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SUMMARY

A small perturbation analysis of rotating stall in inviscid,
incompressible flow is developed from an analysis of Yeh. An isolated
blade row is considered having a blade height which is not small compared
to the mean radius. A criterion is derived for the occurrence of
rotating stall, the speed of stall propagation and the possible number of
stall cells involved. From this the frequency of circumferential flow
disturbances can be obtained. An example is given of an application of
the analysis.

The main assumptions made are that a large number of small
amplitude stall cells are induced at onset of stall, that the radial shift
of the streamlines is small and that the absolute exit flow angle is small.

Possible explanations are suggested for the observed changes in
number of stall cells.
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1. Introduction

1.1 Brief summary of some experimental observations

When the flow through a compressor blade row is decreased at
constant speed of rotation the angle of attack of the blades increases
and the blades eventually stall. It is observed, however, that not all
the blades stall simultaneously but that only a fraction of them are
involved. There may be several stalled patches of blades which, moreover,
are found generally to be travelling steadily around the circumference at
an appreciable fraction of the blade speed. The term "rotating stall",
or "propagating stall", originates from this behaviour.

_ The mechanism whereby the stall propagates along the row has a
qualitative explanation. Consider the blades to be operating close to
the point of stall and that a small disturbance initiates stall on one or
two blades. The stalled passages offer a smaller area to the flow
through the blades causing the approaching flow to be diverted to either
side of the stall patch, as shown in the accompanying sketch.

Flow direction
\\\\ relative to blades
Direction Direction of stall
of blade motlon propagation

The/
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The increased incidence on one side of the stall patch causes adjacent
blades to stall; conversely blades stalled on the opposite side of -the
patch tend to become unstalled. The stall patch therefore remains a
definite length, usually moving steadily* around the blades.

It is widely acknowledged that the stall cells proceed in 'the
direction of the tangential component of the relative inlet velocity.
It is possible by means of suitable inlet guide vanes to cause the stall
to become stationary relative to the casing and even propagate with
absolgte velocity in the direction opposite to the blades (Stemning et al,
Ref.Z .

1.1.1 Stall patterns observed in rotor rows

Because interference between adjacent blade rows appears to
have a 51gn1flcant effect on stall patterns produced (see Wood, Horlock
and Armstrong ), only isolated rotor** stall patterns are considered.

Two main types of stall pattern emerge when stall is first
initiated. The first_type, which ﬁeems to be the most common, has been
observed by Wood et al3 Carmichael®, Montgomery and Braun? and others;
the pattern consists of a single stall cell which usually splits
progressively into two, three and then four cells with throttling. The
second type of pattern commences, with several stall cells*** which may
increase in number with continued throttling and then collapse into one
c€ll, This cell may then split into two and then three cells with
further closure of the throttle. Kriebel, Seidel and Schwind8 found
that rotating stall always commenced with two cells and that opening the
throttle this would change to a single cell pattern. However, they found
that any slight asymmetry of the flow resulted in a single stall cell at
stall initiation.  The mechanism which determines the type of stall
pattern developed initially and its subsequent behaviour still remains to
be clarified.

The experimental observations of Rocket1 are particularly
interesting. The test rig he used had a smooth inlet passage to the
rotor row, entirely unobstructed by inlet guide vanes or struts, etc.
The stator row was six chord lengths downstream of the rotor.

Rocket found three stall cells at stall initiation. On opening
the throttle at constant rotor speed the number of cells was reduced until
only one remained. This condition was maintained indefinitely; for the
same throttle setting the unstalled condition was also indefinitely
maintained. Closing the throttle after stall initiation caused the
number of stall cells to increase. The maximum number of cells which the
rotor can maintain has not yet been determined; Emmons et al~ suggests
that with a smooth unobstructed casing the rotor might exhibit as many as
one stall cell for every three blades. Continued throttling resulted in

some/

*Rocket1 has reported finding a low~frequency oscillation of the
cell-spacing. This oscillation was a transient condition, lasting
only a few seconds, but reappearing at frequent intervals; the
amplitude was sufficiently large to interfere with accurate stall
velocity measurements.

**Some of the "isolated rotor" tests involved the use of guide vanes,
albeit several axial chord lengths upstreams

“"*"‘S‘t‘.enning_7 Kriebel and Montgomeqy found eight or nine, Costilow and
Huppert! found two and Rocket' observed three cells at stall initiation.
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some amalgamation into fewer cells (having a somewhat different nature from
the earlier type) until a single large cell was formed. Reverse flow has
been found in this large type of cell; a static pressure drop was

observed across some of the passages with air passing upstream in those
passages.

1.2 Small perturbation theories

Many theories have been advanced to determine the speed of stall
propagation, the cell spacing and stall size. It is important that such
a theory predicts both the propagation speed and number of stall cells
around the annulus, since the product then gives the frequency of the
oscillating loads imposed on the blades. The compressor designer would
then be able to determine whether blade resonance is likely, leading to
blade failure.

Some degree of success has been reported in determining,
approximately, the stall speed; prediction of the number of stall cells
for a given flow condition still remains one of the major unsolved problems
of rotating stall research.

Theoretical studies of rotating stall have mostly been attempted
using small perturbation theory* in which the equations of motion are
linearised. These analyses are then strictly valid only for small velocity
perturbations about a mean flow condition; however, the pressure rise
(or deflection) need not be small**,

1.2.1 Some observed small amplitude disturbances

The amplitude of the velocity disturbances, in contrast with the
assumption of small perturbation analysis, has been found to be usually of
the same order of magnitude as the mean stream velocity. Small amplitude
disturbances have in fact, been observed. Rannie and Marble” report that
Benenson at California Institute of Technology was the first to find a
clear example of a small disturbance propagating stall. He made
observations of an annular stator cascade of hub-tip ratio 0.8 with blade
solidity of about unity and found a disturbance near the cascade with
velocity fluctuations of 7 to 10% of the mean stream velocity. The
disturbance upstream was approximately sinusoidal, of wavelength equal to
the annulus circumference. Benenson found another example of small
amplitude self-induced disturbances in an isolated stator blade row in a
compressor with a hub-tip ratio of 0.6. The disturbance amplitude was
again 7 to 10% of the mean velocity. There were seven or eight
sinusoidal waves around the annulus which, apparently, were somewhat
irregular.

There appears to be no evidence that the small amplitude
disturbance represents the beginning of a large amplitude disturbance.

1.2.2. Flow models used in earlier analyses

The results of any small perturbation analysis depend largely
upon the assumptions made with regard to:

(i) the form of the cascade characteristics,
(ii) the nature of the downstream flow field,

(iii) certain geometrical parameters such as blade chord, circumference
of blade row, hub-tip ratio etc.

Nearly/

*Another type of analysis based upon the vortices shed by the blade row has
been used by some workers.

**The analyses of both Sears1o and Marble11, summarised below, were
restricted to a small turning angle through the cascade.
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Nearly all the analyses utilise an infinite actuator strip or an infinite
blade row as the flow model; the circumference is introduced later, in

some cases, as a constraint on possible wavelengths. The three-dimensional
effects likely to be of importance in blade rows with low hub~tip ratios are
not considered in any of the theories.

Some recent work by Yeh12, also using a small perturbation analysis
applied to an infinite actuator strip, suggested to the present writer a
method whereby the number of stall cells around an annulus of low hub-tip
ratio might be determined. Both the spanwise and circumferential distances
are found to be of importance in obtaining possible solutions +to the number
of stall cells.

An outline is given below of some earlier small perturbation
theories leading to Yeh's analysis; this is followed by a brief account of
the differences between the present analysis and that of Yeh.

Emnons et a113, produced the first anglysis of the problem; it
was shown that the cascade could be represented by a series of parallel
passages, with variable outlet areas to represent the blockage effect of
the stall cell. The stability of small upstream disturbances was
investigated; 4if a critical value of the effective outlet area derivative
with respect to angle of attack was attained then the disturbances could
propagate unchanged along the cascade. For lower values the disturbance
was attenuated, for higher values the disturbance was amplified. Emmons
assumed that a blockage coefficient had been determined by experiment and
that an arbitrarily assumed time delay between changes in angle of attack
and blockage coefficient governed the speed of stall propagation. Emmons
made no attempt to predict the velocity of stall propagation.

Sears1o considered the case of disturbances which were large with
respect to the blade chord. He assumed stall cells to exist, moving with
steady velocity along the cascade, and calculated their velocity and the
conditions required to produce them. The velocity field downstream of the
cascade was assumed continuous so that mixing of separated and normal flow
was completed in a very short distance. Sears introduced a so-called
"houndary-layer phase lag" which he believed to be of major importance in
determining the stall speed. This idea receives its support from
experiments on single oscillating aerofoils; a phase lag is found between
the coefficient of 1ift and angle of attack which is insensitive to frequency
and is of the right order of magnitude to explain stall propagation. Ir
this is the main controlling factor then removal of every second blade
should result in doubling the speed of stall propagation. According to
Tura and Ranniel* no such large change has been observed; however,
Stenning® using a stationary circular cascade with outward radial flow has
found there is a tendency for the stall speed to increase with decreasing
solidity*.

It is of interest to note that Sears obtained a solution showing
stall propagation occurring even with zero phase lag.

A further questionable assumption concerns the cascade
characteristic, This was represented as a continuous function of inlet
angle with zero average pressure rise across the blade row during stall
propagation. Rotating stall commences, in many cases, just after the
peak pressure rise.

Mar’ble11 re jected the boundary phase-lag used by Sears and
considered the inertia of the fluid outside the cascade as controlling ﬁhe
stall phenomenon. Attention was concentrated on the variation of static
pressure rise as the cascade approached stall. According to Marble, at

stall/

*For the solidities normally used in compressor blade rows this effect
appears to be negligible.
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stall the static pressure rise decreased to zero, and remains so for all
higher incidences, the turning angle being virtually unaffected. There

is therefore a discontinuity in static pressure at cascade inlet

resembling a square wave., Marble then showed that the imaginary part of
the complex function representing a source at the origin has a discontinuity
close to the origin. By combining the imaginary parts of an infinite row
of sources and sinks a model was established to present the static pressure
distribution. The velocity perturbations associated with this distribution
of static pressure must induce flow incidences sufficient to stall the
blades at one end of a stall cell and to unstall them at the other, By
satisfying these conditions the angular speed of stall propagation, the
extent of the stalled region and its dependence upon operating conditions
together with the pressure loss due to stall, may be deduced. The velocity
of stall is the same as Sears! value with zero phase lag.

Agreement was shown between the theory and an experimental value
of the propagation Speed1measured.in a compressor. Marble considered this
fortuitous although Wood > thought it possible that the disturbances caused

by stall were actually small so giving the close correlation between theory
and experiment.

Stenning16 extended the theory of Emmons and obtained the velocity
of stall propagation in terms of the air angles, disturbazce wavelengths and
static pressure rise coefficient. In a further analysis® the theory was
developed to include boundary-layer effects. Briefly, Stenning assumed
that the stall cells produce regions of flow separation which do not mix
with the downstream flow. The wake behind the cascade then consists of a
number of free jets discharging into a region of constant pressure.
Conditions downstream of the cascade are thereby ignored; a solution is
obtained for a stability criterion and stall speed by equating a
perturbation potential function derived for the cascade entry with its
equivalent for the upstream flow field.

The expression derived by Stenning for stall speed implies that
only pure sinusoidal disturbances traverse the cascade since the velocity
depends on wavelength and harmonics would travel at speeds different from
the fundamental. Stenning and Wood'”, considered the analysis inadequate
in this respect and not in agreement with observations. Other criticisms
which have been levelled at this analysis are:

(1) The stebility criterion and speed of stall propagation can only
be determined after measurement of the disturbance wavelength.

(ii) Numerous observations (including those of Stenning) have shown
that pressure fluctuations occur in the downstream field.

In an Appendix to his paper, Stenning considered an alternative
assumption where the fluid from each blade passage mixed without pressure
recovery immediately after leaving the cascade. The downstream flow field
is then a continuum. The true condition lies between this extreme and
that of the free jets discharging into region of constant pressure and,
according to Stenning will be closer to one or the other depending on the
relative size of stall region to that of the blade chord.

For the assumption of zero pressure recovery Stenning obtained
a solution for stall speed; for large wavelengths and zero pressure rise
coefficient this reduces to the Sears-Marble result.

Wood15 made similar assumptions to Emmons and Stenning but
considered the blade chords to be small compared with the wavelength
disturbance. As a result the propagation speed was found to be independent
of frequency. The effect of the boundary-layer time delay was also
considered (in the manner of Stenning) and found by Wood to decrease the
propagation speed.

Similar/
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Sipilar analyses using sma%l perturbation theory have been made
by Whitehead ! and Rannie and Marble”,

1.2.3 Yeh's analysis

The small perturbation analysis used by Yeh12, with an infinite

-actuator strip of finite span, considered the general case of flow with a

small stationary inlet velocity distortion and the effect of the actuator
on the resulting small stationary outlet distortion.

Because of the linearisation of the steady equations of motion,
the distortion can be separated from the actuator induced disturbances; the
latter can then be expressed by a steady potential function in terms of wave
numbers related to the blade span and a "circumferential" distance. By
using the continuity condition across the actuator together with the
assumption that the distortion velocity remains parallel to the main flow,
Yeh related the cascade characteristics (flow angles and pressure losses)
and found the ratio of outlet to inlet distortion velocities. For the
case when the inlet distortion vanishes, he showed that the outlet
distortion could still exist under certain necessary conditions and that
this self-induced distortion could be of two basic types. These are a
purely spanwise (stationary) distortion and a travelling
distortion having both "circumferential" and spanwise effects. So that the
steady equations of motion, in the latter case, were still applicable it was
necessary at this stage for Yeh to refer his co-ordinate system relative to
the distortion.

Yeh then compared the conditions under which the circumferential
plus spanwise distortion could occur with that of the special case of a
purely circumferential distortion, from which he deduced that the latter
type always occurred first. This inference appears to be founded on the
belief that the specific wave numbers chosen for the comparison are
representative of all cases. This is not so and it is shown later that
rotating stall without spanwise effects occurs only exceptionally; the
combined spanwise plus circumferential distortion appears to be the rule.
The purely spanwise axisymmetric distortion was shown by Yeh to be unlikely
to occur before other stall modes.

The speed of stall propagation resulting from the simplified
analysis, involving as it does only a purely circumferential distortion,
has been compared by Yeh with experimental data. Relatively few results
can be compared since the analysis applies only to an isolated actuator
with the distortion limited strictly to a small amplitude. The ratio

stall speed relative to blades

= d h i
k axial velocity found by Yeh is,

(1 + ﬁ)
k =
2 cos® B, . tan B,
- 65,
where N = ——

88,
B, = inlet angle relative to blades
B, = outlet angle relative to blades.

The data used by Yeh and the above correlation (Fig.18, Ref.12) are shown in
Fige2; it would seem that the above prediction is reasonably followed.

1.3/



1.3 The present analysis

In the front stages of compressors where low hub-tip ratios are
normal, three-dimensional effects are likely to be important. The
present writer has approached the problem of small amplitude rotating

+ 8tall in relation to the isolated stator of a moderately low hub-tip ratio
compressor stage. Some of Yeh's techniques have been adopted; the
following analysis differs, mainly, from that of Yeh in that:

(1) A rotating co-ordinate system has been used at the outset;
the stall cells are stationary in this framework and the
flow is steady.

(2) The potential function equations derived for the present
low hub-tip ratio model are radically different from those
of Yeh.

(3) Circumferential wavelengths are a fractional part of a
circumference,

(4) The distortion involves both spanwise and circumferential
effects.

(5) The conditions under which the potential solutions are valid
are rather restricted; it is necessary that there be a large
number of stall cells, that the disturbance is small, that
there is little radial shift of the streamlines, and that the
absolute exit flow angle is small. (See Appendix I.)

2. Description of the Flow Model

Consider an actuator disc, having an infinite number of

infinitesimally small blades, whose axis is coincident with the axis of

a circular annular passage of uniform section. The axis of the passage
represents the x direction extending from - upstream to « downstream.
The disc is located at x = O. Any fixed point within the annular passage
may be described by means of a system of orthogonal cylindrical co-ordinates
(x, o, 6) as in Fig.1(a). The inner and outer radii of the annulus are
denoted by Ty and T, respectively.

The components of the absolute undistorted velocity are denoted
by U= U(r) parallel to the axis and V = V(r) circumferentially.
Since the flow is considered to be in radial equilibrium at the stations
X = tw, in general the axial component U of the main flow will be
dependent upon radial position. The absolute flow angle, f§, is

V(r)
p(r) = tan*

U(r)

A pattern of stall cells of small amplitude is imagined to be
rotating around the annulus at a uniform speed, kU. The pattern of cells
is at a fixed radius and radially of small extent; it will strictly be an

incipient stall.

By taking the reference frame as fixed within the pattern of _
stall cells, the problem may be reduced to one of gteady flow. Representing
the main flow tangential velocity component, relative to the stall pattern,
by V*, the main flow angle relative to stall pB*, is

B*/
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v*
B* = tan™? (——)
U
kU + V*
and as f = tan? < -———-——-)
U
then tan 8 = k + tan p*.

The relative position of the various angles is clear from Fig.1(a).

21 The induced velocities

The actuator disc induces a perturbation of the velocity fields
which has velocity components, relative to the stall pattern, of

b |
il

W, (x, 8, r)

W = Wy (x, 8, r)

=
i

Wr (x, 0, r)

in the axial, tangential and radial directions respectively.

Now a rotating stall is essentially a self-induced phenomenon;
it is represented in this analysis by a velocity distortion of the downstream
field generated in the actuator disc plane. There is no distortion of the
upstream field due to the stall. The generated distortion is assumed to be
convected domnstream along the flow lines at the angle B¥ relative to the
stall cells. (i.e., at the flow angle, relative to the stall, at e
downstream.) It is shown in Appendix I that the amplitude of this
distortion is necessarily very small compared with the main velocity
components.

The axial and tangential components of the stall velocity
distortion are respectively,

AU AU (x tan g* - r@, r)

s AV (x tan g* - 0, T) .

The first parameter (x tan BF - r0) expresses the dependence of AU and
AV on the flow line considered (at a constant radius); the second parameter
some dependence on r. ’

Sketch/
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o}

(r6 - x tan £})

e b |

\
N

The sum of all the various components of velocity relative to
the stall in the axial, tangential and radial directions are, respectively,

U(r) + AU(x tan BF - 0, r) + w (x, T, 0)
V¥(r) + AV(x tan B* - r0, r) + wy(x, T, 6)

Wr(x, r, ) .

These are the velocity components of the downstream flow field; upstream
of the actuator disc the AU and AV components vanish (i.e., there is
no inlet disturbance).

3«. Analysis

The continuity equation applied to the steady flow model
(i.e., relative to the stall pattern) for "incompressible" or low Mach
number flow is,

0 1 9 1 9
— (U+AM+w)+—— (VF+ WV +w)+—— (rw) = O
b'e ) r
ox r 00 r or
ow 1 aW6 1 0 3AU 1 9
or X2 (rw ) +— +—— AV = O

as, in general, U = U(r) and V* = V¥(r) only.

dAU oAU
Now = . tan BF
dx 3(x tan B¥ - r0)

1 oAV -0AV
and -_— = .
r a6 3(x tan B* - r0)

The assumption that the distortion remains parallel to the relative ma%n
flow and is unaffected by the velocity perturbations of the actuator disc,
gives,

AvV/
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AV = tan ﬁg* . AU oo (1)

where fF is constant at a given radius.

oAU 1 oAV oAU oAV
. Then, + — = + tan gF - = 0
o0x r 98 3(x tan B* - r6) 3(x tan g* - ro)
The continuity equation is now reduced to
awk 1 awe 1 9
__.—+——-+———(I‘Wr) - O. XX} (2)

ox r 96 r or

Considering only the relative perturbation velocities; +these are zero at

X = * o and their vorticity components are likewise zero. Since the
fluid is assumed inviscid the vorticity due to the perturbation velocities,
by Kelvin's theorem, is everywhere zero. (See Appendix I on the conditions
nécessary for perturbation potential flow of the downstream field.)

A potential function ¢ is defined such that,

09 1 09 o
w = e— w = - w )
x ox 0 r 99 T or

BEquation (2) can now be written

#®% 10 1 %d %

—t—— et ———— t —— = O,

This equation may be solved by the usual process of separating the
variables. The form of the solution is largely determined by the boundary
conditions to be satisfied. These are briefly; the induced perturbation
velocities vanish at * «; the radial velocity vanishes on the annulus
walls; the tangential velocity perturbation is periodic; for the single
wave analysis it is assumed sinusoidal.

The potential solutions for a single wave are,

mx+ind
g, = Am,n e [Jn(mr) + Bm,n Y (mr)] -
. X 3
-mx+ind
g, = gm,n e [Jn(mr) + Dm,n Y (mr)]

®, applies to the upstream region and &, to the domstream region.
3, (ur), Y (ur) are ordinary Bessel functions of the first and second kind

respectively of order =n ‘and argument mr.

A _, B _, etc., are constants related to particular values of
m and n. R TR

Ir L6 is half the wavelength of the circumferential oscillation,
then
e
NN B e,
Lo

That/
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That‘is; at any radius r, it is supposed that only an integral number of
waves n, can be contained around the circle of length 2=r.

Observing the radial boundary conditions, w_=0 at r = r. and
r i
r=r. then

t
JA (m ri) ) {n (m ro)

1
Yﬁ (m ri) Y£ (m ro)

= 0 cee (h—)

where ' denotes differentiation with respect to r. Hence for a given
ratio of hub-tip radii, solutions may be found to the above Bessel function
boundary equation in terms of the numbers m and n. These are examined
in detail in Section 5.2.

Two important relations can be found from the potential
functions, equations (3). Denoting hereafter, conditions immediately
upstream and downstream of the actuator plane by suffixes 1 and 2
respectively then,

wg, iqwx1

eee (5)

Vo, ‘iQka

n
where q = — .
mr

Applying the continuity equation to the flow across the actuator
disc, we have, noting that there is no disturbance velocity component
upstream of the actuator,

e+ AU cee (6)

w. = W
X1 2

L. The Cascade Characteristics

The steady flow through a cascade section of any given geometry,’
in terms of the inlet flow angle pB,, is fully determined by any pair of
independent flow parameters. The two parameters most frequently used, as
in the following are,

(1) the exit flow angle §B,,
(i1) the loss in total pressure.

With stall of small amplitude propagating around the cascade, the flow
relative to the blades is essentially unsteady. The problem is reduced to
one of steady motion by fixing the reference frame in the rotating stall.

Lol TFlow angles

Considering first the exit flow angle f,. For small flow
variations,

Aﬁz = ﬁ' Aﬁi,

where N is a constant equal to the slope of the f, versus f; curve
at the cascade operating point.

Now/
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Utan B+ AV + w

Now tan (ﬁ + AB) = 9
U+ AU + W
AV + g tan B
o Atanf = - - - (AU + wx) = sec®f . A8
cos? B
Lo o= {(av + W) =~ tan B (AU + wx)} . vee (7)
Hence  (AV + Wea) - (AU + Wxg) tan B, = N[we1 - Wy, tan 8,1, .. (72)
N 2 A tan
where N = cos P = i . eee (8)
cos® B, A tan B,

Using equation (5), equation (7a) becomes

(84U tan B, - AV) + Wy, (tan B, + iq) = Wy, N(tan B, - iq) ... (9)

4,2 Pressure losses

With P, for undisturbed total pressure and p, for

perturbation total pressure, then

p
Pep+ — [ (U+U+w_)* +(VELAV+m g #U)? ]

P +p =
£t 5t >
p
£ Pip+ — [P +(kU+V*)? ]+p[U(AU+Wx)+(V*+kU) (AV+we)] .
2
p 2 e s
Now P, = P +; [P +(xU+v*)®*] , by definition

. Py p+p [U(AU+WX) + (V*+kU)(AV+we)] .

To the first order, the equation of motion in the axial direction is
awx v* wa 1 op
1% = -, (see I.3b)
o0x r 96 p ox
With the condition of irrotational perturbations,
1 awx Bwe
r 40 ox
and the above equation becomes
P(Uon+V*¢We)+P=O
p, = p [UAU + (V* + KU)AV + kDwg] . .. (10)
The/
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The loss in total pressure across the cascade for the main flow
alone is,

i}

p
Py - Py E.Z[If+(kU+Vf)2]

For the perturbed flow,

(Pti + ptl) - (Ptz + ptg) (o + MB) g [(U + Wxﬂ.)z + (Vi" + Wei)Q]

where ® is the loss coefficient for the main flow and &% +the
incremental change of ® due to a change in B, as a result of velocity
perturbations.

Ignoring products of small quantities,

pl? . 2%
?t1 --Apt2 = _;_{N» sec® @, +? (WX1 + Wg, ta,nﬁi) } .

With AM® = 2M A8, and equation (7), then
pJci —pts = pU {M(Wei -WXi tan ﬁa.) + 0 (WXi +W61 tan Bi)} s

where M is a constant equal to half the slope of the ® versus B,
curve at the operating point of the cascade.

Using equation (10) together with equation (5) in the last
expression,

iqk(wxi+vvx2 )-(AU+AV tan B,) = M wy, (iq=tan B, )+Gwy, (1+iq tan 6,). (11)

He Solutions

The foregoing equations (9) and (11) represent the cascade
characteristics; together with the continuity relation across the
actuator.disc, equation (6), and the assumption that the self-induced
distortion is convected at the angle pg* relative to stall, equation (1),

it is now possible to eliminate AU, AV, Wy, and L and solve for M

and k in terms of the quantities ¢, @, N and the flow angles,
B, and g,.

Two expressions for WX1/AU can be found using equations (1),
(6) , (9) and (13155). Equating these, rearranging and separating the real and
imaginary parts we have, eventually,

(14b,b#) (b, =Nb, ) + (bF-q?b, )B+gk(1-N)

M = cee (123.)
b, bF+g®
(142402 ) + (14, bF-kb, )N+ (1+b, bF)
a.n.d M - ss e (12b)
. bi’b§

where for convenience, b = tan S.

Equating/
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Equating (12a) and (12b), k can be found as the roots of,
EC +F¢ + Gk +H = 0 eee (13)
where E = -2b,
F = 4o, b+ (N+1)+b] +1bF +0(1+17 )
G = ={2b,N(g®+b] )+(b, +b, ) (14 +2b2 )+ 20, (1417 )}
H = (1+b§){bZ+Nbi+q?(1+N)}+6(1+bi)(q?+b:) .

That is, the speed of stall propagation is a function of the cascade
operating point characteristics and wave parameter, ¢.

5«1 Bvaluating M and k

When some radial section of the cascade is operating close to
the "stall point", the parameter 2M is equal to the rate of change of
total-pressure loss coefficient with change of inlet angle recessary for
stall to propagate at that section. The speed of the stall is then kU.
This "necessary M" is given the symbol Mnec to distinguish it from the

actual value to M which can be obtained from measurements of cascade
performance. The actual value of M is denoted by M £ Stall will
be supposed to propagate when, ac

nec act
at a given radial section.

For a compressor stator it is normal to find some radial
variations in the values of N, b, and b,, depending upon blade design
and operating condition. The application of the analysis to an actual
stator, together with estimates of Mact’ so enabling prediction to be

made of the conditions under which stall first propagates, is not attempted
here. It is important to find how the wvalue of Mnec is influenced by

the parameter g for prescribed values of b, and N with b, as
independent variable.

 As the calculation of k and Mnec proved fairly lengthy it was

decided to develop a simple programme for the University's D.E.U.C.E.
electronic digital computer.

Fig.3(a) shows the variation of Mnec with q for several values

of b, with N=Db, =® = O and Fig.3(b) the corresponding values of the
stall speed ratio, k. . The significant characteristic of Fig.3(a) is that

for constant values of b, , Mnec decreases to a minimum and then increases

as q dis increased. This characteristic is typical for a wide range of
values of N and b, . The conclusion is drawn that a blade section on

the point of stalling and having specific values of b, , b, and N will be
most likely +to stall with a value of g corresponding to the minimum of Mnec'
The previously arbitrary nature of q 1is now absent, g being fixed by Mmin

(minimum for Mnec) for a particular b,, b, and N.

Values of Mmin are shown in Fig.4 for a wide range of values of

b, and b, and for three values of N. These three N values have been
chosen to represent blades having high, medium and low solidities; these

are N = 0, 0.2 and 0.4 respectively. In all calculations the effect of the
pressure loss coefficient ® has been ignored. The values of k and q
corresponding to the M _; =~ values are shown in Figs.5(a) and 5(b) respectively.

It/
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It is seen that for N = 0.2 and 0.4 in Fig.h and Fig.5(a) a
line is drawn to indicate q = O, This line is a validity limit since,
for the present analysis, no relevant meaning can be attached to values
of ¢® < 0. (See boundary conditions related to equation (3)s)

5.2 Solution of boundary equation

Equation (4) may be written,

() = - = 0
T ()
Y'(—. >
n
r
(o}
h =

wnere o IIII'O.

Using the tables of Bessel functions18’19 the first three roots of the
equation f(u) = O have been found for ri/%o = % and the first and

3 . . .
second roots for ri/'ro = % 3 these are shown in F.g.6 in the form n/u
against n, for convenience.

Now q = s by definition

n
mnr

il

\q —

For a particular blade section, r/fo, if N and the flow angles
are known, a value of q for stall propagation can be found as outlined in
Section 5.1. For a given hub-tip ratio, ri/fo and using the above
expression, values of n may then be found. Notice, however, that n is
required to be an integer.

An asymptotic solution exists for the Bessel equation f(u) =0
such that for large values of n, n/u tends to unity for all roots
(see Appendix II). At any radius, therefore, there is an upper limit to
q dmposed by the boundary conditions,

€eZey at r = r

I'O
- (saY): q < 2.
2

and at r = r

5.3 Effect of cascade geometry variation

It may be possible by suitable choice of cascade geometry to
either increase Mmin or to reduce the actual value of M and so delay

the onset of stall. Stall is supposed to commence when the actual M,
which is the measured rate of change of total pressure loss coefficient
at a particular blade section, equals the value of Mmin'

Comparing the data of Fig.l4 at the same flow angles but at
different values of N it will be observed that, for the range of angles
chosen, Mmin increases as N increases. If high values of N can be

construed to mean lower solidity then, other things being equal, the onset

of/
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of stall should be delayed by choosing lower solidity blading. There is
the possibility, however, that varying the cascade geometry to provide a
more favourable Mmin’ may adversely affect the actual M values,

According to the present theory o > O +to satisfy equation (3).
_ It should not be possible for rotating stall to exist at high N values
with certain combinations of b, and b, since ¢ will be less than
Zero,

6. Application of Solutions

The criterion for predicting the onset of rotating stall, namely

Mact = Mmin’ is applied to a single isolated stator at a particular radius.

Estimates may be made, by adapting conventional techniques*
(see Ref.21), of the performance of a blade row with a specified geometry.
The total pressure losses and flow angles can be estimated, at a given radius,
as functions of inlet angle. From this information the variation of Mmin

and Mact with flow coefficient is derived, their point of intersection,

fixing the stall condition at this radius. This procedure may be extended
to other points along the blade span and the radius found at which stall is
first initiated.

6.1 Example
Suppose that an isolated stator row with a hub-tip ratio,
ri/fo = %, first stalls at the tip when b, = tan ﬁg = 1.1,
b, = tanﬁz = 0.1 and
A tan B,
N = — W = 0.2,
A tan B,

From Fig.5(b) we obtain q = 0.47.

.A.t r = r s q_—'— = = = O.h—? »

From Fig.6 we obtain n =7 (a second root solution),
i.€., 7 stall cells.

The corresponding value of k = 0.35 from Fig.5(a) and of

Mmin = 0,965 from Fig.lh.

7. Discussion

The principal result of this report is that a frequency of stall
propagation can be obtained for a restricted type of rotating stall. The
main assumptions on which the analysis is based are:

(i) Small perturbation theory is used which limits the amplitudes
of perturbation and self-induced disturbance velocities.
Although most reported cases of rotating stall are known to
have large amplitude disturbances some results do confirm that
small amplitude disturbances can exist.

(11)/

*Radial equilibrium or actuator disc techniques using Howell's cascade
correlation.
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(ii) Either, a large number of stall cells are formed and the absolute
flow angle at exit is small (this exit flow is assumed a fairly
close approximation to a free-vortex), or,

(iia) The absolute flow angle at exit is zero. This assumption is
necessary for a potential solution of the downstream flow field.

(i4i) Only a small radial shift of the streamlines is allowed.

(iv) The self-induced disturbances are convected at constant amplitude
along the undisturbed stream-lines.

(v) The assumption that an actuator disc can replace the blade row
ignores the inertia effects within the blade row.

(vi) Only an isolated stator is considered: there are no interference
effects from other blade rows.

(vii) Inviscid and incompressible flow.

7.1 Changes in number of stall cells

In the example considered above, values of B, B,, N and r/r,
were chosen such that n was, conveniently, an integer value. The stall
criterion might have applied to slightly different conditions so that a
non~integer for n was derived. It is suggested that this may give rise
to the observed effect of unsteadiness in the number of stall cells under
steady flow conditions., Cases of thls6k1nd are fairly common and are
reported by Rockett, Rannie” , Stenning” and others. It appears that the
number of cells can remain at, say, eight for a time and for no apparent
reason, suddenly change, for instance, to nine cells. An examination of

Fig.3 shows that at high values of b, the curves of M near Mmin are

relatively flat with change of the parameter q. Small changes may
occur in the value of ¢ without appreciably altering the stall criterion,
producing the observed change in number of stall cells.

A tentative explanation can be also given to the large changes
reported in the number of stall cells for small changes in throttle setting.
It is seen that for the same value of q-%L , (Fig.6) there is more than one

0
solution for n, as there are many roots of the solution to the Bessel
equation. Considering, for examnle, the case where the hub~tip radius

ratio is 0.5, at a value of q-—— = 0,459 +the third root gives n = 8.

To
A small change of q-—— to O.4b, gives a steady value of n = 4 for the
second root. o

Adequate supporting evidence for this explanation is lacking.
The observed changes in number of the stall cells formed may be accompanied
by changes in both propagation speed and character of the stall cells.
The amplitudes of the velocity fluctuations within the cells are generally
large which, strictly, invalidates the assumptions on which the theory is
built,

7.2 Further work

A large size, low-speed, two-stage compressor having a hub-tip
radius ratio of 0,75 has been constructed at Liverpool. All blade rows
are removable and all blades can be set at varying stagger angles. The
flow upstream of the stages is completely free from obstructions. With
this test-rig it is hoped shortly to run a series of tests with only the
inlet guide vanes and first row of rotor blades installed followed by the
second row stator blades. By this means it is hoped to simulate the
conditions of operation required by the analysis.

Measurements/
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Measurements can be conducted, at varying throttle, of upstream
and downstream total pressure and flow angles, etc. At stall initiation
hot~wire anemometry can provide information on the number of stall cells,
their speed of propagation and amplitude of velocity disturbances in the
cells, A check can be made on the criterion of stall cell formation
assuming that small amplitude velocity disturbances are involved. Whether
the tests envisaged will produce such a phenomenon cannot be foreseen.
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Symbols
b tan B
b* tan /%

Jn(u), Yn(p) Bessel functions of first and second kind respectively,
of order n and argument

k velocity ratio (kU is velocity of stall proPagation)

Le half wavelength of circumferential oscillation

m decay factor for velocity perturbations
Aw
M
203,
n number of complete circumferential waves
A tan B,
N -
A tan B,
I AYER
N .
AB,
P static pressure perturbation

Py total pressure perturbation

P static pressure associated with main flow
Pt total pressure associated with main flow
q n/mr, (a wave parameter)
r,X,0 co-ordinates, (see Fig.1)
rsTy inner and outer radii of actuator disc
u,v axial and tangential velocity changes at X = fe

(see Appendix I)
u,v main axial and tangential absolute velocities

AULAV axial and tangential flow distortion velocities
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W oW, W,
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vorticity vector

velocity perturbations induced by actuator disc relative
to stall

main flow velocity relative to stall, VB + V#2
absolute main flow angle

main flow angle relative to stall

change of flow angle

orthogonal components of vorticity along the radisl,
circumferential and axial directions respectively

mr
o
fluid density
velocity potential
total pressure loss coefficient for main flow

incremental change of ® due to change of f,

angular velocity of rotating co—ordinate system.
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APPENDIX I

The Conditions Necessary for Perturbation Potential Flow

Euler's equations of motion for steady, inviscid flow in a
steadily rotating reference frame, expressed in circular cylindrical
co-ordinates are, '

2

dw, W 3w, ow, (wgtrQ) 1 3p

W,k — =+ W - = - ——

or r 09 ox r p or
w_d(w,r) w, dw ow 1 dp
=z 0 +-—9 o + Wx-——g + ZWbQ = ——
r or r a9 9x pr 06

ow, Wy Ow, dw_ 1 dp
W,—— t— —— + W — = ==

éor r 086 9x p ox

The accelerations relative to inertial space were found by
adding to the accelerations seen by the observer in the reference frame
rotating at angular velocity, Q, the Coriolis and centripetal accelerations
(see Fig.1(v)).

For w,_ write U(r) + AU(x tan B* - ro,r) + wx(x,e,r)

and for wy write V*(r) + AV(x tan g* - r0,r) + wb(x,e,r).

These are the axial and tangential components of velocitg at any point in
the flow relative to the rotating stall (see Section 2.1). Substituting

the velocity components into the Euler equations and ignoring products of
small quantities we obtain,

vE 9 d V+AV+wd )2 1 9p
M Wr+U Wr_( ) L2 . (1.1)
r 00 ox r p or
0 ] 9 1 dp
w [ — Gve) + 2r :l ¢V — (WWewy) + Ur — (M) = = —— (1.2)
TLoor 36 ax p 30
U V¢ 3 3 1 3p
W —t — (AU+WX) + U — (AU+Wx) E e soe (Io 3)
Tar r 90 3x p x
Now AV = AV(x tan f*-ro,r)
JAV oAV
oy ——m = [ ] ta.n ﬂ*
ox a(x tan pE=rO M
1 oAV -0AV
and -— e =
r 39 3(x tan B*-r0)
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In essence, the flow distortion, (AU, AV), outside and downstream of the
disc has been assumed to be unaffacted by the perturbations (w_, Wos W )
caused by the actuator disc. x r

In equation (I.2)
0AV V¥ AV oAV

U— +— = (U tan g*-Vv*) = 0
dx r 08 3(x tan p*-rd)

since V*/U = tan B*, by definition. A similar result is obtained in
equation (I.3), i.e.,

dAU  V* 9AU
U +_— - O.
dx r 09
Rewriting (I.2) and (I.3)
3 awe Bwe 1 dp
Wr[—' (xV*) +Z)r]+V*—+Ur———- = - —— eee (I.2a)
or a6 0x p 06
oU  V* awk ow 1 op
W, —-+‘—-———+U-—'—Wx = - —— se e (1033.)
or r a6 ox p ox

The vortex distribution

The flow at stations far removed from the actuator disc
(x = =w and X = ») is considered to be in radial equilibrium. If at these
stations conditions of radially uniform stagnation enthalpy and entropy exist,
the so-called "radial equilibrium equation" may be written as,

d (UB) 1 d .
— (@) 5 — @] = o.

It is possible to specify any vortex relation V = V(r) and so
obtain a solution for U = U(r) wusing the above equation. The functions

d oU
— (rV*) and -—— can now be found in equations (I.2a) and (I.3a)
or or

respectively. However, further development of these equations has been
found to be virtually impossible except in the special case of "free-vortex"
flow for which a remarkably simple result is obtained.

Assuming free-vortex flow, Vr = constant, it is easily shown that

0 - ovu
U is constant and so the terms l:— (rv*) + 20r| and — , in

I

or or

equations (I.2a) and (I.3a) vanish identically. The conditior imposed by
the assumption of a free-vortex seems to be somewhat restrictive; however,
small departures from this condition appear permissible whilst the
simplicity of the resulting equations is still preserved.

Consider the agbsolute tangential velocity distribution
constant —
—_— 7

r

vV =

together/
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together with the axial velocity distribution
U = constant + U

where Vv is any function of r. Then (I.2a) and (I.3a) become,

) ow ow 1 dp
wr-—(r'w'r)+V*-—-9+Ur-—-e- = = e —
or a0 ox p 06
ou v aw_ oW 1 op

W, - e =+ [ == = = ——

or r 96 ox p ox

after omitting terms of second order of smallness.

v u )
If now — and — are made small then the terms w, — (rv)
U U ar
ou
and w,— can be ignored as being of the second order of smallness.
or
Hence,
aw, ow 1 dp
V*——e-+UI‘——-—-6- = 0 — — eee (I.2b)
a0 ox p 06
V* ow ow. 1 dp
_Zsy X = -, ees (I.30)
r a0 ox p ox

By cross differentiating equations (I.1), (I.2b) and (I.3b) in
pairs the pressure terms can be eliminated to give the Helmholtz vorticity
equations,

V* 0F oE, 2V oAV
— — U——- = — — XX (I.LI-)
r 36 ox 30

V* om on 2V , 3LV

e v o | e = --—-—(-—-—-— > eve (195)
r 46 ox r ox

V¥ 02 oZ -

— — U—— = O oece (I.6)
r 00 ox

where E, n and & are the vorticity components due to the perturbation
velocities alone along the axial, tangential and radiation directions
respectively, i.e.,

1 0 awr
E = -‘{'—(me)——""}
r L dr S13)
ow ow,
T X
N = — ==
ox or
1+ ow._  o(rw,)
7]
e R
Tr b 1¢) ox

The/
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The LHS of equations (I.4), (I.5) and (I.6) can be shown to be the product

of the resultant undisturbed velocity W = VU + V** and the convective
rate of change of perturbation vorticity along lines at the downstream

v*

2
— , for a constant radius. With
U

s as the distance along the line, equation (I.4), for example, can be
written as,

(x = w) relative flow angle, B} = tan™?

dg dg V* 3 2V 3AV
W —
ds dx r 46 ™ 96

1'.—— = — —— = e m—

Now because of the presence of the AV component of the
self-induced distortion (see Section 2.1) which originates, incidentally,
in the centripetal acceleration term of equation (I.1), a convective rate
of change of & and m is apparent (I.4) and (I.5).

In equation (I.6), U— =0 and £ is constant or zero; ¢ is
dx
taken to be zero for reasons stated above.

The RHS of equations (I.4) and (I.5) can be written respectively as,
2v oAV

- ——

r 3(x tan B¥-r0)

v AV
and - tan ﬁf .
r 3(x tan FF-ro)

Both of these expressions are zero when either:-

(1) r »> w; in the limit for finite blade height this reduces to the
infinite actuator strip employed by Yeh!2 as the flow model, or,

(i4) V = 0; since the self-induced distortion supposed present only
aft of the disc, the condition V = O is only required at stator exit.

Neither of these two conditions is particularly satisfactory.
The sbove expressions can, however, be reduced to the second order of
smallness by means of the following device. Consider the expression,

. a v AV v
Te— = = = - — (aV) .
dx r 3(x tan B*-r6) r
Integrating,

< XEHEHw e

where Ax is a representative axial distance measured from the origin in
which the change of vorticity, 8§ occurs. All perturbation velocities,
it may be argued, may be represented by functions of the form

e-mx+1n6’ (x > 0), which is not necessarily a potential function.

~mx+1in0

Then, if (for example) W o« e
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~mAx+ind
Wx (<]
= = e* (say)
WX, eln6

where Ax is an axial distance in which the axial velocity perturbation
has decayed to 1/e of its original value

o mAX = 1 .

Inspecting orders of magnitude in (I.7)

vV, r Ax -
E = ——-<—3><—-—>(AV'), for large m

U r r
0

& = 1 6 1

i.e., with the assumptions of large m and small absolute exit flow angle,
the vorticity change must be of the second order of smallness. Hence

E = n = & = 0

which is the potential solution in Section 3. Finally from Fig.6, large
values of (mro) occur, in general, for a large number of stall cells n.

(The higher roots of the boundary solution give large mrp for small n

but these may be of less importance than the primary root.)

The conditions necessary for downstream perturbation potential
flow are a large number of stall cells together with a small absolute exit
flow angle. An implicit assumption in the above analysis is that the
exit flow is close to a free vortex distribution. If the exit flow angle
is zero, however, the necessity of restricting the analysis to a large
number of stall cells vanishes.

APPENDIX IT/
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APPENDIX IT

Asymptotic Solution of Bessel Function Equation, £(u) = O

In the above equation for large values of p and with
% the second term becomes very small compared with the first

r./r

7o
tefmi The second term may then be neglected and the result is
I 0.

n

Now 3w =30y, _w) -9 ,I= o0
Jn-‘l (b) = Jn+1 (b) -

Some values of J are available in the tableszo, for p = 50 and
100 and n=1, 2, 3, .... 100+ which can be used to extend somewhat the
solutions of Fig.6 (for r.,/r = % only). These are shown in Fig.7

indicating sufficiently that for large values of n,

n r
— =qg—=>1 for all roots.

u s

W3S
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FIG.2

O Stator, solidity 1-0 Stenning (6)
A Stator, solidity 05 Stenning (6)
V Rotor, solidity 1-0 Stenning (6)

O Rotor, solidity 1-0 Costilow
and Huppert (7)
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FIG.3

(a) Varigtion of necessary M with bl and wave pdarameter, q for
b=0, N=0, w=0.
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FIG. 5(b)
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