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SUMMARY

SAFEPR R Ay

The development of the boundary layer in a velocity shear layer is
discussed for two-dimensional flow and for axisymmetric flow of both
compressible and_incompressible fluids. It is shown that the solutions
obtained by Ii'?~ and Glauert™ for the two-dimensional flow of an incom=~
pressible fluid are applicable in the more general case afier suitable
transformations of coordinates have been made., New definitions are shown
to be necessury, and are given, Tor the displacement and momentum thicknesses
of such a boundary layer. Reynolds nuubers based on these thicknesses are
given, and it is shown that any phenomenon (such as transition to turbulence)
which occurs at a constant value of such a Reynolds number will occur at a
point which, as the length scale of the flow increases, first moves down-
stream ana then moves slightly upstream. This is shown to be in qualitative
agreement with experimental results on a blunt cone in a supersonic flow.

A quantitative comparison of the theoretical and experimental values of
displacement and momentum thicknesses is attempted, and no disagreement is
obvious; unfortunately the accuracy of the experiments so far available is
insufficient to give positive confirmation of the theory of this note,

¥ Now of University College of Wales, Aberystwyth.
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1 INTRODUCTION

In recent years, interest has grown in flows which contain vorticity:
this interest is due mainly to the highly curved shock waves which occur
upstream of bodies travelling at very high velocities. The fluid which has
passed through the curved portion of the shock possesses vorticity, so that
there exists a velocity (and fiensity, etc.) shear in the flow even when it
is far from the surface. A new problem immediately arises: the effect of
the boundary itself on such a flow,

The concept of a thin boundary layer, as originally suggested by
Prandtl, i1s so useful that we are reluctant to discard it; and all the
workers in the field so far have assumed that such a layer exists, even
when there is vorticity further away from the body. This assumption is not
easily Jjustified at present, except on grounds of expediency; it implies
that although vorticity exists in each of' two neighbouring regions, the two
regions may be treated separately. The distinction between the regions is
made by supposing that viscous eftects are negligible in the region further
from the wall (this region will be referred to as "the external flow", or
"the external shear flow", throughout this note). In the boundary layer
(that is, in the region nearer to the wall) the vorticity is produced mainly
by viscous effects due to the presence of the boundary; in the external flow
it is produced by a mechanism which is upstream of the region, and whose
nature is unimportant. At present there is little evidence to show that the
division betwcen the two regions is as distinet as the corrcsponding one for
a boundary layer developing in a uniform flow. Unfortunately no exact
solutions and insufficient experimental results are at present available for
comparison, and the concept can be uscd only in so far as it predicts
correctly such phenomena as transition to turbulence.

Most of the workers in the fiecld have considered the development of
the boundary laycr in an incompressible flow over a flat platc, in the case
where the flow has a uniform velocity shear far from the plate. Lil nas
shown that the Howarth transformation (see equation (3)) is sufficient to
convert the equations of a compressible shear flow into those of an ingom—
pressible shear flow. There has been some discussion (between Glauert® and
Li”) of the appropriate boundary conditions to take at the outer "edge" of
the boundery layer; the arguments involved can be found in Ref.2 and will
not be repeated herc. In the present paper results will be presented using
the solutions obtained from both methods, the difference in the boundary
conditions being specified proeciscly in section 2.3.

It is shown first that cither solution can be extended to cover the
casc of a shear flow over an axisymmetric surface, both for the incompressible
and for the compressible case. iAs with all solutions so far produced it is
assumed that all the variables (velocity, density, ctc.) in the boundary layer
can be expressed as a power scries in a parameter which is proportional to the
vclocity shear far from the surface. This series is not shown to be conver-
gent, and the only justification given for its use is that of qualitative
agrecment with experimental results.

The solutions of the boundary layer equations assume, of course, that
there is no turbulencc in the flow, and it is of iamportance to know 1f, and
where, turbulence occurs. Instability of a laminar flow can be due to many
causes, only one of which is discussed herc. This is referred to as a
boundary=-layer instability and it occurs for a constant value of the Reynolds
number, R6 , based on local conditions and the momentum thickness of the

2

boundary layer. Ixperimental evidencelF suggests that this is the kind of
instability which causes transition to turbulence in the boundary layer on
& blunt cone in supersonic flow.



Reference has been made above to the displacement and momentum thick-
negses of the boundary laycr, but the meaning of these terms is less clear
than for boundary layers developing in a uniform flow. A fuller discussion
of this point is given in section 3, where it is shown that there can be
some ambiguity in their definition. Such quantities can be defined, however,
and are related respectively to the mass deficit and to the momentum deficit
which occur due to the presence of the boundary layer. The definitions
chosen here reduce to the usual ones when the external flow is uniform, but
make the evaluation of the momentum thickness in the experimental case less
accurate.

It is shown that the Reynolds number, Rx’ based on conditions at the

edge of the boundary layer and on thc distance, x, downstream is not the

most suitable parameter for predicting transition to turbulence (as was

suggested by Moeckel5). Instead, the Reynolds number, R6 , based on certain
2

reference conditions (whioh are defined in section h) and on the momentum
thickness, 62, is used., It is found that, as the length scale, r, increases,

there is a region in which the position of transition moves upstream, although

this position is always downstream of that obtained when r is very small.
This impli=zs (see Fig.12) that there is also a region in which the position
of transition moves downstream as r increases.

Comparisons with experimental results obtained by the author4 are made
wherever possible; these results were for boundary layer development on a
blunt conc in supersonic flow. Due to the difficulty of calculating 62 fronm

the expcrimental results, the Reynolds number R6 is considered as well as
1
R6 ; there is no obvious reascn why this quantity should be inferior as a
2

transition parameter to the quantity, R6 , whirh has previously been con-
2

gsidered. The accuracy of the experiments was insufficient to give more than
qualitative agreement with the theory of this paper, and a further series of
experiments designed to test the theory would be desirable. As far as it
goes, the agreement is satisfactory.

2 THE FUNDAMENTATL 3SOLUTION

2.1 The equations of the motion

Glauert2 assumes that the boundary layer approximations hold throughout
both the regions considered: +that is, using the notation of Fig.1, the com-
ponent of velocity, v, normal to the surface is of a smaller order of magni-
tude than that, u, along the surface in the direction of the flow. On the
other hand, the rate of change of any quantity in thc direction of u, is of
a smaller order than that in a direction normal to the surface, He supposes
further that there is no pressure gradient in the direction of u in the

external flow: that is, that 8p/dx is zero in this region. Under the boundary

layer assumptions, we have dp/dy is zero everywhcre; it follows that dp/ox is
zero in the boundary layer as well as in the external flow - that is, the
pressure is constant throughout both the regions considered. Li3, on the
other hand, finds an induced pressure gradient due to the presence of the
boundary layer, so that the (constant) term -1/p dp/dx must be retained in
the equations of motion.

w»
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The momentum equation for the flow in either region is

du u . ., 3/ u
PRdx TPV ey 7 ax+ay\\“ay> ’ (1)

where p is the density and p is the viscosity of the fluid at the point (x,y).
The equation of continuity is, to a good approximation

0 k J k
'é‘;c‘(Pr»; u>+‘53;(91‘1 )= on 2

where k = 0 in the two-dimensional case and k = 1 in the axisymmetric case.
In this equation the distance of the point (x,y) from the axis is replaced
(as is usual in an axisymmctric boundary layer) by the distance, Ty of the

point (x,0) from the axis of symmetry. This form is also used in the external
flow, since for the important region near the edge of thc boundary layer it
is 8till smell compared with ry and the approximation remains acceptable.

It is convenient to use a transformation of the independent variables
which is a combination of the well-known ones originally used by Howarth -and
by Mangler. These new coordinates (X,Y) are given by the integrals

X 2k k ¥

X = /G% dx , Y = Gl) /F-pi’;dy , (3)

Q

where r is the length scale of the motion (in the case of a blunt cone, for
example, r is the radius of the tip), and Pq is a refercnce density. In the

two-dimensional incompressible case, of course, X = x and Y = y.

A stream function, ¥, can be introduced, by virtue of the equation of
continuity (2). We define this by the equations

In terms of the new coordinates (X,Y) defined in equation (3), the stream
function is given by

I
w = &, ()
and
HAJRN k
v o= ==l (L) &L _ Po (x v 94 ,
P \r oX P \ry oY



where Y! = dY/dx. Substituting these expressions in the momentum
equation (1), and writing Hp = B p,s 2 constant*, we have after some

manipulation

2 2
ap % sty . _13p, Mo ddy (5)
OY 3X3Y = 0X 442 poxX = payd

and this is identical with the form obtained for the two-dimensional
ingompressible case, In this equation, Glauert? takes dp/3X = 0, and
Li’ finds that 1/p dp/dX is a function of x only, and becomes a constant
(AW/Z, say) to the required order of the problem in the later analysis

with the coordinates (E,n) that are introduced in the next section; these
values will be assumed here without proof. The expression for u, given
in equation (h), is also the same as that in the two-dimensional incom-
pressible case,

2.2 The external flow

This is the region in which viscous effects are negligible although
there may b= vorticity in the flow. The vorticity is introduced into the
fluid upstream of the region considered by a mechonism such as a curved
shock wave in the case of supersonic flow, or & nonuniform grid in the case
of subsonic flow. The nature of the mechanism is unimportant, since there
is no vorticity producing mechanism in the region itself,

It is assumed that the boundary layer is contained entirely within a
region of velocity shear in the cxternal flow; in practice, however, such
an external velocity shear cannot extend to an infinite distance from the
wall, but is itself only a layer. The model chosen here is shown schemati-
cally for x = O in Fig.2: +the shear layer, as defined below, exists
for all Y less than Y s for Y greater than xx , the velocity

component in the direction parallel to the surface remains constant, and has
the value u . In the cases of axisymmetric and compressible {low, the shear

layer exists for all y less than Y (which may be a function of x), where
Y. and %” are related by the second integral of equation (3). This model

permits a direct comparison with the blunt cone experiments: in this case
the velocity u is the velocity at the edge of a boundary layer on a sharp

cone (that is, far downstream Irom the tip).

The shear flow to be considered in the two-dimensional incompressible
case is that in which the velocity shear is uniform: that is

du u Q
< 0

aY r

where ug is a reference velocity (at the point x = 0, y = O, of Fig.2)

and Q is a non~-dimensional velocity shear., This corresponds,in the morc
generel casc, to an assumption that the shearing stress 1s indcpendent of yi
that is

s ~ e T - e .

* This is only true if the pressure is constant <8 Glauert assumes. ILi also
assumes constant pressure in Rgf.1 and in his reappraisal of the problem

with induced pressure gradient”? he considers only incompressible flow. It is,
however, perhaps reasonsble to regard the pressure graaient as being small and
to neglect variations in pp as a first approximation, especially since the
assumption of proportionality between p and T is itself only approximately
true.

-7 -
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It is of interest to note that for this form of the external flow, the
right hand side of equation (5) is identically zero if we use Glauert's
model (dp/dx = 0) - that is, that viscous forces have no cffect on the
flow (not merely a ncgligible effect, as stated in the introduction).

In the absence of a boundary layer, the shear flow 1s defined by
u = u /1 + 2 Y) s (62)
co o \ r

but in the presence of a boundary laycr, thore may be a displacement
effect which must be included in this formulation. If the displacement
thickness of the boundary layer is given by y = 51, or Y = A1, Glauert?

has showm that the appropriate form for U, is

f

u, = uop »rg(y-aa,‘)—*J (6b)

in the two-dimensional incompressible case. The value of A1 can be

determined only when the boundary layer solution has becn obtained;
since, however, A1 is zero when x = 0, and the boundary condition which

Glavert applies at the cdge of the boundary layer is at the point x = O,
this does not cause any practical difficulty in the solution of the problem.
It should be noticed that the displaccment effcct acts on the position of
the edge of the shear laycr as well, and this will now be in the position
given by Y = %m + A1 instcad of Y = xm. Ti2 takes u = U, given by (6(a))

as the valuc outside the boundary layer but takes the zero for Y in the
external shear layer to be at the edge of the boundary layer, i.e. Y could
bc replaced by Y-A in (6(ag) where A is the boundary layer thickness (not
the displaccment thickness) in the coordinate of Y.

The usual boundary layer transformation
0 0
LR (7)
will be made, and in terms of this variable, cquation (6) becomes

u, = uol;‘l + «E;(n-m):l , (8)

where 1 = ny when Y = A1, and where

p X

. 9] o]
E = = 9
ey (9)

is a parameter depending on the velocity shear in the flow.



In terms of the physical veriables x and y, the equation (6) for the
velocity in the external shear layer QO < y < v, t 81 becones

. P k y -
u = u E'I +Q 1 E—dy-& .
e o‘” r \r' P 1
)

As shown in Fig.3 for an incompressible fluid, if r1(x) is an increasing
function of x (on a blunt conc, for exemple, r1(x) « X, if a suitable

origin is chosen for x), the lines of constant velocity approach the surface
a8 X increeses, and the boundary layer grows into a region of higher velocity.

2.3 The flow in the boundary layer

In this region the stream function ¥ must satisfy the full equation (5).
At the surface Y = O, we must have u = O and v = O: that is 9y/3X = O,
3y/dY = O for all X. At the outer edge of the boundary leyer, the boundary
condition is either:-

(i) +that u is given by Ugg (see equation 6(a)) when x = O.

This together with the absencc of a pressure gradient is a sufficient
condition and esutomatically satisfics the rclation u - U, (see

equation 6(b)) as ¥ » oo for all X. Thus the value of b, does not
enter into the specification of the problem. (This is the boundary
condition used by Glauertz.)

(ii) that u » Uso as Y > o for all x. (This is the boundary condition

uscd by 1id with, however, the zcro for Y taken at thc cdge of the
boundery lsyer.

The solution is expanded in powers of the parameter &, defined by
equation (9); it is assumed that such en expansion exists and 1s convergent.
We look for & solution of equation (5), therefore, of the form

Hou K A\ y
Vo= Jmpo (fo(ﬂ)+€f1(n)+---}, (10)

where m is given by egquation (7). This expression satisfies equation (5)
for all values of & if

2 f’"' + f' fn - O
o} 0 0O
(11)
" LY - | 1" -
2 f1 + fof1 fof'1 + 2 fof1 A1

where dashes denote differcntiation with respect to m. The boundary
conditions may be written either as

]
fO(O) f(‘)(O) 0, fo(n) -1 as N>

(12a)

f1(O) 0, fx(n) >4 as M- oo

[

£1(0)

-9 -
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which are the same equations as those given by Li6 and Glauert2 when

A1 = OQ; or as

£,(0)

i
il

£1(0) 0, f£l(n)>1asm>0w

il
o

il

|
} (12b)

£,(0) = £1(0) , fin) > masm >

which are the cquations given by Li3 with A1 # 0. The author is grateful

to Mr. Glauert for making available to her the numerical solution of the
second of equations (11) with Aﬂ = 0 subject to the boundary conditions
(12a). The solution with A1 + 0, subject to the boundary conditions (12v),
has been obtained from the solution of similcr eque.tions given by’Murray7.

In this case A1 is found to be 1.7207. The numerical solution of the first

of equations (11), which is the familiar Blasius equation, is well known.
The values of fé(n) and f;(n) in each case are given in Table 1, together

with the asymptotic forms of the functions fo(ﬂ) and f1(n).

The velocity distribution in the boundary layer is given by the
expression

u o= oug <?é(n) + E f;(n) + ...> . (13)

Graphs of u/uO as a function of m are shown in Fig.4k for three values

of £, using Glauert's solution; there is no gualitative difference from

Li's solution. OCareful inspcction shows a point of inflexion in the curve
for the largest value of &; that such a point exists in every casc is shown
by a study of the asymptotic form of equation (13) as shown in Appendix 1.

It is interesting to compare this with similar "kinks" in the cxperimental
curves obtained for the velocity profiles on a blunt cone: a typical curve
(drawn on an arbitrary scalc) is also shown in Fig.k. It must be pointed
out, however, that this theory is only a first approximation, and the
existence of this point of inflexion may not persist in higher order approxi=-
mations; so the agreement may be entirely fortuitous.

Fig.5 shows a sketch of the velocity profiles at different stations
of x in both the two~dimensional and the axisymmetric cases. The figurcs
have been drawn to illustrate Glauert's solution (which is slightly more
complicated): if ILi's solution is used, the lines y = v, * 61 are not

relevant. It should be emphasized that v, is, in the axisymmetrical case,

a function of x as shown in the figurec.

2.4  Conditions at the edge of the boundary laycr (Glauert)

Inspection of Fig.lh suggests that the velocity u may be taken to have
reached its asymptotic value (that is, ue) when 7m % 4.7 which corresponds
to a value

ug g (1 + 38) (14)

for U 5 the value of u at the edge of the boundary laycr. This is confirmed

by inspection of the numerical values given in Table 1: it is found that

- 10 =



u = u, within 41 per cent when m is greater than about 4.7. It is now
possible to calculate M&’ the Mach number at the edge of the boundary layer.

To do this we require a relation between the density and the velocity in the
boundary layer, If we assumc that the stagnation temperature is constant
throughout the boundary layer (this is not exactly true, but is a good
approximation), and that the ratio of specific heats, v, is 1.4, it is easy
to show that

P 2
-9-=1+o.2M2<-~l‘-;> , (15)
P 0 ur.
)

where Mo is the Mach number corresponding to the density o and the velocity
Uy We also have the relation

4

z

2
. /P8
M5 = M /‘Pm- 2> ,

o]
o O

where 2 is the value of the density at the edge of the boundary layer.

Using the equations (14) and (15) in this relation, we have (to the first
order in the small quantity &

- w2
My = M+ M <3 + 0.6 ~10> E (16a)
or, in terms of the coordinate X defined by the first of equations (3),

p X
Mg = M+ M <3+o.6 i 2>9j--9- . (16b)
o 0 o ) r. P,

The experimental variation of M6 with X is shown in Fig.6, and this cnables

the experimental value of Q to be deterrined. The value of Mo in this casc

is taken to be the value of the Mach number on the surfacc of the cone in
the absence of the boundary layer when the static pressure on the surface
is equal to that on a sharp conec*, and the stagnation pressure is that at
the stagnation point at the tip of a blunt cone. Thus, for a blunt cone
whose included angle is 15° placed in a supersonic stream whose undisturbed
Mach number is 3.12, the value of Mo is 2.14; the valuc of @x, the Mach

number at the edge of the boundary layer very far from the tip (that is,
the value of M at the edge of the external shear laycr) is 2,92, For the
same conc in a stream whose undisturbed Mach number is 3.81, the value of
MO is 2.34 and that of Mw is 3.35. PFairing a straight line through the

experimental points of Fig.6, we find that the valuc of Q is 0.20 when the
free-stream Mach number is 3.12, and O.14 when the free-stream Mach number
is 3.81. Further, it can be seen that the values of E for which M6 = Mm

are 0.06 and 0,07 in the two cases respectively - the theory is not expected
to be valid for values of E as large as this. The values obtained from Ii's
golution are not significantly different from these.

* As was the case in the experimentsh.

-1 =
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3 DISPTACEMENT THICKNESS AND MOMENTUM THICKNESS

When a boundary layer develops in a uniform stream whose velocity u,

is a constant, the displacement thickness is defined by the integral

8, = j <1 -""‘P"’)dy ’ (17)

a1d the momentum thickness by the integral

)
u \
5, =/ i (1--2- dy . (18)

u u
Pelle

0

When U, is not constant the form of these equations is not necessarily

the same. It is important, thercfore, to investigate the physical interpre-
tation of these quantities.

Before doing so, however, it will be valuable to point out how con-
fusion can arise due to the usual practice of using the velocity at the edge
of the boundary layer as a reference velocity. In the development of a
boundary layer in a uniform flow, this velocity, Ug s is precisely defined,

although the position of the edge of the boundary layer is imprecisec. When
the flow outside the boundary layer is a shear flow, however, the velocity
ug is known only at the point (0,0), and it is this value (u  in the notation

of the present paper) that is +token as the reference veloeity. In the present
problem, of course, there is also the given velocity, u but this depends

on the extent of the external shear layer, and so is irrelevant to the flow
in the boundary layer, at least for small x: it is not, therefore, suitable
as a reference velocity for boundary layer problems.

It is not, however, sufficient to replace the referencc gquantities Pe
and u, in equations (17) and (18) by the reference quantities p_and u_, as

the integrals would not then be convergent; and, as pointed out above, the
quantities P and u _are not suitable reference values in the boundary leyer.

In order to preserve as much as possible of the usual physicael significance
of the two thicknesses, we proceed as follows.

3.1 Displacement thickness and mass deficit

The physical significance of the displacement thickness of a boundary
layer developing in a uniform flow has been discussed in some detail by
Lighthill®. Similar arguments may be applied in the present case, and these
are given in Appendix 2 for the two-dimensional incompressible case. 1t is
sufficient here to regard the displacement thickness as a measure of the
mass deficit duc to the presence of the boundary layer: in this case, the
surface y = 61, where 61 is the displacement thickness, represents the

position of a displaced boundary which, in the abscnce of viscous forces,
would give the correct flow outside the boundary layer. It follows that
the magnitude of the displacement thickness at any station satisfies the
equation

o0 co

j pu dy = J Pe Yo dy , (19)
1

o}

- 12 -



end this is in agreement with (17) when Pe and u, are constants. An

alternative form of this eguation is

81 o
/‘ Pe Yo dy = j‘(pe u, - pu) dy , (20)
(0] (o]

where the right hend side is the mess deficit between the real flow along
vy = 0 and the fictitious inviscid flow along y = O (as distinct from y = 61 .
It may be of interest to note that 51 can be regarded as the difference

between a total displacement thiickness

/ N
— ; - _Q.E‘.m \
0

which is appropriate to the whole shear flow (including both the boundary
layer and the external shear layer), and a partial displaccment thickness

appropriate to the external shear flow in the abscnce of a boundary layer.
It can, incidentally, be shown that 616 is negative in the axisymmetric
case.) This definition, however, appears to be less fundamental than that
given by equations (19) and (20), =2nd will not be considered further.

It is shown in Appendix 3 that for the solution of section 2, the
displaccment thickness is given by

r\k uoX 2 2 p
81 = (FI) bt {1.7207-+O.4769h MO -<?.4687-+O.73474 Mo > E+...j

eoe (21a)

using Glauert's solution, and by

§ = .l’.\k / “OX Fq 7207 + 0.L769% u2-(8 6683 +1.6392 M 2 E+
1 = r1/ '\, P 2 i‘ . + U 10 . + 1 o see
c 0

ees (211)
using Li's solution. The experimental volues of 61 for the boundary

layers on blunt cones have bcen rccalculated (the incorrect formula was
used in Ref.L) and the results are given in Table 2, and plottcd as a

function of £ in Fig.7. The velues of £ have been calculated using the
values of 1 found in section 2. To investigate the variation with & it
has been found most convenient in Fig.7 to plot, not 61, but the ratio

k w X
81/<§:> /ETT?_ ; the theoretical curves of equation (21) are shown on the
1/ N too

graph, and so is the value of the ratioc far downstrean (thet is, the value
on a sharp cone). It can be seen thet, although the experimental results
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are rather scattered, they are not inconsistent with the theoretical curves:
the accuracy of the experimental results is unfortunately insufficient to go
further then this, and there is not enough cvidence to say that the

equation (21) is verified. It should be noted that for small values of &,
and therefore of x, the effect of the boundary layer on the curved part of
the blunt cone may be considerable, and this has not been allowed for here.

3.2  Momeptum thickness and momentum deficit

There are two ways of interpretating the concept of momentum thickness
physically. PFirst, we can consider it as a measure of the deficit of momentum
due to the presence of the boundary layer: this nomentum deficit we writc as

o0 [e,0]
D = /‘ P, ue2 dy - ]~p u2 dy (22)
81 0

which is the difference between the flow of momentum in the inviscid flow
round the fictitious surface y = 61, and the flow of momentum in the real

flow. It is not difficult to show that, if Pe and u, are congtants, then

the definition of equation (418) corresponds to

ternatively, we can integrate equation (1);then in ihe case of zero
pressure gradient, using (2), we have

k - r X -
r\ &/l /A4 |
T "'(’E' == w— b sing — D (23)
W w)o <r4) de <r> _l ’
where T is the true shearing stress at the wall, and (TW) is that every-

where in the external shear flow (that is, the value at the wall in the
absence of a boundary layer). It follows thet, in a uniform flow (with no
pressure gradient),

T k — k
AN A A W AN
2 r1) dx{‘ r) %J
Pe Ye
and this is sometimes used as an equation defining 62.

The obvious definition uses an analogy with equation (20), in which
the right hand side is the mass deficit: that is, we write

o0 [o00]

2 2
qudy=/ Pe By ¥
(o] 61+62
giving 61+62
2
j p,u, dy = D . (21.)
61



This means that the flow of momentum in the actual flow is equal to the
flow of momentum, outside the surface y = 61 + 62, in the inviscid flow

outside the surface y = 61; this idea must not be taken too far, however,
as the surface y = 51 + 62 is not a stream surface. A convenient way of
writing this definition is

61+62

o0
2 2 2
/ b, 1, dy=[(pcue-pu)dy, (25)
o o
and this is thc expression used for calculating cxperimental values of 62.
(It should be noted that, since the calculation of 82 involves the sub-

traction of the two comparatively large quantities 61 and 61 + 62, the

experimental determinetion of 62 is less accurate than thet of 61).

Since the shearing stress, To? is equel to the quantity m du/dy)y_o,

the easiest way of calculating the theoretical value of D is to use the

u
equation (23) and write the left hand side in the form /u Q. i -l H
\ ay ° ay y:o

this may be integrated with respect to x, using the fact that D = O when
x = O. The result of this integration is that s

/'r“k f“ﬁ;ﬁf \ & 2
= \.;.) \I-p*-g*- (0.66L = (1=-0) & tees) Po Y (26) .
1 o ©

where ¢ = fg(O); Glaucrt gives ¢ = 0,795, and Li gives ¢ = 2,955, Using

this result, and the definition given in equation (24) it is shown in
Appendix 3 that the momentum thickness is given by

s et

k poX - -
62 = <%L\ ‘/—"gﬂm 10,664 - <9.646 + 0.0882 I 2) g +...}
VAR ° J

Po Y%
eeo (272)
for Glauert's solution and
“k "‘&'X' -
&, = 5—) I-=-=-9- {0.664 - /2.2 i+ 0.5452 M 2\ I3 +,,,l
2 <%1 A Po B \ ’ o) 2 ¢
(27v)

for Li's solution. The experimental values for the boundary layers on

blunt cones have been recalculated, and are compared with the theorctical
curves of equetions (27a) and (27b) in Fig.8. The agreenment between theory
and experiment is perhaps less good than that for the displacement thickness,
but as pointed out above the accuracy ol the experimental determination of
the momentum thickness is rather low. At least there is no great discrepancy
observable. It should be remarked that the accuracy of the experiments 1is
not greut enough to distinguish between the different curves of Glaucrt and
Li'

- 15 =



L, REYNOLDS NUMBER £ND TRANSITION

The Reynolds number of the flow at any given point depends on two
quantltzes - the unit Reynolds number (Reyrnolds number per unit length)
and & length which is associated with the point concerned. Various com-
blnatlons of these two quantities can occur, and some nay be more appropricte
than others in any given problem.

In discussing the probleﬁ of transition to turbulence in a boundary
layer on a blunt cone, Moeckel™ considers thc Reynolds number, 1 , based on

local conditions at the edge of the boundary layer and the dlstance down=-
stream fronm the tip: that is, R.X = Py ugx/ug. He assumes that at the

position of transition RX always hos the same value, and points out that
since the unit Reynolds number o5 u6/u5 increases with x on a blunt cone
(so that, for a given value of x, fs ué/pa—ana therefore RX- is smaller on

a blunt cone than on a sharp cone) transition will occur further downstream
on & blunt cone than on a sharp cone. It was found experimentally, however,
in Ref.h4 that this result does not apply for large values of the tip radius
(for velues of x/r less than 100).

A more appropriate Reynolds number is likely to be one which is based
on the thickness of the boundary layer rather than on x, which takes no
account of the way in which the boundary layer develops. It was found
experimentally3 that transition occurred when the Reynolds number based on
momentum thickness, R6 , was between 650 and 700, and when that based on

2

displacement thickness, R6 » was about 5000; these values seemed to be
1

appropriate, within the experimental accuracy, for all the cones tested
(even when the various quantitics have been recalculated using the defini-
tions of this note).

Tor reasons similar to those discussed in scction 3, the most suitable
value of the unit Reynolds nuwiber is not that at the outer "edge" of the
boundery layer, but the volue o uo/uo - the only given value of the problem.

Using with this value, the valucs of 61 and 62 glven in equations (21a) and

(27a) respectively, we now have

ok u X 5
. o . o M° -
1 <}1/ l L7207 + 04769 M

- <?.4687 + 0.73472 Moz) £ ? (282)
/

U. X
maj ( o 66l - o 646 + 0.0882 M > Z } (2%a)
2

for Glauert's solution. Similarly, using Li's results we have

i

o
it
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I'\k ii::i:ir* 2 2
351 = (;-v \/-—-Zl-:- L1 L7207 + 047694 M ° - <8.6683 +1.6392 M > g+...] ,
eee (28b)
and

R, = -?-k o Do ‘06621” 24250 +om521v12\§ (29b)
62 = I‘1 p‘o . ~e o D% O/ St e . .

The values for the experimental results can also be calculated using the
relations

p_u ) p. u_ o
R, = ~2-2—1 , g = 2-.9.2 (30)
1 s 2 %o

where, as in section 3, Por Uy and K, are the volues of p, u, pu respectively

at the surface of a blunt cone in the absence of a boundary layer (that is,
the values aporopriate to the static pressure on the surface of & sharp
conc, and to the stagnation temperature and pressure behind the normal bow
shock in front of the cone). This value is not, however, that taken for
the largest value of x in each case: here the value of 6/y(>° is nearly

unity, and it is not expected that the theory of this paper would hold as
there is a gradient of vorticity in this region. For the sake of comparison
the value of the Reynolds number at this point has been calculated using
a value of pu/u intermediate between p ud/pO and p_ %ﬁ/Hm: this inter-

nediate value was taken to be that appropriate to the velocity when y = O
on the tangent to the velocity profile u(y) at the estimated outer "edge"
of the boundary layer.

The experimental values are shown in Figs.9 and 10, and iompared with
T, v
1 o
+ and R (.-\ o
X 62 r) Po Yo X
given by equations (28) and (29). The velues of these quantities very far
downstream (that is, the valucs on a sharp cone) are also given. Agoin it

is clear that the experimental results do not conflict with the theoretical
ones.

i N ¥y
the curves for the guantities R 21 —
61 r Py Uy

Using the equations (28) and (29), writing R6 for either RB or R6 s

1 2
and assuming that Ty is proportiomal to x (as it is very nearly -except ¢
near the tip-on a blunt cone), we have
% 2,2 )
Ry = Ax® - Bx /T (31)

where A and B are positive constants depending on the conditions in the flow
upstream of the cone. This equation holds only foy small x and for large r;
for large x or for small r, the value of R5 is A'x2 where A' is a constant

(appropriate to the sharp conq) which iz grester than A, Fig.11 is a sketch
showing R6 as e function of xZ for cones of diffeerent tip radii in the same

strean: as r increases, so do both the value of x at which R6 departs
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L
significently from Ax? and also the value of x at which R5 sensibly reaches

A'x%; it is therefore reasonable to fair in the curves as shown in the
diagram Tor intermediste values of x. A line has been drawn at a constant
value of RB’ and this intersccts curves corresponding to successively larger

values of r in the points 01, C 05’ etc.; it is evident from the diagram

2’
that the values of x at these points first increases and then slowly
decreases again as r increases. If this constant value of R6 is that at

which transition to turbulence occurs, this means that as r increases from
z=ro the position of transition moves first downstream ond then upstrean
again. This is in agreement with the experiments of Ref.lk.

An alternative way of expressing this is to regard (31) as a relation
between x and r for a constant value of R6 (this is not wvalid for large

values of x/r, of course). If this velue of x is plotted against r, a curve
like the full line in Fig.12 is obtcined. For a sharp cone, the value of
x for the same value of R6 is also shown on the graph, and it secms reasonable

to complete thc curve as shown by the dotted line. This again shows that,
as r increases from zero, x first increases and then decreases aghin.

It is interesting to note thet the value of x at tragsition for very
large values of r is the same as that predicted by Mocckel”. He, however,
finds thet this is the largest possible value of x at transition, whercas
the present theory predicts that larger valucs are possible (and that, in
any given free-stream conditions, there is en optimum value of r which gives
the moximum value of x at transition). In order to predict this maxdmun
value, a higher-order theory to that given in this paper is required, and an
investigation into this is being made at the prescnt tine.

5  CONCLUSIONS

(1) The thcories of Li1’3 and Glauert2 for the development of a boundury
layer in a two=-dimcnsional incompressible shear flow have been extended to
opply to axisymmetric compressible shear flow.

(2) The significance of the displacement thickness and the momentum
thickness of such a boundary layer is discussed, and unique definitions are
given which rcduce to the usual form for a boundary loyer developing in a
uniform flow. A comparison is made with sone experimental results® obtained
on a blunt cone: although the accuracy of the experiments was insufficient
to give & positive confirmation of the theory, the results were at least not
inconsistent with the theory.

(3) Reynolds numbers basced on displecement thickness and on momentun
thickness are defined. It is shown that if transition to turbulence in

the boundary laycr occurs at a critical valuc of one of these, then, as the
length scale of the flow incrcases from zero, the position of this transition
moves first downstrean and then slightly upstream again. This is in agrce=
ncnt with the experimentael results on blunt cones.

(%) The moin justification of the theory of the present notc scoms to be
the conclusion (3) above. To make further progress it would seem to be

neccessary either to perlform a more accurate series of experinents, or to
find & complete solution of thec cquations of motion.

AT T ———r
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LIST OF SYMBOLS

)
%ﬂ’A’A B Gonstants
a,a,b,c
01,C2 points in Fig.10
D momentun deficit due to presence of boundary layer
fo,f1 functions of m occurring in the stream function
k in two dimensions, k = O; in axisymmetric flow, k = 1
K a constant
n strength of source distribution equivalent to boundary layer
M Mach number
P static pressure in flow near surface
Py stagnation pressure in free-strecam
r length scale (e.g. radius of tip of cone )
r, distance of point (x,0) from axis of symmetry
Rx Reynolds number based on x and conditions at edge of btoundary
layer
R6 Reynolds nuuber based on displacement thickness and on
1 conditions at the surlace y = 61 in external flow
R6 Reynolds number based on momentum thickness and on conditions
2 at the surface y = 61 in external flow
X,y physical coordinates (see Fig.1)
X,Y transformed coordinates (see equation (3))
¥ ay/dx
?,?o transformed coordinates (see Appendix 3)
u,v velocity components in x,y directions, respectively
) thickness of boundary layer
61 displacement thickness of boundary layer
62 momentum thickness of boundary layer
B,4, values of Y when y = 0, 61 respectively
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Suffices

0

LIST OF SYMBOLS (Contd)

non-dimensional coordinate (see equation (7))

non-dimensional coordinate (see Appendix 3)

particular values of M as defined in Appendix 3

non-dinensional parameter (see equation (9))

mn - 1 07207

viscosity

density

shearing stress at the wall

strean function

non-dimensional velocity shear in external flow

reference values (values at x = 0, y = 0) - except fo

values
sharp

values

values

values

at outer edge of external shear layer (and on surface of
cone in inviscid flow)

in external flow

in external flow in absence of boundary layer

at edge of boundary layer
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APPEIDIX 1

THE ASYMPTOTIC FORif OF THE VELOCITY

It is well known that the asymptotic solution of the first of

equations (11) is
fO }\. + Ke + 0 <) )

where N =1 - 1.7207 and K is a certcin constant; it is easily verified that
the asymptotic solution of the sccond equation takes the form

~ L 3w /4
f1 3 K + 3.4687 - 5 Ke A+ 0 \xj] .

It follows that, near the edge of the boundary layer, the velocity, u, is
given by

2 -
u — -2/l _ A 1.2
;: 1 + A + Ke [. iy + g AT E + ..{] .

The second derivative of this quantity is

2, ¢-
P Sy R B N e
u Ke 1 + 32 )\- g + ot-] s

o) ..

@

and we see that, at least to the order of th approxmmatlon of this note,
there is always some value of A (given by A° = 4/E) at which u" vanishes:

that is, there is alwaeys a point of 1nflex1on in the curve of u as a function
of A (or m), whatever the value of E.
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APPENDIX 2

DEFINITIONS OF DISPLACEMENT THICKNESS

We shall follow Lighthill6 and consider the two-dimensional incom-
pressible case only (except in method 1, where we include compressibility).
He considers four methods of defining the displacement thickness, 61, for a

boundary layer developing in a uniform flow, and shows that they are
equivalent; we do the same here where the boundary layer develops in s
shear flow.

(1) Tlow reduction: the surface y = O is displaced to the position
¥ = 61(x). Then 61(x) is such that, if there existed a flow (which will
subsequently be referred to as the fictitious flow along y = 61(x))along

this surface which is without viscosity and which has the same tangential
velocity component as the given flow far from the surface (that is, u = u,

far from the surface), then the mass flow in the fictitious flow is the same
as that in the given flow (including the boundary layer) along vy = 0. Then
we have

/ P U, dy = ] pudy (32)
61 o)
or
K e
] Pe e & = /(Pe v, - pu)dy . (33)
o} e}

In the incompressible case, where p is constant everywhere, this reduces
to the form

%

/ u dy = ]m(ue -u)dy . (34)

o

(2) Equivalent sources: here we consider the normal component of velocity
Just outside the boundary layer. This is

y y oo N
vo= | Wy o oo [Wg o [ -u) dy - fll-?-d
- oy v = ox = dx Ye y dx Y
o 0 o )
d 90 yave
= a‘};](ue-u) dy+/-5==§'dy . (35)
0 o

The second term in this expression is the normal component of velocity due
to a flow along the surface y = O which has no viscosity and which has the
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Apperdix 2

same tangential component of velocity as the given flow far from the surface.
The first term can be regerded as the normal velocity due to a distribution
of sources of strength (volume flow rate) per unit area

o0
d
m = Ef(ue-u) dy
o

along the surface y = O, Now the flow of the "new" fluid past any point
must equal the totel outflow from the part of the surface between that
point and the point of attachment, and this is

x 8
j mdx = / u, dy
) )

thus the new fluid just fills a region, adjacent to the body, of thickness
&, as defined in (34).

(3) Velocity comparison: here we look for a streamline surface y = 81(x)

such that the fictitious flow along it (see above) has the same normal
velooity component as the given flow to the first order of small quantities.
The boundary conditions of such & flow are

u (8,) 83(x)

]

(1) et y = 61(x), v,

AV v
- 2
and (ii) when y » oo , v, = ve(61).k<?;§9 (y-81) +%-<?—~§> (y—61) T
51 oy 51

U ; azué‘ 2
3, (8081 (1) (35). (r-5) - (m;,- (2P
1 1

But outside the boundary layer, we have equation (35), and the two values
of v must be equal outside the boundary layer. Hence

oo ¥y 2
S [ (oday | = [ =2 ay + w (5,081 () - (=8) (3, )-Homl) (y-6,)2
ax e T [ T T B8 3x Jg 1 TSRy fy T4 T
0 - "1 1

0

y y
aue ue\
[ - ()
0

1
8
1aue
— ] P
= ue(61) 61(x) + j Py dy
o

-2 =

L2



Appendix 2

and finally

4

%[[’(ue-u) dy] - g—x[j u_ cly] .

)
Since u = U, and 61 = 0 when x = 0, this is equivalent to equation (34).

i (L) Mean vorticity: here we replace the boundary layer by a vortex sheet
at the mean distance y = 61(x), so that for y less than 61, u = 0, and for

large values of y, u = U, {which is the given flow). Then we can define a

mean vorticity of the boundary layer by means of the equation

o0 o o0 oo
61Lj 7dy-/3yy1=/y3;dy-j vl
g i} J
3, 8,

where the excess vorticity present in the boundary layer only is considered,
and where it is assumed that the term dv/dx in the expression for the
vorticity is much smaller than the term du/dy. Manipulation of the equation
leads, as before, to the relation (34).

3
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APPENDIX 3

A i et

EVALUATION OF THE DISPLACEMENT THICKNESS, 8,
AND THE MOMENTUM THICKNESS, 6,

2

We note first that the asymptotic solutions for fo(n) and f1(n) are

£.(n) ~m - 1.7207
and

2
f1(n) ~n/2 -an + b ,

where the constants a and b are different in the solutions of Glauert2 and
Li3, and are tabulated below, In this table are given also the constant Aﬂ

of equation (11) in the main text, the constant ¢ = fg(o), and the constant
ct = (1.7207a + 2b + 2 - 20)/& which occurs in one of the integrals below.

Author A1 a b c c'
R R N -

Glauvert o 1.7207 | &.9490 | 0.7950 | 3.3171

Li -1.7207 | O 7.1879 | 2.9525 | 2.6177

Substituting the asymptotic values given above for fo(n) and f1(n) in the
second of equations (11), we find the relation a - 1.7207 = A,; this is

quite general and does not depend on the nature of the boundary conditions
taken at the outer edge of the boundary layer. The relation is used below
and it is only in the final substitution to obtain the four equations (Ahaj,
(44v), (46a) and (4L6b) that the results of this Appendix are made dependent
on the form of the boundary conditions taken.

Before proceeding to the main business of this Apvendix, it is con-

venient to list four integrals which will occur later. These can be evaluated

using the differential equations (11) and the initial conditions of (12);
the asymptotic forms of these integrals are also given:
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i

£, (n) ~n - 1.7207

j‘ £1(n) &n

(o]

H

n
jf;(n) dn f1(n)~'n2/2-an + b
[

n
j[f;(n)lz dn

o}

£1(n) £ (n) + 2£7(n) - 2£3(0) ~ m - 2.3847

il
[ £am) £1m) an

0

1
e (n) £3(n) + 3 £,(n) £3(n) + 3 en(n)-5 £2(0)- 7 Ay
~‘!12/2 -an+c' |,

where o' = (1.7207a + 2b + 2 = 2¢)/k.

We now proceed to evaluate the displacement thickness, using the
definition (19) in the main text. The rate of mass flow across the line
joining the points (x,0) and (x,y), where y is large, in the flow of the
viscous fluid along the surface y = O is the asymptotic value of the integral

y n
k p X .
jpudy: P u<-£~> }——9--—}(f'+§f'+...)dn
0 o \ry Po Yo 0 1

Y o

p\E | B 2
~Po Y <~;—> . [‘n ~1.7207 + E(n°/2 - an+ b) + ...] , (36)
1 0 ©

where

«
t
/rgi\
-l
S~
~
s
)
ot
o
[l B ]
o
O~
-0
—olo
3

— 7
k p X o
=. P T t1+o_2M2(1 -f'2-2gf' 1) + .00 | dn
r1 Po uo Q [o} o1
0

it

[

k 38 X r‘
~<‘§1.> ’,_Po__o_.__uo l_'n + 0.47694 Moz - 0.1‘- M02 g(’nz/z - an+c!) + '.:—]l

e 57
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Now for large m, the velocity profile is of the form
El'l—~1+g('n-a)+oeo 3

[¢]

and there 1s a fictitious inviscid flow along the surface y = 81(x) which

is the same as this for large m. This flow is given by the relation
‘-;" = 1+€(’ﬁ‘a)+ooo s
o)

where 1 is a new variable (analogous to n) given by

y
n = ———m [ es (38)
&) |5
0

and a is a constant. Since for large y, u ~ U, we must have

eCD

NM=a = N-a . (39)

Inverting the relation (38), we have

My X
’._wm_. =2 dn
NP U

<-?—>L it in - OL;.M SR/ - AT+ J . (40)

o

g
1

I

Comparing this relation with (37), we have that, for the same (large)
values of y,

N =T =a-as=-0.L769 M02 + 0.k M02 £ {(ﬁ - 04769 M°2)2/2 -e/2 4

+ 0.4.769L. M (n +a) +c‘} Feoa
e (1)

Substituting from the equation (41) in the expression (36) for the mass
flow rate, we have
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M - k poX ' - >
[ pu dy ~ Po Yo (—;;—) o v lzn - 1,7207 ~ 0.14-769l+M0 +

o
2 2
+ & {(‘I + O.L»M§> <:f'l —0.4769L;.M<2)>/2 -a <1-:|-O.l|-7694MO> +b +

+ 0.1+M§ (—;12/2+O.1+769L+(7_‘H-a)M§+c')} + ...:‘ . (42)

But the rate of mass flow across the line joining the points (x,5 ) and
(x,y), wherc y is large, in the fictitious inviscid flow along y = 6 (x) is

the integral

y

_/ Pe Y ¥ ] dn
)

1

1l

(8
“1
/rkJ“oX . . ((7-3)° (7~ 3)3
o @ et S,

where M = ﬁ1 when y = 8,. This expression has to be equated with the right

i

hand side of equation (42)., After some manipulation, the result of this is
that

2
?}1 = 1.7207 + O.47694 Mi + & 1.72078.-(1'-252-91) -b=-0.4 Mi c! -

) ; L7694
- 0 1 <o.47694 M°> 2 a)] rns

cer (43)

But we have, using (40), that

\k H X
6 = "'I“"' 2 n - O. M2 -2 2 - a n L] 3
1 <r1) J P Yy [q1 4 o E(n1/ & ﬂ1) *

Substituting in this expression from equation (l|.3), we find that

r k uoX 2
(;;) == [1.7207 + 0LLT69MM ~
0 [0}
-E {:b+0.)+Mi o +1.72O7(1+O.1+M§) <—1—-'—7§97- - a>} + ] .

s oo (44)
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Using the values for the constants given in the table at the beginning of
this Appendix, we have that, using Glauert's results,

/

b, = \/...._... 1,7207 + O, 476941\4 - (3.4687+ 0, 73hT2M ) E + J,
T (Ll-l'!-a)

and, using Lit!'s results,

‘J. —
T 0 il .2
51 = <‘;’> Po u 1.7207 + 00476944‘60 - (8.6683 +1.65921\uo) g + o'.] .

eeo (4id)

In order to calculate the momentum thickness, 0., it is necessary

I
to evaluate the integral 2

81+62 , , . K -—-l:*—}-{“ 'l’]1+'n2
lr (0] - ol -
/. pe ue dy = Po uo \r1> Po uo /: [14+2 E(n-—a) + ...] dn
61 ﬂ1

1l
)
o
=
o

k p X "~ - _ - -
() [ e ) -

where m = ny + ﬁz when y = 51 + 52.

Using equations (41) and (43) in equation (22) we find after some
manipulation that

D = <--) ~wL0664 5{ 0+-1—'Z—§O—7-(1.7207-a)}+...].

Using this and the definition (24), we have

— - | -y -
0.66L -L*) —o+h1?l (1.7207-a)]§ Foaee =T+ ELn§+2n2(n1 ~a)]+

Thus
N, = 04664 ~ E(5.206 -0 -2,1882) + ... (15)

Using the relation (40) to find expressions for n1 + n2 and n1, it is
possible to show that

- 30 ~



Appendix 3

< ) \/--—-§r - O M E[ng/Z + my(n, -a)7+---] )

and, using the relations (43) and (45) in this expression, we have

k
62 = {JL) /“~=—~'l 0.664 - E {5.206 -0 ~ 2,188a +
N Po Yo L

+ (05452 - 0.2656a) K- | + ] :
J

vee (46)

Using Glauert's results, this is

; <_.) /,.._.. 0.66k - (0.646 + 0.0882 Mz)g+...]

ces (462)

and, using Li's results,

5. = //_.r._>k '.__.}i.'—uo 664 - (2,254 + 0.5452 M2)g+ w‘
2 \?1, \/Po Yo ° |

vee  {46b)
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TABLE 1

RrPepte=y

The function fé(‘n) and £} (n)

. . O T o

renrea. o =2 - A S T ST T YT R e €

n o £i(n) | £i(n) (Glavert) | £1(n) (11 and Murray)!
|
PR | o o - -
0.0 | 0.0000 0.0000 ! 0.0000
0.2 | 0.066 0.1590 '
0. | 0.1328 0.5179 E 1.1810
0.6 | 0.1989 0.4763 !
0.8 | 0.2647 0.6336 i 2,217k
1.0 | 0,3298 0.7896 ’
1.2 ]0.3938 0.9429 3.0940
1.4 | 0.4563 1.0929 ,
1.6 | 0.5168 1.2385 3.7922
1,8 0057L8 103790
2.0 |0.6298 1.5137 4.3000
2.2 | 0.6613 71,6423
2.4 | 0.7290 1.76L9 L.,6217
2.6 |0.7725 1.8821
2.8 |0.8145 1.9947 L. 7860
3.0 | 0.8460 2,1043
3.2 | 0.8761 2.2126 L.8LL0
3.4 10,9018 2.3214
3.6 |0.9233 2.4328 | }.8593
3.8 |0.9411 2.5487
4.0 |0.9555 2.6706 4.8915
4.2 | 0.9670 2.7998
Lo 10,9759 2.93M L4.9829
L.6 |0.9827 3.0829
4.8 10.9878 3.2371 5.1517
5.0 |0.9915 3.3993
5.2 10,9942 3.5688 5.3957
5. 10,9962 3.7448
5.6 10.9975 3.9263 5.7005
5.8 | 0,998k .1123
6.0 10.9990 4..3021 6.0475
6.2 |0.999 L hOL7 i
6.4 |0.9996 4.6895 6.4207 |
6.6 10.9998 L., 8559 ;
6.8 [0.9999 5.0835 64042
7.0 |1.0000 5.2820
7.2 |1.0000 5.4810 7.2031
7.4 11.0000 5.6803
7.6 {1.0000 5.8799 7.6010
7.8 |1.0000 6.0797
8.0 |1.0000 6.2796 8.0003
8.2 |1.0000 6.4795
8.4 {1.0000 6.679 8.4001
8.6 11,0000 6.87%%
8.8 |1.0000 7.07% 8.8000
9.0 {1.0000 | 7.27% 9.0000

For large values of m, fo(n) ~n - 1.,7207

£4(n) ~ #(n -1.7207)2 + 3.4687 according to Glauert
or ~ 1 + 7.1879 according to Li and Murray
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TABLE 2

e

Experimental values on blunt cones having an included angle of 159

(a) Free-stream Mach number = 3,12

M = 2.4, M_=2.92, 0 = 0.2 from Fig.5

r X Py My 1 2 Ry Re £(from

(in.) | (in.) | (in.Hg) (in.) (in.) 1 21 Tig.5)
e S e B S ,...&.:.._JL -~ - a-«: PR . “T‘ e ‘l+

0.49 | 3.4 105.5 | 2.225 | 11.81x10 31 4.88x10™° | 3090 | 492 | 7.78x10

0.9 | 5.4 | 105.5 | 2.225 {13.61 2.15 3560 | 562 | 1.55x10~3

0.16 3.7 105.5 |2.32 |10.40 1.67 2720 | 437 | 8.26

0.16 5.5 105.5 | 2.0 116.29 1.57 1260 | 411 | 1.50x1072

0.083 | 3.5 108 2,49 6.02 0.97 1614 | 260 | 2.80

0.083 § 4.2 108 2.63 8.38 1.3% 2245 | 351 | 3,68

0.048 | 3.6 10 2,86 | 7.03 1,04 1813 | 268 {8.88

0.048 | L. | 104 2.90 | 6.34 0.99 2942 | 459 1.36x10°1‘

’ = t ‘ ;

(b) Free-stream Mach number = 3.81

il

il

M= 2.34, M_= 3,35, Q = 0.4 from Fig.5

R R L R SECT A Y et - oy T T ma2T

5

F r X Py M6 1 2 R6 R6 E(from g
{ (in.) {(in.) {(in.Hg) (in.) (in.) 1 2| Fig.5)
Trome s st = i, a5 v, S o I X B T} i £ A £ A AT W I 15 0 TS Mt Ve LI ol e s 4
|
L 049 | 3. 91.5 [2.32 113.36x10°3 | 1.56x103 11809 {211 |7.57407%
‘ 0.49 | 5.k 91.5 |2.33 113.85 4.9 1875 263 |1.51x10=3
1016 | 5.5 | 100 |2.39 | 7.38 1,08 1094 1160 |1.39x1072
1 0,083 | 3,2 143 2,66 7.46 1.77 1578 {374 11.92
| 0.083 | L.2 | 143 2,90 | 6.00 14 1270 1298 12,886
i 0.048 | 3.6 | 145 2,98 | 8.53 1,13 1830 242 |6.80
10.0&8 Ly | 145 3.4, | 8.29 4,00 3576 1428 19.34
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