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A method for making an approximate thickness correction to slender 

thin-wing theory is presented. The methcd is tested by applying it to cones 

with rhombic cross-sections and the agreemont is found to be good if the 

cones are not too thi.ck. It is then suggested that the thickness correction 

to slender thin-wing theory may be applied unchanged to linear thin-wing 

theory. This suggestion is compared with some experiments on delta wings 

and it is found that there is considerable improvement over thin-wing theory 

near the centre line, but that this improvement is not maintained as the wing 

tips are approached. 
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1 INTRODUCTION 

In order to calculate the flow of air past slender pointed wings the 
equations of motion are usually linearised, that is, the squares and products 
of the derivatives of the perturbation velocity potential are ignored. This 
method may be called "linear theory". A further simplification is usually 
introhced by applying the boundary conditions not on the wing surface but 
on a plane which i s never far away from the sur=e of the wing. This we 
may call "linear thin wing theory". 

Another approximation is "slender body theory" in which a term is 
dropped from the linearized equation of motion leaving the velocity 
potential 'p to satisfy the equation 

&+& 
a$ az2 

= 0 (1) 

at each station x = constant. With this we may also apply if we wish the 
same simplified boundary conditions as described above, and the result in 
this case is called "slender thin-wing theory". So far most calculations 
have used the second and fourth of these simplifications, namely "linear 
thin-wing theory" and "slender thin-wing theory". Roth of these apply the 
boundary conditions in the same way, that is on some plane close to the 
surfaces of the wing, supposing that the wing is so shaped that it is 
possible to find such a plane. What one would like to do is to solve the 
linearized potential equation using the correct boundary conditions, since 
this would make the fullest use of the theory, which is still of course an 
approximation. 

In this paper we do not do this directly, but we solve approximately 
the easier problem which we have called slander body theory. This provides 
a correction to slender thin wing theory, and it is suggested that by the 
principle of the "independence of small corrections" this correction may be 
applied to linear thin wing theory to give an improved solution of the 
linearized equation. That this is practicable at least in some cases may 
be shown by Fig.1, taken from Ref.1, which shows that, in the case of a thin 
slender ellipsoid in subsonic flow, the method gives better overall results 
than any of the other methods. 

This paper gives an approximate solution of the slender body problem 
in supersonic flow. This is done by finding an approximate relation which 
transforms the wing section into a circle, Once this is done the problem 
is virtually solved, and the transformation may be improved by iteration if 
necessary, but we shall not do this here. The results are tested in the 
case of a cone with symmetric rhombic cross sections (for which the full 
slender body solution is known). 

2 GENERAL 

The wing is supposed to be close to the xy plane, the x axis being 
along wind or inclined to it at a small angle of incidence. We write 

z = y+iz (2) 

and suppose that the section of the wing by a plane x = constant is a curve 
symmetrical about the z axis. The velocity at infinity is V. Then to 
determine the perturbation velocity potential in slender body theory we must 
solve the equation (I) subject to the condition that 
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29 = v b/ax 
c)n 7 

ii + (az/ay)*]? 
(3) 

on the boundary, where z = z(x, y) is the equation of the wing surface'. 
In slender thin wing theory this is replaced by 

k2 ai3 
an 

= Vax (4) 

at a point P' on some plane near to the surface of the wing. See Fig.2. 

The c-plane is transformed into a T plane (T = Y + iZ) such that 
the section becomes a circle of radius r. See Fig.3. If thz section 
were a slit the transformation would be 

2: = T+$, (5) 

and if the section differs only slightly from a slit the transformation 
will differ only slightly from this. 

We shall consider two cases(both of which are symmetrical about 
the z-axis;) (I) the symmetrical case, when the section is smmetricsl 
about the y-axis as well as the z-axis, and (2) the unsymmetrical case, 
corresponding to a cambered section. In both cases we consider only the 
case where the incidence is such that there is no flow around the edges. 

If the transformation is known then according to Weber1r2 we shall 
have in the symmetrical case, if s(x I is the semi-span at any section 
x = constant, and the flow is supersonic, 

cp = 9, + 'p* 9 

a&,yQ log 21y(y) - Y(Y_')~ dy, 
ax S 

J 
J 

-S 

X 

v 

02 = -z 
c 

S'(x) 106 $ ps - 
s 

V(x' 

0 

> log(x - x' 

(6) 

(7) 

> &x1 

3 

l (8) 

In equation (8) the function S(x) is the area of a section of the 
wing, its derivatives are denoted by primes, and 

P2 = Y2 - 1 , 

where M is the Mach number at infinity. 
not changed. 'p2 has a different value, 

If the flow is subsonic 'p, is 
however, and is given by Weber 
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in Ref'.l. The present method is concerned only with 'p, and applies equally 
to supersonic or subsonic flow. In thin wing theory Z/Y(y) - Y(y')l is 
replaced by ly - y'l. 

In the unsymmetrical case Y(y) - Y(y') must beOreplaced by Z(y) - Z(y'), 
Since in both cases as may be shown by a method similar to that of Veberl. 

the section is symmetrical about the z axis, the latter 
in both cases. We shall not do this because it is more 
although it makes our treatment appear unsystematic. 

form coda be mea 
convenient not to, 

3 FULLY SYMME3!RICAL SECTIONS AT ZERO LIFT 

3.1 General 

We denote the ratio zmadsemi-span at any section 
6 is small. 

c = T+T-2r . . . t 

by 6 and assume that 

in order to transform the circle T = re i.0 into the require6 section in the 
C plane. This gives on the section 

Y = 2r cos 0 - 2r(a, cos 0 c a 
3 

COS 30 + . ..> , 

2 LZ 2r(a, sin 0 -k n 
3 

sin 30 + -0.) , 

2Y = 2rcosO. 

This form of expansion gives the double symmetry required, since 
z(4) = -z(o), y(7c - 0) = -y(O), y(4) = y(0). We write 

-z,(e) = 2r[a, cos 0 + a 
3 

CO3 30 + . ..I , 

the latter being known as the "conjugate of z". Thwaites3 shows tnat 

z,(e) = - ; 1 z(0’ ) sin 0' aw 
J cos 0 - cos 8' 
0 

if z($) is an odd function of c~5. This may be written 

ecbJ = - $ I z&y) al-)’ 
J rl - ‘1’ 

(‘10) 

(11) 

(13) 

-1 

if q = cos 0, q' = cos 8'. 



Equation (IO) becomes 

y = 2r cos 8 i- 2, (fo ' WI-) 

When i-3 = 0 we have y = s and so 

S = 2r - I -  zp l (15) 

We write y = s cos $I and so we have 

y cos 6 = 
zp 

coscjt---- . c w 

It is possible to find the relation between 0 and Q, by iteration, in much 
the same way as is done in the well-known Theodorsen two-dimensional wing 
theoryg. This iteration is not necessary if we only require to go to one 
higher order in 6. 

The a's in equation (11) are small quantities of order 6 and hence 
6 and $ differ by a quantity of the first order in 6. 

Now ac(B)/s and z,(O)/s are both O(6) and so to this order we may 
write 

$cose = 
zc (4) 

cos $ - - 
S 

9 

where 

-%,($) = sla, c3s q3 + a3 cos 34 + . ..I e 

This means that i is found from the equations 

Y = s co9 $I , 

z = da, sin c$ 4- a 
3 

sin3ql 4 . ..I , 

and then the conjugate of "z is determined. From now on we shall drop the 
bar over z and zC. 

Bearing in mind that 2Y = 2r cos 0 we may write equation (7), to 
order 6 

Jl s -log cos # I 
Zc b#J> z(p) 

'PI = 7-Q 2X 
- cos 9 - - + 

9 S W' , 

-S 
. . . (18) 

where y' = s cos p. 
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Since 2 and 2; 
C 

are O(6) we may write this 

1 s &E,k.xQ 
5 = 7t s I log lcos () - cos #*I - 

zp - a,($4 7 
3x S(COS cg-cos $'> J 

dY' Y 

-S 

. . . (I?> 

on expanding the logarithm. 

The first term is that which would have been obtained by the usual 
slender thin wing theory. To this would be added 'p2 to give the full value 

of cp. The present analysis does not change ~2, since 92 does not depend on 
the shape of the cross-section. 

Thus our method produces a correction term of the next higher order 
in 6, and we shall denote this by A'p,, so that 

if y' = sr)' = s cos +', and this may be written 

(20) 

where f is defined as 
C 

(21) 

which follows from equation (13). 

Thus the thickness correction to 'p may be found. 

We show in Appendix 1 that an alternative method of writing 
equation (20) is 

(22) 



This has the advantage that one less conjugate need be calculated. 

3.2 Details --- 

There seem to be at least three methoes of proceeding. E'irstly we 
may actually determine the a's by fitting a finite Fourier series to a 
finite number of points on the wing section using equations (17). One 
would hope that the afs would soon become small. AIll the necessary, 
functions can then be calculated. Secondly we may notc +&at '3atson4 has 
given a method of determining conjugates and their derivatives v$thout 
actually finding the a's; the details are also given by Thwaites . 
Finally consideration migh t also be given to finding conjugates by 
direct numerical integration of equation (21) in the form 

The derivative of fc with respect to q is given by 

afo 
1 

q--= 

-1 

. 

a$ 

Primes attached to f denote derivatives. 

If f'(q') is infinite at y' = +I we may write this 

(23) 

If f'(q) has a logarithmic singularity at q = +I, the integrsnds in 
this equation will now vanish at q' = ?I. rl = 1 itself must of course be 
excluded. 
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3.3 Singularities 

Very often we deal with sections which have sharp edges at r) = fl. 
This leads in general to logarithmic singularities in 9x sad cp 

Y 
; cp itself 

is finite, but its derivatives are not so. The s<ame applies to the 
correction term Acp. The procedure used is in fact not uniformly valid at 
?-j = $1, and we are using a singular perturbation procedure in going frpm 
equation (18) to equation (19) near 77 = ?I. As explained by Lighthill>, 
the next term will usually contain a singularity of highcr order. It was 
found, however, in examples that the results quite near to rl = tl were as 
accurate as elsewhere. Attempts in these special examples to re2idor the 
result uniformly valid led to finite velocity components at the edge, but 
except very near the edge the results were no more accurate than the direct 
procedure given above. As there seemed no simple extension of Lighthill's 
procedure to more general cases no further attempt to use it was made, since 
the results sacmed to be sufficiently accurate without it. 

4 UNSYM&WrRICAL SECTIONS 

A transformation to a circle in the T plane is made as before, but it 
is now more convenient to write 

'T = -ire i.0 . 

This makes 0 = 0 at the centre of the lower surface. See Fig.&. 
The transformation is 

i3a3r3 + J , 

2 / 
(24) 

I 

which leads to 

z = 2r ao + 2r(a, cos 0 + a2 cos 20 i- . ..) 

Y = 213 sin 0 + 2r(a, sin 0 + a2 sin 20 + .,.) = 2r sin 0 + zo* 1 
.*. (25) 

If the section is thin we shall have y = s when 8 = -&% - p, where p 
is order 6. Hence, ignoring terms in F2 and higher orders vre have 

3 = 2r cos (3 + zo(&7-J = 2r + zc(bd g w 

we let 
3 

- s sin #J, and suppose that 0 = 4 + Ad. Hence, from 
equations (25 )- 

ssincp = 2r isin $J + O# cos $1 + z,(0) , 

keeping only first order terms in A$. Using equation (26) we find to 
order 6 



cg, = 
sin $ Z,(h) - Zc(#) 

s cos $ 9 

where 

Zc($) = s {a, sin # + a2 sin 29 + . ..I . 

As before we shall drop the bar over c and zc~ 

We note that 'p, is given by equation (7), with Y(y) replaced by 

Z(Y), etc. Equation (7), modified in this way, reads 

where the limits are to be such that the path DAB in Fig.2 or Fig.3 is 
to be followed. 

In the modified equation (7) the expression inside the logarithm 
is 

E = 2/z(y) - Z(f) 1 = 
$I cos 8 - cos 

S 
eq . 

Now 

cos 8 = cos Q - A$ sin (p 

cos $ - * 
zc (hd z ($4 

= 
S 

-k tan +--$- . 

Hence we have 

zc b> 
cos cj5 - cos (p' c tan+7- 

z,w 
tan 9' s 

On substituting in equation (7) and expanding, assuming that zc/s 

is small, we find on putting y = s sin 4, that 
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cos + cos p cos @’ a#’ . 

C 
. . . (27) 

Here z is even, zc is odd and b(x,+l)/ax is even. The first term is the 

slender thin wing value and the second term is evaluated in Appendix 
Once more writing the correction to 'p, as Aq, we find that 

2. 

, (28) 

where 

0 

In this equation the conjugate of an odd function of (p is given by 
equation (12) and the conjugate of an even function U(4) is given by 

7c 
U($') dd,' 

cos cp - cos #' (29) 

0 

We show in Appendix 3 that equation (28) may be written 

where 

5 ANEXAMF'LE. TJ3EBH0MB1C CONE 

In this case an exact conformal transformation is possible and Maskell 
(unpublished) has worked out the results for the symmetrical case for various 
edge angles. It is also possible to give an analytical solution of this 
problem by the present method. 



We suppose the cone to be of unit Icngth, that is, x is equal to 
unity at the base, which is situated downstream of the apex, the cone 
being at zero incidence. We write 

s(x) =2x, ?-I = Y/+.X Y 

so that 2 is the semi-span at the base. We further denote half the 
maximum thickness of any section x = constant by 6s. 

Hence we have 

Using equation (22) we find, as shown in Appendix k,that 

where 

aw= 2 - -- 
arl 1 -?-j2 

log + , w(0) = 0. 
47-l 

We have evaluated '$1 in Appendix 4, in terms of l’OWC11’S6”Rd” 

functions or Kt.tchell's7 '"f" functions. 

We find 

= --E, 2 x 

*=v6s -...-- 2 2 
aY 2 

L 

2 -7c sgnq-k 
7L 

I-7 log +y - w + -JJ$ log J=$ 
1-T "'1 43-l 
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These are infinite at 7-j = tl, and we see that the singdarity in Acp 
is of higher order than that in the slender wing value of 'p, as was to be 
expected. It is easy to show that slender thin-wing theory leads to 

&e= VS,' 
dX 7c c 

lo&+q) + log(1 q) c 2 log 4 pz 
3 

, 

Maskell has expressed the derivatives of cp on the cone in terms of two 
integrals G and P. We have 

and Maskell equates this to 

23362 
----G . 

x 
(34) 

Hence we have 

G = -$log$=+-&D , 

and so our results can be compared directly with those of Maskell. 

Maskell also writes 

L&i?= 2 f 62 2&s-* 

v ax 
1 log y- + I +------qG+. 

7c 
' 

(35) 
\- 

where 

f 
x = Ei cot 4 n7r. 

2n ,,:;!,2 ' 

6 = tan 4 n7c . 

(36) 

(37) 

Hence we have 

1. 
I?= x(1 + 62)2 Log 4 h -1 

1 
+ $(I w-j) log(l+rj) e $(I --q) lo&- r$ -I- (6/2x) B , 

where B is defined in equations (31). 
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We have Plotted these results in two cases, corresponding to edge 
angles of 4O* and 60Q, and in Figs.4 and 5 they are compared with the 
thin-wing values. It will be seen that the latter are considerably in 
error. Since thin-wing theory gives lo~arithmicnlly infinite values of 
the velocity components at the leading edge, Webe& has modified the 
formulae of slender thin-wing theory so as to produce uniformly valid 
results correct to the first order in 6. The effect is to replace the 
logarithmic term in G by 

where 

w = 2 tzr? 6 ; 

the F term is not changed.. VCa.lucs of G by her method sire shown in 
Figs.4 and 5. The vralucs near to the edgc are improved, as is to be 
expected. The G curves shop that wc may 20 very close to the edge with- 
out the singularity causing any serious divergence from the correct 
solution, although actually the Pattsr is finitt! at q = 1 whilst the 
approximation is infinite. Indeed, as the singularity is of highor order 
than that of the thin wing and as D is negative near q = 1 our approximate 
solution will tend to plus infinity at the edge, but it seems necessary to 
go very near to the edge before tha curve turns, unless the section is 
very thick. 

Thus we see that our approximation gives good results, even for cones 
with edge angle s as large as 60". 

As shown above it was possible in this cast to find F and G by direct 
integration. end the use of tabulated functions. In a general case this 
would not be possi'ble, and so Watson's method seems to bc the best ts use. 
This was don.2 for comparison in our rhombic cone example. 

It involves fitting a trigonomctricnl series of N terms to the 
section znd than carrying out a siqd.o nuaerical routine to find the 
conjugate's. The VELLUOS used were N = 20, 40 and GO, and near to the 
singularity the results differed from each other and from the correct 
integrated value by amount s which were larger than expected; howcver in 
the cast N = 40 the error, in the worst case, 
the curves for G(q) and F(r)) 

was not enough to displace 
in Figs.4 and 5 by more than one quarter of 

the,amount they arc already in error. That the discrepancy in Watson's 
method is as large as this is due to the singularity at the edge. However 
the approximation is improved b, 77 Msing larger values of N; N = 40 seems 
to be adequate. Up to q = 0.8 the error for N = 40 is negligible. After 
that the curves for I? and G oscillate, but it is possible to fair in 
curves which are sufficiently accurate for the purpose required. 

6 PFtESSURE DISTRIBUTION 

The relation between the pressure coefficient c and the local 
P 

, velocity, on the assumption of zero shock or weak shock, is 



cP 
= 

P-P -00 
& pv 2 

where p, V and M are the density, velocity and Mach number at infinity and 
q is the local velocity. This may be expanded in the form 

cp = (I -$)+;M’(I -$+&+(I -$ + . . . (38) 

for y = 1.4. 

If 'p is the perturbation velocity potential we have 

q* = (vi~)*+~;+~* ) 
X z 

(33) 

where subscripts denote partial derivatives. 

In linear or slender thin wing theory squares of cpx, 'p 
Y 

and cp, are 
neglected and so there is no justification in going beyond the first term 
in equation (38); hence 

In slender body theory g; and 9: arc 
cannct be ignored. Hence 

cp = -1 2Qx+ v2 ( 

Another point to be borne in mind is that our cp has been given as a 

of the same order as $x and 

function of x and y only, that is cp is known for the point on the body whose 
x and y coordinates are given. What has in effect been done is that 
z = z(x, y) has been substituted in cp(x,y,c> to produce a function 

(P,(X’Y) + cp,(x) = dX,Y,4X,Y)3 , 

v being the perturbation velocity potential. 

Now the velocity components on the body surface are V c (p,, 'py, (p,. 
The velocity vector is perpendicular to the normal to the body surface and 
hence 

(v + ‘F,) z xfT Y “Y 
-(p, = 0 . 
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In slender theory, where (p, is small, this leads to 

Vzx + cp YZY = (pz l 

Since on the body 

we find 

These equations lead to the results 

% 
- vzxz 

'py = 
1 + z2 

¶ 

Y 

vzx + z (P, 
9, = 

1 4- z* 
Y 

Y 

vzx + z 9, 
0, = % + 'p2, - zx I + z* 

. 

Y 

To the first order in 6 these values are 

(41) 

where cp 
IX 

and 'p 
lY 

are the uncorrected values. To the second order in 6 we 

may write 

'py = (QY 
+ Acp - Vz ly xzyy 

i 

(42) 

9, = vzx c z ‘p 
Y  lY l 

-  16 -  



Thus we find that in addition to the corrections A?, already made in 
the main body of this pa 

P 
er there must be included further corrections as 

set out in equations (42 . 

When we wish to calculate the pressure coefficient we note that in 
slender theory 

q* = v2 + 2v+x -I- 2VA9,x + 2v9 2x - 2 v2z; 

2 
-+ 9y + v2z2 x ' 

keeping only the secord order in 6 and ignoring second ana higher powers 
of qx and ‘p&’ 

Hence the correction to c 
P 

from slender thin wing theory to give 

slender not-so-thin wing theory is 

T 
AC = 

P 
+qx -L(p2 + zz . 

v2 IY (43) 

We may note that 91 is given by the first term in equations (19) or 

(27). By differentiating with respect to y we find that 

(symmetrical case) 

2. d9 a2 
VT = htancp+ %' 0 

(unsymmetrical case) ' 

where h is define& in equations (A.3.3). 

Equation (43) g ives the correction to be msde to 1 - q2/V2 to account 
for the thickness. We now say that the same correction cLan be applies to 
linear thin-wing theory to give what we might cdl linear not-so-thin wing 
theory. Finally we make the correction shown in equation (38). It is not 
easy to justify this last correction except that it seems to give better 
results; as other workers have found. (Set for instance Ref.9.) We make 
no other attempt to justify its inclusion. The simplest way to Bo it is to 
take the c 
in (43) an8 

calculated b 
3 then add $ M 

linear theory, 
cg 

incorporate the correction given 
to this, where the cp in this last f'ormula may 

logically be any of those so far calculated; we shall take it as the 
+ AC 

cP P 
obtained as just explained, 

Hence we find that our estimate c for the pressure coefficient is 
given by P 

where AC 
coefficignt obtained by linear thin wing theory. 

is calculated from equation (43) and Cp(thin) means the pressure 
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7 EXAMPLES 

The method of this paper has been applied to determine the pressure 
distribution on two delta wings with rhombic cross-sections, which were 
tested in the 8 ft tunnel at Bedford. 
worked out by Eminton'O. 

The linear thin-wing values were 
The wings were such that 

Wing I: 2(x,0) = 0.18 x(1 -x), (Newby > 

Wing V: dx,o) = 0.0105 X(I -x)(&-6x+4 x2-x3). (Lord V) 

The results for a Mach number of 2 are shown in Figs.6 and 7. It 
will be seen that near the centre line there is considerable improvement, 
but that as one moves outboard there is little or no improvement over 
linear thin-wing theory. 

One is tempted to ascribe the discrepancy to the effect of the 
boundary layer. Some crude calculations for wing V have been done in 
some unpublished work and it was found that the boundary layer effects 
were of the correct sign, but not of sufficient magnitude to account 
entirely for the discrepancies. In the region of interest the correction 
to cp which can be ascribed to the boundary layer is about +0.002 to 

+0.003, and this is too small. However the calculations were of a very 
crude nature and it may well be possible to ascribe the discrepancies to 
the effect of the boundary layer. However, they may be due to errors in 
small perturbation theory itself, and it may be necessary to apply second 
order corrections to that theory in order to obtain further improvement. 

It should be pointed out that linear thin wing theory in the cases 
under consideration (in which the maximum thickness-chord ratios are as 
high as !3$ and ?I$) gives very good results, even before correction, much 
better than it did in the case of a two-dimensional aerofoil in subsonic 
flow. This is in spite of the fact that the basic equation (Laplace) was 
exact and not linearized as it is here. Moreover the effect of the 
boundary layer is greater in the subsonic case than it is here, mainly 
owing to the fact that in subsonic flow, inviscid theory demands strong 
adverse pressure gradients and a stagnation point at the trailing edge 
(unless the edge is a cusp) and the boundary layer has a strong effect 
there, making the velocity close to that of the main stream instead of 
its theoretical value zero. In supersonic flow the inviscid velocity at 
the trailing edge is already near to that of the main stream and the 
boundary layer only affects it slightly. 

It should perhaps be pointed out that in some cases slender thin-wing 
theory gives quite good results compared with experiment, as indeed it does 
in the case of Wing I. When this happens it must be regarded as a fortunate 
cancellation of errors, such as that due to thickness and that due to non- 
slenderness. 

8 CONCLUSIONS 

The method given here gives the next higher order term in the 
thickness ratio S in slender theory, and the examples show that, provided 
the wing is not too thick, it gives better values than the first 
approximation. 

A further procedure is then suggested. This is to work out the not- 
so-thin correction to slender thin wing and apply the same correction to 
linear thin wing theory. The procedure is found to be quite successful in 
some oases. Logically it seems to be a legitimate operation provided that 
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the linear and slender theories do not produce results which differ widely 
from one another. There are, however, cases in which such a large difference 
does occur, particularly when S'(x) and S"(x) have large values near to the 
trailing edge. For instance Fi.rminl' has made some experiments on such a 
wing. In this case the two theories give widely different values of c near P 
to the trailing edge and so it is probable that the argument about the 
independence of small corrections no longer applies; indeed, on attempting 
to use the methods of this paper to this case, it was found that the results 
did not give any significant improvement over linear thin-wing theory. 

Finally the correction shown in equation (4.4) is introduced. It would 

seem that this correction cannot be justified, in view of the approximation 
made in deriving the linearized potential equation. One can only say that 
investigators have Found that incorporating this correction does in fact 
lead to results agreeing more closely with experiment. It does so in 
general in the examples tested in this paper. 

Although linear thin-wing theory is already quite good in predicting 
pressure distributions, the correc$ions given here are useful in that they 
do give improved values, and they also confirm that the linearized potentid. 
equation, fully exploited, is a useful and accurate approximation for thin 
wings. 

experi~~n~~,re~~~~~~~~ kir;e;;r, for the wing to be "smooth". In F+rmin's 
, rind the results show that the theories are 

not so satisfactory in such cases. 

a 
S 

B 

cP 

D 

E 

f(x) 

F 

G 

tT,h 

I 

K 

L 

M 

N 

n 

LIST OF SYUBOLS 

coefficient in expansions (9) and (24) 

defined in equation (31) 

pressure coefficient 

defined by equation (33) 

defined by equation (32) 

defined by equation (A.b.6) 

defined by equation (35) 

defined by equation (34) 

defined by equation (A.3.3) 

defined by equation (A*4.3) 

defined by equation (A.4.1) 

defined by equation (A.4.2) 

Mach number 

number of terms in Watson's formula, Section 3.2 

defined by equation (37) 
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LIST OF SYMBOLS (Contd) 

P 

9 

r 

R& 

s(x) 

s(x) 

2. 

T 

v 

v n 

W 

X?Y?Z 

Y,Z 

P 

pressure 

resultant velocity over the surface 

rsdius of circle in T-plane 

defined by equation (A.4.5) 

semi-span at station x 

cross-sectional area at station x 

semi-span at the trailing edge 

Y + iz 

velocity at infinity 

normal. component of velocity in cross-flow plane 

defined by equation (A.4.5) 

Cartesian coordinates 

coordinates in T-plane 

value of +x - 0 in T-plane corresponding to the edge A of 
the wing. Fig.4 

ratio of specific heats 

t/s 

y + iz 

Y/S Cd 

defined by equation (36) 

defined by equation (17) 

perturbation velocity potential 

Subscript c applied to a function means its conjugate. 
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AFTENEIX 1 

Suppose that a and b are odd functions of #, bc will be even and a&C 
will be odd. Writing x = cos 4, x' = cos $J' and using equation (13) we have 

b$o = -  ;  

a(~‘) b (x’) ’ a(x() dx’ 
x _ ; ,  a~’ = $1 

’ b(x”) dx” 
x _ xt 1 xl _ xtt  l 

-1 -1 -1 

'This is a double principal value integral of Bertrand-Poincard form, 
According to Muskhelishvili 72 the order of integration may be inverted to 
give 

1 
bbcJc = L [-x2 a(x) b(x) + 

x2 s 
b(x”) dx” 

= -ab-; ac (x1’ 1 
i 

= -ab+sb c c - (acb>o . 

Hence we have 

sb c c - (nc”)c = ab + (abo>c 3 

and so 
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AF'FENDIX 2 

XI~/IPLIFICATION OF EQUATION (27) 

z and a&x are even functions and z is an odd function of Cp. 

Conjugates of odd ,and even functions are given by equations (-lZ) and (29). 

Now 

1 .az tan Cp zo(d - tan 9’ 
J c 

zc($‘) 
7x 3X cos $ - cos q5' 3 cos +' ap 

= - zc ($$c + (zc $c - zc tan $.h , 

where 
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APPl3NDIX 3 

ALTER.NATIVE FORM FOR fq, UNSYMMETRICAL CASE 

Using 

Suppose that a and b are even functions of #. bc and abc will be O&d. 

equations (12) ana (29) we have 

T4 7t 
= 1 sin @* a+’ . sin $' b(+") a$" 

7c cos $J - cos $' Yc s cos cp' - cos q 
0 0 

1 

a(x xwxr 
'> dx'(l-x' ")' ' b($t) &If 

s 
l- 9 

-1 -1 

on writing x' = co5 $', x" = cos &", x = 00s 9. 

Inverting the order of integration as in Appendix 1 we have 

(abcjc = -$ [- x2 a(x) b(x) + 1' 

I 
b(x") dq" 

(Iraq 2- s 

Z -ab& 
7t2 

- -& 
I 

71 F. 

1 = -ab+T 
J 

b (.$I ) d$” a(V) a 4’ 

Tc cos $J -cos 4” cos +- cos cp’ - cos $I”- cos 6’ 
0 0 

sin2 4' d$' . 

. . . (6.3.1) 

Now 

7c 
2 T. 

2. sin 4,’ d4’ 1 z::- sin* C#I 
-IL C-OS #-cos $I’ R 

cos 4’ + cos $ + 
cos f$ - cos p 3 

w 
0 0 

T. 7E 
1 =- 
7x a($‘) cos (b’ d$’ + F 

J 
’ a(+‘) d$’ - sin $I&,($) . 

0 0 
. . . (A.3.2) 
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Appendix 3 

The first term cancels on substituting in equation (A.3.1). We therefore 
find 

(abc)c = - ab + $ 

1 +- 7t2 J b(@') d$" a(V) W' 

0 0 

7x 7t 

= - ab + acbc - (acb) + 5 
C s 

a(+> W /  b(Q) W l 

7c 

0 
J 
0 

Hence putting 

a = 2, 

we find 

b=$ 

?I 

L h = 7c 
J 
0 

d$" 

@.3,3) 

-zc(g)o+(zc~)c = -.~-(~(~)~c+~h ’ 
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APPENDIX 4 - 

TJg RHOImIC CONE 

We have 

IIence 

z = 
_ “E” ’ I - IT-21 a$ 

C 7c f r) +“I’ 
-1 

62x 
= - y- G-d , 

where 

K(q) = ('t I- rl) lo& +d - 

by straightforward integration. 

Tie also have 

a2 0 
SS 

xc = 
- -;; log iALl* 

l--Q 

Hence 

where 

(A.4421 L = f -1 
To calculate L we note first that if 

I 

f 

(A.4.3) 

-1 

then, on changing the order of integration 
-II , 



Appendix 4 

1 I 

I 2 = -7r. + 
! S( 

?I," 
ar, 

'1 -q')($ - q") 

-1 -1 

= -x2+(log+qy-I , 
and so 

I = -g, 2+:(loi:+q . 

We have 

I 

= I+ 
.iI 

I-J--+I--& lclg+aq 
vl' 3 '7 

0 

2 = -*n +4log2-qW 9 (h.4.4) 

where 

w = ic ' log(l+?l') + log(l+q') _ lo&-$) _ log(l-$) &$ l 

v-l ’ w-l ’ Il-rl’ rl+rl ’ I  

0 

. . . (A.4.5) 

To evaluate these four integrals write in them 

1 + q' = (I+?-&, 1 + q' = (+q)t, 1 - 7-q = (I-T-J-t, 1 - q' = ('+q)t 

respectively. 
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Appendix 4 

The first integral is 

log(l+?l) + log t 
t-q 

at = " mbq) 1% y--(+)+R++-). 

where R&(x) is defined by Powell 6 as 

R&(x> = I ‘i!LZLktat. t--l (A.4.6) 

1 

Powell tabulates R&(x) and Mitchell7 tabulates a function f(x), where 

f(x) = - R&(1-x) , (AA 7) 

The other integrals are evaluated in the same way and then use is made 
of the relations 

Re(x) + R&(1-x) = log[xl log14 -xl - %*/6 9 

R&(1/x) = $(log x)~ - R&(x) , 

(x > 0) 
R&(-l/x) = &(log x)* - R&(-x) - 6 x2 

Ve finally obtain 

This may be also written in terms of Mitchell's "f" functions by 
equation (A.4.7). 

Differentiating, we have 

i!E= 
2 

arl 
--Qog~ l 

3-l 47-3 
(AA. a) 
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Appendix 4 

By equations (A.4.5) and (22) we find 

22 
VGs-x 

Ay,=- 2 
c 

3 x2(1 - 21?# 
7F 

which is equation (31). 

Differentiatin with respect to x and y and using equation (A.4.8) 
we obtain equations f 32) ana (33). 
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