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SUMMARY

Pressures have been measured at Mach numbers between 0,6 and 1,4 around
one streamwise station on a 9% thick, 60° swept wing, cambered to have & sub=—
oritical type of upper surface pressure distribution of triangular shape at
a Mach number of 1,2 and a 1lift coefficient of 0.153., In spite of boundary
layer effects which caused some loss of 1lift ocoefficient, subcritical flow
conditions were achieved at the design Mach number of 1,2 with the design
suction values over the forward part of the section, At all Mach numbers,
the flow development was closely analogous to that over two dimensional aero-
foils at subsonic speeds.
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1 INTRODUCTION

One possible solution to the aerodynamic problem of designing & super~
sonic long-range airoraft involves the use of a highly swept, high aspect-
ratio wing, on the assumption that infinite-swept-wing flow conditions can be
maintained all over the wing at the cruising 1lift coefficient, It has been
predicted theoretically! that for a suffisiently thin and highly swept wing
of infinite aspect ratio a suboritical type of flow can persist up to a
supersonic free~stream Mach number, so long as the component of velocity
normal to the pesk suction line is less than sonie, Under these conditions
the wing wave drag remains zero, By extending this concept to swept wings of
finite aspect ratio, the aerodynamic outline of a supersonic transport air-
craft oan be determined as in Ref,2, where the design cruising Mach number is
1.2, although the aoctual value does not affect the design philosophy in
principle.

The first stege in developing a suitable wing for this type of aircraft
configuration is to choose a basioc wing seotion shape, together with an angle
of sweep, to give an essentially suboritical type of flow at the chosen
crulsing speed and 1lift ooeff%c&gnt on a swept wing of infinite span. Theoreti-
cal methods have been devised”s™ for determining the geometry of aerofoil sec-
tioms having & specified pressure distribution in an inviscid, incompressible
flow, Methods applicable to two-dimensional wings are extended to swept wings
of infinite span by the addition of a flow component parallel to the wing
lead edge. There are also methods5s6 for determining the sonic range
(M = 1) pressure distribution from_a specified two-dimensional aercfoil shape
and one of these has been extended! to cover the Maoh number range between
oritical and sonic. The relationship between wing sweep, thickness-chord
ratio and 1ift coceffici~snt for various types of upper surface pressure distri-
bution is discussed in Ref.8,

These methods can be used in the project or early layout stages of an
aircraft design to provide estimates of the inter-relation between aerofoil
geometry and suboritical pressure distribution, and to predict also the Mach
numbers at which drag rise begins or at whioh separation effects such as
buffeting might be expected to appear. In gereral, good agreement can be
obtalned between experiment and theory for both moderately swept and unswept
wings at low speeds, providing the characteristics of the boundary layer are
deternined and taken into account (see for example Refs.9 and 10).

The present series of tests is aimed at extending the comparison between
experiment and theory to higher angles of sweep and higher Mach numbers, and
in particular to cover the case where the free-stream Mach number is supersonio
but the flow over the wing is still expected to be suberitical., There are
three main objectives:-

(a) To demonstrate experimentally that a subcriticel type of flow, without
shooks, oan exist at a supersonio free~stream Mach number on a lifting wing;

(b) +to determine thc extent to which viscosity and compressibility modify
the theoretical pressure distribution around the aerofoil section of an infinite
swept wing when the flow is suboritical; and

(6) to investigate the influence of the local superoritical region, pro-
duced by inoreasing Mach number or lift coefficient above the values for (a),
on the drag and shock-induced boundary-layer separation characteristics of
the section.

These tests are being oonducted on half models (Fig.1), having untwisted
and substantially untapered wings, of aspect ratio near 5 and 60° sweepback,
nounted on a body. The aerofoil sections are in general designed to have

-5 -



a suboritical type of flow up to a Mach number of arourd 1.2 using the
method of Ref.h4 modified to take account of compressibility effects - see

Appendix 2, Measurements of pressure only are made all round a streamwise
section at 71% semi-span.

For the tests reported in the present note, the wing section is of
basically RAE 101 thickness distributicn, 9% thickness-chord ratio, and
cambered to have a “"triangular" or "lineer" shape of upper surface pressure
distribution at a C; of 0.153 at a Mach number of 1.2 (Figs.2 end 3), The

results show that, in general terms, subcritical flow conditions can be
mainteined at supersonic Mach numbers, for instance at Mo = 1.2 and

CL = 0,085, aithough at the design CL of 0,153 a small supercritical region

exists which is insufficient to cause an appreciable rise in drag., No
attempt has been made in this test to determine the characoteristios of the
boundary layer quantitatively; this will be done later, however, for another
model having a thinner seotion.

The tests form part of the programme of the Cruising Aerodynamiss
Group of the Supersonic Transport Aircraft Committee (S.T.A.C.), They were
planned initially for the 8 £t x 8 ft supersonic tunnel at R,A.E. (Bedford),
However, as the scope of the activities of the S.T.A.C, widened, it became
desirable to transfer the actual testing to the 9 £t x 8 £t transonioc tunnel
of the Alrcraft Research Association, Ltd,, Bedford, This tunnel hos.a
perforated-wall working section, and a flexible nozzle which together with
auxiliary suotion from the plenum chamber surrounding the working section
enables Mach numbers of up to 1.4 to be achieved, A desoription of the
tumnel is contained in Ref.11. The tests were made in May, 1958,

Seotion 2 of this note describes the design of the model and some of-
the problems which were encountered, The test procedure is cutlined in
seotion 3, and scme comments on the accuracy of the results are given in
section 4, The results are presented and discussed in seoction 5, whioch also
inoludes a review of the expeoted development of the flow over an infinite
sheared wing, Finally, secticn 6 contains the conclusions and considers
sertain further tests which are desireble.

2 MODEL DESIGN

2.1 Experimental approach to achieving sheared-wing conditions

Sheared-wing conditions demand that the pressures experienced by the
section should be oconstant along lines parallel to the edges of the wing.
In general these conditions are not achieved near the root of a swept wing,
so that, unless the root of the wing is carefully shaped, the isobars in this
region are less highly swept than the wing and unswept altogether at the root
itself. Similarly, near the tip of the wing the isobars mey again be in-
sufficiently swept unless a careful choice of tip planform and camber is
made, On many low aspect ratio wings these root and tip effects overlap so
muoch that nowhere does the flow closely resemble yawed wing conditions,

In the tests reported here, the aim has been to measure the pressures
at e spanwise station as far away from the root as possible while maintaining
sufficient span outboard to ensure that at all supersonic speeds the Mach
cone from the tip passes well downstream of this station, It was considered
that sheared-wing flow was unlikely to be achieved, even approximately,
inboard of the spanwise station at whioh the wing root trailing edge &is-
turbance (the "rear shook" in Fig.k(a)) had passed forward of the leading
edge, (This assumes it spread along & Mach wave,) It wes therefors decided
to design an untapered wing of the required sweepback on which measurements
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of pressure would be made at a single streamwise seotlon lying aft of the root
disturbance and ahead of the tip disturbance, Nevertheless, it was realised
that there must be significant viscous effects sinoe these oconsiderations were
leading to a combination of high sweép with high aspcot ratio which in turn
demanded a relatively thick section if model strength, and hence Reynolds
number, were not to be unduly sacrifioced.

Although it would have teen desiresble to reduce the magnitude of the
wing root disturbance by having a body in which a oylindriecal shape could be
replaced by a "waisted" shape,it was hoped that this would not be nccessary
in this experiment, Provision was nevertheless made for fitting alternative
body shapes, although only the cylindrical shape was used. Later tests of
similar models have included "waisted" configurations,

2,2 Model layout

The basic model is sketohed in Pig.1, It is a half-wing-body combination
on which pressure measurements are made at 49 points on a single streamwise
section on the untapered part of the wing., This configuration was preferred
to a complete sting-mounted model because of the larger scale whioh was
possible for a half model. The basic shape of the wing section to give the
pressure distribution shown in Fig.2 has been determined by Weber's method
given in Appendix 2, '

Ordinates of the wing section at 32 pivotal points, which are relevant
to the methods of Ref,4 and Appendix 2, have been determined from inspection
of the model and are given in Table 1. The wing was found to be thin
(8,94% instead of 9%) and to nave a twist of ~0.06° at the pressure measuring
station; after making allowance for these considerations all ordinates were
correct to within *0,002", The ordinates of the pressure holes as determined
from the inspection report are listed in Teble 2,

The design of the model was arranged to ensure that the shook pattern
from the wing root would not be refleoted from the walls of an 8 ft x 8 £t
tunnel in such a way as to strike the model in the region of the pressure
plotting station above M_ = 1.1, This condition set limits to model size,

sweepback and spanwise position of the pressure plotting station. The design
was also arrarged to ensure that disturbances originating at the wing root
trailing edge passed (assuming they spread along a Mach wave) in front of the
pressure plotting station at Maoh numbers up to 1.5 This condition also set
limits to the sweepback and spanwise position of the pressure plotting station,.
A ocompromise between these oonflioting factors resulted in a wing of 12 ins
root chord, sweepbaock 60°, and with a pressure measuring station 1,825 chords
(21.9 inches) outboard of the effective model centreline, This in turn
influenced the choioce of thickness-chord ratio towards a fairly high value

(9% along wird) in order to ensure adequate model strength, Since a condition
of the design of wing section? is that nowhere over the surface of the wing
should the Mach number, resolved in a direction normal to the leading edge,
appreciably exceed unity (Cp { C;), a limit was set to the 1ift coeffiocient

which could be achieved at the design Mach number, The values finally chosen
were a CL of 0,153 at Mo = 1,2 with almost wholly suboritical inviscid flow,

The upper surfacc pressure distribution (Fig.2) is of a "triangular" shape,
and was obtained by adding a suitable camber line (Fig.3) to a basically
RAE 101 thiockness distribution, The ocurvature in the camber line towards
the trailing edge produced a concavity in the lower surface of the seotion,
whioch was "filled in" to provide a plane surface to ease manufacture, The
change in ocamber produced by this modifiocation was less than 0,1% at the
meximum, and the effect on the upper surface pressures was not signifiocant,



This partioular combination of sweep, thickness and 1ift coeffioient
is of course only relevant in so far as it is intended to produce the desired
flow conditions for the tunnel model, Further tests are being made on thinner
wings which mey be more relevant as a choice for an aireoraft configuration,

The extent of the wing outboard of the pressure measuring station is
determined by the condition that the Mach cone from the tip region should
pass wholly downstrcam of this station when the Mach number exoeeds 1,10,
Thz actual tip shape has been chosen so as to inhibit a loss of sweep of the
isobars with consequent possible spread of the disturbances inboard., The
overall semispan of the model is 30.9 ins (2,575 chords) and the pressure
plotting station is at 0.71 semispan.

The basic body is of O.4 ochords (4.8 ins) diameter and consists of a
nose of length & chords (length-diameter ratio 10) plus a parallel portion
whioch extends from 0.5 chord in front to nearly 4 chords behind the wing
root leading edge, terminating in a bluff base (Fig.5). The body cross-
section is D~shaped; where the body is parallel the section consists of a
semicirole 2.4 ins (0.2 chord) radius displaced outwards from the wall by the
addition of a 2 in. thick parallel slab, in order to minimise any effects of
the tunnel boundary layer. Further forward, along the length of the nose,
the body section shape is similar but decreascs smoothly in arca to zero at
the nose; this variation is given, in units of body maximum radius, by

3
SRR

where X distance aft of the nose

It

¥y local body radius.

This variation ensures that the curvature of the nose shape in plan view
tends to zerc at the front of the nose and again at the junction with the
parallel part of the body., This type of nose was chosen to minimise the
influence of the body pressure field (reflected from the walls of the tunnel)
on to the pressure plotting station. The nose shock, reflected from the roof
of the tunnel, clears the pressurc plotting station at all Mach numbers above
1012, Its reflection from the side walls of the tunnel, however, passes
along the pressure plotting chord line between Mach numbers of 1.28 and 1.3k4.
At the design Mach number of 1,2, the pressure plotting station is subjected
to the reflected field from a region about half way along the length of the
nose. This region produces a weak expansion field, which in the A.R.A.
tunnel is reflected weakly as a shock; it is believed that this "second-
order" disturbame does not appreociably influence the measured pressures,

The wing was made of S96 steel, heat-treated to give an ultimate
tensile strength of over 70 tons/sg in. Grooves were out in the wing to
allow 0,080 in. o/d (0.053 in, ;/d) copper-nickel tubes to be laid in the
wing from each pressure hole (1/32 in. dia.), the pressure tubes being faired
over afterwards with araldite. The body was largely constructed in light
elloy.

The model was mounted on the floor of the AR.A, 9 ft x 8 £t tunnel,
Bracing wires attached to the model near the wing tip passed out through
perforations in the tunnel walls and were scoured at cach incidence to
restrain the wing from deflecting under load., The wires and attachments at
the model did nct exceed 0,25 in. dia, and were situated at 30% chord 6 ins.
outboard (measured normal to body axis) of the pressure measuring station,



this losatioa being chosen so that the disturbances from the wires should
pass wholly downstream of the pressure measuring station at all supersonic
Ma¢h numbers. Some studies of oil flow patterns at My = 1,25 and 1.4
(Pigs.27 and 28) would seem tn indicate that the flow at the pressure
plotting station was not significantly influenoced by the wires,

3 TEST PROCEDURE AND RANGE OF TESTS

The prooedure adopted was to fix the model incidence and tunnel pressure,
and then vary the Mash number from 0.6 to 1.4, teking care as far as possible
that the intervals of Mach number were close enough in the neighbourhood of
the drag rise and separation Mach numbers to enasble values of MD and MSE to

be oktained, The bracing wires from the wing tip had to be re-rigged at each
ohange of inoidence, and therefsre the tunncl was shut down between incidence
runs,

The theoretical design incidence ap for the wing of infinite span was
1.83°; in order to investigate the flow over a wide range of oconditions, tests
were made at a range of incidences from 0° to 5°, A carborundum strip
(particles 0,002 to 0,003" high) was applied around the leading edge and
extending back to 5% chord on both surfaces but with a smell gep in the
immediate proximity of the pressure holes) in order to fix transition.

Figs.27 and 28 show that there is a striated flow pattern behind the carsor-
undum strip which is oconsistent with turbulent flow; whereas at the extremé
wing tip, outboard of the carborundum strip, the pattern is not striated so
strongly forward of the turbulent "wedge" springing from the end of the strip.
On this evidense it would appear that turbulent flow was successfully achieved
aver most of the wing,

At each Maoh number, ocomplete pressure readings of the seotlion were
recorded by photographing a multi-tube meroury manometer., Most of the tests
were made at atmospheric stagnation pressure, se¢ that the Reynolds number
(based on wing chord) var%ed from 3,8 x 10° at M = 0.6 to 5 x 10° at M = 1.0,
remaining oclose to 5 x 10° at all supersonic speeds, In addition, however,
one run was ocarried out at an incidence of 2,6° at a stagnation pregsure of
36" mepoury. For this run the Reynolds number varied from 4.5 x 10° o
6 x 10°, The variaticn of Reynolds number with Mach number and stagnation
pressure is, shown in Fig.19.

L ACCURACY

The meroury menometer readings were recorded on film which was subse-
quently projeoted on to a soreen from whioch the readings were recorded
manually. It was possible to read the height of the meroury columns tn
0,02 in. and this results in an error of *0,002 in p/H .. (see para.5.1).

When integrating pressures around the section to determine foroe coefficients,
the trapezium rule has been used for simplicity and oonvenience, thus enabling
ogeffioients to be compared on a consistent basis, even though there is some
1Ass of absolute accuracy. Beoause of the large number of pressure holes and
their olose spacing (approx. 0,0056) around the nose, the foroe coeffinients
are always correct to within *2%, and in all but a few cases to within *1%.

For Fig.12 to 15 the values of pressure coefficient (Cp) have been
obtained by a process of "smoothing" the experimental results, as desoribed
in para.5.,3. It is therefore necessary to take into account the accuraoy
of the smoothing prooess in assessing the accuraoy of the data plotted on
these figures,



5 RESULTS AND DISCUSSION

5.1 Presentation of results

It is convenient to present the pressures mecasured at each pressure
plotting hole in the form of p/Heff’ where p is the local pressure and Hef

is a "reduced" form of the total head which effectively oorrcsponds to the
two-dimensional value at a free stream Mach number of Mo cos A (A = sweepback

angle), The value of Heff is determined from the actual total head Ho by the
following relation:~-

i

et
- A
H 1 + XL?rl M2 cos2 A

eff - °

H, TR A L

A derivation of this relation is given in Appendix 1.

Provided that yawed wing conditions have been achieved these values
of p/Heff are directly comparable with the values of p/Ho in two-dimensional

flow at MO cos A,

Be1e!1 Pressurc distributions

The pressure dlstributions measured at various Mach numbers are
plotted in the form of p/Heff for each incidence in Figs.6 to 11. The

pressures are shown in oarpet form plotted ageinst x/c (chordwise position)
and Mech number, The values of p/Heff at each pressure hole, and the posi-

tion of each hole as determined by inspcotion of the model after manufacture,
are given in Table 3, Figs.12 to 15 show comparisons of theoretical and
experimental pressure distributions at Mach numbers near 0,6 and 1,2 - the
pressures in this case being in the form of Cp since the theoretical distri-

butions determined by the method of Appendix 2 are in this form, In Figs.
12 to 15 only, however, some adjustments havec been made to the measured
pressures which have the effect of smoothing the variation of pressure

at any pressure hole with variation of Mach number, This procedure is
discussed in greater detail in para.5.3,

5.1.2 Integrated loads

The pressure distributions around the scction have been integrated
normal to and along the chord at each Mach number and incidence, and the

results are tebulated in coefficient form as 5; and 5; in Table 4, The

coefficients are plotted against Mach number for various incidences in

Figs.16 and 17, while 5; is plotted against incidence for a Mach number near

1.2 and compared with theory for invisoid flow and infinite aspect ratio in
Fig.18.

Fe2 Effcet of Reynolds number

An additional run at an incidence of 2.6° only was made at a stegnation
pressure of 36 ins. merogry, the Reynolds number varying from 4,5 x 10° at
Mo = 0.6 to about 6 x 10° at supersonic speeds (Fig.19). The corresponding
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run at the lower Reynclds number (30 ins. mercury) was only made at Mach
numbers from 0,98 upwards, It was found that nowhere did this admittedly
small variation in Reynolds number cause any significant variation in either
upper or lower surface pressure distributions (Table 3). The curves of Fig.6,
7, 9, 10 and 11 are all for 30 ins, mercury stagnation pressure, However,

the curves of Fig.8 (aE = 2,6°) are for 36 ins. meroury, exoept for M, = 1.405

which is for %0 ins,

5.3 Disturbances in flow development
5s3.1 Disturbances affecting pressure distribution

Figs.6 to 11 show that the development of pressure distribution with
Mach number is nut entirely regular. In general, the pressures around 4O%
chord seem to be slightly greater (less suction) than expected., Inspection
of the model revealed nothing likely to account for this, but it is possible
that a leak may have developed during the test in the appropriate pressure
tube,

More significantly, there are areas over whioh the rate of decrease of
pressure with Mach number is temporarily reduced, as for example near Mo = 0,98

over the rearmost 20% of the chord. Because of the high sweep and aspect ratio
of the model, the trailing edge of the pressure plotting station was located
14 inches further downstream in the tunnel working section than would have
been recommendedl? for a complete model, However, any deterioration of the
flow near this region is meinly associated with the complete-model support
strut, which of course was not present for these tests, It seems more probable
that the local high pressure region near the trailing edge at Mo = 0,98 is due

to a simple blockage effeoct.

Over the most forward 30% of the chord a similar local high pressure
region occurs at all incidences near M° = 1,02, Appliocation of a blockage

correction does not account satisfactorily for this effect, Some tests at
close intervals of Maoh number on a later wing in the series have shown that
a similar region moves rearwards over the section as M_is increased from
1,02 to 1,04. The rate of movement suggests a disturblnoe originating from
the forward part of the model and being refleoted from the tunnel sidewalls,
The source of this disturbance is probably the suction region expeoted to
ocour at this Mach number over the rear part of the seotion at the wing root.
At the sidewalls this suction would be refleoted as a oompressionﬂZ. A
properly waisted body would thus be expected to improve matters, Some dis-
turbance would also be expected from the bow shock associated with the braocing
wire near the tip, but the ohordwise extent of the disturbance (about 0.3 o)
seems rather large for it to he accounted for entirely by the wire,

Another region of relatively high pressure occcurs over the upper sur-
face of the wing between 25%4 and 50% ohord at M =1.19. The cause in this

case appears to be a disturbance originating from the saw-tooth junction in
the tunnel floor and being refleoted from the roof, Moreover, the analysis

in the next section (5.3.2) reveals that on the lower surface there is a low
pressure region further aft (45% to 70% ohord) which could arise from &
different part of the same disturbance (Fig.25). Other deviations in pressure
between 504 and 80% chord near M_ = 1,35 on the lower surface have probably
arisen from the disturbance due to the other saw-tooth junction in the roof
being reflected from the floor,
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At low incidences (0° and 2°) the suotion at 6% chord seems to be
slightly low over most of the Mach number range; at 2,6° this "trough" has
moved back to 8% and is more noticeable, Also, at high incidences %up to 4°)
the pressure distributions near the nose are rsther "wavy", especially
between Mach numbers of 0,9 and 1,0, and there appears to be a "double peak
suction" at 3% and 10% chord at M° = 0,9 and 0,9, On a later model in the

series, similar effects have been found to arise from the discontinuity in
the trensition strip near the pressure plotting station, suggesting that

the boundary layer may be laminar within a limited region between the tren-
sition strips. This may be giving rise to a local laminar bubble separation,
with subsequent reattachment as a turbulent layer, at the higher incidences.

5¢3.2 Disturbances affecting integrated loads

The variation of 5; with Mach number for various incidences (Fig.17)

shows that a sudden change in CX

some deviations at higher Mach numbers., The similarity of the curves for
varicus inocidenoes suggests that the source of these deviations is probably
external to the wing section, and may arise from disturbances spreading out
from the root, or from the tunnel flow itself, These disturbanoces need only
be very localised; for instance, if only the first 10% of the chord is
affected on both surfaces, there may be o substantial effect on CX and yet
not on CZ .

is observable near Mo = 4,02 followed by

The curves of P/Heff against M_ and x/c (Figs.6 to 11) show that the
pressure over the front 30% of the chord is relatively high at Mo = 4,02
X ° Also, &t Mo = 1.19 there

is & further band of high pressure between 25% and 50% chord; however, in
this region it does not significantly affect CX. On the other hand, the

region of high pressure aft of 55% chord at Mo = 1,10 contributes to a

—

which accounts for much of the high value of C

reduotion in E; at that Mach number, Since the results are believed to be

affected in this way, it has been thought worthwhile to attempt to correct
them, To do this, the experimental pressures for one incidence (aE = 2,69)

for both upper and lower surfaces have been plotted as a ratio of tunnel
stagnation pressure (i.e. in the form p/Ho) in Pigs.20 and 21 in carpet form

against chordwise position and Mach number, together with the curve of po/Ho

for free stream conditions. An attempt is mcde on these figures to draw
"smooth™ curves through the pressures measured at each pressure hole, The
deviation of each value of p/Ho from its appropriate "simooth" curve has been

integrated around the chord in the same manner as the pressures themselves

and used to provide a deviation in 5; , plotted as ACX in Fig.22, For

Mach numbers above 1,2 this method could not be used for the upper surface
due to the onset of supercritical flow with shock waves. In this region,
therefore, ACX has been taken as twice the value appropriate to the lower

surface, The curves of Fig.22 show that below M = 1,2 this procedure would
in generel give a reasonasble estimate of ACX. The values of ACX so obtained

have been taken to apply at all incidences, When applied to 5;, and
resolved together with 5; to provide CD’ a fairly plausible variation of

* Smooth ~ defined here zs being of the same general shape as the curve of
po/H0 against Mo.
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GD with Mach number and incidence is obtained (Fig.23), These values of C

also include an allowance for skin friotion drag under tunnel conditions.
This has been estimated by the method of Refg,i7a and 21 and is shem in Fig.19.
Comparison of the values of total CD with those of AGX help to put into

better perspective the scatter in the experimental results,

D

The assumed corrections to the flow, in terms of the deviations in
p/Ho used for the oconstruotion of Fig,23, are shown as a plot of local Mach

number in Figs,2h and 25. The reduction of Mach number near the nose at
M, = 1.02 oocours on both surfaces, The low Mach number aft of 55% at

Mo = 1,10 is seen to be more marked on the upper than the lower surfaoe,
The reduotion in Mach number at about 4O% chord at Mo = 1,19 seems to be con~

fined to the upper surface, while there is an increase in Mach numper (and
hence suction) around 50% to 70% ohord on the lower surface whioh will also
be contributing to the increase in CX observed at this Mo; these deviations

are unfortunate in so far as they ocour near the design Mach number, On the
other hand the deviation near the nose is not considered to be a spurious
effect but is associated with the imminent development of a local supersonic
region,

5.4 Predioted flow pattern over sheared wing

Before discussing the results in detall, it may be worth briefly re-
viewing the physical principles underlying the concepts of suboritical and
superoritical flow over an infiinite sheared wing,

In oonsidering the inviscid flow pattern expected to develep over the
wing, it is suggested that only the component of flow normal to the wing
leading edge is significant, Thus the onset of oritical flow conditions,
with the associated drag rise and separation effects, is governed sclely by
the magnitude of the Mach number component normal to the wing and is inde-
pendent of the component parsllel to the wing, irrespective of magnitude.
The parallel component serves merely to influence the resultant (i,e, free-
stream) Mach number and the absolute magnitude of the pressures. On simple
assumptions such as these, there is no theoretical limit to the magnitude
of this parallel component, and no significance is necessarily attached,
therefore, to a free-stream Mach number of unity or greater,

Defining now the oritical Mach numbexr MGQ as the Mach number at which

the flow component normal to the iscbars first reaches a sonic value some-
" where over the section, it is found that above MCR the flow expands rapidly

from the attachment line {equivalent to the stagnation line on a two
dimensional wing) so that the component normal to the isobars is supersonioc
over an appreciasble part of the seotion. Behind this region, the pressure
recovers to a value which differs little from that given by the appropriate
suboritiocal distribution. The manner of recovery is at first almost isen-
tropic but, at superoritical Mach numbers, soon develops into a shock which
in plen view will be fully swept, if sheared wing conditlons are being
maintained, With further inorease of Mach number, the shock moves back along
the seoction and increases in strength, producing in due course an increase
in seotion drag. Eventually, as Mach number is inoreased still further the
pressure rise across the shock becomes sufficient to cause the boundary layer
to separate forward of the trailing edge, producing non-linear changes in
1ift and drag, If the drag rise Mach number is defined as MD’ and the Mach

number at which separation effects become noticeable is defined as MSE’ the

- 13 -



significance of these Mach numbers is broadly that MD sets a limit to the

aeredynamic efficiency of the wing section and hence to the cruising economy

of the airoraft, and MSE sets a limit to the usable speed of the airoraft,

due to effects such as buffeting and possibly loss of control effectiveness,

The problem is therefore to achieve as high a Mach number as possible
for the onset of drag rise while retaining an adequate margin between this
Mach number and the Mach number for the onaet of separation effects.

As in the two-dimensicnal case, several basically different types of
pressure distribution suggest themselves, for exemple:-

(a) & distribution which at 1lift has a peak suction well forward (i.e.,
shead of, say, 0,2 chord) followed by approximately linearly inoreasing
pressure to the trailing edge. The shape of this distribution is thus
roughly "triangular",

() a distridbution which, after an initial rapid fall near the leading
edge, has approximately constant pressure over part of the ohord (back to
0.5 chord, say), followed by a more rapid inorease in pressure to the
trailing edge, i.e. of “"rooftop" shape at its design lift coefficient,

For a given 1lift and thickness the peak suction for the "triangular"
type will in general be greater then for the "rooftep" type, so that MCR

will be lower, However, &s Mach number is increased above MCR the supersonio

region for the triangular type will initially be confined to forward-facing
parts of the section, i.e. ahead of the crest (defined as the chordwise
station where the upper surface slope is parallel to the undisturbed stream),
whereas for the rooftop type the supersonic region will quickly extend %o
the back of the rooftop, i.e., well behind the crest, Tests by Nitzberg

and Crandalll3 suggest that MD 1s closely associated with the Mach number

at whioh the shock moves aft of the ocrest, so that for the triangular type
the margin MD - MCR may be greeter than for the rooftop, It is not,

therefcre, immediately apparent which type will have the greater value of
MD' Moreover, with the triangular type there is a less severe adverse

pressure gradient aft of the maximum suction so that the margin MSE - MD

may also be greater for this type, since the corresponding strength of shock
needed to cause the boundary layer to separate will also be greater, Thus
the value of MCR alone is not necessarily a relisble guide to the merits of

different wing sections from the viewpoint of drag rise and separation effects.
In the tests reported here, the upper surface pressure distribution is

of the "triangular" type. Further tests on other sections of "rooftop" type

are in progress and will be reported in due course,

5.4e1 Three dimensional effects

Departures from infinite sheared wing flow ocour in general on finite
wings in the neighbourhood of the tips and of any abrupt changes in sweep,
as for instance at the root of a wing of V planform. In this experiment
the influence of the tip is confined at supersonic speeds to a conical region
which always passes well downstream of the pressure measuring station.
However, the compressions which arise near the wing root leading edge and
the wing root trailing edge may give rise to shocks spreading outboard along
the wing at sufficiently high Mach numbers (Fig.ib). These shocks,which are
sometimes ocalled the forward and rear shooks, tend to approach and coalesce
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somevwhere along the span, thereafter forming a single shock called the out-
board shock, By placing the pressure plotting station well outboard these
root effects are minimised but may not be entirely negligible; later tests
of other section shapes incorporate shaping of the body at the root in order
to try to reduce these effects still further,

5¢5 Compressibility and viscosity effects

The theoretical estimates of pressure distribution given in Refs.3 and
4 do not include compressibility or viscosity effects, In Appendix 2, however,
an extension cf these methods is given whioch allows the effect of compressi-
bility to be estimated; this extension has been used to provide the theoreti-
cal estimates for these tests. The experimental results inelude both com=-
pressibility and viscosity effects, and differ (as might be expected) from
the inviscid theoretical estimates,

It has been shown (in Refs.9 and 10 for example) that the incompressible
invisoid theory can be used to give good estimates of pressure distributions
at low speeds on both unswept and swept wings of symmetrical section, pro-
viding that allowance is made for the displacement thickness of the boundary
leyer., For example, Ref.10 gives the loss in loading, due to boundary layer
effects, along a chord at O.41 semispan on a 12% thick RAE 101 section wing
of 45° sweep. In this case, measurements of the boundary layer profile were
made just behind the trailing edge, and the displacement thickness estimated.
The theoretical pressure distribution was then re-calculated for the aerofoil
profile as modified by the addition of the displacement thickness, and it was
found to agree well with the experimental results,

In the tests reported here, the wing section is no longer symmetrical,
compressibility effects are present, and the high sweepback and aspect ratio
would be expected to produce a substantial boundary-layer displacemertsthick-
ness. No measurements have been made, however, of the boundary layer profile
in this test and hence no allowance for it appears in the theoretical estimates.
It is therefore not possible to devise a wholly satisfactory criterion for
comparing theory and experiment, The provisional criterion chosen has been
the simple one of equal level of pesk suction, This at least shows to some
extent the differences between the general shapes of the theoretical and the
experimental upper surface pressure distributions without significantly
affecting the Mach number for the onset of critical flow conditions.

For later tests in the series, boundary layer profiles are being measured
at the trailing edge of the pressure plotting station, and it is hoped that
this will ensble comparisons to be made in future between the theory for in-
viscid flow and experiment so that the viscosity effects can be shown up and
studied in more detail.

In much of the discussion which follows, the conditions of suboritical
flow and supercritical flow have been treated separately. However, in those
figures in which parameters are plotted against Mach number, the whole Mach
number range has been covered. It follows, therefore, that the reader may be
referred to different parts of the same figure on different occasions.

5.6 Suberiticel flow conditions

5.6.1 Comparison with theory

At the lowest subsonic Mach number of 0.6, the theoretical (inviscid,
compressible, and for infinite aspect ratio) and experimental pressure
distributions are shown in Fig.12, which is a carpet plot of Cp against x/c

and incidence. By comparing the distributions for equal levels of peak
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suotion it has been found possible to relate the theoretical and experi-
mental wing ineidences (aT and aE) by an empirical equation of the form

ap = N GT + K

and for this Mach number the best egreement is obtained by putting N = 1,2

and K = 0.7 (degrees), The value of N of 1.2 is partly accounted for by the
finite aspeot ratio., Extrapolation from the results of Ref,14 for wings of
somewhat similar planform suggests a value of 1,1 for incompressible flow,

No tunnel constraint corrections have been applied to the results, The

normal Glauert correction would not be significant but there is some un-
certainty as to the precise nature of the boundary condition at the wing root,
Experience at A,R.A, suggests that a small part (perhaps 10%) of the deficiency
in 1ift curve slope might be attributed to root effects., Much of the remaining
discrepancy may be due to the influence of viscosity.

The reason for the additional shift of 0.7° is not understood; it
appears at other Mach numbers and at zero 1ift (as noted in pere.5.6.3) but
does not seem to be accounted for by deviations in the tunnel flow or twist
of the wing, Since it occurs at zero 1if't, where the pressure gradient on
the lower surface is more adverse than that on the upper surface, it does not
seem likely that its origin is due solely to viscous effects, although on a
later model the addition of vortex generators to the upper surface only has
been found to decrease the zero lift angle by up to 0.3°.

In Fig,13 the theoretical and experimental pressure distributions on
both suwrfaces at M0 = 0,6 are compared at closely corresponding levels of

peak suction, and shows satisfactory agreement over the forward 305 of the
chord., Further af't, where the pressure gradients are unfavoureble, there
is some loss of loading so that GL is about 17% less experimentally (0.100

as compared with 0.120), possibly because of viscous effects. In addition,
the predicted positive pressure coefficient near the trailing edge is not
achieved, as is commonly observed,

Turning now to the design Mach number of 1,2, the theoretical and
experimental pressure distributions (Fig.14 and 155 show that, for equal
levels of peak suotion, there is a greater loss of loading over the rear of
the section than at a Mach number of 0.6, Fig.14 shows that the theoretical
(again inviscid, compressible, and for infinite aspect ratio) and experi-
mental wing incidences are now related by the equation

% = op * O

and in this case O is varying at the same rate as G (N = 1,00), instead of
20% more rapidly as at Mo = 0,6, Some calculations of the spanwise varia~-
tion of twist at M° = 1 in Ref.15 suggest that for wings having triangular

(1inear) chordwise loadings the incidence at the pressure measuring station
would only be about 6% greater than the infinite sheared wing value

(N = 1,06). The discrepancy in N is probably partly due to the fact that
near locally oritical conditions the pesk suction pressure coefficients in
practice tend to change more rapidly with incidence than the suberitical
theory predicts. It is however noteworthy that the other discrepancy of
0.7° persists. In Fig.15 the pressure distributions on both surfaces are
compared at closely corresponding levels of peak suction near to the design
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value. Althcugh agreement is still good in the regions of favourable
pressure gradient, these are confined to the forward 1C% of the upper surfave
and the forward 30% of the lower surface, and behind these regions both sur-
faces, buh particularly the upper, contribute to a considerable loss of
loading.

It appears that, although the level of peak suction has risen rapidly
with Mach number, the suction well aft of the peak (for instance at 60%
ohord) actually falls, in terms of Cp, so that overall there is also a fall

in G (from 0.100 at M = 0.6 to 0,085 at M % 1.2) instead of a gain as
predicted for inviscid flow (from C.120 at Mo = 0.6 to 0,153 at Mo =1,2).
Thus at M_ = 1.2 the experimental 1ift coefficient is b4% less than the

theoretical value; some of this effect may be attributable to the low value
of N as discussed above, but even if the value of N were taken to be 1,2

(as at M° = 0,6) the loss in CL would still be 3L% (CL = 0,100), For equal

CL the value of N would have to be 1,8, It is not clear how a diszcrepancy

of this magnitude arises, unless it is due to much more severe viscous effeots
than those encountered at M, = 0.6, The increase in Mo’ in spite of (or

perhaps even together with) the increase in Reynolds number from 3.8 to 5.Ox106
may possibly be producing a more rapid and non-linear thickening of the boundary
layer on the upper surface, It was found in Ref,10 that even at low speed and
a lower sweep (45°), at e station 0,41 semi-span outboard from the root of an
aspect ratio 3 wing, that the flow direction was parallel to the trailing edge
(i.e, "spanwise") at the trailing edge and for a height of nearly 0.01 chord

above it at a CL of 0.57, The resultant loss in GL compared with an invisoid

estimate neglecting boundary layer thickness was 14%. However, by determining
and adding the displacement thicknesses on both surfaces of the aerofoil, and
treating the resultant "modified" aerofoil by the inviscid theory, it was
found that the loss in CL could be accounted for fully, It was also found10

that this loss of 1lift increases with angle of sweep. Later tests in the
present series will include measurements of boundary layer profiles at the
trailing edge, as well as the addition of vortex generators, in an endeavour
to assess quantitatively the nature and magnitude of viscous effects.

5,6.2 lormal force and drag

ot

The variation of CZ
very little change in 52 occurs with Mach number, except at high incidence and

with ¥ for various incidences (Fig.16) shows that

Mach number where o flow separation behind a shock becomes established, The
nature of this separation is discussed in more detail in para.5.7.3. Its

effect on the pressure distribution is to increase the suction over the rear
part of the upper surface (Fig.11 shows this happening at 5 incidence at all

Mach numbers above 1.15) and hence to increase both CZ and CX'

The comparison of theoretical and experimental values of 5; as a
function of incidence show (Fig.18) that at zero 1lift the experimental angle

of inoidence ap is about 0,.8° grester than the theoretical value Gy OOTTES-

ponding closely to the discrepancy of O.7° found when comparing theoretical
and experimental pressure distributions (para.5.6.1). The loss of loading
discussed in para.5.6.1 appears in Fig.19 as a reduciion in the slope of the
experimental ocurve,
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The drag coefficient, corrected by the method of paregraph 5.3,2, is
plotted against Mach number for various incidences in Fig.23. As predicted
by the yawed wing analogy, there is no significance in a Mach number of unity.
Thus, in spite of the shortcomings of the experimental pressure distributions,
the flow conditions predicted in Ref.1 have been achieved - i,e,, an
effectively shock fres flow has been obtained ~ with lift - at a supersonic
Mach number, without inourring any penalty in wave drag.

¥o detailed comparison between theory and experiment has been made at
the design 1lift coefficient (CL = 0.153) and Mach number (41.2), since the

experimental pressure distribution includes an appreciable supercritical
region well forward, and an incipient separation near the trailing edge.
Instead, the approach preferred here has been to make comparisons for similar
values of pressure ccefficient over regions of favourable pressure gradient,
and to look for possible reasons to account for the loss in loading over the
remaining regions, However, it is worth noting that at the design lift
coefficient there is no great inorease in drag over the suboritical value,

so that although the flow is no longer shock free the design conditions of
Maoh number and 1lift have been achieved without apprecisble penalty (except
that the margin MSE - HD is virtually zero, sinoce both MSE and MD are close

to 1.2 at this incidenoe),

5.6.3 Trailing edge pressure recovery

In Fig.26 the pressure coefficient (CP) has been plotted for the upper

surface at 95% chord. This figure shows thai, except for Mach numbers between
0.9 and 1,0, the pressure coefficient at this position was never greater than
0.032, This is rather less than, for example, the pressuye coefficients
peasured at 90% chord on a tapered wing of 596 sweepback1 in which the value
of Cp’ everywhere outboard of LO® semispan, was around 0,06, at low speed

and et a Reynolds number of 1,6 x 106 (the Reynolds number for the tests
reported here was at least 3.8 x 100), At 5% incidence, C, % 95% ohord is

negative at all Mach numbers, Figs.6 to 11 also show that the pressure dis-
tribution is somewhat uneven between 80% and 95% on the upper surface at

most incidences and Mach numbers for whioh the flow has not separated farther
upstream, This suggests that the thickness of the boundary layer may be great
enough to affeot the comparison between theoretical and experimental pressure
distributions.

5.7 Supercritical flow conditions

The amelogy with two-dimensional flow would suggest that gbove a certain
Maoch number whioh depends on inocidenoe, a shock would form near the nose of
the aerofoil., Further inorease of Mach number and incidence would cause the
shock to move aft and strengthen, followed by an increase in the drag of the
section, and leading ultimately to separation of the flow everywhere aft of
the shook.

5.7+1 Pressure distribution

The pressure distributions shown in Fig.6 to 11 suggest that in general
8 recognizable shook (shown by the dotted part of the lines) first appears
soon after the value of p/Heff falls below about 0.52 anywhere on the surface,

This corresponds to the onset of a region of locally supersonioc flow over a
two~-dimensionasl section., As Mach number is increased, the position of the
shock corresponds approximately to the more aft of the two chordwise positions
at which the local value of p eff would have been 0.52 if the pressure dis-

tribution had remained of suberitical shape. Further aft the distribution

- 48 -



follows the subcritinal shape, while in front of the shock the pressure dis-
tribution becomes of a typicelly supersonic form, and in particular the local
velue of p/Heff no longer decreases with inorease of free stream Mach number,

(Near the nose p/Heff actually increases somewhat.) There is thus a strong

"Mach~-number-component freeze", enalogous to the correspording Mach number
freeze observed in many experiments on two dimensional wings, and discussed
by Sinnott® end predicted by Randall's theory>,

0il flow patterns observed at an incidence of 2,6° and a Mach number
of 1.25 are illustrated in Fig,27. The upper part of the figure shows the
outbeard two-thirds of the span and the shock wave can be seen crossing the
pressure measuring station near 20% chord, In this region it is some 5°
less swept then the wing, and further inboard it is tending towards the wing
root trailing edge, as well as becoming less sharply defined, It appears
therefore that the root is still exerting some influence on the flow conditions
at the pressure measuring station., To this extent then the experiment has not
succeeded in creating yawed wing flow in the required region, although the
correlations with two dimensional flow discussed above suggest that at this
station the root eff'ects may not be very signifioant. Shaping the body at
the root would be expeoted to lessen these effects,

Iff the Mach number and incidence are further increased the pressure
distributions of Figs.8 to 11 suggest that flow separation begins to ococur
aft of the shock which then ceases to move rearwards and may even move forwards
again, The flow pattern was therefore observed at an incidence of 2.6° and 2
Mach number of 1,40, and is shown in Fig.28. The shoeck is now passing over
the pressure measuring station near the 30% chord position. Behind the shock
the oil pattern indicates & large region of separated flow, Inboard of the
pressure measuring station the shock moves back and becomes less clearly
defined, again suggesting that its origin lies near the wing root trailing
edge (compare the "rear shook" of Fig.k(b)), There is ancther disturbance,
however, which is visible well inboard in front of the main shock, and which
is more highly swept than the wing; this appears to be tne forward shock
(Fig.4(b)) whioh conlesces with the rear shook +to form the outboard shook
at a point on the span roughly half a chord inboard ¢f the pressure
measuring station.

It has been suggested18 that for flows with a high supersonic leading
edge suction peak the bulk of the subsequent pressure reocovery may teke place
isentropically rather than through a shock, under the influence of the re-
fleotion of the leading edge supersonioc expansion waves as ocompression waves
from the sonic line, The nearest approach to a high supersonic leading edge
suotion 1in this experiment occurs at an incidence ag of 5° (Figs.11). Sub=

critically the pressure distribution is peaky near the nose, while super--
oritical values of p/Heff (i.es less then 0,528) oocur down to a Mach number

of as little as 0,9, However, up to Mach numbers of at least 1.2 the shape
of the pressure distributions suggests a less abrupt pressure recovery then
one woula expect from a shock, even though the flow has completely separated
further af't along the section. This effect is illustrated in Fig.29 where
the Mach number for which p/Heff first falls below 0,515 anywhere on the

upper surface, and the Mach number for which a recognizable shoock appears,

are plotted against inoldence. It will be noted thet at the higher incidences
these Mach numbers diverge by an amount which may bear some relation to the
extent to which the pressure recovery takes place isentropically.,



5.7.2 Comparison with theory

The theoretieal prediction of the transonisc characteristios of two-
dimensignal round nosed aerofoils in a sonic stream has been considered by
Sinnott® and Randall®, Sinnott's method is semi~empirical end applies over
the region behind the orest of the aerofoil, Randall's treatment is purely
theoretical (inviscid) but deals also with the region forward of the crest
almost ug to the nose of the aerofoil, Sinnott has also extended his
method/» 18,20 to deal with Mach numbers below unity for which a shock wave
is present on the wing surface af't of the crest. He further suggests that
this method mey be used to estimate drag rise and separation Mach number
(MD, MSE)’ at any rate for comparative purposes,

Some caloulations of pressure distributions have been made using both
Sinnott's and Randall's methods., These estimates are compared with the
experimental results in Fig.30., Some caution is necessary in interpreting
this comparison, however, First of all, estimates for two dimensional wings
are being compared with experimental results on a three dimensional wing.
Secondly, Sinnott's method is intended for use on fairly thin sections having
a value of the parameter ) not greater than 0,9. The parameter ¥, intro=-
duoced in Ref, 6, is defined as

(where © is the surface slope of the wing section, in the region forward
of the wing orest). For this wing ¥ = 1.01 at O, = 1.9° (corresponding tc

O = 2.6°) so that extrapolation beyond Sinnott's recommended limits is
necessary, Thirdly, Randall's sonic range theory cannot strictly be used to

treat sections whose shape is defined by a polynomial in % which contains

k|
2
terms in both <§> and G§>. In the case considered here, a polynomial

1
expansion in C§>2 was derived from the inspection report* of the aerofoil
shape, and the coeffiocient of (§> was found to be small, although not zero.

In any case, the effect of incldence appears as e change in the coefficient
of % « Randall has suggested an spproximation for overcoming this diffi-

culty for small incidences; in this experiment the inoidence normel to the
leading edge (3.8°) is possibly large enough to introduce significant errors.

Using Sinnott's methodﬂs, the pressure distributions downstream of the
shock have been derived from the experimental distribution at the highest
shock~free Mach number (in this case 1420) by applioation of the Prandtl-
Glavert rule, In this way, the effects of compressibility and viscosity can
be inocluded approximately. The shock position along the chord is then given
by the intercept of this pressure distribution for the appropriate Mach

* To avoid any possible differences due to deviations between the nominal
(design) and the achieved aercfoil shape.
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P2
number with the loous of -t (the suberitical pressure just downstream of the

H
shook position). =7 is a funotion of & (pressure just upstream of the

shoek) but varies very slowly - in this case it aelwaeys lies between 0,52 and

0.53, The value of %1 is obteained for the appropriate Mach number and shock
)

position. The pressure at the-orest (which must be forward of the shock)

and the variation of pressure from crest to shock is then estimated, The

pressure distribution at sonic oconditions has also been caleulated by both

Sinnstt's and Randall's metheds; the latter method is of interest here since

it deals with the forward part of the serofoil ahead of the crest,

In Fig,30 the various estimated pressure distributions described ebove
are plotted as full lines., For comparison, experimental values of
-
Heff
value for Mo = 1.26 (where the shock is theoretically at the orest) has,

however, been obtained by interpolation between experimental results at
nearby Mach numbers,

are also shown as symbols, joined by dotted lines, The experimental

It is interesting to observe that, downstream of the shock, agreement
is reasonably good at all Mach numbers except 1,40 where in any case the flow
had separated completely behind the shock., Further, the predictions of shock
wave position are in fair agreement in that the shock always lies between the
same pressure holes as found experimentally (except again at Mo = 1.40),

although it is clear from oil flow piotures (Figs.27 end 28) that the flow
field was to some extent influenced by conditions at the wing root.

P
Hoer
sometimes up to 0,02 greater than predicted, while at the crest this dis-
crepancy increases to 0.0k to 0,05 at the highest Mach number, This effect
has also been chserved in recent unpublished N,P.L. tests; the cause is at
present nresolved,

Just upstream of the shock however, the experimental value of is

5.7+3 Drag rise and separation effects

. The curves of Fig.,2) show that & rapid rise in drag coefficient begins
when the Mach number and incidence is sufficiently high, Considering
initially the case where no flow separation occurs downstream of the shoek,
the pressure distributions of Figs.6 to 11 show how the shock forms initially
well forward on the aerofoil, and gains in strength as it moves back with
increase of Mach number and incidence, Initially it is ghead of the aerofoil
orest, but as it passes behind the orest the dreg of the section starts to
rise rapidly. For incidences of 20 or less the shock does not pass signifi-
cantly behind the orest at Mach numbers up to 1.4, but at ay = 2.6° the crest

is close to 22% chord and the shock passes over this position at just over
Mo = 1,25, From Fig.23 the drag rise is seen to begin at around Mc = 1,25

at this inoidence. This correlation between Mach numbers for shock-on—-crest
and for drag-rise has been observed in two dimensions by Nitzberg and
Crandalll3 while Sinnott18 suggests that the Mach number for shock on crest
P2
G

will be given by the condition that 5 (fer a two dimensional wing) at the
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orest is 0,515, a_value obtained by analysis of experimental results with a
fairly weak shook!/. For the shock strengths observed in this case a more

2
appropriate value of _EE might be 0,52 to 0,53 but this does not introduce

significant errors. The experimentally observed values of Mach number for
shock~on-orest and for drag rise are compared in Fig.31 with estimates using
the above criterion*, It will be seen that good agreement is obtained
between the estimates and the experimental values, exocept at ayp = 0° where

the experimental value has been derived by taking into account a single
rather high drag velue at M = 1.408 (Fig.23), and at ag = 4L° and 5° where

some of the drag rise is due to flow separation.

Further inorease of Mach number causes the shock to increase in
strength until the flow downstream of it separates completely. The condi-
tion of practical interest is the onset of the effects of this separation,
such as buffeting. Pearoey19 has suggested that for two-dimensional aero-
foils this condition is observed to correspond to the stage at which the
separation bubble behind the shock fails to reattach upstream of the trailing
edge, When this happens the pressure at the trailing edge decreases abruptly.
In the experiment described in this note, the pressures observed at 95%
chord have been plotted agasinst Mach number for various incidences in Fig.26,
and it will be seen that above Qp = 29 the trailing edge pressure decreases,

fairly rapidly, sbove a eertain Mach number which varies with incidence,
Thus agein an analogous behaviour with two-dimensiocnal wings has been
cbserved, Sinnott!® suggests a relation between the pressure immedistely
ahead of the shock at the separation Mach number and the parameter ¥ which
depends on leading edge geometry. This parameter, as pointed out in para.
5.7.2, has a value of 1,01 for this section at ap = 2,6%, whioch is higher

than the upper limit (0.9) recommended by Sinnott; however, by extrapolation
b
from Fig.12 of Ref.18 & value of 7% (pressure just upstream of the shock)

of 0.31 has been estimated, Experimentally, the value of

T L is between
ef'f
0,33 and 0,34 at O = 2.,6% when the trailing edge pressure diverges, whioh

is at a Mach number between 1,35 and 1.40.

At higher incidences (higher values of %) Fig.12 of Ref.18 suggests
that the value of %% should remain nearly constant at around 0.31; the
experimental value of

] is in fact found to remein constant near 0,33.
Hepr P
The discrepancy of 0,02 in T
ef'f

spanwise component of flow which causes a thicker boundary layer to form so
that separation begins slightly earlier, However, with this adjustment the
analysis of Sinnott offers a reasonable guide to the separation Mach number
of a yawed wing, and in Fig,31 the actualpvalues of MSE for various incidences

are plotted together with the curve for L - 0.33.
eff

is probably partly due to the addition of a

H

From Fig.31 the margin of Mach number between drag rise and the onset
of separation effects (MSE - MD) has been derived and is plotted in Fig.32.

This shows that above an incidence of about 3,7 degrees the mergin is zero or
negative, and that even at the design inocidence (aE = 2.6°), the margin is

* Mp has been taken here as the Mach number for which the actual drag co-
efficient exceeds the suberitical value (extrapolated to the same Mach number)
by 0’00150



v

only 0,07, This margin is smaller than would be expected on invisoid con-
siderations; some form of boundary lsyer control mey be reguired if these
viscous effects persist at full scale Reynolds numbers.

6 CONCLUSTIONS

Pressure distributions have been measured around the section of a 60°
swept wing at Mach numbers from 0,6 to 1,4. The section was basically a 9%
thick RAE 101 thicknsss distribution, cambered to provide an approximately
triangular upper surface pressure distribution, which was subecritical almost
everywhere, at a Mach number of 1,2 and a 1lift ocefficient of 0,153 in
invisoid flow., The wing was substantially untapered and had an aspect ratio
near 5, Pressures were measured all round one streamwise station at 0,71
semi-span,

It is concluded that:-

(1) A suberiticel type of flow, without shocks, has been achieved at a
supersonlc free stream Mach number on a lifting wing, as predicted theoreti-
cally ir Ref.1, without incurring eny significant wave drag,

(2) At the design Mach number of 1.2, the theoretical (inviscid) and experi-
mental pressure distributions, compared on a basis of equal peak suction, are
in good agreement wherever the pressure gradient is favourable, ZElsewhere,
agreement 1s less good, both upper and lower surfaces contributing to a loss

in loading suffiocient to reduce 1lift curve slope by around 40%. Substantial
boundary layer nutflow is observed which would be expected to account for

muoh of this effect, At the design 1ift coefficient, a region of supercritical
flow, terminated by a shook, develops well forward on the aerofoil, without
causing any great increase in drag. However, the boundary layer is at this
stage on the point of separating completely over the rear of the section.

(3) As Mach number or 1ift coefficient is inoreased above the design value,
there appears on the upper surface a shock which in plan view is nearly as
highly swept as the wing itself, No drag penally is evident until the shock
moves aft of the zsrest of the aerofoil, Eventually the flow separates every-
where behind the shock. Rather small margins between the Mach numbers for
drag rise and for the onset of separation effects were found but the rela-
tively thick boundary leyer may be largely responsible for this,

(4) Some estimates of supercritical pressure distributions for two-dimen-—
sional wings have been extended to the swept wing case and compared with the
experimental results, In general guite good agreement is found, The Mach
number for which the shock first appears, the subseguent movement of the shock,
the drag~-rise Mach number and the Mach number for the onset of separation
effects ocan all be predicted with reasonable acteuracy from knowledge of the
just-suboritical pressure distribution. Ahead of the shock the component of
local Mach number normal to the leading edge "freezes" in an analogous manner
to the two-dimensional case,

(5) No significant variations in pre sure distributions were found due to
increasing Reynolds number from 5 x 10 to 6 x 10° at supersonic speeds,

Future testing will include models having design pressure distributions
of roof-top shape, a thinner (6%) section, body shaping to help reduce root
effects still further, and devices which are intended to reduce the effective
boundary layer thickness, as well as measurements of total head distributions
in the region of the trailing edge.
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APPENDIX 1

RELATION BETWEEN PRESSURE AND MACH NUMBER COMPONENT NORMAL
TO_THE LEADING EDGE OF A SWEPT WING

In the oase of two~dimensional wings, it is sometimes convenient to
express pressures around the wing section in the form p/Ho, where Ho is tho

stagnation pressure, For swept wings of infinite span, there is an analogous
expression for pressure which may be written P/Heff’ where Heff is defined as

the pressure at the attachment line, i,e,, the line where the local component
of flow normal to the leading edge is wero, Thus the value of p/Ho for an

unswept wing will be the same as the value of p/Heff for the same wing yawed
through an angle A, if the free stream Maoh number is increased by a factor
equal to the secant of the angle of yaw,

Let v

i

velooity

a velocity of sound

M = Mach number (g)

A = sweepback angle

it

y = ratio of specific heats for air
‘ p = statlio pressure
H = stagnation pressure
Suffix o = free stream conditions
n = normal to wing leading edge

t = parallel to wing leading edge.

We assume that the velocity component parallel to the leading edge is
constant, il.e.

Vé = Vb sin A = oconstant .

We express the value of p/Ho in the two following ways:~

1
- '
g EP' = <1+x.._._21,42> (1)
0
1
- Y-
£ (2O @
(o} Q
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Appendix 1

Now
7 \2 Mi
= so that, when V = O
a;> 14 Xzd g2’ ’ n
2 o
2 _ Pegr
Ho Ho
-t
V. 2.y
@)
2 a
But
V£ 2 Mg sin2 A
;7> = e whence
o 1+ 2y
2 0
X
- 1 + x;%~1 12 0052 Ay
ef'f = ()
Hy PR el Y * 3
2 o
H
-B—_ - L . .——9——
Heee  Hy  Hepr
so that, from (1) and (3)
T‘f...
- e g
ﬁll- = (} + x-E—l M2 cosz 4> (&)
eff

which is the isentropic relation with an “effective" stagnation pressure,
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APPENDIX 2

DESIGN OF AFROFOIL SECTIONS WITH LINEARLY VARYING PRESSURE
DISTRIBUTION ON THE UPPER SURFACE

by

J. Weber, Dr.rer.nat.

The task is to design for infinite sheared wings with given thickness
distribution a camber line such that the wing has at the design incidence a
given 1ift coefficient and on its upper surface a pressure distribution which
varies nearly lirearly along the chord (no requirement is made for the lower
surface), It is required that these conditions are satisfied at a given Mach
number for which the flow is suberitical., The latter condition imposes cer-— -
tain limits on the thickness of the wing and on the design 1lift coefficient.

In designing the wing which has been the subject of these tests, we have
relaxed these conditions somewhat by allowing the velocity to be slightly
supersonic forward of the crest but have performed the calculations as if the
flow were suboritical throughout.

The symbols are defined as follows:=

A see equation (2)

Cpi pressure coefficient as defined in equation (3)

h see equation (6)

M Maoh number

) () funotions given in Refs.2 and 3

v velooity

X distance aft of leading edge (in units of wing chord)
z distance above chord line (in units of wing chord)
z, ordinate of camber line of section

z, ordinate of thickness distribution of section

@ angle of inoidence |

I'(x) load distribution

Y ratio of specifio heats (taken as 1.4)

A angle of sweep

Suffices:-

o free stream conditions

D design

n component normal to leading edge

us upper Surfaoe

a3 defined in Ref,3



Appendix 2

The pressure distribution on an infinite sheared wing in suboritical
flow ocan be caloulated from the following equation:-

Ge£>2 = 0032 a sin2 A+ 1 >
- [8(2) (x) ¢ 5P 1]
A cos A

X {oos a [aos A+ 8(13}}{) (h‘.)..(f_}.-.ﬂ}]

/1-~ M2 cos?

: o5 53 22
sin o 1 =X S X
sttt [ i || @
j1 =N cos” A
} o
where
2 2
A = «1'1 - Mo <éos A~ Cpi) (2)
and
(1) .12
CPi = o00sZ A - foos 4+ 8 (x)l, . (3)

5(2) 5y
i L.ozs A:]

8(1)( ) 8(2)(x) and 8(3)(x) are functions of the ordinates z (x) of

the thickness distribution and S b (x) and S(5 (x) are functions of the
ordinates zo(x) of the camber line, The relations between s(v )(x) and zt(x)

and zc(x) are given in Refs.2 and 3.

The pressure coeffioient is determined from the velocity distribution
by the relation:-

2
3 A Rl W ) R

The local Mach number Mn of the velocity component normal to the isobars is

Q
1

related to the pressure coefficient by the egquation:-
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'Appendix 2

2 2 %1. y -1 2 -Y:'%
cp(un,uo,A) = : u§ U;+ — Mf';l [1 + uﬁ 0os A] - 1} .
eee (5)

Por the present test programme, aerofoil sections were required for
wings of 60" sweep which had a design lift coefficient of 0,15 and which
satisfied the conditions mentioned above at a free stream Maoh number of 1.2.
The further condition was imposed that the difference between the upper and
lower surface pressures tends to zero at the trailing edge.

Thickness distributions of the type RAE 100 and RAE 101 were considered.
According to linear theory, these sections have at zero incidence pressure
distributions of the form

. . A O<x<h
c (x) = . (6)
Py A+B(x~h), h<x<i

(h = O for RAE 100, h = 0,3 for RAE 101)., A linear pressure distribution on
the upper surface

Gp(x) = A+B(1 =h) + C(4 = x)
is obtained according to linear theory if the load distribution is

28(1 -n) + 26(1 -x), O0<x<h

C =0 = . (7)
Py Prs 2(B+C)(1 - x) , h<x <1

If we consider these first order terms only, then we find that e wing
thickness of 9% is possible, This implies that the wing section normal to the
leading edge is 18f% thiok and that therefore the second-order terms im-
equation (1) have a significant effeot on the pressure distribution,

To determine the required camber-line, we need to know the linear order
term of the chordwise load distribution in incompressible flowi=

51%% = S(h)(x) + ten oy ’1 ; X (8)

where ap is the design inoidence, The relation between the shape of the
camber-line, 2,0 and the load distribution is:~
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1
dzc(X) - ten o1 I'(x') dx'
dx % T "% 2 v, x=-x'°

0o

This relation can be approximated by:=

N1
dz_(x) T
ot/ _ (22) u (22) I'(x) .
T tan oy = E Spv 7V, + By lixg ZV, vx ; (9)
p=1

the oceffiolents Sfj” are tabulated in Ref,.3.

In view of the relatively large second order terms in equation (1),
we have not attempted to obtain a first approximation to I'(x) from the
linear order terms given in equations (6) and (7). Instead, we have esti=
mated an upper surface pressure distribution and have determined an approxi-
mation to I'(x) from:—

I(x)

2 Vo

n

X

S(l") (%) + ten ap Jm

A sos A

1+ [i(_z_)lzﬁ.).:r

1]

‘ 2 2
-[CPUS —CP(Q,-:O, Z, = O)]J1 - M cos” A

2[ovn 1+ £500]

ese (10)

where Cp(a, =0, 2, = 0) is the pressure coefficient of the uncambered

seotion at zero lift,

With the I'(x) of equation (40) the slope of the skeleton line was
determined by equation (9). By graphical integration of the slopes the
incidence %p and the ordinates of the camber-line were found, Then the

pressure dlstribution can be determined from equations (1), (2) and (3),
taking account of all higher order terms. If a modification to the result-
ing pressure distribution is then required, the prosedure is to estimate
the required alteration of the samber-line and of the incidence and

i

“
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determine S(h)(x) and 8(5)(x) and Cp(x). This prooedure does not, of course,
lead to exnliocit expressions for the load distribution and the camber line,

The results of the caloulations are shown in Figs.2 and 4, which show
the surface pressure distributions, and the shape of the camber line
respeotively., The required pressure distribution has been substantially
achieved, except over the first 10% of the chord.
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Ordinates of aerofoil at 32 pivotal points

TABLE 1

(Prom inspeotion of model)

x Z Z
) c o
upper lower

1.0000 0 0
0.9976 0 0
0. 990k 0.00078 0.00085
0.9785 0,00181 0.00185
0.9619 0,00333 0,00317
0,9%10 0,00521 0,0048L
0.9157 0.00763 0.00689
0.8865 0,01033 0.00926
0.8536 0.01320 0,01189 |
0.8472 0,01621 0.01480
0.7778 0,01946 0.01799
0,7357 0,02288 0.02434
0.6913 0.02598 0.024488
0.6451 0.02915 0.02852
0.5975 0.03213 0.03231
0.5490 0.03457 0,03621
0.5000 0.03668 0.04010
0.4510 0.03789 0.04:386
0,4025 0.03879 0,04742
0,3087 0.03908 0,05050
0.2643 0.03852 0.04979
0.2222 0.03748 0.04766
0.1828 0.03574 0.0l 7k
0.1464 0,03338 0,04112
0.1135 0.03058 0,03693
0.0843 0,02704 0,03226
0.0590 0.02300 0,02744
0,0381 0,01850 0.02233
0.0215 0.01402 0.01748
0.0096 0.00892 0.01190
0,0024 0.00379 0.00575

0 0 0




TABLE 2

Ordinates of pressure holes

Upper Surface Lower Surface

X 2 P 2

o c ) o

0] 0 0 0
0. 0044 0.00558 0.0034 0.00743
00,0101 0.00923 0.0115 0.01290
0.0197 0.01332 0,018 0,01607
0,0300 0,01653
0.0399 0.01904 0,0408 0.02307
0.0598 0.02333 0.0618 0.02796
0.0803 0.02625 0.0819 0.03183
0.1005 0.02900 0.1016 0,03518
0.1502 0.03367 0.1516 0.04168
0.2003 0.03650 0.2016 0,04625
0.2499 0.03818 0.2516 0.04926
0,2998 0.03896 0.3016 0.05050
0.3498 0.03925 0.3516 0,04968
0.4000 0.03896 0.4016 0,04 714
0.4498 0.03803 0.4507 0,04390
0,4997 0.03673 0.5012 0.03999
0.5496 0.03454 0.5510 0.03606
0,5997 0.03191 0.,6012 0,03202
0.6498 0.02887 0.6514 0.02807
0.6998 0.02541 0.,7012 0.02409
0,.7503 0.02182 0.7514 0.02010
0.7999 0.01779 0.,8018 0,01601
0.8503 0.01358 0.8515 0,01202
0. 9003 0.00895 0,9010 0, 00809
0.9493 0.00457

W1.2078. CoP.582.K3 = Printed in Fngland,
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(a) Stagnation pressure 30 in, mercury
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TABLE 3(a) (Cont'd.) - Values of 1 7: 5P

(a) Stagnation pressure 30 in, mercury
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(a) Stagnation pressure 30 in. mercury

TABLE 3(a) (Cont'd.) - Values of p/Heff
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TABLE 3 - Values of p/H e
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TABLE 3(b) (Cont'd.) - Values of p/'f‘leff

(b) Stagnation pressure 30 in. mercury
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TABLE 3b (cont'd)
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TABLE 3 - Values of p/Heff
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(¢) Stagnation pressure 36 in. mercury
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FIG.3l. MACH NUMBERS FOR DRAG RISE AND FOR
ONSET OF SEPARATION EFFECTS vs INCIDENCE;
COMPARISON BETWEEN THEORY AND EXPERIMENT



AY ®EXPERIMENTAL
N VALUES

\
TIMATED
0:05 ES Q

VALUVES. ™

o N

| 2 3 \\Q} 5 o
-6-05 \

\

FIG.32.VALUES OF MACH NUMBER MARGIN BETWEEN DRAG RISE

AND ONSET OF SEPARATION EFFECTS vs INCIDENCE;
COMPARISON BETWEEN THEORY AND EXPERIMENT,

- 010




A.R.C. C.P. NO,582

533,692,1: 533,69,0048,2:
533,693, 1: 533.6,011,12¢
533.6.011,35: 533,6,071.33
533464011,52

WIND TUNNEL TESTS AT MACH NUMBERS BETWEEN 0,6 AND 1.4
OF A 60° SWEPT WING HAVING AN AEROFOIL SECTION DESIGNED
FOR SUBCRITICAL FLOW AT A MACH NUMBER OF 1,2,

PART 1: 9% THICK SECTION WITH "TRIANGULAR" PRESSURE
DISTRIBUTION, Llawlor, E,F, May 1961,

Pressures have been measired at Mach numbers between 0,6 and 1,5
around one streamwise station on a 9% thick, €0° swept wing, cambered
to have a suberitical type of upper swface pressure distribution of
triangular shape at a Mach number of 1.2 and a 11ft coefficient of
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DISTRIBUTION, Lawlor, E.F, May 1961,

Fressures have been measured at Mach numbers between 0.6 and 1,4
around one streamwise station on 2 9% thick, €0° swept wing, cambered
to have a suberitical type of upper swface pressure distribution of
triangular shape at a Mach mumber of 1,2 and a 1ift coefficient of
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OF A 60° SWEPT WING HAVING AN AEROFOIL SECTION DESIGNED
FOR SUBCRITICAL FLOW AT A MACH NUMBER OF 1,2,

PART I: 9% THICK SECTION WITH ®TRIANGULAR" PRESSURE
DISTRIBUTION, Lawlor, E,F, May 1961,

Pressures have been measured at Mach numbers between 0,6 and 1,4
around one streamwise station on a $5 thick, 60° swept wing, cambered
to have a swberitical type of upper surface pressure distribution of
triangular shape at a Mach number of 1.2 and a 11ft coefficient of
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0.153. 1In spite of boundary layer effects vhich caused some loss of
11ft coefficlent, suberitical flow conditions were achleved at the design
Moch number of 1,2 with the design suctlon values over the forward part
of the scetion, At all Mach numbers, the flow development was closely
analogous to that over two dimensional aerofoils at subsonic speeds,

0.153, In spite of boundary layer effects which caused some loss of

11ft coefficlent, suberitical flow conditions were achieved at the design
Mach nmumber of 1,2 with the design suction values over the forward part
of the section, At all Mach nuwbers, the flow develorment wes closely
analogous to that over two dimensional aerofoils at subsonic speeds.

0.153. In spite of boundary layer effects which caused some loss of
1ifv coefticlent, subcritical flow conditlions were achieved at the design
Mach number of 1.2 with the design suction values over the forward part
of the section, At all Mach numbers, the flow development was closely
analogous to that over two dimensional aerofolls at subsonic¢ speeds.
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