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and their assumptions and results are discussed in relation to the 
,available experimental evidence. A method of calculating the develolsnent 
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the usual assumption of small disturbances due to boundary-layer growth is 
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constrictive effect of the boundary layer, these effects being more 
marked for a turbulent boundary layer than for a laminar boundary layer. 
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The shock-tube and its several modifications have now become 
an accepted tool in gas-dynamic research. 
to its performance, 

However, many aspects relating 
still remain to be adequately explained. In particular, 

viscous forces within the flowing gases considerably reduce the 
expected performance, and their action is imperfectly understood. 

The condition of no slip between a wall and the gas adjacent 
to it leads to a momentum defect in the gas flowing close to the wall, 
which is balanced by a shear force acting on the wall. Theboundary 
layer in which this momentum defect takes place, considerably modifies 
the flow in a shock-tube, and one result is that the shock-wave does 
not travel at constant velocity. Furthermore, the gas between the 
shock-wave and the cold front, or interface (which separates the driver 
gas from that initially in the channel), is no longer uniform as a 
result of the perturbations introduced by the growing boundary layers, 
and it is this gas which is usually used as the test sample. 

The channel gas is first set into motion by the arrival of 
the shock-wave, and we may expect the boundary layer to develop 
immediately behind this shock. Similarly in the chamber gas, the 
boundary layer will begin downstream of the leading edge of the 
rarefaction wave, and these boundary layers will extend throughout the 
regions of flowingss, Fig.1. 

In the present case, of course, where the flow temperature 
differs considerably from that of the wall, a thermal boundary layer 
will also be present, and heat will be transferred perpendicular to 
the wall. This heat transfer and the work done by the shearing stresses 
lead to an energy interchange between the flow as a whole and the walls 
of the shock-tube, and as a result of this interaction we may expect 
disturbances to be generated in the flow which ultimately overtake the 
shock-wave and alter its strength. 

It is clear that the development of the boundary layers in 
the unsteady, imperfect gas flow in the shock-tube is highly complex, 
and in order that any solution may be obtained simplifying assumptions 
are necessary. Those made by previous investigators are reviewed in 
the following section, and subsequently by removing some of these 
restrictive assumptions, an analysis is developed which accounts for 
some of the observed effects in the shock-tube. However, in this 
analysis attention is confined to the hot flow between the shock-wave 
and the interface, and consequently no attempt has been made to extend 
the analysis to a prediction of shock-wave attenuation. As discussed 
in Section 2, an analysis based only on this portion of the flow leads 
to erroneous conclusions regarding the effects of the driver gas, and 
consequently its use in predicting shock-waveattenuation cannot be 
justified. Thus, while it is felt that the present analysis is an 
advance on previous ones, it by no means resolves all the points of 
conflict between theory and experiment. 

2. Review of Previous Work 

A number of investigators have examined the attenuation of 
shock-waves in the shock-tube, both from an experimental and a 
theoretical standpoint. Among the more important experimental 
investigations are those of Jones (1957), Trimpi and Cohen (lY55), 

&rich/ 
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Esnrich and Curtis (1953), &rich and Wheeler (1958) and Wittliff and 
Wilson (1957). Theoretical approaches have been made by Trimpi and 
Cohen (lot. cit.), Mirels (1956), Hollyer (1956), Mirels and Braun 
(1957) and Spence and Woods (1959). 

Of the experimental results, only Jones and Wittlifland 
Wilson have measured the trajectories for strong shocks, while 
&rich and Wheeler, in addition to attempting to correlate 
measurements of the attenuation of weak shocks in a variety of tubes 
by a large number of investigators, also present measurements of the 
density and pressure variations with time at fixed stations along 
the tube. 

Jones and Wittliff and Wilson investigated the effects of 
different driver gases, hydrogen and helium being employed in both 
investigations and a combustion driver in the latter, The two sets 
of results are widely divergent in some respects. The former obtained 
smooth trajectories (which may h ave been due solely to the averaging 
technique used in canalysing the results), while those of Wittliff and 
Wilson exhibit marked fluctuations in the rate of deceleration of the 
shock-wave when using hydrogen as the driver gas. With the helium 
driver, the attenuation is considerably reduced for the same initial 
shock strength - in the eqeriments of Jones by about half that suffered 
with the hydrogen driver, while in those of Wittliff and Wilson there 
was practically no attenuation. This discrepancy is reported as 
perhaps being due to the fact that, in the latters' experiments, the 
chamber cross-sectional area was considerably larger than that of the 
channel. However on ther,:: grounds different attenuation rates would be 
expected in the two tubes with the hydrogen driver, but such differences 
a0 not occur. 

In none of these experiments on shock-wave attenuation is 
any significant effect found for changes in the initial channel pressure 
for constant shock-wave Mach number - that is Reynolds number seems 
relatively unimportant. 

In some experiments by Duff (1959), however, for very low 
channel pressures - less than 1 mm Hg - si@ificant differences in the 
shock trajectories do occur with changes of channel pressure. It would 
seem that in this region of very low channel pres,cures Re,ynolds number 
plays a large part in the flow. 

All the theoretical models predict a definite dependence on 
Reynolds number, this arising since all assume that the shock-wave 
attenuation is due to the growth of the boundary layers in the flowing 
gases and for the estimation of this growth they assume the characteristics 
of the stead-y flow boundary layers. 

'l'rimpi and Cohen use a one-dimensional, perfect gas theory 
in which the properties at any lengthwise position in the shock-tube are 
averaged across the section. The shear stresses and heat transfer are 
assumed to act at every point in the flowing gases, and to generate 
one-dimensional disturbances continuously. !l!hese disturbances are then 
assumed to propagate at the local sonic velocity (the values in the 
ideal gas flow are used) relative to the gas stream, upstream and 
downstream. Using a small perturbation method they reduce the problem 
to one involving the integration of the skin-friction along particle 
paths, that is to the equivalent steady flow problem. 

Both the hot gas region behind the shock-wave and the cold 
region behind the interface are considered, and upstream waves 

travellind 
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travelling in the hot gas are considered to be partially reflected at 
the interface, while the disturbances from the cold region are 

'considered to be refracted at this entropy discontinuity. The 
combination of these disturbance- a arrives continuously at the shock 
front, and is shown to reduce its strength. 

Among the other assumptions made in their analysis, 
Trimpi and Cohen take the rarefaction wave to be of zero thickness, 
a kind of "negative shock", moving with the velocity of sound in the 
undisturbed chamber gas. 

In the numerical evaluation of the theory they assume that 
the skin-friction dependence on the flow length is identical to that in 
steady, incompressible flow over a flat plate. For weak shocks the 
theory predicts attenuation moderately well, but the dependence on 
Reynolds number is not borne out by experiment. 

The use of the steady incompressible flow solution for the 
skin-friction integal is clearly a very crude approximation, and in 
particular their solution limits the application to thin boundary layers 
where an inviscid potential flow exists outside these layers. 

Mirels (1956) criticises the theory of Trimpi and Cohen on 
the grounds that the entropy changes which they postulate as being 
convected downstream with the ideal flow velocity, would in fact remain 
in the boundary layer. His analysis is based on similar initial 
assumptions, but he postulates the generation of disturbances in a 
different fashion. He argues, quoting the results of van Dyke (l952) 
for the impulsive motion of an infinite plate in a compressible viscous 
fluid, that the waves generated by a boundary layer in the external flow 
are directly dependent on the normal velocity to the wall at the edge 
of the boundary layer, and are equivalent to those generated by the wall 
moving normal to itself with this velocity. By linearising the equations 
of motion with mass source terms included, he thus reduces the problem 
to one of calculating this normal velocity at the edges of the boundary 
layers in both the hot and cold gas flows. He then calculates these for 
a shock and "thin" expansion wave moving over a flat plate, thus 
.limiting the application of the method to cases in which the boundary 
layers remain thin relative to the hydraulic radius of the tube. Again 
a Reynolds number dependence is predicted. 

In both of these theories, equivalent flat-plate boundary layers 
are assumed, so that no account is taken of the overall mass continuity 
equation in the pipe. Because of the momentumdefect within the boundary 
layer, a pressure gradient must be set up along the pipe, which in turn 
modifies the boundary-layer thickness. This constrictive effect of the . 
boundary layers in the tube will of course also modify the velocity 
distribution along the pipe. Neither ll-impi and Cohen, nor Mirels make 
allowance for this, and neither in consequence predicts the acceleration 
of the interface which is observed in practice. In fact Trimpi and Cohen 
predict a falling average velocity of the interface as a result of the 
disturbances generated by the boundary layers. 

Neither theory predicts explicitly the effects of different 
driver gases on the shock-wave attenuation. The numerical calculations 
in both cases are presented for air on both sides of the diaphrag, and 
only by carrying out a detailed computation for different gases can 
the effects be discovered. This is because the ratio of the properties 
in the two gases on either side of the interface enter not only into 

the/ 
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the reflection and transmission coefficients for those waves impinging 
on the interface, but also into the calculation of the normal velocity 
component in Mirels' theory, for example. 

In this connection it may be remarked that the two theories 
differ, in general, in the nature of the disturbances: Mirels predicts 
the generation of upstream and downstream rarefactions in the hot flow, 
while Trimpi and Cohen predict upstream compressions and in most cases 
downstream rarefactions, +hough in some cases, depending on the flow 
Mach number and the direction of heat flow, downstream compressions may 
result. 

In spite of these divergences, both theories predict the 
same order of attenuation for weak shock-waves and provide order of 
magnitude agreement with experiments for weak shocks. 

As a result of the disturbances, predictions of the variation 
of state properties at a given station in the shock-tube are made by 
Trimpi and Cohen Gand by Mirels and Braun (I 957). l3nrich and Wheeler (1 Y$8) 
have carried out a fairly detailed comparison of these predictions with 
experimental measurements of the pressure and density variations behind 
weak shocks at several stations along the channel. The.y conclude that 
systematic deviations from the predicted values occur, the Trimpi-Cohen 
theory being fairly accurate for a diaphragm pressure ratio Pri = 7, 
and the Mirels-Braun predictions being better for somewhat stronger 
shocks, Pdl = 10 and 50. Nitrogen was used in both the chamber anil 
the channel, so that these represent very weak shocks. 

Only the Trimpi-Cohen theory makes any attempt to predict 
the variations of state properties in the cold flow, and these predictions 
are quite inadequate to describe the experimental results, becoming 
worse as the distance from the diaphragm increases. An interesting 
feature of the results presented by &rich and Wneeler, but not commented 
on by them, is that for P,, = 10, at which they plot the density 
variation at three positions along the channel, the theoretical 
discontinuity at the interface, evident at 'i 8 tube diameters from the 
diaphragm, is gradually smoothed away, and has completely disappeared 
at 151 diameters from the diaphragm. 

It may also be noted that for the conditions of some of the 
experiments reported above, the boundary layer grows to fill the tube 
at 85 diameters downstream of the diaphram, before the arrival of the 
cold front. 

It is clear that these two theories are inadequate to 
represent the behaviour of strong shocks, since the assumptions made 
initially become steadily more unjustifiable as the shock strength 
increases. The neglect of the flow in the rarefaction wave becomes 
serious as the extent of this wave increases. The boundary layers are 
thicker for strong shocks and tend to fill the tube more rapidly. The 
linearisation of the equations becomes ina!?plicable as the magnitude of 
the disturbances increases - this will also occur at large distances 
from the diaphragm for all shock strengths as evidenced by the results 
of &rich and Wheeler. 

More recently, Spence and Woods have put forward a theory, 
(1959) 2 which considers only the hot flow, but is not restricted to 
perfect gases. They deal only with the turbulent boundary layer, 
referring to a solution of the laminar case by Demyanov (1957). In 
principle they solve the problem of the whole of the flow between 
the shock-wave and the interface allowing for the boundary-layer growth. 
In this way, unlike the previous theories outlined they take account 
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of the condition of mass continuity in the pipe as a whole, assuming 
a thin boundary layer in order to integrate the equations 
analytically. The equations of motion are also linearised for small 
perturbations in shock velocity. The turbulent boundary layer is 
assumed to be equivalent to the steady, turbulent layer on a flat 
plate, and the assumption is made that the velocity profiles are 
similar, obeying a power law in transformed co-ordinates. This 
latter assumption is made on the basis of an analysis by Spence (1960) 
of some experimental results obtained by Lobb et al (1955) in a 
compressible turbulent boundary layer in steady flow. 

They also propose a mechanism, heat addition by burning at 
the interface of the hydrogen driver in the hot compressed air, whereby 
the shock may be initially accelerated above the ideal theoretical 
strength, a feature present in many experiments. 

Tne only way in which the driver gas enters into the theory 
is in a boundary condition which is applied to ensure the compatibility 
of disturbances on either side of the interface, which is assumed to 
remain ideal. They predict both a strong dependence onReynolds number 
and more attenuation with a helium driver than with hydrogen, both 
of these results being at variance with experimental evidence. 
Furthermore, in the useful range of shock-tube lengths, about 100 tube 
diameters, they predict more than IO) attenuation in shook velocity, 
which implies more than 20$ change in pressure behind the shock. 
It is questionable whether this comes within the range of a small 
perturbation analysis.* 

The theory does however predict acceleration of' the 
interface - according to the linearised theory it would eventually 
overtake the shock, but this situation is certainly outside the range 
of the small-disturbance analysis. 

All the available theories of shock-wave attenuation are 
thus inadequate in some respects at predicting more than order of 
magnitude agreement with the e~erimental evidence, and in other respects 
they are even in qualitative disagreement. 

Each of the theories outlined depends to a great extent on 
the calculation of the structure of the boundary layer. Thelaminar 
boundary layer is fairly well understood even in compressible flow, 
so that the skin-friction may be estimated with confidence, but this 
is b-y no means true in the turbulent boundary-layer case. The results 
of the above theories will therefore depend to a large extent on the 
particular models chosen. The incompressible solution adopted by 
Trimpi and Cohen for their numerical example is clearly inadequate, 
but their analysis is not restricted to this model, Mirels chooses a 
one-seventh power law profile in physical co-ordinates, but takes some 
account of the thermal bolmdary layer by introducing the *atic 
temperature-velocity relation due to Crocco (see Young, 1953). Spence 
and Woods employ a power law also for the velocity distribution within 
the boundary layer, but use a system of transformed co-ordinates on 
the basis of some steady compressible flat plate results. The 
transformation used, due to Howarth(see Young, lot. cit.) is 

fhP 
Y = - dy and 6, = 

J 
- dy 

O ‘e 

and the assumption is that 

. ..(24 

In this connection Fig.7 of their paper showing the perturbation pressure 
seems to be inconsistent with their Fig.6 which depicts the shock velocity 
as a function of distance from the diaphram. This is probably due to the 
omission of a zero after the decimal in the ordinate scale of Fig.7. 
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U’ Y l/n 

-= - 

“i 
( > 

for Y G 6, . 

6, 

. . (2.2) 

where ur is the velocity relative to the wall, p is the gas 
density, 6 is the boundary-layer thickness and the suffix e 
represents conditions for y z 6. 

Martin (1957)h as measured the density profiles in the 
boundary layer, with an interferometer, behind a moving shock-wave 
for shock-wave Mach numbers of 'l.58 and 2.65. Because of the 
difficulty of defining 6 for his experiments, Martin computed the 
velocity profiles from the measured density distribution and the 
Crocco relation, and plotted them against y/S*, where 6" is the 
boundary-layer displacement thickness, defined by 

. . . (2.3) 

He infers a collapse to a universal one-fifth power law - 
i.e., n = 5. 

However a closer inspection of his data reveals that this 
collapse is not so definite. In Fig.2, some of his density profiles 
are replotted using the transformed variables introduced by Spence and 
Woods. Only those some distance behind the shock-wave are included, 
well behind the reported transition point, and it can be seen that these 
profiles cross each other, indicating no hope of complete similarity. 
The ratio of velocities relative to the wall are also shown in Fig.2, 
calculated from Crocco's equation (see equation(3.26)following). The 
differences between the profiles may be explained in two ways. Either 
the turbulence was not fully developed, - however transition one inch 
behind the shock was measured both optically and using a thin-film heat 
transfer gauge - or the pressure padients present were sufficient to 
introduce non-similarity effects. 

The shortcomings of existing theories have led the author 
to consider yet another approach to the calculation of the boundary-layer 
growth in the hot flow region, and its effects on this flow. Both 
laminar and turbulent boundary layers are considered. The methods are 
approximate, and are not entirely free of the shortcomings noted in the 
other methods. Thus,f'or example, the turbulent boundary-layer analysis 
involves the use of empirical relations taken over from steady, 
compressible flow. The method most closely resembles that of Spence 
and Woods, but does not make use of the small perturbation assumption. 
Further, the effects of the interface and subsequent cold flow region 
on the flow in the hot region are ignored. 

The procedure adopted involves the integration of the 
momentum equation. The unsteady equations are transformed to those for 
steady flow, with a moving wall as a boundary condition, by considering 
the motion relative to the shock-wave (Mirels, 1956). The form 
parameter only, that is the ratio of displacement to momentum thickness, 
is calculated for the case of flow over a flat plate, and this parameter 
is carried over to the case of flow inside a pipe. The justification 
for this is that the form parameter is the ratio of two integral 
quantities, and as such does not change markedly for small changes in 
velocity profile, The integration has been carried out numerically, 
with the aid of a digital computer, thus avoiding the necessity of making 
further assumptions. 

3./ 
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3. !l!he Integral Momentum Equation and the Form Parameter for the 
Case of a Noving Wall 

The equations of unsteady motion defining the passage of a 
shock-wave over a plane wall are first transformed to those for steady 
flow, by imposing a velocity, 
on the system as a whole. 

equal and opposite to that of the shock-wave, 
The wall then has a velocity, uw = - w 

and the flow behind the stationary shock-wave a v;olocity u, outsid; the 
boundary layer, Fig.ji(a). The distance along the wall is here measured 
from the foot of the shock in the direction of boundsry-layer growth, 
and y, v are the distance and velocity normal to the wall. The equations 
of motion may then be written as 

where the 

value 'i; 

t CPU> + ; (PV> = 0 .*.(3.-l) 

a (P?) +a(puv) = 2+" . ..(3.2) 
ax aY dx aY 

symbols have their usual meanings. 

Equation (3.2) may be integrated with respect to y to a 
outside the boundary layer 

K 
- (p + pu') dy + [puvl, = - rw 

a 

I 

ii 
- 

ax o 
(p+pua) ++PeUeVe = -Tw 

where suffix e denotes conditions outside the boundary layer. 

Integration of equation (3.1) yields 

pudy + peve = 0 

. . . (3.3) 

. . . (3.4) 

and eliminating ve from these equations, we have 

NOW 
dp due -= 
dx 

- PeUe - 
dx 

so that 

- 'cue pu (u - u,)dy+ = -rw 

or 

CPU - pu (u - ue) dy = - rw. . ..(3.6) 
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If we define a momentum thickness as 

and a displacement thickness as 

equation (3.6) becomes 

‘cue 
d”, -* d 
-6 
dx 

+- (pel$3) = - rw 
dx 

..* (3.7) 

l (3.8) 

l ..(3.9) 

which is the usual form except that T has a negative sign, acting in 
this case in the opposite direction to"x. The use of these definitions 
for 3 and 3' avoids them assuming negative values. If we now define 
a form parameter ii as 

ii = '6*/e . ..(3.10) 

equation (3.9) may be written: 

de 1 due I 0 7 e -+e (X+2)--+-- 
dx c ue dx 'e dx 

3 
W = -- . 

'e"i 
. ..(3.11) 

Apart from the negative sign accompanying the skin-friction term 
on the right-hand side, equation (3.11) is the usual form of the integral 
momentum equation (cf., Young, 1953), but here-the velocities are not 
those relative to the wall, as is usual, and 0 and F* are differently 
defined. 

and 3' 
For later reference we require the relations 

with H, 8 and 6" the values employing the 
involving velocities relative to the wall. 
Thus: 

0 = 
c 

12x2 

uw-u 3 
e 

and 

dy 

6’ 
H =-. 

0 

Rewriting equation (3.12) 

!a ( U- ue) dy 

\- 
r” P U’$ 

I )y~,(uw~u-)~ (k--l ldy 
e 

dY 

connecting E, 3, 
usual definitions 

. ..(3.12) 

. ..(3.13) 

. ..(3.14) 

5 P uwue 
= i - 

ea(;-l jdy-&so . ..(3.15) O pe Cuw-” > 
If/ 
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If we now introduce the trans$ormation given by equation (2.1) 
justified on physical grounds in the steady laminar boundary layer 
and to some extent by Spence (1960) for the turbulent steady 
boundary layer, namely 

Y = l (3.16) 

e 

equation (3.15) becomes; 

uu UP 

0 = 

(,r;:,. 

q- e i5 

(uw-ue)a 

“w s;Jj 
U 

e 

U 
a 

=L 3 

W -- 1 
U 

e 

. ..(3.17) 

where sf is the displacement thickness for the mwing wall case in 
incompreisible flow, viz., - 

"; = /--[-f-l] dY. 

e 
Similarly equation (3.13) may be written 

“w 
U 

&* = - ;T* + 
e 

3;. 

U 
W se 1 

U 
e 

. ..(3.18) 

. . . (3.19) 

The form parameter H is then given by 

For the case of the steady laminar boundary with zero pressure 
gradient and o = 1 the velooity distribution expressed in terms 
of Y where 

YP 
Y = 

I 
- dy, l (3.16) 

O ‘e 

is independent of Mach number. It is generally argued with some 
justification that this result will still hold with good approximation 
when w is near to unity and the pressure gradients are small. We 
extend this argument to the shock-tube flow, and note that precisely 
the same transformation was put forward by Spence as leading to a 
similar collapse of the velocity profiles when the boundary layer is 
turbulent. 



H= 

?[?-I p;-[“-1 j, 

e e e 
= . . . . (3.20) 

If the transformation (3.16) is applied to the definition of 
3 in equation (3.7) we find 

5 = 3.. 1 

Equation (3.20) then becomes, 

. e H= 
e . 

. . . (3.21) 

. . . (3.22) 

&ii, - I, 
U 

e 

For incompressible flow H = Hi and 'iI = Ei so that 
equation (3.22) becomes 

?i: = 
Hi 

. . ..(3.23) 

"w iHi- + 1 
U 

e 

Substitution of equation (3.23) into (3.22) yields; 

LH -H i 
U 

e . . . (3.24) 

It remains to determine H, the form parameter for steady 
compressible flow with velocities referred to the wall. Applying the 
transformation (3.16) to equation (3.13), we get 



l l .  (3.25) 

where it has been assumed that the pressure remains unchanged across 
the boundary layer, and the equation of state then becomes 

PT = peT, = constant. 

If for the purpose of evaluating H it is now assumed that 
the velocity and thermal boundary layers are of equal thickness, that is 
that the Prandtl number is unity (Fr = I), we may write following 
Crocco (cf. Young, 1953, p.412) 

‘e T T 

c 

T 
w+ l-W+ 

(uw-ue)' u -u (ugp 

3 
W -=-= -- . ..(3.26) 

P Te Te 
T 2-k e e 

uw-U 
e *e 

where T is the wall temperature, h is the enthalpy of the flow 
outside Wthe boundary layer, and the v%ocities are taken relative to 
the wall. We may note that for a perfect gas, 

-il= e Y-1 
-= - M",. l (3.27) 
2h 2 e 

Substitution of equations (3.26 and 3.27) into equation (3.25) gives on 
simplification, 

The same procedure leads to 

so that 

Substituting this expression into equation (3.24) we get, 

KY Hi 

i 3c 

e 

U 
W -- I 5(Hi-I)+1 

U U 3 
e e 

. ..(3.28) 

. ..(3.29) 

l (3.30) 

and Hi, the incompressible flow value of the form parameter for 
a stationary wall is known from the Blasius solution for the laminar 

boundary-layer/ 
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boundary-layer case, snd from the power-law profile for the 
turbulent case. 

4. The Equations for Flow Inside a Pipe 

If we assume that the boundary layer 
completely, we may write the momentum equation 
Winterbottam, 1942), 

does not fill the pipe 
as ~Young~ 

- 27Grw = 2x (X-Y) PUPW-ue - 12% (z - y> ml ay 

a 6 

I 

a 6 
+- 

dx 0 
P2X 6 - Y) ay - P, - 

I 
~~-Y)dy . . . (4.1) 

&X0 

where 6 is the boundary-layer thickness, g the pipe radius, and y 
is measured from the wall (see Fig.j(c)). 

Making the usual boundary-layer assumption that dp/dy = 0, 
we have, 

dp aue -= - PeUe - . ..(4.2) 
ax dx 

so that equation (4-.1) beccmes; 

a 6 

I 

sue 6 
me 27c (ii - y) (Pu - PeUe) ay = 45rw 

&CO 
2% (;; - y) pu (ue - 4 a;y + - 

I ax 0 

which may be written 

$( 
du 

peu;13) + PeUe e -Ii* = - Tw 
ax 

where we define 

. ..(4.4) 

l .* (4.5) 

Writing/ 
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Writing E = x*/e as before we have 

a5 
c 

I due 1 dPe 
3 

7 
-+e @+2) 

W se+-- =--* l (4.6) dx ue dx ‘e dx pe u: 

The equation of mass continuity in the pipe must also be 
satisfied. If we denote by suffix '0' the values of quantities 
immediately behind the shock-wave, we have, 

Now _ 
I 

a 
27cpu 6 - y) dy = 6iaueo pea = Q, say. 

0 

I 
a a 

27cpt.l (;-y)dy = 2 
b 

x (m - Peue) C;; - Y > ‘Y + pe”eGa 
0 . 

= 27cpeuex* t peueiLa. 

Therefore 

Q ‘eo”eo 
PeUe = = l . ..(4.7) 

.z!a + 72 1. + se/i 

It is convenient to write all quantities in dimensionless 
form, denoted by a double dash - 
aft of the shock-wave. Thus: 

11 , in terms of their values immediately 

1 
= . . . (4.8) 

1 + 2xP 

where F is taken as the standard length. 

The energy equation outside the boundary layer is written 
non-dimensionally as 

p” y-l Y-l 
L+ --Iv? ull* 

Pe” 2 
eo e 

= I +--tie0 
2 

and if the flow in this region is isentropic 

so that dropping the dashes for convenience; 

and 

Also 

c 

Y-1 

3 

Y-l 
p,= I+ - bPo (I - u;> 

2 I 

PeUe = ue 2 + 
c 

Y-1 
- ltPo (I - 2) y-i. 

2 3 

MP 
‘e 

e 
= M”cou’e - 

pe 

. . . (4.9) 

. . . (4.10) 

. ..(4.W 

i 
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and for later reference, the viscosity is assumed to obey the 
law 

o(Y-I> =+p, 
c 

Y-l 
w 

‘e = I+- 
2 

M’eo (1 -  u”,> l 

3 

. . . (4.12) 

If now we assume that the value of E in the pipe is that given by 
equation (3.30) for the flat plate, on the grounds that the factor 
(1 - Y/a occurs inside the integral in both the numerator end the 
denominator, and is unlikely to have a large effect, we msy write the 
left-hand side of the momentum equation (4.6) in non-dimensional form 
in the following way. 

From equation (4.8) 

so that 

I 
iii5 = -- 1 

‘e”e 
. ..(4.8) 

dE de 
25 

ldu ldp 
-++- = ------ e e 
dx dx P,$ ax P”U dx 

ee 

= - .-!-(I - J(p) 2 

‘e”Z 

or de 

c 
(I - "",) + (1 - PeUe) 22 "H 

3 
-I - = - 22 . . . . (4.13) 

dx H due iEpeu; ax 

Substituting for 3 and d'e/ax 
we obtain: 

in the left-hand side of equation (4.6) 

1 due 
-- (M~-l)+(+l)(E+l-g- 

ue dx c e e 

. . . (4.14) 

and by differentiating equation (3.30) for 'ii we obtain 

ue fi 
uw 

-- = I++l)M;+ ue 

c 

ii. 
I 

ii due uw 1 

-$ (1 +gM;) 
-- 3 
ue 

iTi -- 1 -m . . . (4.15) 
Hi 

where it may be noted that Me, T,, and u are treated as variables, and 
the wall temperature T has been regardgd as constant. This latter 
assumption has been sho#n to be theoretically justifiable by Mirels, and 
experimentally by Martin (1957). 

*Note that the individual terms on the R.H.S. of this equation are not 
in non-dimensional form, 
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In order to complete the solution of the momentum equation 
we need to evaluate the R.H.S., that is to obtain a value for the 
skin-friction. This value will of course, depend upon the structure 
of the boundary layer, and the lsminar and turbulent cases sre now 
treated separately. r\ 

5. The Laminar Boundary-Layer Case 

It will be recalled that the value of the form parameter z 
to be used in the integral momentum equation (4.14) for the flow behind 
the shock-wave in a pipe, is to be that for comprsssible, steady flow 
over a flat plate. This is on the grounds that H is unlikely to be 
very sensitivg to the-factor (1 - yfi) 
quantities F 

which appears in the integral 
and 0 of which it is the ratio. !The assumption of 

steady flow is justified, since relative to the shock the flow is steady. 
The equations, including a pressure gradient, are 

$ (pu) +; (Pd = O . . . (5.1) 

and 
au au dP a au 

pu-+pv-- = --+- p- 
ax aY (fix aY ( > aY 

where we have written for the laminar flow case 

au 
7 = p-. 

?Y 

The boundary conditions are; 

at y = 0; u = uw; v = 0;andp = /.lw 

at y = 6; u = ue; a2/ay=o=aauJaya; p = ~1,. 

Using the transformation (3.16) in the form 

where 

I YP 
g = - 

i 
-Qr = f 

6, OP e 1 

i 

6P 

q4 = - dY 

O ‘e 

we may deduce from equation (5.2) assuming pp = pepe that 

tie UePw a”u 

- ‘eUe 
-=- - 

ax [ 1 Peq a$ w 

aue 
since dp/dx = - Peue dx from Bernoullils equation and 

. . . (5.2) 

. . . (5.3) 

. ..(5.4) 

au au Per au ‘e 
p- = -- = --. 

?Y a77 P,% aT7 hi 

Hence/ 
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Hence 
a au 

( > 

a% 1 PP, 

dy% =---• ha f2 P, 

Since the velocity at the wall is constant at u+ 

au 
c 1 - = 0 ax w 

so that equation (5.4) becomes 

sue pt I a8u 
- ‘cue 

- = -- - 
ax b &i! arl" ' L- 1 . ..(5.5) 

, w 

It is now assumed that a sdficiently g0Oa approzdmation to 
the velocity distribution wi4M.n the boundary layer is given by a 
Polhausen quartic in the transformed variable q. Thus 

U i -= aiq 
U 

e 
i=o 

for 0 4 rl 4 1 
with the boundary conditions, 

u = Uw’ P =i-&3P = p, atq = 0 

au a% 
-= 0 = -j U =! Ue$ etc., at-q * 1. 
aq a$ 

Differentiating equation (5.6) 

1 au -v = 
ue aq is ia$-’ 

I 
la% I 

-m = 
ue a+ t 

i(i - 1) ai71im2 . 

2 

Inserting the boundary conditions; 

at q = 0; uw = ueao 

U 

at q = I; -2 = 1 = 
t 

&i 
U e 0 

I au 
-- = 0 = 
ue aq L iai 

I' 

I a8u 
-- = 0 = 
ue a$ t 

i(i - I) ai* 

2 

. . . (5.6) 

d5.7) 

Also/ 
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Also at 7-l = 0, we have using equati.on (5.5) 

8% 

L-1 @cl 
u2a = due = 

a? q=o 
e a - -2 peue - 

c! dx 

so that 
I 

where A is defined by equation (5.8). 

The skin-friction at the wall is given by 

au 
r crw P, au 

W 
=pwG =--- ( > 

W 
( > 6,pe hW 

and $he solution of equations (5-7 & 8) yields, 

so that 

7 w = !ip[A + 12(13 

or 
7 

W - = -!%[A + 12(l->)]l-i 
pe% PeUe e 

where it has again been assumed that 

The R.H.S. of the momentum equation (4.14) is therefore, 
in non-dimensional form, 

where 

7 
W -- = -%.$[X + 12(1-3 R;,' 

Pe% 

P au R = eo eo 
eo 

. ..(5.8) 

l (5.9) 

. ..(5.10) ’ 

4 

and ‘iki = hReo o 

Substituting/ 
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Substituting this value into equation (4.14) and rearranging using 
the definition of A from equation (5.8) we get 

I au 
88pe($-1> 

-2 (My)+ 

ue dx c (~-‘)(‘+‘+;‘~-:~)I = TReo(l:peue) 

. ..(5.11) 

where following Young (1953, p.442) we have written 

and made use of equation (4.8) so that T I 61 = - c --I . 2l PU 3 ee 

On the grounds that an evaluation of e/si using the 
Polhausen quartio will not yield a sufficiently accurate value for 
sl, we determine T as follows. 

From equation (3.17) we have 

NOW equation (3.d9) my be written for the incompressible flow case; 

F'* 
q= i 

U 
W - -3 

U 
e 

so that 

= e( i - l)[ZHi ” i f I] 

since 

Thus 

’ O[ - l]@Hi-l) + I] 

e e 
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or 

[~d][~(Hi-l)+l] 

e e 

with f = 
4 

- , is the value for the compressible,stationary wall case, 

given by Yd?g (1953, p&+2) as 

f = 9.072 
c 

0.45 + 

the Mach number being taken relative to the wall. 

0.55 5 -I- o.og(y - l)(F& @ 
Te 

e($-,jjy-" 

e 

The final expression for ? is taken therefore as 

In 

0.09( y- ,>(Ftr).?i- P e($-lJ+” 

2 (Hi - I) + I 
U 3 

e . ..(5.12) 

Thus with ? and - - defined by equations (5.12) 
w due 

and (4.15) respectively, we may write equation (5.11) as 

U 

x=R e 
eo 

. ..(5.13) 
with per p,, Me and p, given by equations (4.9 - 12). 

It will be recalled -that all these quantities are non- 
dimensional in terms of their respective values immediately aft of the 
shock-wave, and that the standard length is the tube radius, a. The 
strength of the shook is specified by uwO 

aft of 
We may note also that the Reynolds number Be0 immediately 

the shock-wave may be written in terms of the 
state of the gas in front of it. That is 

P Ti pwzcl 
R eoUeo 1 1 i 

eo = 
= -- 

CL eo C: pea 

= W RTW 
ii I. ta cwJ(5.u-a) 

where/ 
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where W is the shock-wave Mach number, 
11 

T = 
Ia 

T,/T is the shock temperature ratio, 
a 

“,“P 1 and R = - , a being the sound velocity in region I, in front 
1 1 

Pi 
of the shock. 

For a perfect gas, with y = i'/5, we have, 

5 + wa M2 = 11 
eo ma-1 ’ 

II 

36wa 
T = II 

ia 
(Ta1 Ii 

- l)(wa -4 5)’ 
. ..(5.~.w 

6w2 
u = 

11 
. 

W 
w,“i + 5 

On the assumption that the wall temperature remains constant, 
and equal to that of the undisturbed gas in front of the shock, 
Tw=T, 

1 
equation (5.13) h as been integrated numerically, for several. 

values of the shock-wave Mach number. The specific heat ratio has been 
assumed constant at y = 7/5 and the index of viscosity dependence on 
temperature 0, was taken at 0.76. The Prandtl number Pr, was also 
assumed constant in equation (5.12) at 0.725. 
in incompressible, steady fiow with a 

The form parameter, Hi 
stationary wall, was taken as 

the Blasius value, 2.59. 

An estimate of the boundary layer growth was Also made 
as follows; 

6 
I 

‘1 Pe 
-dY = 

8 T = - dY 
0 P Te 

and using the Crocco relation, equation (3.26) 

6 
T, ( IA--ue) uw-u 

= 
Te (uw-ue) 

+-++f( l--$$:)]dY 
u -u w e e e 

P Y-1 -----a; + xi 
2 

-TW -- I 
T, 

. ..(5.15) 

with 

U 
W -- I 

3 

Fli = 
2.59 

from equation (3.23) 

4.59% -t I 
U 

e 

and & ’ - P,U, I) 

2% PeUe 
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The results are shown in Figs. 4, plotted against -xp 
'i I 

where R 
1 

is a Reynolds number based on the sound speed in the undisturbed gas, 

For nitrogen R = 7.18 x IO6 ii- PI 
1 760 

where Z is the tube radius in feet, 

and pi is the undisturbed gas pressure in mm Hg. 

60 The Turbulent Boundary-Layer Case. 

The turbulent boundary layer in compressible flow is not nearly 
so well understood as the laminar boundary layer. In incompressible flow, 
there exists at least sufficient experimental evidence to enable the 
formulation of empirical relations which may be used to predict with SOme 
confidence the behaviour of steady flows in general terms, In 
compressible flow very little such information exists. Lobb and others (1955) 
have hvestigated the compressible, turbulent boundary layer in steady flows, 
and as pointed out, Spence (1960) has succeeded in transforming the boundary 
layer coordinate system in such a way that the velocity profiles almost 
collapse to obey a single power law. The skin-friction is however very 
dependent upon the velocity profile within the boundary layer, and in flows 
subjected to large pressure gradients these velocity profiles are unlikely 
to remain similar0 Such flows are likely to develop in the shock-tube, 
and it has already been noted that in some measurements made by Martin (1957) 
in the growing boundary layer behind a shock-wave in a shock-tube no such 
similarity was evident as that found by Spence in the steady flow case. 

However it is true to say that the profiles show a closer 
similarity in terms of the transformed variable Y (equation 3.16), than in 
terms of y and in order to obtain some estimate of the magnitude of the 
generated pressure gradients, Spence's assumption of similarity has been 
employed, the effect of the index in the velocity profile power law being 
estimated by using two values, n=5&7. The transformation used is the 
same therefore as that for the laminar boundary-layer case; viz. 

. ..(6.1) 

with 
6l (x) = 

In order to determine the relevant parameters, Spence adopted the 
following procedure (a slight modification being necessary for the moving 
wall case). Following Eckert he introduced the concept of the 
"mean enthalpy" defined by 

hm = 0.5(hw + he> + 0.22(hr - he) 

where h r is the recovery enthalpy, and the constants are empirical. 

The friction velocity is then defined in terms of the density 
evaluated at this mean enthalpy, that is 

&II * 
Pm 

. ..(6.3) 

Within/ 
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Within the laminar sub-layer, the shear stress is assumed 
constant and equal to 

so that 

auw - 4 
7 = P = 7 

3Y 
W 

U -u = 
W I y Tw Ydy 

-ay=rw -* I 
0 t-l 0 p 

&king the usual assumption that pp = p,c~, = p,~, 

7 
U -u = 2 

W 
cr I 

Y P 
-w 

e 0 Pe 

= ‘w Pe y -m 

Pm Pm 

Thus U -u 
W v*y pe 

= --. 

V* V m pm 

. ..(6.4) 

. . t(6.5) 

v*y pe 
In the inner region it is therefore assumed that -- is the 

V m 'rn 
V*Y 

relevant parameter which is to replace - in the incompressible case. 
V 

The velocity profile power law is therefore written 

U -u 
W Yv,p, d/n 

= c 

v* ( > 'mPm 
. . .(6.6) 

which is consistent with 

U 0-u 
W = q'/n . . . .(6.7) 

U -U 
W e 

This of course is the key assumption. It has been justified 
by Spenoe (1oc.ci.t) for the steady case, but no such justification 
exLsts for the present application. Since we are chiefly interested 
in the qualitative aspect of the quasi-steady region between the 
shock-wave and the cold front, it would seem a reasonable starting point 
with the present state of our knowledge. The arbitrariness of this 
assumption cannot be too strongly emphasised but it may be pointed out, 
that all the previous analyses have made this or similar assumptions. 

Rea,rrangi.ng equations (6.3 & 6) leads to 

Pmbw--ueY L 'rn pml 

. . . (6.8) 

where u has been replaced by ue and Y by hi, their values at 

the edge of the boundary layer. 
Further/ 
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Further rearrangement yields; 

I- 

I 

u 
W -- 1 

7 u 
W 

1 

e 
-= 

'e""e 0 

2n 
iT 

Pm' - 

[ pe 

n+3 

1 x v - m 

U6 
_ ei - 

7 

The momentum thickness is again defined by 

1 izi . 

8 = Gii= tqie(, -l)al, 

e 

equation (6.1) which upon substitution for u from equation 

?j = 

t(:-A)(:+n) 

(n+l)(n+Z!) l 

. ..(6.9) 

. ..(6.10) 

Elitiating 8% between equations (6.9 & IO), we get 

where each of the parameters involved is written non-dimensionally 
in terms of their respective values just aft of the shock, the 
Reynolds number Reo being as before, 

R 
ueo’ 

eo = -=: 
V 

CRic3 
eo 

. ..(6.12) 

It should be noted that the assumption that w = I is made 
only where it is felt that it introduces very small errors, as in the 
determination of form parameters, representing ratios of relevant 
boundary layer thicknesses, but in general the assumption is not made, 
although it is always understood that o is near unity. 

Substitution/ 
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Substitution of the R.H.S. of equation (6.11) into the 
momentum equation (4.14) yields 

wpere J= . ..(6.13) 

I/ J 
Thus g is again given as a function only of ue. 

d", 
Equation (6.13) has been integrated numerically with the aid of a digital 
computer to yield x = x(u,) for several shock-wave Mach numbers, 

andfor n=5 and n=7. It will be recalled that B and 2 are 
due 

given by equations (3.30) and (3.15) and that for incompressible flow 

. 

2 

Hi = l+- for the stationary wall 
n 

and 

2 
l+- 

ITi = n for the moving wall. 

&W l+- 
nu e 

. ..(6.14) 

The values of the constant *c' 
equation (6.6) 

in the velocity profile law, 
were taken from the corresponding incompressible 

values as follows; 

n= 5 7 

C = 6.20 8.74 

and a recovery factor of 0.89 was assumed. Consistent with the 
assumption of perfect gases, the enthalpy equation (6.2) was replaced 
by one containing temperatures, and again a value o = 0.76 was used. 

The nature of the assumption s made is somewhat arbitrary, since 
as pointed out earlier, the velocity profile within the boundary layer 
does not appear to obey the assumed law. For this reason no attempt has 
been made to refine the solution so as to include the thermodynamic 
imperfections present in the hot-flow. In practice the dependence of the 
viscosity on temperature over the effective range covered here is 
considerably more complex than the simple relation 

However such an approximation is useful though perhaps a lower 
value of w than that assumed would be more realistic for the stronger 
shock-waves, when the temperatures involved are higher. 
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In a similar manner to that used in Section 5, the 
boundary layer growth has been estimated from 

6 9 6i T = ZdY z - dY 
0 P 0 Te 

and the Croooo relation, (3.26) so that, 

TW -- I 1 

Te 

U 
W -- 1 

U e 

+ . ..(6.15) 

where Biis given by equation (6.14), and 5 as before by equation 

(4.8). In this case 8/S, is assumed to be given by equation (6.10). 

The Crocco relation with Pr = 1, in the form (3.26) is 
somewhat more justified in the turbulent boundary layer case than in - 
the laminar case, since in the former the transport of heat and momentum 
both take place almost entirely as a result of the same action - 
turbulent mixing. 

The results of the integration are illustrated in Figs. 5 Be 6 

-2 

where 6/Z, gfi ad P,/P,~ are plotted against 2 Rn+l for several 
a 1 

values of shock strength and for n = 5 & 7. 

-2 

The parameter R izr masks the differences between the two 
1 

values of n and the laminar case, so that a comparison of the three is 
reserved for the next section, where numerical examples are presented. 

It will have been noted that for the turbulent boundary layer the 
expression for v6, and its relation to ~d(p,u,“) have been taken as the 
values for zero pressure gradient. No reliable method of including the 
effect of pressure gradient on these relations for the turbulent boundary 
layer, even for incompressible flow, is available, although tentative 
suggestions have been put forward. These are not supported by sufficient 
experimental evidence to warrant their extrapolation to the compressible 
flow case0 

It may however be interesting to examine the parameter equivalent 
to that introduced by Buri (Schlichting, 1955) to take account of the 
pressure gradient. Analagous with the parameter A for the laminar 
boundary layer, we define I? as 

2 
8 

r - 
a(uw.ue> (u~-u~)~ P, n+? 

= - 

uw-u ax c 'rn pm 3 e 
l ..(6.16) 

which is the definition used by Buri, modified to accommodate the 
effects of compressibility and the moving wall. 

Noting/ 



- 27 - 

Noting that 
0 n 

' (:-d)(n+:) 

and replaoing equation (6.8) by 

r 
W 

o; + xl? 
= L Pm(uw-e)a c cuw-u,>~l pe -3 

- 

#rn Qm 
3” 

following Buri, where a is an empirical constant, we find that the 
integral momentum equation (6.13) becomes 

(~-,)(T+l-;~-,+a2, ;) -(l-M;) 

e -- 
nu 1 e 

2 

. ..(6.17) 

’ d”e 
n+l 

x - - = 2B.J. 
ue dx C 

2B/A e 

R,,(l - P,u,) 1 . ..(6.18) 

The extra term involving 'i would appear to be of the same 
order of magnitude as the other terms Fn the same bracket ir Buri's 
value of 'd = A+. is adopted. 

If equation (6.18) is written as 

I 
U 

x = e G(ue)due 

1 

the effect of the pressure gradient parameter is to increase the value 
of the integrand, G - that is, for a given value of x, the change in ue 
calculated previously will be too large. The likelihood is that we 
have overestimated the displacement effect of the boundary layer by 
ignoring the effect of the pressure gradient on the skin-friction. Such 
an analysis however, has very little experimental backing for the 
incompressible steady flow case, and oan hardly be applied with much 
confidence to the present quasi-steady, compressible flow. 

7. Comparison of the Effects of Laminar and Turbulent Boundary Layers 
on the Flow behind a Shock-wave inside a Pipe 

In the non-dimensional form of Figs. 4 - 6, the variation of for 
example, the pressure gradient is masked by the Reynolds number parameter 
appearing in the abscissa. In order to bring out the significance of the 
present results some particular cases are considered. The effects of shock 
strength and of undisturbed channel pressure (that is Reynolds number) are 
presented separately. In particular, cases are examined for shock-wave 

Mach/ 
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Mach numbers, W 
11 

= 3, 4 and 6 for a constant channel pressure of IO mm Hg; 
and then for a constant shock-wave Mach number W 

11 = 3, the effects of 
channel pressure are considered by examining the cases p = IO, 25 and 

i 
100 mm Hg. Such values are fairly typical of shock-tube operation, and the 
assumption of constant specific heats made in the foregoing analysis is not 
too seriously in error. In all cases a tube of I.5 inches hydraulic diameter 
is assumed. 

In measuring quantities in the shock-tube it is usually practical to 
have instruments fixed at a particular station in the tube, these then 
measuring the variation of a particular quantity as a function of time. (An 
exception to this rule is provided by optical studies which provide a spatial 
field behind the shock-wave.) Accordingly the abscissae involving tile 
distance behind the shock-wave which appear in Figs. 4 - 6 have been 
converted to time after shock passage on the assumption that the shock velocity 
remains constant. For the times considered, the shock attenuation is small, 
and this is justified. 

The pressure and gas velocity on the axis are shown in Figs. 7 and 8 
for the above conditions. It can be seen that for constant shock strength - 
defined by Wii - the pressure variation for the laminar boundary layer is small, 
while that for the turbulent case is quite marked. Furthermore, these 
pressure gradients are stronger as a fraction of the initial jump across the 
shock the lower the Reynolds number (RL CC p ). 

1 
It is this quantity, 

I dPe 
---I which is effectively plotted in the lower graph of Fig. 7. 

P eo dt 

For a constant initial channel pressure, pi, the variation of 

pressure in the flow after the shock, assuming a turbulent boundary layer, 
is seen to increase as the shock strength increases. Again the laminar 
boundary layer has a small effect, 

For low values of pi, that is of 9, the index n defining the 
velocity profile within the turbulent boundary layer is of small significance. 
However at 100 mm Hg, for the two values of n investigated, 5 and 7, the 
pressure gradients show marked differences some time after shock passage. 

Fig. 8 illustrates the effects of the growing boundary layers on the 
gas velocity in the isentropic core of the flow behind the shock. Again the 
laminar boundary layer has a small effect, while the turbulent layer leads to 
a considerable acceleration of the flow. This acceleration increases with 
increasing shock strength and decreasing channel pressure. 

It is emphasised that these results have been obtained by making 
several simplifying assumptions, which cannot be strictly justified. For 
example a universal velocity profile law has been assumed for the turbulent 
boundary layer which does not appear to have any experimental support in the 
present circumstances. Furthermore the effect of carrying over the form 
parameter B, from the flat plate case to that of flow in the pipe, and 
thereby ignoring the factor (I- y/Z ) in the integral quantities e anab1 
is unknown <and may be serious when the boundary layer becomes of comparable 
thickness with the pipe radius. The points at which 6 = 0.5% are 
indicated on some of the curves of Fig. 7. The effect of pressure gradient 
on the relation for the skin-friction in the turbulent boundary layer has 
also been neglected for want of a reliable method of including its effect. 

However the general results may be expected to apply qualitatively 
if not quantitatively - that is, that turbulent boundary layer growth is 
likely to have a more marked effect on the flow behind the shock than is the 

laminar/ 
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laminar layer growth. Accordingly if importance is attached to the 
uniformity of flow in the hot region, transition to turbulence should be 
delayed as long as possible - for example by ensuring a minimum of roughness 
on the tube walls. 

The differing magnitudes of the pressure gradients generated by the 
laminar and turbulent boundary layer growth as predicted by these results, 
suggest that wall pressure measurements might give some indication of the 
state of the boundary layer. However the inclusion of a pressure gradient 
parameter similar to that introduced by Buri for the steady, ticompressible 
turbulent boundary layer would reduce the magnitude of the effects calculated., 
if Buri's value, a = -4, is adopted. Thus only if large pressure gradients 
are measured could a turbulent boundary layer be confidently inferred - the 
converse, that a negligble gradient implies the existence of a laminar 
boundary layer is not necessarily true. 

8. Notation 

a 

a 

0 

d 

B 

f 

T 

H, Hi 

Tf, 7-l. 1 

h 

J 

M. 
J 
n 

pr 

P 

R 

T 

t 

UP v 

V* 

sound speed 

hydraulic radius = 2 x area/perimeter 

defined by equation (6.6) 

hydraulic diameter 

defined by equation (6.17) 
6 = 4 

= 9/g- 

form parameters in stationary wall case - suffix i denotes 
incompressible flow 

form parameters in moving wall case - suffix i denotes 
incompressible flow 

specific enthalpy 

defined by equation (6.13) 

flow Mach number in region j 

velocity profile parameter in turbulent boundary layer 

Prandtl number 

pressure 

Reynolds number 

temperature 

time 

velocities in x-, y- directions respectively 

friction velocity - 
J Tw'pm 
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w 
ii 

Y 

x9 Y 

Y 

r 

6 

F*, q 

rl 

-g, e, 
h 

0 

Suffices 

i,a,a,4,s 

0 

W 

e 

m 

shock-wave Mach number 

transformed boundary layer coordinate, equation (2.1) 

rectilinear coordinates - Fig. 3 

specific heat ratio 

turbulent boundary layer pressure gradient parameter - 
equation (6.16) 

boundary layer thickness 

transformed boundary layer thickness - equation (2.1) 

boundary layer displacement thicknesses In stationary wall 
case - suffix i denotes incompressible flow 

boundary layer displacement thicknesses in moving wall 
case - suffix i denotes incompressible flow 

= Y/tii 

boundary layer momentum thickness in stationary wall 
case - suffix i denotes incompressible flow 

boundary layer momentum thickness in moving wall case - 
suffix i denotes incompressible flow 

laminar boundary layer pressure gradient parameter - 
equation (5.8) 

dynamic viscosity 

density 

skin friction 

index used to defFne dependence of viscosity on temperature 

refers to quantities in regions so labelled in Fig. 1 

refers to conditions immediately aft of shock-wave 

refers to conditions evaluated at wall 

refers to conditions evaluated on tube axis 

refers to values of properties evaluated at mean enthalpy - 
equation (6.2) 
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