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SUMMARY

The theory of the ideal ionising monatomic gas is briefly
outlined and a Mollier chart is presented for this gas in equilibriunm.
Its flow through nearly conical nozzles is considered for cases where
ionic recombination is either in complete equilibrium or completely
frozen., A discussion is included of conditions under which the ionisation
fraction becomes vanishingly small, when the gas behaves as a perfect gas.

A useable rate equation has not been developed for partial
equilibrium calculations, but a method of attempting this problem has been
suggested for the case of argon. In the absence of a suitable rate
equation the quasi-one~dimensional flow equations have not been integrated
for partial equilibrium cases, but criteria are given for the flow to be
near to equilibrium and nearly frozen. If the assumptions made here are
correct then these criteria suggest that there may be a lack of ionic
equilibrium in the nozzles of plasma-jet wind tunnels when operated at low
stagnation pressures. Departure from adiabatic flow due to photon emission
is also considered, and shown to be negligible.

List of Symbols

A area ratio (dimensionless)
At area of nozzle at a given station (£¢7)
A*  area of nozzle at sonic throat (£€)
¢! frozen velocity of sound (£t/sec)
Cp specific heat at constant pressure (slugsz/ff4seog)
c, specific heat at constant volume (slugs/ft sec®)
e' specific internal energy (£t 1b/slugs)
el  radiated energy (£t 1b/slugs)
h Plank's constant = 4,868 x 10734 (ft 1b sec)
it specific enthalpy (£t 1b/slugs)
k  Boltzmann's constant = 1.019 x 10733 (ft 1b/°K mol)
M Mach number (dimensionless)
M,  frozen Mach number (dimensionless)
m  mass of an atom (slugs)
me mass of an electron (s1lugs)
m, mass of an ion (slugs)
n' overall number density (££73)
n!  nuwber density of atoms (££7%)
n! number density of electrons (££72)
nl number density of ions (££°)
p' pressure (Ib/f€)
¢ = r;/d/dt (dimensionless)
r;  rate of ionisation (sec™®)
Ty rate of recombination (sec™)
s! specific entropy (£t 1b/°K)

T/
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Tt plasma or atom tcmperature (°K)
T  electron temperature (°k)
1, first electronic excitation potential (°K)
v'  velocity (£t/sec)
x! distance measured from throat as datum (£+)
« ionisation fraction = ne/ne + ng (dimensionless)
y ratio of specific heats = Cp/Cv (dimensionless)
Z dimensionless distance measurcd from the
throat as datum
p? density (slugs/tt)
v ionisation potential (£t 1b)
Suffices
i ionisation quantities

0 stagnation quantities
e electron quantities

eq equilibrium quantities

Primes denote dimensional quantities.

Superfix * denotes throat conditions.

T1e Introduction

One of the most recent additions to the facilities available for
similating high velocity flight is the plasma jet wind tunnel (Ref.1).
This device creates a plasma — an ionised gas ~ in an arc chamber and then
expands it through a nozzle into a vacuum chamber. In this manner very
high stagnation enthalpies may be obtained and the flow may be expanded to
hypersonic velocities. The great advantage of the plasma jet wind tunnel
is that it may be run for comparatively long periods. However, this means
that the power to drive the plasma jet must be supplied continuously, and in
order to keep the power requirements down comparatively low stagnation
pressures are normally employed. Conditions in the plasma tunnel therefore
consist of a high temperature gas stream at low pressure, rapidly expanding
to a very high velocity; these are exactly the conditions required to
produce departures from equilibrium, and so-called relaxation effects.
Relaxing gas flows are sensitive to the density, as this affects the rate of
collision between particles of the different species, and hence the rate of
return to equilibrium. Particularly severe relaxation effects must
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monatomic gas through a nozzle. The thermodynamic equations for such a

gas are very similar to those for a partially dissociated diatomic gas.

Tt may therefore be expected that the ionic rccombination process considered
in this report will be broadly similar to the atomic recombination in
nozzles studied previously by Bray (Ref.2) and in fact the present work
attempts to follow the procedure of Ref.2.

However, ionic recombination is a much more complicated process
than atomic recombination because electrons and ions can recombine in many
ways. Also, the electrons and atoms are very well insulated from each
other energetically (Ref.}) and may therefore possess widely different
temperatures. An acceptable rate equation has not yet been found, and so
the present paper does not attempt a step-by-step interpretation of the
one-dimensional flow equations with a finite rate of ionic recombination,
in the manner described in Ref.2 for the case of atomic recombination.

In section 2 the concept is introduced of an ideal ionising
monatomic gas in equilibrium, analagous to Lighthill's ideal dissociating
gas (Ref,4) and the equations of state and a Mollier diagram for this gas
are given. Rate equations for ionisation and recombination are discussed
in the next section, and the results of Bond (Ref.5) and Petschek and
Byron (Ref.B) on strong shock waves in argon are given in a suitable form
for our use. Section 4 deals with the integration of the quasi-one-dimensional
flow equations for the limiting cases of equilibrium and complete freezing,
and numerical results are given for these cases using the ideal lonilsing gas.
The final section deals with conditions under which the flow may be expected
to depart from equilibrium, using an analysis similar to that developed in
Ref.2 in which freezing is related to the relative magnitudes of the gross
and nett rates of recombination. The rate constants for argon, deduced in
the manner discussed in section 3, are employed here. Also a criterion for
the flow to be adiabatic is discussed briefly.

The basic assumptions in the present work are very similar to those
in Ref,.2; in particular, the flow is assumed to be one-dimensional, steady
and inviscid. Magneto-fluid-dynamical effects which may arise near the
electrodes of a plasma jet are neglected here. Ionisation resulting from
the electric field in the arc chamber is also neglected, and it is assumed
that expansion of the hot gases takes place from a large reservoir in which
equilibrium conditions prevail. Ionisation and recombination on the walls
of the nozzle are not considered.

The physical processes involved in the expansion of high temperature
argon through a nozzle are undoubtedly very complicated, and the authors do
not wish to suggest that the present very simple analysis will give realistic
results. The neglecting of important effects, such as the temperature
difference between the electrons and the atoms, the conductivity of the
electron gas, magneto-gas-dynamic forces and nozzle wall effects may lead to
serious errors.

2. The Ideal Monatomic Gas in Equilibrium

The thermodynamic equations used in this section have been developed
in the same manner as those for the ideal dissociating gas (Ref.2), and it is
therefore an ideal ionizing monatomic gas which is being studied. The
majority of the equations have been formulated by Frood (Ref.6) and hence
detailed derivations will not be included here.

The thermal equation of state for a mixture of neutral atoms, ions
and electrons, each of which behave as a perfect gas ist

p' = n' kT (1+a) cee (1)
where n' = number density of atomic nuclei and is given by:
P‘ = b1} n' LY (2)

where/
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where m = mass of an atom
a = degree of ionisation defined by:
n‘
e
o TR emre—t—ca——— es s (3)
n!' + n'
e a
né = number density of electrons
n} = number density of ions since the gas is
assumed to be electrically neutral
né = number density of atoms
LI ] ]
and n' = n 410k,

The primes denote dimensional quantities, unprimed symbols will
be used later to represent sultably defined dimensionleas quantities.

The law of mass action, or Saha equation governing the equilibrium
composition of electrons, ions and neutral atoms is:

o? 1 3 v
= — B' T12 ¢ 1/ eoe (&)
1=« n'
3
where B! = 8,307 x 1P° £ °f 3
¥ = donisation potential of the gas.

This expression is for the single ionisation of a perfect gas and
neglects eleotronic excitation of the atoms and ions.

The expressions for internal energy per unit mass and specific
enthalpy follow quite simply if electronic excitation and double ionisation
are neglected. They are:

k X

t _3_ =t =
u' = > 1+ a) — T + « = ees (5)
and i' = -g (1 + a)-g Tt 4+ a-é . cee (6)

It is seen that as a approaches zero at low temperatures the
ideal loniging gas becomes a perfect monatomic gas with constant spedific
heats and y = 5/3 as would be expected.

Table 1/
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Table 1

Percentage errors in the Saha and energy equations for argon,
due to neglect of the first excited state of ions

SO vl e
0.00 50.00 0.00
2063 26.67 0.175
5000 12.78 0.279

10,000 6476 0.326
15,000 }a53 0. 345
20,000 345 0.350

Table 1 shows the percentage error in the quantity B' in
equation (4) introduced by neglecting the first excited state of the ions,
for the case of argon. Excitation of the atoms will have a smaller effect.
It 1s seen that the error becomes comparatively large at low temperatures,
but under these conditions a » O and so equation fi) is not required.

This equation also fails at very high temperatures due to multiple ionisation
and higher excited states, but in the range of interest

(say 10,000 < T' < 20,000°K) the error is small. Table 1 also shows the
error involved in neglecting the effect of the first excited state on the
quantity %/k in the energy equation; this error is seen to be small under
all conditions. 0f course, the internal energy is also affected by the
error in a, but this is acceptable under conditions of interest. Similar
results are obtained for other monatomic gases.

The equations (1), (4), (5) and (6) may now be non-dimensionalised
by a similar method to that used by Lighthill (Ref.h) for the ideal
dissociating gas. For this purpose a characteristic temperature, density,

pressure, internal energy and velocity are defined for the plasma: (Values
of these properties for argon are given in Table 2)

a “
o= x/k
3
X 3
B' m < —->
k

Pi(%) ? eeo (7)
R

H

1
Py

L]
[
H

Vx/m

<
l_l.
i

v

The main differences between these quantities and those used by
Lighthill is in the expression for the characteristic density. Tt was
stated by Frood (Ref.6) that the concept of characteristic density could

not/
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not apply to an ionising gas, becausc such a density, far from being
constant, would vary as temperaturcs to the three halves, Whilst this is
certainly true if the characteristic density is defined in precisely the
same way as Lighthill defines it, a characteristic density may in fact be
3
defined by retaining the Tg term in the Saha cquation and making the
temperature dimensionless by taking (x/k) as a unit. The remaining
constant on the right=hand side of the Saha equation then has the
dimensions of demsity. There is no loss of accuracy by doing this and
the other equations may then be non-dimensionalised quite easily,

Equations (1), (&), (5) and (6) may now be written in terms of
the dimensionless quantities T, p, p, u and i wusing the characteristic
ionisation quantities as units.

P = p T (1 + a) s (8)
P Ap e ver (9)
1 ~-a p

u = .g (M1+a) T+a ..o (10)

i = -g (1+a) T+a ees (11)

Table 2

Characteristic ionisation quantities for argon

Quantity Units Value for Argon
Ti °K 1,821 x 10°
H slugs/f1° 2.932 x 1
1 1b/f+? 1.1976 x 10+
u:;_ £t 1b/slug 4.0836 x 10°
vi ft/sec 2,0208 x 10t

Equations (8), (9) and (10) completely specify the thermodynamic
behaviour of the ideal ionising monatomic gas in the range of conditions
where electronic excitations and double ionisation may be neglected. The
first significant deviation will occur either at temperatures low enough
for the error in the quantity B to be large or at temperatures high

enalich for donhle ionisatinon A he dimnartan+t Tarn +ha Tam +amnanadma
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example. This is to be expected in the range of temperatures under
consideration and Lighthill (Ref.)) drew attention to the same phenomenon
in the case of the ideal dissociating gas. The Mollier diagram in that
case is, in fact, very similar to the one prescnted herc, and in both
cases the perfect gas conditions are met at the low temperature end of the
diagram. The constant of integration encountered in the entropy equation
has been taken as zero.

3. Discussion of the Rate Eguation

The theory of ionisation rates is not sufficiently advanced at
present to provide a general rate equation for the ideal ionising monatomic
gas in cases where equilibrium is not achieved, Ionisation is a more
complicated process than dissociation because there are many different
mechanisms which can produce free electrons, and it is not certain which
will be the most important in given circumstances. Also the collision
cross—sections for the various reactions may differ by orders of magnitude,
and the electron temperature may be very different from the atom temperature.

Detailed studies of ionisation rates behind shock waves in argon
have been carried out by Bond (Ref.5) and Petschek and Byron (Ref.3). The
informgtion required for the final section of this paper will be obtained by
combining the results of these three workers with the condition that the
Saha equation (equation (4)) must be obeyed when the gas is in equilibrium.

In this way information about recombination rates may be obtained from
ionisation rate data, but there are flaws in the argument, as explained

later. It must be enmphasised here that although the dimensionless quantities
for the ideal ionising gas are used for convenience, there is no evidence that
the rate constants of this section apply to gases other than argon.

Other work on a rate equation for argon has been carried out by
Weymenn (Ref.7) and Alphar and White (Ref.8). Their results do not agree
in every respect with Refs.3 and 5.

Bond (Ref.5) has suggested that of all the reactions giving rise
to ionisation and recombination only three need to be considered, namely:

B

Ave =24 +2e eee (13)

A+hw =2 A" + e cee (14)

These three reactions represent ionisation by atom - atom,
atom - electron and atom - photon collisions respectively, together with
the corresponding recombination processes. Petschek and Byron (Ref'.3)
have shown that the atom electron collisions (equation (13)) are by far the
largest source of ioaisation providing there are sufficient electrons present
in the gas, and that about 90% of the total ionisation behind a strong shock
wave comes from this reaction. They have also shown that atom - atom
collisions lead to a low ratc of ionisation, and that the ionisation rate at
low electron densitics, when atom - clectron collisions are rare, is probably
dominated by impurity levels rather than by equation (12). It follows that
equation (12) will probably also lecad to a relatively low rate of recombination,
and it is therelore sugcsted that in the formulation of a rate equation
suitable for use in this paper this recaction may be neglected altogcther.

Equation (14)/
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Bquation 514 describes a two-body rccombination process, whereas
equations (12) and (13) give three-body recombinations; 1t follows that
equation (14) will become morc important at low densities where three-body
collisions are very rare. However, it is suggested that the atom - photon
ionisation may be neglected, if it is assumed that the photons produced in
the two-body recombinations are always emitted as radiant energy. The
photon density level in the gas is therefore always low, and equation (14)
proceeds only from right to left. This assumption was also made by Bond.

It seems possible therefore that in the present application the
only reactions which need be considered are:

B

A+e ;:%2 A e 2e eee (13)
G
2

A+ wd— AN s e .o (15)
o

2

With these approximations the plasma will never be strictly in equilibrium
because equation (15) is not balanced, and by the law of microscopic
reversibility, when the plasma is in equilibrium each individual reaction
must balance; it is also apparent that the flow will never be exactly
adiabatic, as each two-body recombination leads to the removal of an
energy (hw) from the system in the form of radiation, These limitations
will be discussed later.

Equations (13) and (15) yield a nett rate of ionisation which may
be written:

dn!

c i 13 12
— n'*n' «a n'"™ -wn ese (16
at P a e 2 e 3 e - (16)

following Bondfs analysis, and the use of the condition that equation (13)
must reduce to the Saha equation in equilibrium gives a relationship
between B and a the production and recombination coefficients
resPectiveiy. We shall use this equation in the form:

where ry is the rate of ilonisation (corr63ponding to the term containing
B, in equation (16)), and r. is the rate of recombination (the sum of

the terms containing a, and o).

Petschek and Byron have discussed the atom~electron reaction
(equation @3)) in some detall in comnection with their shock tube work,
For this case they have considered the reaction to proceed only in the
ionisation direction, so that the approach to a final equilibrium ionisation
level behind the shock wave cannot be predicted by their method. They have
suggested as a possible mechanism for stom - electron ionisation that atoms
are first railsed to their first excited state by collision with electrons,
and that all of the atoms excited in this manner are later ionised, so that
the ionisation rate is thc same as the rate of excitation. Choice of a
suitable empirical law for the inelastic cross-section for this reaction

then gives:
q
- 2(kT')° 2
ry = A'n [— € :]
e
wm
a

t mt 1
T TGXC/TG

eeo (17)

PN
o)
212
(@]
+
N
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. 2k3 12 _g
where At L——] = 6,677 x 102 (£t* /sec) (°K)
n
e

for the rate of ionisation by reaction (13), where T__  is the energy of
the first excited state of argon expressed in °K (Texo = 1.340 x 10°°K),
T, is the undetermined electron temperature, and a factor (1 - a) has

apparently been omitted from the right-hand side because Petschek and Byron
assume that a << 1. They then procecd to set up an energy balance for the
electrons, in order to determine the electron temperature T,. In this

they neglect the rate of change of the thermal energy of the electrons, which
they show to be small in their case, and also the rate of gain of energy due
to the inelastic collisions involving recombination. The rate of transfer
of energy to the electrons in elastic collisions they deduce to be:

n? ¢  8m &, T 9(kT! )?
Q, = — ° 2 1) tn | —— oo (18)
o6 m kT! T 8mn'e®
a € e e

and the rate of loss of energy due to inelastic collisions involving
ionisation is, from equation {17):

— 2(kT')y 4% T -Tt /T
Q, = A'(x +ngé> nén;‘{v-——i—:lzx< exc+2>e exer e .. (19)

M T!
e e

neglecting recombination their energy balance is:

Qe = oo (20)

in

and this gives the required relationship between Ta’ Te and a. However,

since recombination is neglected, equation (20) yields an electron temperature
which is always less than or equal to the atom temperature, a situation which
is applicable to the ionising gas behind a shock wave but not to the
recombining plasma considered here. In order to allow the electron
temperature to be greater than the atom temperature, the energy balance of
equation (20) must include another term to take account of recombination.

This step will not be taken in the present report as we are mainly

interested here in a criterion for the maintenance of equilibrium, which
requires an expression for the rate of ionisation under equilibrium conditions.
For this purpose we shall assume that Ta = T, 80 that equation (17) gives
the ionisation rate directly. It is hoped to explore the effect of differing
atom and electron temperatures in a later work.

Once an expression for r; has been found the rate of threé-body
reconbination follows at once from the condition that equation (13) must
balance at equilibrium, when the Saha equation (equation (14)) applies.

The three-body contribution to r, is therefore

3
o? n'

-3
o /T oo (21)

Ty
1 ~a B!

where T' dis assumed to be the atom temperature rather than the electron
temperature.

No experimentally checked data on rates of recombination through
the two~body collision process of equation (15) have been found. However,
Bond (Ref°5 gives an estimated value for the recombination coefficient oy
for argon, obtained from the wave equation for hydrogen. This is

as/
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1
where D = 7.609 x 1015 (£t®/sec) °K° .

Finally, the ratcs of ionisation and recombination may be written
in terms of the dimensionless quantities defined in Section 2, using
equations (17), (21) and (22) and assuming a simple collision theory model
for the two-body recombination. The results are

; T exe nTexn/Te
I‘i = A P CX(1 - a) Tae( + 2) € see (23)
Te
1 T
3 __ _exc
Te \* / Texo ( T T ) -4
r _—.Bpgocz’(_ﬁ)( eX-1-2>e e ~Epo® T? ... (24)
d T T

where A = B = 3.349 x 10'® gec™?
E = 1.151 x 10t% sec™?
T'
exc
and Too = = 0.7359 .

x/k

To evaluate these expressions we require a relationship between
Te and T, as discussed above.

Lot Quasi-one-dimensional flow equations

The frictionless adiabatic flow of an ideal ionising monatomic gas
through a duct of slowly varying cross—sectional area A' is described by
the equations of conservation of mass, momentum and energy:

pv A' = P* v¥ A¥ = 111 ese (25)
dv 1 dp

YV e F e —— = O see (26)
dx' p dax*'

j_ + %‘ vz = iO ecv e (27)

(in which asterisks denote throat conditions), together with the
thermodynamic rclationships of equations (8) and (11) and a rate equation.
In general these equations cannot be solved until a nozzle shape has been
specified, and procedure here follows precisely that used in the
dissociation case (Ref.2) a nozzle with a hyperbolic area distribution
being chosen:

Al - A% L KR ()2



An area ratio is defined by
A = A'/A*

and a dimensionless distance by

Z =
VAF
s0 that the nozzle shape becomes:
A = 1"'&2. see (28)

This equation together with the five equations given above and a
rate equation yield a set of seven equations with a similar number of
unknowns, and the flow through the nozzle may therefore be solved. Since
a useable rate eguation has not been established the solution will not be
attempted here. The equilibrium and frozen flow cases will, however, be
solved and the methods employed will now be discussed.

42 Equilibrium flow

It may be shown from the law of mass action and the condition that
the flow is isentropic that:

1+a 5 a
+— o+ 2% < > = f (a, T) = constant ere (29)
n 0’ “o
T 2 1 -a

1
or T = te se s (30)

f —-2 a - 24 * >
2 R\ 1 ~a

and from the flow equations (25) and (27) and equations (28) and (30) an
expression for da/d7 may be deduced:

dx Z A (a, T) (
— = . sae 1
az 1+72 B(a)T + ¢(a)? + D(a)T + E(a) )

where A(a,T)
B(a)
C(a)
D(a)

E(a) = =2 (io—a)a(1—a) .

]

(1 ~1)a(1-o) (14+a)T
25a(1-a) (1+a)+20(1+a)

25a(1-a) (14 )+10(1+a)-5(1+a)? (2-a) --%? (i0~a)a(1-a)—6(io—a)

H

6a(1-a)(1+a)—6(io—a)a(1—a)

This equation shows that as % - O at the sonic throat da/d% - O
unless:

B(a*)T + C(a*)T*? + D(a*)T* + E(a*) = O . eee (32)

This yields a relationship betwecn T* and a* and if this
equation is solved simultaneously with equation (30) then T* and a* may
be obtained. It is then a very simple calculation which yields p* and v*
and hence the mass flow rate . Equations (9), (11) and (27) then yield
conditions downstream of the throat; +this is achieved by selecting values
of a and then solving for A, T, p and v. The simultaneous solution of
equations (30) and (32) present the major difficulty here, and because of the
complexity of equation 32) the solution was performed on a digital computer.,

4.3/
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L3 Frozen flow

The problem of frozen flow presents few difficulties since
freezing will occur when a tends to a constant value which is greater
than zero. This will occur if the recombination rate (rr) tends to zero

much faster than [:EE::L (see Section 5).
at _legn.

For flow which is frozen everywhere except in the reservoir
upstream of the nozzle:

o = a = F(po, To) = constant

p = pT(1+a)

.5
i= 5 (1 + ao) T+ o

®
I
™ b

1+ ao) T+

and it is seen that these equations are analagous to those for a perfect
gas with

R = (1+ ao)
_ 5
C, = 3 (1 +a))
- D
Cv = 3 (1 + ao)
C
and y = R = Z = constant.
Cy

The frozen flow parameters may therefore be obtained from normal
supersonic flow theory for a perfect gas with ¢ = 5/3, whence:

y -1 1
(1 + NP) = <1 + —-NF>
- c 5 °

P y =1 \y/vy-1
2 (1 + MQO> =

2

il

T
L
T

i

! e
o)
il
N
—
+
~
i
—
=S
N
—
D3
1
—
il
/‘\ /‘\
—
+
| =S
=
~__
W

The Mach number Mo is based on the frozen speed of sound which is given
by:
c = Aj-é (1+a )T
3 o

whence M = v/c can be determined.

Note/
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Note that it is implicitly assumed in this section that T =T,

although in fact the electron and atom temperatures may be very differen
in frozen flow. This problem requires further study.

Table 3

Stagnation Quantities

Quantity Dimgsziagless Dimggiignal Units
D, 107° 0.83173 1b/irk
P, 107° 8.3173 1b/in?
P, 1077 83.173 1b/in?
T, 0.05 9,105 x 10° °K
T, 0,06 1,093 x 10t °K
T, 0.07 1,275 x 1¢* °K
T 0.08 1457 x 10* °K
T, 0,09 1,639 x 10t °K

L Results

The solution to the equations for equilibrium-isentropic flow and
frozen~isentropic flow have been presented graphically in Figs.2-20 for
various stagnation temperatures and pressures. The equivalent dimensional
values of these and other stagnation quantities are given in Table 3.

It was shown above that the frozen~isentropic flow properties are
jdentical to those of a perfect gas, with a ratio of specific heats (y) of
5/33 the fall in temperature downstream of the nozzle is therefore
unaffected by stagnation pressure and the temperature gradient is very
large, a condition to be expected if the flow is hypersonic. Due to this
rapid fall in temperature the inerease in velocity is also rapid, and it
approaches its maximum value asymptotically at an area ratio of '
approximately 100, Consequently, downstream of this point the continuity
equation may be written approximately:

= tant =

pA constan W/vﬁax
and in support of this approximation the logarithmic slope of the density
curves approach -1 at an area ratio of 100. It is therefore evident

that the frozen flow variables attain their limiting values at comparatively
small distances downstream of the throat.

The equilibrium-isentropic flow properties deviate considerably
from the corresponding frozen-isentropic flow properties, the main reason
being that whilst recombination is taking place energy is being returned to
the stream. This has the effect of reducing the temperature gradient,
which in turn imposes modifications on the remaining flow variables.
However, the temperature docs not decrease steadily in all cases but falls
very rapidly in a certain rcgion of the nozzle, this region being different
for varioug stagnation conditions. Once this region has been reached the

temperature/
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temperature rapidly approaches its limiting value of zero. The
explanation of this phenomenon is quite simple if one determines the
ionisation fraction at the point where the slope changes suddenly; it

is found in all cases that the ionisation fraction is very small at this
point, and in fact downstream of this point the gas behaves as a perfect
gas, and as a result the temperature gradient is large, In order to
check this hypothesis perfect gas solutions have been calculated from
suitable stagnation conditions and superimposed on the
equilibrium~isentropic flow curves (see Figs.2, 6 and 10). The two sets
of curves shown are in excellent agreement. Tn fact this phenomenon
could have been predicted if the Mollier Chart (Fig.1) had been consulted;
following an isentropic expansion on this chart the temperature falls only
slowly until the lower regions are encountered, where the temperature
lines become very bunched indicating a rapid fall in temperature. It
must be pointed out, however, that the lower portion of the Mollier Chart

was obtained from the perfect gas laws.

The effect of this sudden fall in temperature on the other flow
variables is merely to make them approach their limiting values very much
more gquickly, prior to this the limiting values are approached very
slowly as might be expected from previous investigations into dissociative
recombination in nozzles. The limiting value of the velocity is greater
for the cquilibrium flow than for the frozen., The limiting values in
question may be derived from the energy equation (equation 23)) from
which the two limits are: V2 i and V2 (i - a ) for equilibrium and

0 0 0
frozen flow respectively.

There are no sudden changes in the gradient of the density and
velocity curves as there are with the temperature curves, it follows that
the pressure curves (which have not been included) will have these sudden
changes, as dictated by the equation of state (equation (8)).

5«1 Non~equilibrium flow

As the partially ionised gas expands through the nozzle, the
density and temperature fall and so the rate of recombination is reduced.
If the rate of expansion is too rapid recombination may not occur
sufficiently fast to maintain equilibrium at the downstream end of the
nozzle, even if the gas entered the nozzle in equilibrium. This situation
may be described in the manner suggested in Ref.2, where three flow regimes
are distinguished:

(1) A region of flow near to equilibrium, in which both the rate of
ionisation r; and the rate of recombination r, are very large in
comparison with the nett rate of ionisation da/ﬁt = rj - T, sp that
the equilibrium condition r; = rpr dis closely satisfied. Equilibrium
will then continue so long as this situation is maintained, that is so
long as

dat
-— <L I‘i.
dt

(2) A transition region, in which p and T have fallen sufficiently
so that ry and ryp are of the same order as da/dt, and there is
consequently an appreciable departure from equilibrium. Once this process
has begun the tempcrature falls more rapidly, because energy is no longer



and consequently

The ratio Q = ri/L-%% may therefore be used as a measure of the

state of the gas, since this ratio will be much greater than unity in the
near equilibrium region, of the order of unity in the transition region and
much less than unity in the region of nearly frozen flow. If the gas is
very close to equilibrium then Q must be evaluated under equilibrium
conditions, so for region (1) we have

Qeq >> 1
where the suffix eg denotes equilibrium.

The quantity (ri)eq is given by equation (23) together with the
condition that T = Te when the gas is in equilibrium, and

do da x K
dt /eq dz /eq n VAF
from equation (7) and the definition of &, where ( Eﬁ:) is given by
eq
equation (31). Qeq may therefore be evaluated from the equilibrium flow

K
results of section 4, if the nozzle parameter zn——E is specified. In
m 4 g%

regions (2) end (3), hawever, @ will differ from Q_ _ for the following
reasons! eq

(1) Departure from equilibrium is accompanied by a reduction of

(— %%) below its equilibrium value: in fact (—- %‘j—c) approaches T,

as the flow freezes, and this appreoaches zero as p® for the three-body

recombination, so that [ = o << [ = Ao .
dt at Jeq

(2) Departure from equilibrium causes the temperature to fall sharply
from its equilibrium value, because of the reduced amount of energy being
returned to the flowy this will bring about a reduction in r, because of
the exponential term. However, in a non-equilibrium {low T, will be
greater than T (though presumably less than the corresponding T for

the same area ratio), and this effect will tend to limit the reduc®¥én in T,

We see therefore that both (—wgi ) and ry are reduced by

freezing so that no definite statement can be made concerning the effect of
freezing on Q. However, if the 'insulation' between atoms and electrons
is very effective, so that Te = Teq > T, then we shall have @ > Qeq'

In this case, the use of Q. (which can be evaluated) instead of the

unknown @ in a criterion for frozen flow will be pessimisticy that is,
it will predict freezing further upstream than it will actually occur,
Further calculations are required to settle this point.,

In the present preliminary study we shall empirically define the
three flow regions by the equations:
Qe
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Qeq > 1 (near equilibrium) ees (33)
1072 <Qeq< 10® (transition) ees (34)
Qeq < 102% (near frozen) evo (35)

where the transition region (equation (34)) has been made very large
because of the uncertainty of the whole analysis. The condition that the
gas 1s close to equilibrium if ch > 10° should be very conservative, but

there is more doubt about the frozen flow criterion (equation (35)) because
of the unknown relationship between Te and T.

Figs.21 and 22 show the variation of Qeq with area ratio A,

using the equilibrium flow calculations of Section /4 and the rate equation
for argon which was discussed in Section 2, A range of stagnation
temperatures has been considered but only two stagnation pressures:

p, = 107° and 107°. It was found that with p_ = 107" a,, Tapidly

approached zero, so that relaxation effects were unlikely.

Three cases are shown in Figs.21 and 22:
(a) Small Nozzle:

X
— K, = 7949 x 10°
mA*

e.gl’ d* = OQOL}- in- 6 = 32‘01
(b) Medium sized nozzle:

X

K = 2,316 x 10°
mA*
Cefey d# = 0-20 j-.nu 0 = 5po
(¢) Large nozzle:
X
— K = +6,385 x 10
ma¥

1

e.g., d* = 1.0 in. 6 = 7200

0f course, other cases may be considered by moving the curves up or ddwn

' *
in proportion to mat 1 .
X Ky

The results for T = 0.06 fall most steeply, but this case is
only of interest for small A, othcrwise o« is too small 10 be of interest.
The other cases form a band of nearly parallel straight lines, with Q
becoming very small at large area ratios.

P, = 1078

Here Qeq lies in the transition region (i.e., 107 > Qeq > 1072)

for small area ratios, and the curves penetrate deeply in the frozen rcgion
for large area ratios. It appcars therefore that there will Pe a lack of

equilibrium/
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equilibrium in the nozzle under a wide variety of conditions. It must
be emphasized however that a very approximate analysis has been empleoyed
to obtain these curves, and the analysis must be most accurate when

Qg > 10°, that is when an equilibrium flow is indicated, in this case

da/dZ will be very near to its exact value.

P, = 107°

These curves are somewhat lower than those for P, = 1008,

suggesting earlier freezing, as would be expected.s In fact the curves
dowmnstream of the throat lie completely within the frozen region with the
exception of To = 0.09 for large scale factor.

In the opinion of the authors, these calculations indicate that
there will be a lack of equilibrium in the nozzle under a wide range of
stagnation conditions. In view of the very approximate nature of these
calculations it cannot be stated with any certainty that the flow will
freeze in any region, however, there are indications that it will depart

from equilibrium especially where P, and -XL-Kh are small and at
J nA*

large area ratios. Under these conditions, errors in the calculation are
very large. Increasing To and P, appears to favour equilibrium, but

it also increases a and so tends to increase the effect of any departure
from equilibrium. A further study of the relationship between T and T
is required before any definite conclusions may be drawn about the state of
the flow, but this is beyond the scope of this paper.

5.2 Criterion for adiabatic flow

The condition chosen for the flow to be adiabatic is that the
energy radiated per unit time must be small compared with the rate of
change of enthalpy, so that

der ddi.
—_— L — eve (56)
dat dt
dey,
where —— = energy radiated per unit mass per unit time, with y/m taken
dt

as the unit of energy. Clearly if this criterion is satisfied then the
total energy radiated by a unit mass of gas on passing through the nozzle
will always be much less than the total change of specific enthalpy.

Equation (36) will be used in the more convenient form

der di
dz dz
since, for equilibrium adiabatic flow
5 2
S “ (““)(EJ'am-a)) 5 da
—_ =d-(1+a) |-+ ‘ ~T+ 1 Hem
az T i 2 dz
= f(a, T)

from equations (11) and (30), and da/dZ nay be found from equation (31).

But/



But =
az dt th X

from equation (7) and the definition of £,

de dn?
and _._E = —hv_..-—?. 000(15)
dt dt
dnt 1
where L = pB 1%
dt

(1 - a) Te”1/T in equilibrium

from the results of Bond (Ref.5) as quoted in equation (24). Hence

de
—X = =(1=a)T e/ Ty
at
der der at der mA* 1 1
a,nd_ — D —— g e L ee—— g ——-———'—-w.---'“:F(ﬂ,T,V)
&  at  a  a v K v

n
and the criterion for adiabatic flow becomes:
F(a, T, v) << £ (a, T) .
The quantities F and f have been calculated from the equilibrium

isentropic results of Section 4 (i.e., assuming that the criterion is
satisfied), and the ratio F/f has been found to lie between

F 4
107%% 2 e— 2 107°% for v = 10'® Cepese [— & K, = 7.949 x 10°
|| J mA¥
F X
and 10—34 2 — 10_39 fOI‘ v = 1()15 quoso — e Kn = 6.385 X 104
| nA*

for the cases considered. These results confirm that the assumption of
adiabatic flow is justified, at least for conditions close to equilibrium.

Freezing will tend to reduce in the downstream part of the nozzle

&

where v = Vnax? and it may also tend to ingcrease der/ﬁé because of the

temperature. It follows that radiated energy will be relatively more
important in a freezing flow than in an equilibrium flow, but the magnitude
of the figures quoted above for the equilibrium case leads one to believe
that it will still be a negligibly small effect. The figures quoted by
Hirschfelder, Curtis and Bird (Ref.9) confirm this conclusion.

6. Conclusions
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temperatures arc required to determine the properties of the relaxing flow.
It is also shown that cncryy radiated as a rcsult of two-body recombinations
will lead to a negligible deviation fron adiabatic flow.

Equilibrium and frozen flow calcwlations are performed for the
case of an ideal ionising monatomic gas; the approach of this gas to a
perfect gas as the ionisation fraction becones small is also discussed.
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