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SUMMARY

A study has been made of electron-ion recombination in the
flow of a partially ionised Argon plasmsa through wind-tunnel nozzles.
Effects of thermal conduction, convection and two-body recombination
processes are neglected, but the temperatures of the ions and electrons
are allowed to differ. The equations have been integrated for a variety
of stagnation conditions and it has been shown that, for the cases
considered, the flow is far removed from thermal equilibrium,
Furthermore, as a result of this effect alone, large differences between
the temperatures of the heavy particles and the electrons are predicted.
The phenomenon of "sudden freezing" characteristic of atomic recombination
is not encountered, because of the exponential temperature dependence of
the recombination rate which results from the assumed ionic recombination
mechanism,
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1 Introduction

This paper is a further step in the study of electron-ion
recombination in the flow of partially ionised argon through wind-tunnel
nozzles. A preliminary study was made by the authors1 by determining
the flow for the two limiting cases in which recombination is either
completely frozen or in complete equilibrium, and it is not intended to go
into any detail here concerning these results. The main aim of these
studies is to obtain a theory which will predict with reasonable accuracy
the magnitude of the flow variables for an initially ionised gas at any
station in a supersonic nozzle of specified shape. It is not suggested
that the results given in this paper represent the completion of these
studies; rather, they are an intermediate step between the simple
equilibrium and frozen flow cases and more accurate calculations.

The mathematical model used in this intermediate analysis was
constructed by making the following basic assumptions:

(1) The flow is one-dimensional, steady and inviscid - a close
approximation to this flow may be obtained in the central core of the
gas, if the nozzle wall boundary layer does not fill the nozzle
completely, and if the rate of change of effective cross-—sectional area
is small.

(ii) Magneto-fluid~-dynamical effects may be neglected - this implied
that at any given station in the nozzle there will be a homogeneous’
electrically neutral mixture of heavy particles (atoms and ions) and
electrons, a condition which is not met if electron diffusion occurs.
However this diffusion is strongly resisted by the resulting change
Separationz. Furthermore, it is found in practice that the plasma
potential can have widely different values between the arc chamber and
the nozzle exit of a plasma-jet wind tumnel, a situation which can give
rise to a large drift current, that is, to a flow of the electrons relative
to the heavier particles. All currents and body forces on the gas are
neglected in the present work.

(1ii) Ionisation resulting from the electric field in the arc chamber
is also neglected, and it is assumed that the expansion of the hot gases
takes place from a large reservoir in which equilibrium conditions
prevail.

(iv) Ionisation and recombination on the walls of the nozzle are
not considered, as these are boundary-layer phenomena, and outside the
scope of this work.

(v) Conductive, radiative and convective heat transfer are
neglected - this again is an assumption which may not be Jjustified in
practice; conduction in particular may have a very marked effect on
the flOW3 .

(vi) In general the temperatures of the heavy particles and the 3,0
electrons will not be equal - a phenomenon observed by several workers”’
which is attributed to the fact that atoms and electrons are effectively
isolated energetically. In the present work the electron temperature is
determined from an energy balance for the electrons. Following Ref.l,
this considers only the effects of elastic and inelastic collisions
between electrons and ions, effects of conduction and convection within
the electron gas are neglected. The magnitude of these neglected terms
requires further study. Recombination by radiative capture of an electron
is assumed to be a slow process compared with the three-body process

involving an ion and two electrons - a condition which cannot be met if +the
density is very low.
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It is recognised by the authors that many factors, which may
or may not be important, have been neglected. The reason for these
omissions lies in the mathematical complexity of the problem, the aim
of this paper is to suggest a crude but workable mathematical model
which may be extended in the future. The next stage in this work will
be to determine which factors may Jjustifiably be neglected and which
must be included, but this is outside the scope of the present paper.

In Section 2 the basic thermodynamic relationship for the
ideal ionising monatomic gas are derived, the results being given in
terms of dimensionless quantities following the procedure suggested by
the authors in Ref.1. Section 3 deals with the gquasi-~one-dimensional
flow equations which are present in a form suitable for integration
numerically by a Runge-Kutta process. Section 4 deals with the
computational procedure and includes a discussion of the results of the
integration.

2. The Ideal Monatomic JTonising Gas

The theory of the ideal monatgmic ionising gas in equilibrium
has been formulated in several papers1’ s7 and it will be sufficient
merely to quote the results here. The equations governing the
thermodynamic behaviour of the ideal monatomic ionising gas in equilibrium
are:

P = pT(1 + a) ...(1)
i = 271 +a) +a eee(2)
u = 271 +a) +a eee(3)
i = -i Tg /T, eooll)
1 -a p

These equations have been non-dimensionalised by a technique
similar to that employed by Lighthill for the ideal dissociating gas8.
A more detailed account of the method is given in a previous paper by the
authorsl. The values of the characteristic temperature, density, pressure,
internal energy and velocity which have been used as units are given for
argon in Table 1.

Electronic excitation and multiple ionisation are neglected.
Unfortunately, when this theory is extended to the case where
equilibrium is not achieved these equations are not adequate. In their
derivation it has been assumed that the atom, ion and electron
temperatures are all equal, and in general this assumption is not valid
in regions where thermal equilibrium is not attained. The remainder
of this section will therefore be devoted to a detailed derivation of
the equaticns governing the thermodynamic behaviour of the ideal
ionising monatomic gas away from equilibrium.

Table 1/
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Table 1

Characteristic quantities

Quantity Tnits Values for Argon Dnits Values for Argon
1b dynes ‘3
p! _ 1.1976 x 10** 5.7362 x 10
1 £t2 cm®
! °K 1.8210 x 10° °K 1.8210 x 10°
slugs egm
p! 2.9326 x 10° — 145.9
+ £t3 cc
1 1
n} —_— 6.4538 x 1028 — 2.2791 x 104
££° ce
% cm
v! S 2.0208 x 104 —_— 6.159% x 10°
sSec sec
£+ 1b erg
i 4..0836 x 10° — 3,92990 x 10!
slugs gmn
slugs gn
v — 5.9262 x 10° _— 8.9859 x 107
12 sec cm? sec

It will be assumed throughout the following analysis that the
temperatures of the heavy particles (i.e., atoms and ions) are equal at
all times but may be different from the electron temperature, The
existence of the different temperatures in the atom-ion and electron
gases implies that different maxwellian velocity distributions exist in
these component gases. This concept is amply Jjustified in the literature.
(See for example Refs.k,5.)

The general expression for the equation of state for a mixture
of gases as derived from statistical mechanics is:

L tmt tmt tme
pIvt = k(naT +niTt + neTe) ees(5)

where V is the volume of the gas under consideration.

But nl = né since the gas is electrically neutral
tyr t t\mte tmt’
hence ptv k[(na + ne)T + n!T! ]

also the total mass involved in the system is given by:

prvt/
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Wy = p? ' 'm = (n' +n')m + n'm
Pty By * BB * Rele (a+ e)a ee

if m =m >> 1
a + e

p! k
then — = — (7 + aTé).
P! o

If this equation is written in a dimensionless form similar
to equation (1) we obtain:

P = p(T + aTe). o..(6)

The equation relating enthalpy and temperature may be obtained
in a similar manner. In general:

+

o S/ . ~(e, - x)/kT*
Le e Z‘.(en + x)e

E' = n! + nt

a +

~eo /KTt (e} - x)/kT*
e Ze

Z

e
; See_en/kTé
+ ! 2 eeel(7)

€
t
ey

z

which may be reduced to:

E' = [(n! + né)T’ + néTé]k + nly
so that
e = 5(T+ aTe) + ees(8)
and
i = (74 aTe) + o eee(9)

There are two further equations required to completely
specify the thermodynamic quantities, namely an equation giving the
rate of production or recombination of electrons, and an equation relating
the two temperatures. 1In a previous paper by the authors! a method was
outlined by which an approximate rate equation could be obtained by
combining equations derived by Petschek and Byronk and Bond?. A slightly
modified and simplified form of this equation has been used in this
analysis; it is given by:

da
— =T, =T
at i T
where
s, T -1 /1)
r, = Apa(1 -a)Tg<—+2>e ‘
T
e
ees(10)
T 1/ -T ?
T = Bp2a3< X+2>e e o x/‘Te
e
-




-6 =

A = B = 3.3)4.9)( 1016(830)—1

Tl
X
T = — 2 O. .
- - 7359
e

This equation assumes that ionisation and recombination occur
only through the reaction:

A+e2at 4 2e.

It has the same form as the rate equation derived in Ref.q but
two further simplifications have been incorporated. The production and
recombination rate coefficients have been assumed to depend on gx only,

whereas in fact they may also depend on T +to an unknown extent. A
similar assumption was made by Bond?. Also, the radiative recombination
process discussed in Ref.1 has been completely neglected. Equation (10)
is probably a gross over—simplification of the true ionisation and
recombination process. However it is hoped that some of the main
features of the full rate equation are retained.

The remaining equation relating the two temperatures may be
obtained by considering the conservation of energy for electrons. In
general heat is transferred to the electron gas by radiation and by
conduction ana convection within the electron gas, furthermore electrons
exchange ensrgy by elastic collisions with heavy particles and lose
energy by inelastic collisions which lead to ionisation. However if
all these factors are included a second order, second degree differential
equation is obtained which makes the solution of the problem very
difficult. It has therefore been assumed throughout this paper that
convective, conductive and radiative heat transfer terms have negligible
effects. No attempt will be made here to justify these assumptions since
any one of the terms omitted or all of them may have a considerable effect
on the flow; these assumptions represent a certain mathematical model
which should be regarded as a tentative step towards a more complete
solution.

With these assumptions the equation of conservation of energy
for electrons may be written QEL = QIN where QEL is the rate at
which electrons gain energy by Coulomb collisions and QIN is the rate

at which electrons lose energy by ionisation. From Ref.) and equation (10)
we have:

-2 pT?
2
Q, = (Constant)p"’aa'ﬂe (T - Te)&n < _E>
pa
s , T ~T -3 1/T_ -
Oy = ¢ (Constant)(1 + %Te)'rga < -11-"-‘ + 2>e "/Te[u - a) - pa’T2e eJ
e
3 T -T Te 3 1/T
and hence (Constant)(1 + ETe)T; < X+ 2 >e [(1 -a) - paz'.l'; e e:l
T
T = T +
e
DT?
afn < ——e> 000(11)
pa
or
T =

T, + ¢(Te,p,a).
Nom/
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Now ¢(Te,p,a) is positive when T, > I, and negative when T, < T,
when T, = T_ ¢(Te,p,a) = O, Physically this implies that:

(a) when the gas is in equilibrium the two temperatures will
be equal,

(b) when the nett reaction rate produces ionisation T > T , this,
occurs behind a strong shock wave, for example (Refel),

(¢c) when the nett reaction rate produces a recombining flow
T < Te’ which is the case encountered in a supersonic nozzle.

Using equation (11), the atom temperature has been plotted
against the electron temperature for various densities and ionisation
fractions, and the results are presented in Figs.]-=l.

The four equations (6), (9), (10) and (11) completely specify
the thermodynamic behaviour of the ideal ionising monatomic gas away from
equilibrium within the initial assumptions.,

3. Quasi-One=Dimensional Flow Equations

The frictionless adiabatic flow of an ideal ionising monatomic
gas through a duct of slowly varying cross—sectional area A is
deseribed by the equations of conservation of mass, momentum and energy:

PVA = p*v* = lll 000(12)
dv 1 dp

V— 4+ —— = 0 000(13)
& p&E
i+3v? = i eoe (L)

in which asterisks denote conditions at a sonic throat, £ is a
dimensionless distance defined below, and A is the area ratio A'/A*!,

The expression specifying the nozzle shape will be the same as
that suggested in the previous paper by the authors:

A' = AM 4+ KZ (x*)?

where x' 1is the axial distance measured from the throat as datum, and
KN is a constant determining the expansion angle,

E the dimensionless distance is defined by:
!
E = —
VEFT
so that the nozzle shape becomes:

A 1 +E2. oac(15)

I

Equations/
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Equations (12) = (15) together with the thermodynamic
relationships, equations (6), (9), (10), (11) and a knowledge of the mass
flow 1V, and the initial conditions specify the flow.

These equations must now be solyed to obtain the flow
variables downstream of the throat and this is most easily achieved by
reducing them to six simultaneous differential equations in
Py Py T, Te, @ and i with E as independent variables. These may

then be integrated by a numerical technique.

Equation (10) may be written:

da pa T ~T -2 q/r

—_ = % —T§<—3-[+ 2) e x/Tel:(1 - a) —pa’T:e e:| eee(16) -
T
e

dg v
A mA*!
where & = — is the dimensionless rate parameter analagous
Ky X

to that used by Bray? for the case of the ideal dissociating gas.
Combination of equations (6) and (9) yields:
5 dp ap di da
-— = (i-a)—+p—=-p—

2 d&& dg cg ag

and eliminating dp/d and di/dE with the aid of equations
(12) = (15) we obtain:

2[R o] o

dp 1 dp 2pE

—— = eme  mm— 000(18)
ag v? dg 1+ E®
di 1 dp
_ = -, eee(19)
ag p dg
Finally equation (11) may be differentiated yielding:
dTe aT dp da
F1—+F2——+F3—+F4—=o 000(20)
g dag ag ag
where
-T -2 /T T T
F, = Ae JL/‘rel:(’l -a) - pa"l‘:e e][('I +§Te) <_x_+ Z)T: (_’E.,. 3>
T T
e e

3,0°T T - 1
-1+ gTe)TxTe + —<—J-c- + 2>T;:|+ Apcxz(-f + 2)(1 +3T )QT 1/e e x/Tee /Ie
2\ T T ¢ ©

DT; 3q
+a&n<-—-> -—(T=-1)
pa T, e
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3 -T 1/'1' &
F3=-A(1+§Te)(—’ﬁ+2)mﬂe"/Te ea“-—(T-Te)
o p
T -T -2 1/r - DT
F, = A(1+27 )(Jﬁ+2> ™ o "/T°<1+2pa1'”e e)+(T-T) 6n<-—9.>-1:|
2 e e e e
T _ pe
e
and
aT F, -1~ F 1r—dp da dp
A T e L I
dE F, F, pL ag dg dg
ar ~F, F
—— = ——+-—'Té] 000(22)
dE _F, F,
where a da
FS = Fa "“'+F4_"o
dg dE

Equations (16), (17), (18), (19), (21) and (22) together represent a
system of six equations with seven unknowns, and before attempting a
solution the velocity must be eliminated in terms of the mass flow (¥)
which may then be treated as a boundary condition, The remsinder of
this section will be devoted to a short discussion of the two Mach
numbers which may be defined for the flow.

It may be shown from the continuity and momentum equations
that:

dp dp/dE . . 2 pvE

— = = =

dp  dp/a (et )ap/aE

This equation shows that the flow velecity is that of sound
at the throat, unless dp/d§ = O,

veo(23)

Furthermore if equations (17) and (18) are combined it may be
shown that:

v 2 pvE
HQ 1 —— = 1 -
a a® (1 + &%) dp/aE

and hence irrespective of the mass flow la = 1 when § = 0 at the

throat unless dp/d§ = O, This is an important result far the
computational procedure that follows., Finally, if the speed of sound
is written in terms of the two temperatures we have:

eee(2)

5 2 p da
= C(ea)--——. 2 NED
3 3 dp/aE  aE

and if we define a frozen speed of sound (Ref.4) as

Note: The quantity a defined in equation (23) is not & true mpeed of
sound in a non-equilibrium gas.
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then 2 da/dE
a® = ¢® --p . ... (27)
3 dp/dE
A frozen Mach number being defined as
M, = v/c.
Now if the flow is supersonic, dp/dE will always be negative and
da/dE will be negative or zero. Therefore:
c za
and
M <X
c a
also equation (17):
dp (1-a) 3 -1 da 2E
A R
dg v? 2 dag 1....52
i-a 3
which has a singularity at a point where = - i,e,, when
\& 2
v2 = 2%(i-a) = ¢®. This singular point will therefore occur when
M = 1, that is, downstream of the throat. At the singularity point
dp
we must have either — -» o or
dg

) (1 +8) aa

2(i - a) @&

Clearly, it is the latter condition which represents the physical flow,

Difficulty is experienced in performing the step-by-step
integration through this point, and it is therefore useful to campute
Mc at intervals during the calculations,

4, Computational Procedure

It was decided to integrate the set of equatians (16) = (19),
(21) and (22) numerically on a Ferranti Pegasus high-speed digital
computer using the Runge-Kutta process due to C. ?tratchey which is
particularly suitable for high-speed computation1 .

There are two difficulties which must be surmounted before the
equations may be integrated, these are:

(a) Starting the integration.

(b) Determining the mass flow (¥).
It was decided to commence the integration at & = =- oo, i.e., in the
stagnation region upstream of the throat. To obtain the stagnation

conditions it was assumed that the gas started in equilibrium
(when T = Te), and then by specifying any two variables the remaining

four may be calculated.

Unfortunately,/
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Unfortunately, in the stagnation region all the derivatives
vanish, and the integration was therefore started by constructing an
asymptotic series solution for the flow variables at large area ratios
upstream of the throat by expansion about the stagnation conditions at
E = =oo, This was the method employed by Hgll and Russo!2 and a
detailed discussion of the technique is included in their paper,

The expansion was carried ocut for the hyperbolic axisymmetric
nozzle specified by:

A = 1+&?

in terms of the expansion varisable Z = A‘% assuming that the gas
remgined in equilibrium,

The leading terms in the series were found to be:

!
1}

]
ao+aaz
T = 7T -G-TZ2

[+] 2

P = pot %

-]
i

2
pO + PSZ

i = i°+1329

v = v°+viz = v,Z
where

v, = ¥p,

P, = - 35¥/p)

e
H

. = - %(*/Po)’
vr (2 - ao)(‘l + aa)'ro + a°(1 - “o)“ + §'r°)]

5(1 + a )(2 - a)
92(1 - a:) ao(ﬂo + 2)(1 +§T°) + ° 9 ™ + 2«01‘0:]

(1-«0)
1 ¥\
ST +§To)[<;:> * 5 +a°)T’:]

= ‘—[uum)"‘]*”[;(??:ﬁ“]

The series shows only a very slow departure from stagnation
conditions, and at an area ratio of 10 (§ = - 3,0) the variables
have changed by less than 1% of their initial values.

R
i

-]
]

Having established a suitable starting series, the next stage
in the integration is to determine the mass flow yielding supersonic
flow downstream of the throat, It will be remembered from the

previous/
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previous section that the velocity was eliminated from the equations to
be integrated, in favour of the mass flow, The reason for this
substitution is that the mass flow is known to lie between quite narrow
limits, i.e., those for equilibrium and frozen flow, There is no
straightforward analytical method of obtaining the mass flow and hence
a method of trial and error was adopted. A value for the mass flow
was chosen, and then the integration was carried out from - o to0 the
throat, when various parameters were investigated., It was shown in
the previous section that the actual Mach number (Ma) will be equal to

unity at the throat regardless of the value of the mass flow, unless
dp/3E = O, nevertheless this is a fairly sensitive parameter. If
the mass flow chosen is too large then the Mach number reaches unity
before the throat is reached, Hence by starting with the largest mass
flow (i.e., the frozen mass flow), and then decreasing it gradually a
value is reached when the Mach number increases smoothly from zero at
X, = =o tounity at the throat. If on integrating downstream of

i
the throat supersonic flow was obtained then it was assumed that the
correct mass flow had been determined.

This is a very crude method for finding the correct mass
flow, and it is further hindered by the location of a singularity at a
point slightly downstream of the throat, Fortunately, it was found
that the solution downstream of the throat was not sensitive to the mass
flow and an accuracy of three or four significant figures was found to
be sufficient; small perturbations of the chosen value were found to
induce negligible errors in the solution,

The final difficulty which had to be surmounted was the
integration through the critical point where Mc = 1, In order to

determine the region of influence of the singularity the computer
programme was designed to give the value of dp/dE at discrete values
upstream of the throat, It was found that d°p/dE® underwent a sharp
change as the region of influence of the singularity was entered, and
the integration was curtailed at this point. The procedure from here
varied slightly depending on the condition of the flow, If the flow
was frozen or near frozen considerable difficulty was encountered but
plotting &n(p) or p and '1‘e against a yielded straight lines

which facilitated extrapolation. PFor equilibrium or near equilibrium
flow it was found that & graph of aTe againgt &n(p) was a straight

line, and then by plotting a and Te against &n(p) two further

crude extrapolations could be made and the mean of the resulting values
taken, These extrapolation techniques were used to estimate values of
all the dependent variables at a point downstream of the critical
point, which were used as initial values for a step-by-step integration
in the supersonic flow region, It is not suggested that this is the
best method for getting through the singularity, but an empirical
justification was obtained by perturbing the extrapolated values, and
noting that only small errors were introduced into the downstream
solution,

5.  Results

In Figs.1 - 4 the variation of atom temperature (T) with the
electron temperature (T ) is shown for various ranges of ionisation

fractions (a) and densities {p), as described by equation (11). In
all cases the graphs may be divided into two halves about the line

T o= T (equilibrium condition), Points above this line (T > Te)
represent states in which the ionisation level will increase with time,
while points below the line (T < T ) represent states in which
recombination will occur. ©

1t/
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It may be seen from Figs.1 and 2 that the density dependence
is relatively unimportant in the ionising region, large variations in
density showing only small changes in temperatures, In the recombining
region however changes in density are important, producing large swings
in the temperature,

Figs.3 and 4 show the effect of the ionisation fraction on
the temperature relationship, The ionising regions of these graphs
have the same form as those formulated by Petschek and Byron#; there is
a slight shift towards the equilibrium line (T = Te) due to the

inclusion of the recombining terms in this work, FPor low denaities in
the recombining region variations in a are of little importance.
There is a wide range of conditions at low density for which T g‘Te.

Figs.5 - 30 describe the flow conditions downstream of the
sonic throat in a near conical nozzle. The equations describing the
flow have been solved for a number of stagnation conditions and the
results will be described below. TFigs,5 - 11 have been cbtained for
stagnation conditions of & = 4.0 x 10'° and P, = 1078, T, = 0.09,

Fig.11 shows that the ionisation fraction (a) changes only slowly through
the nozzle, and hence the flow is tending towards a frozen region where

@ = constant with distance. Conditions are in fact, far removed from
equilibrium but the sudden freezing phenomena so characteristic of
dissociation in nozzles!, is not encountered in ionisation., This
statement has been verified for a wide range of conditions and may be
attributed to the different form of the rate equation which has evolved,

Fig,B8 shows the variation of the two temperatures with
distance through the nozzle, and it is found in regions where thermal
equilibrium does not prevail, that the electron temperature falls less
rapidly than the temperature of the heavy particles, Consequently at
large area ratios the two temperatures differ by large amounts, For
example at an area ratio of 1000 (Fig,5) the difference (Te -T) = 0,01

on a non-dimensional scale; this represents a temperature difference
of approximately 1800°K, Large differences between atom and electron

temperatures have in fact been measured in plasma-jet wind tunnels3.

The remaining graphs describe the other flow variables in the
nozzle and it may te seen that they lie between the two limiting
solutions of equilibrium and frozen flow as is to be expected.

Figs,12 - 18 show the effect of reducing the stagnation
temperatures, a value of 0,06 being chosen in this case. The ionisation
fraction (a) is found to be small at all times (Fig.18) although still
not completely frozen, However the other variables are closer to the
frozen solutions in this case, and for a given area ratio (A) the difference
between the two temperatures is increased. The temperature of the heavy
particles is close to its limiting value (zero) at an area ratio of about
1000, and at this point the electron temperature is falling only slowly,
and is in fact tending to "freeze out",

In Figs,19 - 25 the stagnation pressure has been reduced to
10"° and the stagnation temperature maintained at 0,09. These figures
must be compared with Figs.5 - 11.

The flow conditions are seen to be very close to the frozen
conditions in this case, and again the graph of the ionisation fraction
against distance shows only very small changes., The complete "freeze"

is/
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is not accomplished even now however, and & falls gradually fram 0.99
to 0,90 at an area ratio of 1000. The atom temperature (Fig,19) lies
very close to the frozen value and has almost attained its limiting
value at an area ratio of 1000, where the diffeerence between the two
temperatures is approximately 2700°K (0.015 on a dimensionless scale).

The remaining curves (Figs.26 - 32) show the effect produced
on the flow condition by varying the rate parameter, &,  The first
three solutions described above were all obtained for a value of .
® = 4 x 10'°, whereas this final solution employs a value of & = 10'3,
It is to be noted that if one assumes the rate constant (A of equation (10))
to have a fixed value then variations in & correspond to variations in
the nozzle geometry; this is demonstrated in Fig.}}, where the rate
parameter is plotted against throat diameter for varlous expansion angles,
It may readily be seen from these curves that if the value assumed for A
is correct, then & = 10'® has no physical signifibtance for nozzles of
feasible prOportlons. However it has been found that under a wide range
of starting conditions the flow is not in equilibrium (& = o) and tends
towards the frozen solution (8 = 0); it was therefore decided to try to
obtain a solution which remained near equilibrium at least to some point
downstream of the sonic throat., Also, as mentioned in Section 2, the
value assvmed for the rate constant A may be in error by orders of
magnitude., The present set of calculations shows the effect of such an
error on the results.

Fig.32 shows that the ionisation fraction falls quite rapidly
down the nozzle, but begins to depart appreciably from the true
equilibrium solution at an area ratio of about 1.02, The temperature
variations (Fig,26) produce an interesting result since the temperature
gradients are larger than for equilibrium but the two temperatures
remain approximately equal, This perhaps could have been predicted
from Fig.1. If the effect of variations in a 1is assumed to be
unimportant in the recombining region of this curve, then it is clearly
possible for the two temperatures to remain close to one another, as the
density decreases, under certain favourable conditions,

The velocity curve (Fig.27) is particularly interesting,
since it is known that conditions substantially depart from equilibrium
at an area ratio of 1,02, but the velocity remains at the equilibrium
value to an area ratio of about 20, This may be attributed to the
form of the governing equations, Since v = f(i - i) it follows

that the enthalpy also must be close to the equlllbrlum solution for
area ratios less than 20, It may be seen from equation (9) that the
enthalpy can remain at the equilibrium value provided «, T and T

vary suitably, 1In the present case the temperatures are falling more
rapidly than at equilibrium, but the ionisation fraction maintains a
high level, The enthalpy is therefore subject to two opposing effects
and happens to remain at the equilibrium value for some distance
downstream of the throat. This phenomenon also occurs during atomic
recombination in nozzles as noted by Hall and Russol?,

6., Comments and Conclusions

In conclusion it may be stated that, in the absence of
conduction and convection, the atom and ion temperatures may differ
considerably from the electron temperature under a wide range of
stagnation conditions., This difference in temperatures is predicted
entirely from the effects of lack of thermal equilibrium in the nozzle.
It is thought that the equations employed show the correct trends in

the/
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the flow conditions, but perhaps overestimate the difference in
temperatures, which most probably result from a combination of conduction,
convection and non-equilibrium effects. Further work is in progress to
study the effects of conduction and convection, and also to allow for a

two-body recombination process.

It has also been found that reducing the stagnation pressure and
temperature tends to remove the solution from the limiting case of thermal

equilibrium,

These results are in qualitative agreement with the empirical
freezing criterion suggested in Ref,1., However, freezing does not occur
nearly as suddenly as in the case of atomic recombination, because of the
exponential temperature dependence of the assumed recombination rate,
which leads to the prediction of very high rates of recombination at low

electron temperatures.

List of Symbols

A area ratio
A area of nozzle at a given station
L]
A* area of nozzle at sonic throat
c! frozen veloecity of sound
Cp specific heat at constant pressure
Cv specific heat at constant volume
et specific internal energy
e; radiated energy

h Plank's constant = L4.,868 x 10734

it specific enthalpy

k Boltzmann's constant = 1,019 x 10722
M Mach number
Mc frozen Mach number

m mass of an atom

m, mass of an electron
m mass of an ion

n' overall number density

né number density of atoms

né number density of electrons
nl number density of ions

(@imensionless)
(£*)

(£t*)

(£t/sec)

(s1ugs® /ft% sec® )
(slugs/ftd sec?)

(ft 1b/slugs)

(£t 1b/slugs)

(£t 1b/sec)

(£t 1b/slugs)
(£t 1b/°K mol)
(dimensionless)

(dimensionless)

(slugs)
(slugs)

(slugs)

(££7°)
(££7°)

(££72)
(££72)

p'/



1
exce
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pressure

ri/da/dt
rate of ionisation
rate of recombination

specific entropy
plasma or atom temperature

electron temperature
first electronic excitation potential

velocity
distance measured from throat as datum

ionisation fraction = n/n_ +n
e’ e a
ratio of specific heats = CP/Cv

dimensionless distance measured from the
throat as datum

density

ionisation potential

ionisation quantities

stagnation quantities

electron quantities

equilibrium quantities

primes denote dimensional quantities

superfix * denotes throat conditions

(1b/ft?)

(dimensionless)
(sec™®)
(sec™?)

(£t 1b/°k)
(°x)

(°x)

(°k)
(£t/sec)
(ft)

(dimensionless)

(dimensionless)

(slugs/fta)

(£t 1b)
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