oceur, particularly when S'(x) and $"(x) have large values near to the
trailing edge. For instance Firmin!! has made some experiments on such a
wing. In this case the two theories give widely different values of cp near

to the trailing edge and so it is probable that the argument about the
independence of small corrections no longer applies; indeed, on attempting
to use the methods of this paper to this casec, it was found that the results
did not give any significant improvement over linear thin-wing theory.

Finally the correction shown in equation (44) is introduced. It would
seem that this correction cannot be Jjustified, in view of the approximation
made in deriving the linearized potential equation. One can only say that
investigators have found that incorporating this correction does in fact
lead to results agreeing more closely with experiment. It does so in
general in the examples tested in this paper.

Although linear thin-wing theorv is already quite good in predicting
pressure distributions, the corrcctions given here are useful in that they
do give improved values, and they also confirm that the linearized potential
equation, fully exploited, is a useful and accurate approximation for thin
wings.

It is necessary, however, for the wing to be "smooth". In Firmin's

experiments11 this was not so, and the results show that the theories are
not so satisfactory in such cases.

LIST OF SYMBOLS

a coefficient in expansions (9) and (24)
B defined in equation (31)

Cp pressure coefficient

D defined by equation (33)

E defined by equation (32)

£(x) defined by equation (A.4.6)

F defined by equation (35)

G defined by equation (3L4)

g,h defined by equation (A.3.3)

T defined by equation (A.l4.3)

K defined by equation (A.l4.1)

L defined by equation (A.4.2)

M Mach number

N number of terms in Watson's formula, Section 3.2
n defined by equation (37)
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LIST OF SYMBOLS (Contd)

P pressure

q resultant velocity over the surface

r radius of circle in T-plane

Re defined by equation (A.L.5)

s(x) semi-span at station x

S(x) cross~sectional area ot station x

3 semi-span at the trailing edsge

T Y + iZ

v velocity at infinity

v normal component of velocity in cross=flow plane

W defined by equation (A.L.5)

X,¥ % Cartesian coordinates

Y,z coordinates in T-plane

B value of 3% - 6 in T-plane corresponding to the edge A of
the wing. PFig.4

e ratio of specific heats

o) t/s

g y + iz

M y/s(x)

A defined by equation (36)

¢ defined by equation (17)

¢ perturbation velocity potential

Subscript ¢ applied to a function means its conjugate.
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APPENDIX 1

ALTERNATIVE FORM FOR Ag, SYMMETRICAL CASE

Suppose that a and b are 0dd functions of ¢. bo will be even and dbc

will be odd. Writing x = cos ¢, x' = cos ¢' and using equation (13) we have

1 ' ' 1 4
(b ) L _j_ a(X ) bC(x ) ax! = _1— a(x') ax! b(X") ax" .
Wele T = X - x! - ﬂ2 x - x!' x! - x"

-1 - -1

This is a double principal value integral of Bertrand-Poincaré form,
According to Muskhelishvili®? the order of integration may be inverted to
give

1 1
a2 WY A a(x') ax'
(ab ), = 2 ["ﬂ alx) v(x) + [1 b(x") ax f1 (x-x}'ci(x'- x")

i

1 1
1 ngnz ax" 1 1
"&b+;"‘2‘f x = x" [ a’(x’) {X—X' ‘-X" _xt} ax!
-1 -1

13

1
- ab _1[ MEQ_%L".{& (X) S (X")}
i X - X c c
-1

= - ab + acbc - (acb)Q .

Hence we have

j)
o
o’
o
]
~~
foc]
[¢]
o’
g
@]
i
&
+
o
o’
Q
p—_g
Q
-

and so



APPENDIX 2

SIMPLIFICATION OF RQUATION (27)

z and 9z/9X are even functions and Z, is an odd function of ¢.

Conjugates of odd and even functions are given by equations (12) and (29).

Now

j»éé-{tan 0] zo(¢) ~ tan ¢' zc(¢')

cos ¢ = cos ¢!

} cos ¢' d¢!

™ ~ t .
_ Zo(¢) tan ¢ Qﬁ’:}1 N cos ¢ ,:]d¢' - l.[ %ﬁ Zc(dJ ) sin ¢! ag!

v X cos ¢ ~cos ¢ % cos ¢ ~cos ¢!
o o
= -2 iz + /z 2z\ . z tan¢.h
¢ \0x . ( ¢ 0% ° ¢ ’
where
S
1 AR '
B o= /‘ ox gt .
o)
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APPENDIX 3

ALTERNATIVE FORM FOR Ag, UNSYMMETRICAL CASE

Suppose that a and b are even functions of ¢. b, and abc will be odd.
Using equations (12) and (29) we have

IS

1 p @) v (¢7) sin ¢' ag
(abc)c - -7-\:/ cos ¢ = cos ¢'

(e}

1

s
_ 1 [ al¢') sin ¢' ap'  sin ¢ b(¢") ag"
Tox cos ¢ =~ cos ¢! ° T cos ¢' - cos ¢"

(e} o]

1 5 1
A alx') ax'(4-x'%) b{x") ax"
.
7(2 1 x-x' 1 (Xl_xn)(q__XHZ)_Q-

on writing x' = cos ¢', x" = cos ¢", X = cos @,

Inverting the order of integration as in Appendix 1 we have

i

1 1 _12_
(ab) b(x") d}S"f a(x')_(‘l—x'2) dx'

(1_}(002) z (X‘X' ) (Xl -x"
-1 -1

1 1 4
A b(x") dax" 11 N
- ab + 7‘2‘[ ( / a(x’) {x-x' x“-x‘} (1 X ) dx!
-1

i-(-“;tzax X)) +
A RERCRIE

if

x=x" ) (1 - 2)':2

i

cos ¢ -cos ¢" cos ¢~cos ¢'  cos ¢"-cos ¢f

(S 1
- &b + _::é_] b(p") dg" [{ a(a') i a (') }

sin® ¢ ag' .

eeo (A.3.1)

Now
[ alet) sin? g agt 1 [ 2
1 al¢') sin” o R ' . sin” ¢ .
'mf cos ¢-cos ¢! -ﬂ[a(qb){cosqb +COS¢+cos gb-ncos qb'} &
) 0
n x
= —:—t-/a(qb') cos ¢' dg' + Q-Qi—éf a(¢') dot - sin gbac(gb) .
0 0

eee (A3.2)
-2l =



The first term cancels on substituting in equation (A.3.1).

find

b(¢")

cos ¢ =cos ¢"

(a.bc)c =

T
—ab+-1—/
=

o]

Hence putting

we find

™
+ _15[ b(¢n) ds"
s
0

- 25 -
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We therefore

{— sin ¢ ac(¢) + sin ¢" ac(¢")} dg"

T
]a(qb') 3"

0

7 7(
- ab + acbc - (acb)c + ;‘1'2"/&(@ d¢é fb(¢) dap .
o 0

(A.3.3)



APFENDIX 4

THE RHOMBIC CONE

We have
z = 6sx(1 - [nl), dz/3x = Bs .
Hence
1
635( - t
2 = - f ) ]ﬂ‘ldn'
c IS ="M
-1
dsx
= - K(T]) 3
where
K(n) = (1+7) log(t+n) - (1-m) log(1-m) = 2n log m (A1)

by straightforward integration.

We also have

) QE 1+
oz = = — log i+m
ox 1-n
c
Hence
2 2
5257
<Z/§_Z_>> iy ,
2
\ax c/c s
where

1
1_:__.].3"_1_ 1..‘.“_.3.'_. '
- & . ul--ﬂ
L = f o 1001_n, dn (A4e2)
-1

To calculate L we note first that if

1 1 1
= dn' dn 1 , 1+ 1
te / ﬂ‘“’f n' -t / ot O Ty s (A.k.3)
-1 -1 -1
1

then, on changing the order of integration’ ',
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Appendix 4

1 1
_ .2 o dn
b=oms / n ‘[ m-n")(n'-n")
-1 -1
1 1
2 an" 1 1
=Tt ]‘ ey {n Y n'} an’
- -1
1+ 2
= - 7% +<1ogT—__—%1 -1 ,
and so
I:-Jjﬂ2+%<1°g:]‘t> *
We have
1 1 1
1 1+n' 1 n' 14! t {

L = lo log an' + n 1+m
/n-n' # 7 fn-n' e ot Log 1y an'
-1 C 0

1
_ S PR : B dan’
= I+ / {1 — + 1 ﬂ*ﬂ'} log T dn
o
2 1+ 2
= ~57°+ 3 <1og ?:ﬁ> +4log2-nW , (Adkol)

where

1
log(1+n') . log(1+n') _ log(1-n') _ log(1-n") '
W = 0 + 1 - 1 - 1 dn
=N 1 -1 s
o]

ee. (A4.5)

To evaluate these four integrals write in them

1+ 1 = (14m)t, 1+ 7' = (1)t 1 -n' = (4-n)t, 1-7' = (1)t

respectively.
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Appendix 4

The first integral is

2
-+

141
log(14m) + log % .. i-n _ 2 a0
-‘[ - dt = log(1+n) log " Re e + Re =" s

m

e

1
14m

where R&(x) is defined by Powell6 as
X
Re(x) = f 12_;‘ at . (A.4.6)
1

Powell tsbulates K€(x) and Mitchell! tabulates a function £(x), where
£f(x) = =-Re(1-x) . W)

The other integrals are evaluated in the same way and then use is made
of the relations

Re(x) + Re(1 =x) log|x| log|t-x| - ﬂ?/ﬁ .

i

H(log 0)° - Re(x)

R (1/x)

]

1(og %)% = RE(-x) -  =° .

Re(-1/x)
We finally obtain

2 2
v o= 3 (log %ﬂ) -3 <log j—gﬂ) + RO <1§ﬂ> - R¢ (1-'2'-‘1)

This may be also written in terms of Mitchell's "f" functions by
equation (A.4.7).

2 Re(n) + 2 Re(=n) .

Differentiating, we have

aw 2 1=7
il 5 log =3~ (Ack.8)
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Appendix L

By equations (A.4.5) and (22) we find

v S?E?x 5 14 1\2 §
bp = — {%W(1*21n1)+%<1°57_—%> *41032‘”” ’
s

which is equation (31).

Differentiating with respect to x and y and using equation (A.4.8)
we obtain equations %32) and (33).
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