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I 11!TRGDUC5!10N 

The results of recent experiments 192 at supersonic speeds on wings of 
small aspct ratio, with uxxcpt trailing edges and streamwise ti?s, have shown 
that slender thin-wing theory* may be considerably in error in its predictions 
of lift and pitching moment. The present cslcljlations of the lift slope and 
~W&LYIVX~~C centre of cropped dolta Rlanforms according to supersonic 
linearised theory WT c undertaken to illustrate ono source of the discrepanoies, 

A number of authors3" have: used supersonic linearised theory to study 
th2 proportics of cropped delta wings when ihe influence of one tip is not 
felt by the other, 'Ce accept the sam restriction anl make use of their work. 
Only the case of subsonic leading edge s is considered here, in view of the 
intcn&d compiu-ison with slender theory. Thus we obtain the properties of 
any given wing for a range of Mach rmmbers between that for which the tips no 
longer interfere and tilt for which the leading cdga becomes sonio. The 
results of the calculations are prescntcd in Kbles and charts, charts of 
lift-slope and aerodynamic cen';re position for a 3-parameter fsmily of wings 
have prwiously becn prepared by Stanbrookfj, The v5do intervals between 
successive curves necessitnted by the 1 ~xre 
impossible to extract the information nowUm 

of planfonns considered make it 
,equired from these charts. 

The theory used makes the usual assuqtions of small disturbances, 
ncgli,gible viscous effects ayld flow separation from the trailing edge only, It 
is known that; the flow past a small aspect ratio wing at incidence usually 
separates from a highly svrept leading edge or from a side edge. For an 
unxairped xing there is a small range of incidence about zero in which the flow 
is little affected by leading edge separation; this range is very small if the 
wing is thin, the leading edge sharp and the M&h number of the flow normal to 
the leading edge is small; it increases with thickness, edge angle and Nach 
number normal to the leading edge; and, in general terms, it is greater for a 
wing with a round leading edge. Thus, although the present results are less 
widely ap#ica?,le t&.n those obtained from linearised theory for planforms of 
hi,g:hCr aspect ratio, they provide re asonable estimates for the lift arxi the 
position 0: the centre of pr-'l"n 
Si.m~i~~~~, 

U2,2ure near zero Incidence for a thin flat wing. 
il a sharp-edged wing is so warped that at some incidence its leading 

edge is an attachment line and separation nhcnd of the trailing edge is avoided, 
there is again a small rsu?ge of incidence about this "attachment incidence*r in 
which lctiing edge neDaration has little offcct. 
depends on the warp &e-triI~ution as well. 

The size of the range then 
The present results can also be 

used for the slope of the lift curve anal the position of tho aerodynancc centre 
in this rznge for a v[arpod wing, 
the scpaxated flow pcp~- 

A simple treatment by slender body theory of 

given in Ref.6: 
aUI, planforms with continuously curved lca.;?ing edges is 

no theoretical trcatmont of the Plot vtith leading edge separa- 
tion is yet knovm which \voWJ enable us to calculate the effect of varying 
X&C41 numb cr. 

The lift and ;Ctching momc:lt oI' a v,?.ng are affected also by its finite 
thickness, This effect calnot be calculated by a thin-wing theory of attached 
flow, since such a theory excludes any interaction between lifting and thickness 
effects, Slender-body theory allows an estimate to be made of the shift of 
aerodynan2.c ceirbre due to thickness and the loss of lift due to a non-zero base 
arca for a slender, pointed wing with unswept trailing edge. 

*Slende*r thin-wing theory uses simultaneously the assumptions of slender 
body theory and of thin wing theory. It is the limiting form of slender body 
theory for vanishing thiciancss an d camber and the limiting form of supersonic 
linearised theory for vanishing F-4. 



For wings with diamond cro~s-~ -ections these effects have been calculated 
by E.C. Kaskell (unpublished). He finds a lC$ loss of lift when the trailing 
edge thickness is 30% of the span. For a delta wing of aspect ratio one, 
12$ biconvex centre section, (the subject of low-speed tests7) the aerodynamic 
centre is calculated to be 2.6$ of the root chord further aft than it would be 
on a thin win& The expertinental results at small incidence confirm this 
difference. 

Having briefly indicated the deficiencies of the proposed model of the 
flow, we go on to outline the theoretical treatment of it and to discuss the 
results. 

2 TEECRY 

The simplest approach to the calculation of the lifting properties of a 
cropped delta wing by supersonic linearised theory is through the super- 
position of conical velocity fields. The basic solution is tnat for the 
uncropped flat delta wing at incidence alA. this applies forward of the Mach 
cones from the leading edge tips (ABDC in Pig.1). This solution implies a 
load distribution, constant along each ray through the wing apex, which 
extends beyond the v&g tip and must therefore be cancelled, The cancella- 
tion is carried out by introducing an elcmcntary solution which produces 
constant load over the region between a ray from the apex and the tip edge, 
on the outboard side of the tip; and produces zero load fomard of the ray 
through the apex and zero downwash inboard of the tip (see Fig.1). This 
elementary solution is conical: its vertex is the intcrocction of the ray 
through the apex and the tip edge, By integration of these clemcntary 
conical solutions, a solution is formed which cancels by superposition the 
load produced by the basic solution at points off the planform but leaves the 
downwash on the wing unchanged, The load distribution induced on the wing 
by these elementary solution s modifies the basic solution everywhere behind 
the Mach lines RD and CD from the leading edge tips, the effects of the two 
tips being additive in the region behind both Wch lines. The construction 
of the cancellation solution in this way is no longer possible as soon as the 
influence of t:le port tip is felt by the starboard ti2; since then the load 
distribution off the wing which is to be cancelled is no longer constant along 
rays through the wing apex. Although there is no difficulty of principle 
involved in carrying the solution past this point by using higher order 
conical fields the work involved would be extensive and the solution along 
these lines has not been constructed. 

The solution for the case of non-interfering tips has been found, by 
Cohen3, for both supersonic and subsonic leading edges, She uses the 
method outlined above and obtains expressions for overall lift and pitching 
moment as integrals of algebraic functions. These can be expressed in 
terms of incomplete elliptic integrals of the third kind, but it is more 
convenient for calculation purposes to evaluate them directly by numerical 
integration, In this way the results of the present paper,which are for 
subsonic leading edges only, have been four-d, Details of the calculation 
are given in the Appendix. Tne results appear in Tables 1 and 2. The 
independent variables chosen for this tabulation are such that linear 
interpolation in both directions introduces errors not exceeding I$ of the 
tabulated function, IIowever, they do not shoTa the changes in lift slope 
and aerodynamic centre which occur a s a given wing is taken through a range 
of Mkh nurrker. These are shown in Figs.2 and 3, in the form of plots 
against 9 cot A for each of a range of values of the taper ratio, h. 

A similar derivation from conical field theory has been used by 
Gilles~ to calculate the load distribution over a cropped delta wing at five 
Jach numbers between that at which the ti?s last interfere and that for 
which the leading edge is sonic. Theso calculations have now been slightly 
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extended so that at each &ch number the load has been calculated on a wing 
continued reamard until its tips interfere, The load distribution on a 
shorter wing is obviously the ssme as that on the for3%& part of the longer 
wing. The isobars of the load distribution are sketched in Fig.4 for Pour 
values of p cot h, In each cage the pressure has been scaled to be unity 
along the centre-line of the fore part of the wing, These load distributions 
have been integrated graphically to obtain the total lift and moment in a 
number of cases. The results agree always to within 23 with the values 
found from Cohen's formulae, This is the greatest accuracy to be expected 
frczn the graphical integration, so the two methods can be taken to be in 
agreement, 

The same case of non-interferi~ tii.; s can also be dealt v:ith by 
Xward' s methcd8; an extension9 of this method seems to permit the calcula- 
tion of the properties of some wings with interfering tips. This has not 

been attempted for the present paper as the complications introduced resemble 
those found if we proceed to higher order conical fields. 

Sirxe t;his work was carried out, the authors have learnt of detailed 
charts10 for the lift coefficients of cropped delta <and other planforms with 
supersonic trailing edAges, At the points of exact comparison available, 
the ronults agree with the present values to within I$. Xef,lO does not 
provide aerodynamic centre data. 

3 DISCITSSION 

Since these calculations were undertaken to throw light on the 
differences between experimental results and slender thin-wing theory for the 
gothic:3 planform, it is appropriate to discuss briefly how far they do so. 

Inspection of Pigs,2 an d 3 shows that, in goneral terms, the lifting 
properties 0 f cropped delta wings with subsonic leading edges do vay 
considerably with Mach nurrloer. ~?us tlzerc is on&jr a small range of Mach 
number within which slerder thin-v:ing theory is reliable. This is obviously 
explicable in terms of I& distributions of lifting pressure illustrated in 
Fig. 4, These are calculated by supersonic t!Ln-v:ing theory; according to 
slen&r theory the sam: type of distribution wouid bc found ahead of the kink 
in the leading cdgc but with no lift behind it, Such a disparity bctv?een 
the results of the tv;o theories might ~~11 be expected on a planform which is 
so obviously not "smooth" in the scnse required by slender body theory. 
k@.n in gLnzra1 terms, it would be expcctcd that the propertios of a planform 
like the gothic with a continuously curved leading odge would change less 
rapidly aith Nzch number than those of a siirlilsr cropped dolta. JIo-xver, the 
cxpcrimental results of Xof.1 show that the lift slope and aerodynamic centre 
position at /3s/o z 0 .252 and above arc vary different from those cnlculatcd for 
a thin t;ing in attached flow at $s/c = 0. It is this discrepancy vrhich we 
wish to oxplain. 

Silzcc at very small lift coefficients it is impossible to determine CL/or 
and C,I1/GL with any accuracy from t41e eqerimcntal points and at large lift 

coefficients there is much uncertainty about the effects of leading edge 
separation, we shall compare theory and experiment for CI, = 0.1. 1% indicated 

above, it is sufficient to consider the results for Ps/c = 0.252, corresponding 
to h"i = 1.12 and s/c = 0.25. ffe consider the '*transition free" values, a quite 
arbitrary choice since the effects of fixing boundary layer transition on lift 
<and momc nt were found to be small and not systematic with M&ch number. 

'kThe gothic planform has its leading edges formed by parabolic arcs. 
The vertices of the parabolas are at the wing tips, which are streamwise, and 
the trailing edge is the straight line which joins them. 



The experimental value of CL/u is 1.535 and the slender thin-wing 

theory calculation gives 42 or 1,178, so that the experimental value is 3% 
above the oaloulated one. The cropped delta wing with the same ratio of 
span to length and the same aspect ratio has a taper ratio of l/3. Its 
calculated lift is the same by slender thin-wing theory, but, by the present 
celculations, atM = 1.42 it has a CL/a of I .375, i.e. 1% above the slender 
thin-wing theory value. Since the effects of Mach number on the gothic 
wing are likely to be less than on the cropped delta, this leaves at least 
13% to be accounted for. In Ref.6 it is suggested that the expression 

cL = xA u/2 + 4 u2 

includes the non-linear lift due to leading edge separation, according to 
slender theory. The experimental evidence of Ref.2 fits this expression at 
M = 1. For the present planform it predicts an inorement of 0,275 (i.e. 23% 
of the slender thin-wing attached-flow value) in CL/u for CL = 0.1. 
Inorease of Mach number above M = 1 reduces non-linear lift rapidly 
Refs,2), so that a contribution to CL/o, from leading edge separation 

(see 

of 15-2@ of the slender thin-ning theory value may be expected. It is thus 
possible to see how the value of CL/o, calculated for a limitingly slender 

wing in attached flow can be augmented to the experimentalvslue; or, indeed, 
suf'fioiently above it to allow for the loss of lift due to boundary layer 
thiokness, 

The experimental centre of pressure at M = 1.42, CL = 0.1, transition 
free, is at 56.7% of the oentre-line chord from the apex. Aocording to 
slender thin-wing theory it should be lO$ofurther forward at 46.a It is 
less easy to choose an "equivalent" cropped d&lta wing than it was for the 
lift alone. This is beoause the A = 0.75, s/c = 0.25 cropped delta 
considered above has its centre of pressure at M = 1.0 at 4-4.4$, while it is 
a wing with h = 0.3 which has the same centre of pressure at M = 1.0 as the 
gothio, However, all these possible "equivalent" oropped delta wings have 
centres of pressure about 8$cfurther forward at M = 1.0 than at M = 1.42, 
so we can expeot a difference of not more than 8%~ on the gothic. CaJmla- 
tions supplementing those of Ref.6 for the effect of leading edge separation 
on oentre of pressure position show a rearward shift of about 4scbetween 

cL = 0 and CL = 0.1, according to slender theory. The effect of Mach 

number must again be to reduce this. Sinoe the wing tested has a sharp 
trailing edge, its finite thiokness has no effect on the lift, according to 
slender body theory. However, it does sffeot the oentre of pressure by an 
amount calculable by the method of Maskell mentioned in the Introduotion. 
For the wing tested the centre of pressure is oalculated to be 2,s further 
back than for the flat wing of the same pla,nform. This figure from slender 
body theory is &LSO likely to be reduced by the effects of Mach number sinoe 
for large enough Mach numbers strip-theory becomes applicable and this 
predicts a forward shift of oentre of pressure due to thiokness, Thus we 
have once again produced oorreotions to the slender thin-wing calculation, 
which are known to be individuelly over-estimated and which together more 
than amount for the discrepancy between the calctited and experiment&l. 
vdues. 

The lifting properties of the gothic planform have be?; o&Lculated by 
Squire'l using the not-so-slender theory of Adams and Sears l It is of 
interest that his calculated results for the lift-slope and aerodynamio 
centre position agree with those found here for the "equivalent" cropped 
.a,.lC.. 



The above discussion makes it clear that the problem of predicting the 
lift and moment of slender wings at supersonic speeds is not likely to be 
solved easily: attached flow theory must be modified to account for leading 
edge sep‘vation, thin wing theory must be modified to account for finite wing 
thickness and slender theories must all be modified to account for ikch 
number vaz5ations. The present paper shows the importance of the last of 
these for the attached flow past a particular family of planforms without 
thickness, 
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Cohen in Ref.3 gives expressions for the lift and moment about the apex 
of a wing with straight subsonic or supersonic leading edge, streamwise tip 
and straight supersonic trailing edge, The expressions are obtained as the 
sum of two terms, one due to the basic delta solution and the other due to 
the cancelling solution as described in section 2, In all these, we take 
the limiting case appropriate to zero trailing edge sweep and obtain: 

LO 4s 7 .._ 

T= 

(,-h)%(&z-) 

(3d(-i-h) + (l-J+Kpx)) 

M 
0 4s2 c 

( 
2 sin -1 

qa = - 
3( ,-x)2@(&2) 

for the lift and moment arising from the basic delta solution; and 

AM 
z= 

4s2c / &A[; 

3(-i-h)2E(mj l-h 
(z2+(1-h)z+ (;-q2) (jy- z) 

for the additional lift and moment due to the cancelling solution. Here h 
is the taper ratio, m z P cot A, 1? is the leading cdgc sweep, s is the semi- 

span, c is the lcngtll, L( I/--- 
2 l-m ) i..; the com&cte elliptic integral of the 

second kind of modulus By the substitution 

z2 1 4 - h(2-x>u2 

the limits of integration in the expressions for AL and 6% are made 0 and 1 
and the in&grands arc transforxled into functions which behave like polynomials 
at the end points, Standard Gaussian inlx~ration formulae can then be used to 
evaluate 4L snd &ir, 
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Appendix 

Bar the present calculations, the ten-point Gaussian formula was used 
and the work carried out on DEUCE using the T.I.P. (Bristol Tabular 
Interpretive Progra3rme). 

The Prandtl-Glauert rule for thin wings implies that it is sufficient 
to calculate the properties of a two-parameter system of cropped delta wings. 
It tells us that, if the spanwise dimensions of the wing and Kach cone are 
multiplied by a factor, then the lift coefficient is multiplied by the same 
factor and the aerodynamic centre is unaltered. Thus the calculated 

XL quantities $ z and b are functions of the parameters @ cot A and hc/@s 

for each example, only. 
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for cropped delta wings 
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entirely upstream of the disturbances produced by the other, The results 
are presented graphically and fr? brief tables, 
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