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SUMMARY

Slender-body theory is used to compare the flow over the bottom
surface of a flat delta wing at incidence and the delta-like surfaces of a
pyramid of rectangular section, interest being focussed on the centre line
and on the flow attachment lines where they exist. Pyramids are found which
reproduce closely the flow in the neighbourhood of the delta centre line.
Other pyramids are found which have the same position of the attachment
lines as a delta wing, the approximation to the flow being good when the
attachment lines are near the centre line but deteriorating as they move

outboard,
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1 INTRODUCTION

Part of a general programme of research into the asrodynamic propertiea
of lifting slender wings is concerned with the problem of heat itransfer to
the surfaces, especially near the edges and along the attachment lines. The
free-flight technique is particularly suited to mske an experimental con-
tribution in this study, especially if it is possible to simulate the essen-
tial features of the flow on non-lifting bodies since the complications
agsociated with flying 1ifting models can then be avoided. The purpose of
this note is to investigate whether non-lifting body shapes can be found with
flows which are similar to those typically found with slender 1lifting wings.
The investigation is restricted to 1lifting wings of delta planform and hence
to non-1lifting conical bodies with triangular surfaces.

An obvious shape of this kind is the pyramid with rectangular section
flying point first which is shown in Fig.1. All four surfaces in this are
forward~facing like the bottom surface of a flat delta at incidence. To
obtain a rearward-facing surface like the top surface of a delta wing we
should need the tetrahedron also shown in Fig.1 {lying edge first., The top
and bottom surfaces here are like the top of a flat delta at incidence; the
sides are deltas flying backwards!

One way of investigating whether the flow over these bodies retains

the features tynical of the flow over a flat delta at incidence is to make
some wind tunnel models and compare oll flow patierns in the surface,
D.A., Treadgold has made such tests with four models - one delta wing, two
pyramids and one tetrahedron - at Mach numbers 1,57 and 4.4. His results
will be incorporated in the report on the free-flight work that his tests
were designed to help. A few flow patterns are reproduced in Fig.b.

The present note is concerned with theoretical flows obtained by
epplying slender-body theory to a 1lifting delte wing (a solution which is,
of course, well known) and to aslender rectangular pyramid. The type of
flow considered is allowed to have, in general, infinite velocities along
the edges., i.e. vortex sheets from the edges are not considered., The flow
over the top surfacc of a dclta wing is not therefore properly represented
“ut it will be scen that some deductions can be made about the similarity
tetween the flews over the bottom surface and over the smaller sides of a
pyramid, Because of the non-slonderness of the tetrahedron near its leoading
edge, this shape is not considered.

2 SURFACE VELOCITIES CALCULATTD BY SLENDER-BODY THEORY

In small-perturbation theory the equation for the perturbation velocity
potential ¢ becomes

(1-4%) ¢+ byt by = O (1)

The slender bedy theory of Munk and Jones assumes in addition that
¢

o << ¢yy’ ¢zz‘ Consequently the potential cquation becomes

by ¥ 0y = O (2)
and the potential is of the form
¢(X:y:z) = 9”1(Y:Z;x) +¢2(X) (3>
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where ¢1 is the solution of this two-dimensional Laplace equation in the

transverse plane x = constant, The solution of the equation depends on the
conditions which the flow is required to satisfy at its boundaries. Usually,
as in our problem, the disturbance created by the body must die out at
infinity, and on the body the velocity must be tangential to the surface,

Let us introduce complex variables ard denote a point in the transverse
plane x = constant by t = y + iz. Since the body is slender we can use the
boundary condition on the surface to give explicitly Vn, the velocity in the

transverse plane normal to and away from the body cross-section. If we know
a relation which transforms the region outside this cross-section in the
t-plane into the outside of a circle in some other plane where t' = y' + iz',
the normal velocity in this new plane will be

dt
at'

(&)

W

. v

n

and we can appeal to a standard result, recalled in Appendix 1, to give the
corresponding velocities tangential to the cross-section, V% and Vt. Finally

since the body is slender we can show that the other component of velocity in
the surface, VS, is to first order equal to U, the velocity of the undisturbed

stream,

2.1 Surface velocities on a flat dclta wing at incidence

We consider a flat delta wing inclined at an angle o to a uniform stream
of speed U, The velocity distribution on its surface is well known but for
completeness is derived here by the same method as will be applied in the
next section to a pyramid. The x-axis lies in the stream direction and at
the point x = & bisects the trailing edge, which is parallel to the y-axis
and of length 2af. The nose lies on the z-axis at the point z = b€ so that
b = tan a. Fig.2 shows the notation.

The cross-section in the transverse plane x = constant is the line
z = blL-x), -aXx £ y € ax ., (5)

Introducing complex variables t = y + iz, we can relate the t-plane

outside this line to the t'-plane outsidc a cirele of radius ax/2 by the
transformation

. . ai\2j" P
t-an(ex) = b (5 4, (5)
whence
2
dt ax 1
at! = 1 - <2> t'z . (7)
On the circle, let
t' = %% 16’ O<6<s2r . (8)



Then

t = ax cos © + ib(L-x) (9)
%—ET 1_@-—2i0 (10)

and
i%%T] = 2 |sin6] . (11)

If we assume that a and b are both small ~ O(g) where ¢ « 1 - then
according to Wara' ¢X/U is even smaller - O(e2 loge) . To satisfy the

boundary condition that requires the component of velocity normal to the
surface to be zero we must have

(U + ¢x) sina + ¢, 00sa = 0 (12)
whence
$,/0 = -b+0(e?) . (13)

The velocity Vn has the same magnitude as ¢z but is directed away from the

surface so that

Vn/U = -b + 0(82), above the wing
5 (14)
= b+ 0(e”), below the wing.
In the t'-plane therefore, by (4) and (11),
VIA = -2 sin +0(e%), O<ocom . (15)
We can now apply the result of Appendix 41 to give Vt as follows:
since V! is an odd function of @ we use equation (40) which beoomes
roL2
1 2 [ sin“zag 2
T ¢6/U T T ox / cos & - cos 9 + 0(e”), 0<6 <2,
0
= 2b cos 8 + 0(32), 0<oOg2n . (16)



If the corresponding velocity in the t-plane is Vt’ taken anti-clockwise

around the cross-section, we have by (4) and (11)

b cos © 2
Vt/U - m+o(8 ), 06 < 2n . (17)

In this case Vt is always parallel to the y-axis, so that equation (17) ecan

also be written
V&/U = -~ b cot 6 + 0(82), O<6 <2 . (18)

The other component of velocity tangential to the surface, Vs’ is

given by

<3
[}

(U + ¢x) cos o - ¢ sina

(U +¢,) seca (19)
using the boundary condition (12) to eliminate ¢z’ whence
VS/U = 14+ 0(e) . (20)

2,2 Surface velocities on a rectangular pyramid

We consider a pyramid of rectangular section pointing into a uniform
stream of speed U, The origin of co~ordinates is at the apex of the pyramid.
The x-axis lies in the stream direction and coincides with the axis of the
pyramid, which is of length £. The edges of its base are parallel to the y
and z axes and are of length 2af and 2bf respectively. Fig.2 shows the
notation.

The cross-section in the transverse plane x = constant is the rectangle
with sides

z = * bx, - ax £y € ax
y = * ax, -bx < z<bx (21)

Introducing complex variables t = y + iz, we can relate the t-plane outside

this rectangle to the t'~plane outside a circle of radius r by the transforma=-
tion*

{

! 2 4
dt 2r T
_ = - = 005 2% + —— . 22
at \K 12 Y t'4> (22)

The corners of the rectangle t = * ax * ibx correspond to the four points

i
tt = * re Y.

*This is a particular case of a transformation given by Jeffreys and Jeffrqysz.
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It can be shown that r is a function of a, b and x but y depends only on the
ratio a/b. We must find this dependence in order to work specific examples;
details are gziven in Appendix 2 and Fig.10. On the circle, let

t = re'®, oO0coc2m (23)
Then
%%7 = 2670 V(cosz 6 - cos° ) (2n.)
at | = 2vjcos? 6 - cos? y] (25)
at’
and
t = 2ir j”V(cosz o - cos® y) a8 . (26)

If we assume, as in section 2.1, that a and b are both O(c) where
g « 1 then ¢X/U is 0(62 log £) and we can obtain Vn from the boundary

condition that requires the component of velocity normal to the surface
to be zero, The top and bottom faces are inclined at an angle a to the
horizontal where tan a = b, and Vn on these faces has the same magnitude as

¢z but is directed away from the surface, To satisfy the boundary condition

on these faces we must have

(U + ¢x) sina = V_ cosa (27)
whence
2
VU o= b+o0(e”) .

Similarly on the side faces

o(s?) . (28)

i
o
+

vh/U

In the t'-plane, therefore, by (4) and (25),

VA/U = 2a \/'(cos2 0 - cos® v) + 0(82), 0<o6<gy
2 2 2
= 2b V(cos® y = cos” 8) + 0(e“), y <6 s n/2 (29)
and by symmetry
1 _ 1 - t -
vn(e) = vn( 8) = vn(n 8) . (30)
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We can now apply the result of Appendix 1 to give Vt as follows; since

Vg is an even function of © we use equation (39) which becomes

1 /= 2 gin 6 ! J(cosz Z - 008° w) a + 3 V(oosz Z - cos? v) az
r g = g M0 a cos Z = cos 6 a cos & ~ cos ©

0 Ry

Ty
2 2
+ b V{cos® y = cos™ &) .. 2
/ 505 ¥ — oos 0 4z + O(s ) , 0 <0 g 2x
Y
X 2 2 /2 > 2
_ 2 511126[ . j’ V(co; 7 - cog v) a4 b -f(co; N - coz z) ar
x cos & - cos @ cos Z -~ cos O
o Y
+ 0(82)}, 0O<eé<on . (31)

If the corresponding velocity in the t-plarme is Vt taken anti-clockwise around

the cross-section, we have by (4) and (25)

Y
sin 26 J(cosz 7 - 0032 Y)
VU = 2 ) & 2 2 o
]| cos® 8 -~ cos® y| cos” Z - cos” 6
)
/2
2 2
+ b Y{cos“ y = cos” %) ar
2 2
cos” Z - cos ©
Y
2
+ 0(e )}, 0O<Hsg2n . (32)

Equations (26) and (32) for t and the corresponding velocity Vv, involve

elliptic integrals, They can, with a little manipulation, be expressed in
terms of elliptic integrals of first and second kind. This is an important
step in evaluating specific examples, but the details have been confined

to Appendix 2,

The other component of velocity tangential to the surface, JS, is given

on the top and bottom faces by



<
"

(U + ¢x) cos a + V_sina

1}

(U + ¢x) sec a (33)

using the boundary condition (27) to eliminate v, .

Hence
VO = 1 o(e) (34)

an expression that holds true on the side faces as well,
3 RESULTS

To compare the bottom surface of a flat delta at incidence with any
one surface of a rectangular pyramid let us take new axes in the surface:
the origin at the apex, OE along the centre line and On perpendicular to it.
The components of velocity in these two directions are Vs and'Vt, derived in

section 2 by slender body theory. The form of the results confirms, of course,
that the flow is conical since V is constant and both Vt/U and 1n/E are

functions of a single variable 6., PFigs.3 and 4 show the variation of Vt/Ua

with n/Ea on the surface defined by 7 = * Za for different values of b/a.
At first sight there appears a marked similarity between the two sets of
curves but notice that among the pyramid curves only those for b/a > 1
resemble the delta family., This means that it is the two smaller faces of
a pyramid that correspond to the bottom surface of a delta.

For these results to be valid they must be consistent with the slender-
body assumptions which imply that VS/U =1 + 0(e) and Vt/U = 0(e) where
€ «<1. The condition on Vt is apparently violated near the leading edge
since Vt/Ua + o0 as 1 » Ea, both on the bottom surface of a delta and on the

smaller faces of a pyramid. Experimental evidence is known to show that
viscous flow cannot negotiate these corners without separating. The oil flow
patterns reproduced in Fig.b5 from Treadgold's photographs suggest the
separations sketched in Fig.6. To take proper account of this we should

have to introduce some model of the separated flow such as that devised by

K.W, Mangler and J.H.B. Smithj. This would alter appreciably the flow over
the faces on which the vortices lie but on the faces that we are comparing
our results should still be significant away from the leading edge. The
broken curves in Fig.3 that support this assertion are from unpublished
calculations by Smith,

An important part of the free-flight programme is an investigation of
the heating effects of the flow, Of particular interest are the heating
retes along the flow attachment lines., These lines are not easy to define
in general but if the flow is conical they must be straight lines through
the apex which form a parting from which the surface streamlines diverge.

In all our results the E~axis is Jjust such a line and of interest as a
line of symmetry, Fig.7 therefore takes each of the relevant curves from
Fig.hh and pairs it with that curve of the delta family which best fits it
near the origin. This relates each pyramid with b/a > 1 to a delta with
b/a 2 Oo}-{-ja



In general the flow is directed along a stra’<ht line through the
apex wherever

n/E (35)

Vt/vs
or, since VS/U = 1 + 0(e), wherever

v, /Ua n/Ea . (36)

1

Fig.3 and L confirm that this is always true along the centre line where
n= Vt = O and show that for limited ranges of b/a there is a second pair of

lines on both delta wing and pyramid where equation (36) is satisfied, and
from which the streamlines diverge. On a delta wing the range of b/a is

O <b/as<1; onapyramid it is 1 € b/a < 1.84. In each case the lines move
inwards from leading edge to centre line as b/a increases from one limit to
the other, TFig.8 shows a selection of results between these limits paired
according to the position of these attachment lines., Fig.9 shows how the
position varies with b/a. Unfortunately none of Treadgold's models allow us
to check the existence of these lines since for his values of b/a the theory
either predicts no attachment lines at all or places them too close to the
leading edge for the theory to be reliable.

Summarising - for a delta wing of given b/a, we can find a pyramid
which gives quite a good approximation to the flow in the vicinity of the
centre line whenever b/a is greater than about 0.43. For values of b/a less
than 1 there is another pair of attachment lines and we can find a pyramid
which exactly reproduces the position of these lines; but the smaller b/a
becomes the further the lines move from the centre line and the worse the
approximation becomes over the rest of the flow,

LIST OF SYMBOLS

a, b dimensions of models defined in Fig.2

E, F, K standard elliptic integrals (defined in Appendix 2)

£ dimension of models defined in Fig,2

r r, © - polar co-ordinates in the t'-plane

t =y + iz the t-plane is the transverse plane x = constant

tt = y' + iz' = rei6 the t'-plane is a transformation of the t-plane

U free stream velocity

Vn’ Vg velocitlies normal to the cross~section in t=- and
t'-planes

VS velocity tangential to the surface and normal to Vt

Vt, V% velocities tangential to the cross-section in t- and
t'-planes

Vy velocity in the y-direction
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APPENDIX 1

THE TANGENTIAL VELOCITY ASSOCIATED WITH A GIVEN
RADIAL VELOCITY DISTRIBUTION AROUND A CIRCLE

The solution of Laplace's equation in two dimensions which produces a
given radial velocity around a circle can be constructed by distributing
elementary sources around the circumference and at the centre*.

A source of strength m at the centre of a circle of radius r produces
a radial velocity m/r at the circumference. A source distribution of
2n

intensity q(6), where [ q(8) @ = 0, arcund the circle produces a radial

O
velocity = q(8) at the circumference. A radial velocity vn(e) can therefore

be produced by a source distribution of intensity'% (vn(e) - Vﬁ) where

27
Vn = %E vn(e) d0, around the circle and a source c¢f strength rVn at the
o
centre.

The potential at the circumference is

2%
¢(rel6) = rvn log r + j’ % (Vn(é) - Vn) rdZ log 2r[sin-§§§l . (31
0

The corresponding tangential velocity is therefore

16 2% 7 2%
1ap(xe™) | 4 8% 4, , B -4
r 96 T2 Vn(é) cot 2 & + ox /. cot 2 dz
o 0
27
oA , 8-%
= 5= vn(g) cot =52 a7 . (38)
o}

If V, is an even function of 8 so that vn(e) = vn(-e) then equation (38)
reduces to

i0 sin & V_(%)
1 od(re 22 n
T R} T om jﬂ cos & - cos B dz (39)

0
and if V_ is an 0dd function of 6 so that Vn(e) = -vn(-e) then it reduces to

. 7‘ .
D a4 [ 2T

90 o c0s & ~ co8 6
o

*This technique appears in a paper by J. Weberd who attributes it to A. Betz,
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APPENDIX 2

EVALUATION OF CERTAIN ELLIPFTIC INTEGRALS IN TERMS
OF THE FUNCTIONS E(¢,k) and F(¢,k)

Since notations vary so much from book to book we shall first define
the elliptic integrals that appear in this Appendix. They are: the elliptic
integral of the first kind

Fp,k) = f\/%k =, Kk) = P(rn/2,k);

sin ¢

the elliptic integral of the second kind

E(p,k) = [ \/1”1{2 sin2¢d¢>, E(k) = E(x/2,k);

and the complete elliptic integral of the third kind

/2

H(G‘z’k) E 2 2 d¢ .
(1-0" sin“ ¢) V1-x% sin® ¢

(o)

Also appearing are K(k)Z(¢,k) and.Ao(¢,k)which are defined as they arise.
A1l relations quoted here can be found in the introduction ta Ref.6.

! Evaluation of equation (26)

t = 2ir f w/(cos2 5 - cos? ) @ .

When O < 6 < v we substitute ¢ for 0 where sin ¢ = sin 8/sin y and write
sin y¥ = k so that

£(6) - £(0)

9]
r jeJQcosg 6 - cos’ y) o

2 0052 ¢

vi=k~ s8in

2ir

i

2ir {E(g,k) - (1-k%) F(g,k)} .

i

-13 -



Appendix 2

When y € 6 € =/2 we substitute ¢' for & where sin ¢' = cos 6/occs y and write
cos ¥ = k' so that

t(0) - t(n/2)

i

/2
2r J&cosz y - cos? 8) ae
6

]
N
s
k\
v
1 -
(@]
o]
w
-

or {E($', k') - (1-k'?) F(p', k)] .

tf

In particular, when & = ¥y we deduce

1

ax/2r E(k!) - 1 K(k')

bx/or = B(k) -~ k'° K(k) .

The ratio a/b is therefore a function of y only and, given this ratio, r is
directly proportional to ax and bx which are the dlmen31ons of the cross-
section at x. Fig.10 shows the relation between a/b and y.

2 Evaluation of equation (32)

VY = sin 26 j’ Vféos Z ~ cos® ) 4
JU = :

m/lcos2 6 - 0032 vl é - cos® ©

o]

/2

2 2,

. D VQGO; vy - co; z) . 0(82)}.
cos & - cos ©

Y

Of these two integrals, the first is singular when O < 6 < y and the second
when y € 6 < n/2. In the first integral we substitute E for Z where
sin € = sin Z/sin y and write sin y = k, sin y/sin 7 = g so that

é - 0032 5} 1—a2 sin2 g

/' J[éos Z = o032 v) i = a2 cos® g 4

1-k° sin® £

K(k) - (1-a®) T (a%,k) .

-1 -



Appendix 2

IfF0 € 6 <y thena> 1 and

2
(1= 1 (a®K) = @2':{2 K(k) 2 (¢,K)

_ J&cosz

0 - cos® )
sin 6 cos 9 [k(k) E(¢,k) - E(k) F(¢,k)]
where
sing = 1/a = sin8/siny .
But if y € & € ®/2 then k € a € 1 and
p) 2 1% 7
(1-a) 1 (o k) = a oz.2-1«'2 EAO (¢',k)

Jicosz ¥ - 00324§)

sin ¢ cos ©

[E(x) F(¢',k*) + K(k) E(p',k'")

- (k) F(¢",k")]

where

sin ¢! = é- k. - cos 8/cos ¥ .

In the second integral we substitute E for £ where sin £ = cos Z/o0s y and
write cos y = k', cos y/cos 0 = a' so that

/2 /2
j'VQcosz N - 0032 z) = ]’ a'z oos2 £ dg

00s° 4 - ces® at? sin® £ - 1 V1-k'® sin” €
Y o

(1-a'®) T (a'2,k") - K(x') .

If 0< B <y then k' €£a' <1 and

- 15 -



Appendix 2

(1=a'?) T (a'?,x")

1

a! _....1_'.".9.'_.'_.2._..7.":1&(95 k')
a'2~k'2 2 To?

= Hoos® b - o0s? ) [E(x') P(¢,k) + K(k') E(4,k)

sin 6 cos ©

- K(k') F(¢,k)]
where

12_112
sin¢ = 17 9;——53— = sin 8/siny .

o 1ak!

But if vy € 8 € ®/2 then a' 21 and

n
Q

12_4
250 (k') 2(g" k')
2 k

(1-a'?) 1 (a'?,k')

\/002:’{-— o} 8 k(1 Et k EB(k E‘¢ k
( s?.n e COZ g ) [ ( ') ( ', ') ( ') ( " ')]
where

sin ¢' = 1/a' = cos 8/cos ¥ .

Collecting these results together we have when 0 € 0 < vy

- a - bE(k" )] | ———ee sin 20 —-E X
T L) - we)] | - SO

+% [aE(k) + bE(k') - BK(k')] F(¢,k)
and when v € 6 € /2
' 0 2 9l k!
V= [eK() - bK(x)] [:wﬁa:l:.fm - £ 5(pt )

_;‘2- [aE(k) + bE(k') - ak(k)] F(¢',k') .

WP, 2078.CoP.637.43 ~ Printed in ingland = 16 =
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Slender=bhody theory 1s used to compare the flow Over the hottom Slender=bhody theory is used to comparc the flow over the bottom

surface of a flat delta wing at incidence and the delta~like surfaces of a surface of a flat delta wing at incidence ond the delta~like surfaces of a
pyramid of rectangular section, intercst being focussed On the centre line pyramid of rectangular section, intercest being focussed on the centre line
ond on the flow attachment lines vhecre they exist. Pyramids are found which and on the flow attachment lines where they exist. Pyramids are found which
reproduce closely the flow in the neighbourhood of the delta centre line. reproduce closely the flow in the neighbourhood of the delta centre line,
Othe pyramids are found which have the some position of the attachment Other pyramids are found which have the same position of the attachment
lines as o delta wing, the approximation to the fldw being good when the lines as a delta wing, the approximation to the flow being good when the

attachment lines arc near the centre line but deteriorating as they move attachment lines are near the centre line but deteriorating os they move
outboard, vuthoard.
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THEORETICAL COMPARISON OF THE FLOW OVER A FLAT DELTA WING
AND A RECTANGULaR PYIUMID, Eminton, E.  November, 1961.

Slender—=hody thecry is used te¢ compare the flow Over the hottom
surface of o flat delta wing at incidence and the delta~like surfaces of a
pyranid of rectengular sectiun, interest being focusced on the centre line
and on the flew attachment lincs where they exist. Pyramids cre found which
reprotuce clcesely the fl.w in the neighbourhcod of the delta centre line,
Other pyrawids are found vhich have the some pogition of the attachment
lines as 2 Jelta varng, the approximation te the flow being good when the
attachment lines are neor the centre line but detoriorating as they move
;outbuard.
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