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SUMMARY 

The theory of the ideal ionising monatomio gas is briefly 
outlined and a Mollier chart is presented for this gas in equilibrium. 
Its flow through nearly conical nozzles is considered for cases where 
ionic recombtiation is either in complete equilibrium or completely 
frozen. A discussion is included of conditions under which the ionisation 
fraction becomes vanishingly small, when the gas behaves as a perfect gas. 

A useable rate equation has not been developed for partial 
equilibrium calculations, but a method of attempting this problem has been 
suggested for the case of argon. In the absence of a suitable rate 
equation the quasi-one-dimensional. flow equations have not been integrated 
for partial equilibrium cases, but criteria are given for the flow to be 
near to equilibrium and nearly frozen. If the assumptions made here are 
oorrect then these criteria suggest that there may be a lack of ionic 
equilibrium in the nozzles of plasma-jet wind tunnels when operated at low 
stagnation pressures. Departure from adiabatio flow due to photon emission 
is also considered, and shown to be negligible. 
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plasma or atom tcmpcrsture 

electron temperature 
first electronic excitation potential 

velocity 

distance measured from throat as datum 

ionisation fraction = nJne + na 
ratio of specific heats = C d C, 

dimensionless distance measured from the 
throat as datum 

density 

ionisation potential 

ionisation quantities 

stagnation quantities 

electron quantities 

equilibrium quantities 

(OK) 
(OK) 
(OKI 
(ft/sec) 

(f-Q 

(dimensionless) 

(dimensionless) 

(slugs/ft3) 

(ft lb) 

Primes denote dimensional quantities. 

Superfix * denotes throat conditions, 

I. Introduction 

One of the most recent additions to tie facilities available for 
sibilating high velocity flight is the plasma jet wind. tunnel (Ref.?). 
This device creates a plasma - an ionised gas - in an arc chamber and then 
expands it through a nozzle into a vacuum chamber. In this manner very 
high stagnation enthalpies may be obtained and the flow may be expanded to 
hypersonic velocities. The great advantage of the plasma jet wind tunnel 
is that it may be run for comparatively long periods. However, this means 
that the power to drive the plasma jet must be supplied continuously, and in 
order to keep the power requirements down comparatively low stapation 
pressures are normally employed. Conditions in the plasma tunnel therefore 
consist of a high temperature gas stream at low pressure, rapidly expanding 
to a very high velocityJ these are exactly the conditions required $0 
produce departures from equilibrium, and so-called relaxation effects. 
Relaxing gas flows are sensitive to the density, as this affects the rate of 
collision between particles of the different species, and hence the rate of 
return to equilibrium. Particularly severe relaxation effects must _ _ . . _. _. . 
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monatomic gas through a nozzle. The thermodynamic equations for such a 
gas are very similar to those for a partially dissociated diatomic gas* 
It may therefore be expected that the ionic recombination process considered 
in this report will be broadly similar to the atomic recombination in 
nozzles studied previously by Bray (Ref.2) and in fact the present work 
attempts to follow the procedure of Ref.2. 

However, ionic recombination is a much more complicated process 
than atomic recombination because eleotrons and ions can recombine in many 
ways. Also, the electrons and atoms are very well insulated from each 
other energetically (Ref.3) and may therefore possess widely different 
temperatures. An acceptable rate equation has not yet been found, and SO 

the present paper does not attempt a step-by-step interpretation of the 
one-dimensional flow equations with a finite rate of ionic recombination, 
in the manner described in Ref.2 for the case of atomic recombination. 

In section 2 the concept is introduced of an ideal ionising 
monatomic 
gas (Ref.4 7 

as in equilibrium, analagous to Lighthill's ideal dissociating 
and the equations of state and a Mollier diagram for this gas 

are given. Rate equations for ionisation and recombination are discussed 
in the next section, and the results of Bond (Ref.5) and Petschek and 
Byron (Ref.3) on strong shock waves in argon are given in a suitable form 
for our use. Section 4 deals with the integration of the quasi-one-dimensional 
flow equations for the limiting cases of equilibrium and complete freezing, 
and numerical results are given for these cases using the idealionising gas. 
The final section deals with conditions under which the flow may be expected 
to depart from eqtilibrium, using an analysis similar to that developed in 
Ref.2 in which freezing is related to the relative magnitudes of the gross 

and nett rates of recombination. The rate constants for argon9 deduced in 
the manner discussed in section 3, are employed here. Also a criterion for 
the flow to be adiabatic is discussed briefly. 

The basic assumptions in the present work are very similar to thase 
in Ref.2j in particular, the flow is' assumed to be one-dimensional, steady 
and Jnviscid. Magneto-fluid-dynamical effects which may arise near the 
electrodes of a plasma jet are neglected here. Ionisation resulting from 
the electric field in the arc Ohamber is also neglected, and it is assumed 
that expansion of the hot gases takes place from a large reservoir in which 
equilibrium conditions prevail. Ionisation and recombination on the walls 
of the nozzle are not considered. 

The physical processes involved in the expansion of high temperature 
argon through a nozzle are undoubtedly very complicated, and the authors do 
not wish to suggest that the present very simple analysis will give realistic 
restits. The neglecting of important effects, such as the temperature 
difference between the electrons and the atoms, the conductivity of the 
electron gas, magneto-gas-d.ynamic forces and nozzle wall effects may lead to 
serious errors. 

2. The Ideal Monatomic Gas in Equilibrium 

The thermodynamic equations used in this section have been developed 
in the same manner as those for the ideal dissociating gas (Ref.Z), and it is 
therefore an ideal ionizing monatomic gas which is being studied. The 
majority of the equations have been formulated by Frood (Ref,b) and hence 
detailed derivations will not be included here. 

The thermal equation of state for a mixture of neutral atoms, ions 
and electrons, each of which behave as a perfect gas isi 

p' = n' k T' (1 + a) o.e (1) 

where n' = number density of atomic nuclei and is given by: 

pt = ril n' . . . (2) 

where/ 
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where m ZZ mass of an atom 

and 

a = degree of ionisation defined by: 

n' e a = 
n' f nr e a 

nl = number density of electrons 

n: = number density of ions since the gas is 
assumed to be electrically neutral 

nt a = number density of atoms 

n' = nk t n;. 

l *6 (3) 

The primes denote dimensional quantities, unprimed symbols will 
be used later to represent suitably defined dimensionless quantities. 

The law of mass action, or Saha equation governing the equilibrium 
composition of electrons, ions and neutral atoms is: 

where 

aa I 
-= - B’ TJi e -Xb-* 

I -a n’ 

B’ = 8.307 x I@* ft-s OK-' 

. . . (4) 

x = ionisation potential of the gas. 

This expression is for the single ionisation of a perfect gas and 
neglects eleotronic excitation of the atoms and ions. 

The expressions for internal energy per unit mass and specific 
enthalpy follow quite simply if electronic excitation and double ionisation 
are neglected. They are: 

and 

u' = i (1 + a) $ Tt + a G .*. (5) 

i' = ~(l+a)$T'+c+ 

It is seen that as a approaches zero at low temperatures the 
ideal ionising gas becomes a perfect monatomic gas with constant spedific 
heats and y = 5/3 as would be expected. 

I/ Table 
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Table I 

Percentage errors in the Saha and energy equations for argon, 
due to neglect of the first excited state of ions 

T ?‘K) 

0.00 

263 

5000 

10,000 

15,000 

20,mo 

$ Error $ Error 
in B' 5J-l (x/k) 

50.00 0.00 

26-67 0.475 

12.78 0.279 

6.76 0.326 

4.53 0.345 

3.45 0.350 

Table 1 shows the percentage error in the quantity Bj in 
equation (4) introduced by neglecting the first excited state of the ions, 
for the case of argon. Excitation of the atoms will have a smaller effec,t. 

' It is seen that the error becomes comparatively lar e at low temprakes, 
but under these conditions a -f 0 and so equation Q 4) is not required. 
This equation also fails at very high temperatures due to muJ.tiple ioni.sation 
and higher excited states, but in the range of interest 
(say 10,000 < T' < 20,000°K) the errgr is small. Table I also shows the 
error involved in neglecting the effect of the first excited state on the 
quantity x/k in the energy equation; this error is seen to be small under 
all cdiitions. Of course, the internal energy is also affected by the 
error ~JI a, but this is acceptable under conditions of interest, Similar 
results are obtained for other monatomic gases. 

The equations (I), (4), (5) and (6) may nOw be non-dimensionalised 
by a similar method to that used by Lighthill (Ref.4) for the ideal 
dissociating gas. For this purpose a characteristic temperature, density, 
pressure, internal energy and velocity are defined for the plasma: (Values 
of these properties for argon are given in Table 2) 

X 
1 Pi = pi ; ( > . . O  (7) 

The main differences between these quantities and those used by 
Lighthill is Fn the expression for the characteristic density. It was 
stated by Frood (Ref.6) that the concept of characteristic densitiy could 

not/ 



not apply to an ionising ~ss, because such a density, far from being 
constant, would vary as temperatures to the three halves. Whilst this is 
certainly true if the characteristic density is defined in precisely the 
same way as Lighthill defines it, a characteristic density may in fact be 

3a 
defined by retakrkng the T term in the Saha equation and making the 
temperature dimensionless by taking (x/k) as a unit. The remaining 
constant on the right-hand side of the Saha equation then has the 
dimensions of density. There is no loss of accuracy by doing this and 
the other equations may then be non-dimension&Lsed quite easily. 

Equations (I), (4)) (5) and (6) may now be written in terms of 
the dimensionless quantities T, p, p9 u and i using the characteristic 
ionisation quantities as units. 

P = p 'I' (1 + a> 

__ = 1 ;e-vT aa 
l-a P 

u=T 
2 

(I + a) T + a 

i = .$ (I +a)T+a 

Table 2 

Charaoteristic ionisation quantities for argon 

. . . (10)  

..* (II) 

E Iqu lations (8), (9) and (10) completely specify the thermodynamic 

Tf 

Pi 

p f 
u! L 

t V. 
1 

units 

OK 

slugs/f t3 

lb/f'+? 

ft lb/slug 

ft/sec 

Value for Argon 

1,821 x IO” 

2.9326 x I@ 

1.1976 x Id’ 

4.0836 x IO* 

2.0208 x Id 

behaviour of the idealionising monatomic gas in the range of conditions 
where electronic excitations and double ionisation may be neglected. The 
first significant deviation will occur either at temperatures low enough 
for the error in the quantity B to be large or at temperatures high 
enmlph fnr dnrlhle innisnt.inn tn ho imnnrf~nf X-n-P +ho lr\m Cmn-nm.lnh.rrn 



example. This is to be expected in the shngc of temperatures under 
consideration and Lighthill (Rcf.4) dr cw attention to the same phenomenon 
in the case of the ideal dissociating gas. The Mollier diagram in that 
case is, in fact, very similar to the one prcscnted here, and in both 
cases the perfect gas conditions are met at the low temperature end of the 
diagram. The constant of integration encountered in the entropy equation 
has been taken as zero. 

30 Discussion of the Rate Equation 

The theory of ionisation rates is not sufficiently advanced at 
present to provide a general rate equation for the ideal ionising monatomic 
gas in cases where equilibrium is not achieved. Ionisation is a more 
complicated process than dissociation because there are many different 
mechanisms which can produce free electrons, and it is not certain which 
will be the most important in given circumstances. Also the collision 
cross-sections for the various reactions may differ by orders of magnitude, 
and the electron temperature may be very different from the atom temperature. 

Detailed studies of ionisation rates behind shock waves in argon 
have been carried out by Bond (Ref.!?) and Petschek and Byron (Ref.3). The 
information required for the final section of this paper will be obtained by 
combining the results of these three workers with the condition that the 
Saha equation (equation (4)) must be obeyed when the gas is in equilibrium. 
In this way information about recombination rates may be obtained from 
ionisation rate data, but there are flaws in the argument, as explained 
later. It must be emphasised here that although the dimensionless quantities 
for the ideal ionising gas are used for convenience, there is no evidence that 
the rate constants of this section apply to gases other than argon. 

Other work on a rate equation for argon has been carried out by 
Weymann (Ref.7) and Alphar and White (Ref.8). Their results do not agree 
in every respect with Refs.3 and 5. 

Bond (Ref.5) has suggested that of all the reactions giving rise 
to ionisation and recombination only three need to be considered, namely: 

4 A+A +A+A++e 
a 1 

. . . (12) 

4 
A+hv#A'+e 

a 
3 

. . . (14) 

These three reactions represent ionisation by atom - atom, 
atom - electron and atom - photon collisions respectively, together with 
the corresponding recombination processes, Petschek and Byron (Ref.3) 
have shown that the atom electron collisions (equation (13)) are by far the 
largest source of io&sation providing there are sufficient electrons present 
in the gas, and that about 9% of the total ionisation behind a strong shock 
wave comes from this reaction. They have also shown that atom - atom 
collisions lead to a low rate of ionisation, and that the ionisation rate at 
low electron dcnsitics, when atom - electron collisions are rare, is probably 
dominated by impurity lcvcls rather than by equation (12). It follows that 
equation (12) will probably also lead to a relatively low rate of recombination, 
and it is therefore sugi,ested that in the formulation of a rate e.quation 
suitable for use in this paper this reaction may be neglected altogether. 

Equation (14)/ 
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Equation 14 describes 
I j 

a two-body recombination process, whereas 
equations (12) and 43 give three-body recombinationsj it follows that 
equation (14) will become more important at Low densities where three-body 
collisions are very rare. However, it is suL;gested that the atom - phgton 
ionisation may be neglected, if it is assumed that the photons produced in 
the two-body recombinations are always emitted as radiant energy. The 
photon density level in the gas is therefore always low, and equation (14) 
proceeds only from right to left, This assumption was also made by Bond. 

It seems possible therefore that in the present applioation the 
only reactions which need be considered are: 

A+hv+-A*+e 
a a 

a.. (15) 

With these approximations the plasma will never be strictly in equilibrium 
beoause equation (1.5) is not balanced, and by the law of microscopic 
reversibility, when the plasma is in equilibrium each individual. reaction 
must balancej it is also apparent that the flow will never be exactly 
adiabatic, 
energy (hv) 

as each two-body recombination leads to the remOval of an 
from the system 5-n the form of radiation. These limitations 

will be discussed later. 

Equations (13) and (15) yield a nett rate of ionisation which may 
be written: 

. . . (16) 

following Bond's analysis, and the use of the condition that equatiqn (13) 
must reduce to the Saha equation in equilibrium gives a relationship 
between p 
respective y* f 

and aa> the production and recombination coefficients 
We shall use this equation in the form: 

act 
- = r.-r 
dt 1 r 

where ri is the rate Of ionisation (corresponding to the term containing 

pa in equation (I6)), and rr is the rate of recombination (the sum of 

the terms containing a2 and g ). 

Petschek and Byron have discussed the atom-electron reaction 
(eqwtion 03)) in some detail in connection with their shock tube works 
For this case they have considered the reaction to proceed only in the 
ionisation direction, so that the approach to a final equilibrium ionisation 
level behind the shock wave cannot be predicted by their method, They have 
suggested as a possible mechanism for atom - electron ionisation that atoms 
are first raised to their first excited state by collision with electrons3 
and that all of the atoms excited in this manner are later ionised, so that 
the ionisation rate is the same as the rate of excitation. Chpice of a 
suitable empirioal law for the inelastic cross-section for this reaction 
then gives: 
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where 
-ii 

= 6,677 x lo-Q1(ft3/sec) (OK) 
e 

for the rate of ionisation by reaction (13), where Text is the enera of 
the first excited state of argon expressed in OK (Te,, = P .340 x IdOK), 

Te is the undeterm5ned electron temperature, and a factor (I - 01) has 

apparently been omitted from the right-hand side because Petschek and Byron 
assume that a << I. They then proceed to set up en energy balance for the 
electrons, in order to determine the electron temperature Te. In this 
they neglect the rate of change of the thermal energy of the electrons, which 
they show to be small in their case, and also the rate of gain of energy due 
to the inelastic collisions involving recombination. The rate of transfer 
Of energy to the electrons in elastic collisions they deduce to be: 

and the rate of loss of energy due to inelastic colX.si,ons involving 
ionisation is, from equation (17): 

neglecting recombination their energy balance is: 

Qee = Q,, . . . (20) 

and this gives the required relationship between Ta, Te and cc. However, 
sinoe recombtition is neglected, equation (20) yields an electron temperature 
which is always less than or equal to the atom temperature, a situation which 
is applicable to the ionising gas behind a shook wave but not to the 
recombining plasma considered here. I5 order to allow the electron 
temperature to be greater than the atom temperature, the energy balance of 
equation (20) must include another term to take acoount of recombination. 
This step will not be taken in the present report as we are mainly 
interested here in a criterion for the maintenance of equilibrium, which 
requires an expression for the rate of ionisation under equilibrium conditions. 
For this purpose we shall assume that Ta = T, so that equation (17) gives 
the ionisation rate directly. It is hoped to explore the effect of differing 
atom and electron temperatures in a later work. 

Once an expression for r. has been found the rate of three!-body 
reoombination follows at once from t he condition that equation (13) must 
balance at equilibrium, when the Saha equation (equation (14)) applies. 
The three-body contribution to rr is therefore 

aa n' -; 
r, - - T' eX/lCT' . . . (21) 

II-a B' 

where Tt is assumed to be the atom temperature rather than the electron 
temperature. 

No experimentally checked data on rates of recombination through 
the two-bo 

7 
collision process of equation (15) have been found. However, 

Bond (Ref.5 gives an estimated value for the recombination coefficient g, 
for argon,, obtained from the wave equation for hydrogen. This'is 
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a = D ,,--c 
3 . . . (22) 

where D = 7.609 x Io-'~ (ftJ/sec) OK&. 

Finally, the rates of ionisation and recombination may be written 
in terms of the dimensionless quantities defined in Section 2, using 
equations (IT), (21) and (22) and assuming a simple collision theory model 
for the two-body recombination. The results are 

r. = 
1 

A p a(1 - a) 

e 

where AZ B = 3.349 x Id.’ sedi 

6 = I.151 x lo13 set-1 

and 
T' 

T exe 
exe = - = 0.7359 . 

X/k 

To evaluate these expressions we require a relationship 
Te and T, as discussed above. 

4.1 Quasi-one-dimensional flow equations 

es* (23) 

between 

The frictionless adiabatic flow of an ideal ionising monatomic gas 
through a duct of slowly varying oross-sectional area A' is described by 
the equations of conservation of mass, momentum and energy: 

pvA' = p” v* A* = $ l a* (25) 

dv I dp 
v-+-- = 0 . . . (26) 

dx’ p axp 

i-k% v2 = i. . . . (27) 

(in which asterisks denote throat conditions), together with the 
thermodynamic relationships of equations (8) and (-11) and a rate equation, 
In general these equations cannot be solved until a nozzle shape has been 
specified, and procedure here follows precisely that used kn the 
dissociation case (Ref.2) a nozzle with a hyperbolic area distribution 
being chosen: 
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An area ratio is defined by 

A = A'/A" 

and a dimensionless distance by 

so that the nozzle shape becomes: 

A = I +2g2. . . . (28) 

This equation together with the five equations #ven above and a 
rate equation yield a set of seven equations with a similar number of 
unknowns, and the flow through the nozzle may therefore be solved. Since 
a useable rate equation has not been established the solution will not be 
attempted here. The equilibrium and frozen flow cases will, however, be 
solved and the methods employed will now be discussed. 

4.2 Equilibrium flow 

It may be shown from the law of mass action and the condition that 
the flow is isentropic that: 

l+a 5 
-+-ac2dn = f (a,, To) = constant -me (29) 

T 2 

or 
I +a 

T = 

f 5 --a- 
2 

2en A-- 
( ) I -a 

and from the flow equations (25) and (27) and equations (28) and (30) ;w1 
expression fcr da/e may be deduced: 

da i: A (a, T) 
z = . I + z2 B(a)p + C(a)l? + D(a)T + E(a) 

l e* (31) 

where A(a,T) = 4(io-i)a(l-a)(l+a)T 

B(a) = 25a(l-a)(l+a)+20(lea) 

C(a) = 25a(1-a)(l+a)+10(1+a)-5(l+a)2 (2-a) - q (io-a)a(l-a)-6(io-a) 

D(a) = 6a(I-(x)(I+a)-6(io-a)a(I-a) 

E(a) = -2 (io-a)a(l-a) . 

unless: 
This equation shows that as i: + 0 at the sonic throat da,/% + 0 

B(cx*)T"3 + C(a*)Tba + D(a*)T* + E(a*) = 0 . e*e (32) 

This yields a relationship between T* and a* and if' this 
equation is solved simultaneously with equation (30) then T* and a* may 
be obtained. It is then a very simple calculation which yields p* and v* 
and hence the mass flow rate $. Equations (P), (II) 
conditions downstream of the throat; 

and (27) then yield 
this is achieved by selecting values 

of a and then solving for A, T, p and v. The simultaneous solution of 
equations (30) and (32) p resent the major difficulty here, and because of the 
complexity of equation (32) the solution was performed on a digital computer. 



- 13 - 

4.3 Frozen flow 

The problem of frozen flow presents few difficulties since 
freezing will occur when a tends to a constant value which is greater 
khan zero. This will occur if the recombination rate (rr) tends to zero 

much faster than (see Section 5). 

For flow which is frozen everywhere except in the reservoir 
upstream of the nozzle: 

a F a 
0 = F(po, To) = constant 

P = p T(-I e ao) 

i = + ao) T + a0 

e 3 (1 z - 
2 

+ ao) T + a0 

and it is seen that these equations are analagous to those for a perfect 
gas with 

R E (-I + ao) 

C E 
P 5 (1 + a01 

Y = 32. 5 
c, = 3 

= constant. 

The frozen fZLow parameters may therefore be obtained from normal 
supersonic fLow theory for a perfect gas with y = 5/3, whence: 

TO -= 
T ( 

1 +yf$ = (4 +;k$ 

PO - = 

P ( 
1 +y %y/y-' = (1 +;o" 

PO 
( 

Y l/Y-j 
-= - ’ d l+- 
P \ 2 "/ 

A 13 Y -1 - 
' ' - =-- - l+- 

A" M L( 2 
Mea 

e 

The Mach number MC is based on the frozen speed of sound which is given 
by: 

c = /r 

whenee MC = v/c can be determined. 

Note/ 
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Note that it is implicitly assumed in this section that T = T , 
although in fact the electron and atom temperatures may be very differeng 
in frozen flow. This problem requires further study. 

Table 3 

Stagnation Quantities 

Quantity 

PO 

PO 

PO 

TO 

TO 

To 

T 
0 

TO 

Dimensionless Dimensional 
Value Value 

we 0.83973 

VT* 8.3173 

lo-7 83.173 

0.05 9.105 x 103 

0.06 I.093 x 104 

0.07 1.275 x Id’ 

0.08 1.457 x Id 

0.09 I.639 x lb’ 

nlits 

lb/in? 

lb/in: 

lb/in: 

% 

OK 

OK 

OH 

OK 

4.4 Results 

The solutipn to the equations far equilibrium-isentropic flpv and 
froqen-isentropic flow have been presented graphically iti Figs.240 for 
various stagnation temperatures and pressures. The equivalent dimensional 
values of these and other stagnation qua.ntities are given in Table 3. 

It was shown above that the frozen-isentropic flow properties are 
identical to those of a perfect gas, with a ratio of specific heats (y) of 
5/3; the fall in temperature downstream d the nozzle is therefore 
unaffected by stagnation pressure and the temperatire gradient is very 
large, a condition to be expected if the flow is hypersonic. Due to this 
rapid. fall in temperature the increase jn velocity is also rapid, and it 
approaches its maximum value asymptotically at a,n area ratio of 
approtitdy 100. Consequently, downstream of this point the continuity 
equation may be written approximately: 

p A = constant = $/V 

and in support of this approximation the logarithmic slope of the density 
curves approach -1 at an area ratio of 100. It is therefore evident 
that the frozen flow variables attain their limiting values at comparatively 
small distances downstream of the throat. 

The equilibrium-isentropic flow properties deviate considerably 
from the corresponding frozen-isentropic flow properties, the main reason 
being that whilst recombination is taking place energy is being returned to 
the stream. This has the effect of reducing the temperature gradient, 
which in turn imposes modifications on the remaining flow variables. 
However, the temperature does not decrease steadily in all cases but falls 
very rapidly in a certain region of the nozzle, this region being different 
for varioufl stagnation conditions. Once this region has been reached the 

temperature/ 
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temperature rapidly approaches its limiting value of zero. The 
explanation of this phenomenon is quite simple if one determines the 
ionisation fraction at the point where the slope changes suddenly; it 
is found in all cases that the ionisation fraction is very small at this 
point, and in fact downstream of this point the gas behaves as a perfect 
gas, and as a result the temperature gradient is large. In order to 
check this hypothesis perfect gas solutions have been calculated from 
suitable stagnation conditions and superimposed on the 
equilibrium-isentropic flow curves (see Figs.2, 6 and IO). The two sets 
of curves shown are in excellent agreement. Jn fact this phenomenon 
could have been predicted if the Mollier Chart (Fig.1) had been consulted; 
following an isentropic expansion on this chart the temperature falls only 
slowly until the lower regions are encountered, where the temperature 
lines become very bunched indicating a rapid fall in temperature. It 
must be pointed out, however, that the lower portion of the Mollier Chart 
was obtained from the perfect gas laws. 

The effect of this sudden fall in temperature on the other flow 
variables is merely to make them approach their limiting values very much 
more quickly, prior to this the limiting values are approached very 
slowly as might be expected from previous investigations into dissociative 
recombination in nozzles. The limiting value of the velocity is greater 
for the equilibrium flow than for the frozen. The limitin 
question may be derived from the energy equation (equation ? 

values in 
23)) from 

which the two limits are: 42 i 
frozen flow respectively. 

o and 7/2 (i. - ao) for equilibrium and 

There are no sudden changes in the gradient of the density and 
velocity curves as there are with the temperature curves, it follows that 
the pressure curves (which have not been included) will have these sudden 
changes, as dictated by the equation of state (equation (8)). 

5.1 Non-equilibrium flow 

As the partially ionised gas expands through the nozzle, the 
density and temperature fall and so the rate of recombination is reduced. 
If the rate of expansion is too rapid recombination may not occur 
sufficiently fast to maintain equilibrium at the downstream end'of the 
nozzle, even if the gas entered the nozzle in equilibrium. This situation 
may be described in the manner suggested in Ref.2, where three f'low regimes 
are distinguished: 

(4) A region of flow near to equilibrium, in which both the rate of 
ionisation rj and the rate of recombination r are very large in 
comparison with the nett rate of ionisation d&t = ri - rr, so that 
the equilibrium condition ri = rr is closely satisfied. Equilibrium 
will then continue so long as this situation is maintained, that is so 
long as 

da 
- - x4 ri . 

dt 

so thi:) ," transition region, in which p and T have fallen sufficiently 
i and rr are of the same order as da/d-t, and there is 

consequently an appreciable departure from equilibrium. Once this process 
has begun the temperature falls more rapidly, because energy is no longer 
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and consequently 
da 

-- 22 r  l 

dt 

r  

da The ratio Q = K/-~ may therefore be used as a measure of the 

state of the gas, since this ratio will be much greater than unity in the 
near equilibrium region, of the order of unity ZIII the transition region and 
much less than unity in the region of nearly frozen flow. If the gas is 
very close to equilibrium then Q musk be evaluated under equilibrium 
cond.itions, so for region (I) we have 

Q >> I 
eq 

where the suffix eq denotes equiLibriwa, 

The quantity (r&q is given by equation (23) together with the 
condition that T = Te when the gas is ~JI equilibrium, and 

CL>,, = ($j,,vJ7$ 

from equation (7) and the definition of k& where da 

( > a;: eq 
is given by 

equation (31). Q,, may therefore be evaltited from the equilibrium flow 

results of section 4, if the nosaLe parameter is speoified. EI 

regions (2) and (3), h owever, Q will Uffer from Q eq 
for the following 

reasons: 

(1) Departure from equilibrium is accompanied by a reduction of 

below its equiE.brium value: I!JI fact approaches r r 
as th0 flow freezes, and this approaches zero as pa for the three4xCiy 

(2) Departure from equflibrium causes the temperature to fall sharply 
from its equilibrium value, because of the reduced amount of energy being 
returned t0 the fldwJ this will brtig about a reduction k 
the exponential term. 

ri because of 
However, in a nun-equilibrium flow T will be 

greater than T l-though presumably less than the oorrespondi& T for 
the same area ratio), and this effect will, tend to limit the reduc%%n in ri' 

We see therefore that both aad r f are reduced by 

freezing so that no definite statement can be made concerning the effect of 
freezing on Q. However, ti the kz7iLation* between atoms and electrons 
is very 

In this 
unlanown 
it will 
Further 

effective, so that T N T e eq 
> T, then we shall have Q > Qen. 

case, the use of Q 
eq 

(which can be evaluated) tistead of the 
Q in a criterion for frozen flow will be pesshmistic; that is, 

predict freezing further upstream than it will actually occur, 
calculations are required to settle this point, 

In the present prekiminary study we shall empiric&lJy define tie . 
three flow regions by the equationst 

&d e 
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Q eq 
> I@ (near equilibrium) a** (33) 

lO-a < Q eq < I@ (transition) **a 0-d 

Q,, -c lCFa (near frozen) l *a (35) 

where the transition region (equation (34)) has been made very large 
because of the uncertainty of the whole analysis. The condition that the 
gas is close to equilibrium if Q > loa should be very conservative, but 

there is more doubt about the fro;& flow criterion (equation (35)) beoause 
of the unknown relationship between Te and T, 

Figs.21 and 22 show the variation of Q 
eq 

with area ratio A, 
using the equilibrium flow calculations of Section 4 and the rate equation 
for argon which was discussed in Section 2. A range of stagnation 
temperatures has been considered but only two stagnation pressures: 
PO 

= lcr8 and 1o-g. It was found that with p, = 10e7 aeq rapidly 
approached zero, SO that relaxation effects were unlikely. 

Three cases are shown in Figs.21 and 22: 

(a) Small Nozzle: 

x 
- Kn = 7.949 x lo5 
mA" 

e.g., a* = 0.04 in. 0 = x0. 

(b) Medium sized nozzle: 

2.316 x Id 

e.g., d* = 0.20 in. 0 = 5". 

(c) Large nozzle: 

+6,385 x Id’ 

e.g., d* = 1.0 in. 0 = 7s". 

Of course, other cases may - 
in proportion to 

J 
mA" 1 - - 

XK, 

be considered by moving the curves up or down 

. 

The results for T = 0.06 fall most steeply, but this case is 
only of interest for small A: otherwise a is too small to be of interest. 
The other cases form a band of nearly parallel straight lines, with Q 
becoming= very small at large area ratios. eq 

Here Q 
erl 

lies in the transition region (i.e., I@ > Q eq > 10-2) 

for small area ratios, and the curves penetrate deeply in the frozen region 
for large area ratios. It appears therefore that there will tie a lack of 

equilibrium/ 
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equilibrium in the nozzle under a wide variety of conditions. It must 
be emphasised however that a very approximate analysis has been employed 
to obtain these curves, and the analysis must be most accurate when 
8, > I$, that is when an equilibrium flow is indicated, in this case 

da will be very near to its exact value. 

These curves are somewhat lower than those for p, = IV', 

suggesting earlier freezing, as would be expected. In fact the curves 
downstream of the throat lie completely within the frozen region with the 
exception of To = 0.09 for large scale factor. 

In the opinion of the authors, these calculations indicate that 
there will be a lack of equilibrium in the nozzle under a wide range of 
stagnation contitions. In view of the very approximate nature of these 
calculations it cannot be stated with any certainty that the flow will 
freeze Fn any region, however, there are indications that it will depart 

from equilibrium especially where p, and are small and at 

large area ratios. Under these conditions, errors in the calculation are 
very large. Increasing To and p o appears to favour equilibrium, but 
it fit30 increases a and so tends to increase the effect of any departure 
from equilibrium. A further study of the relationship between T and T 
is required before any definite conclusions may be drawn about the state ol" 
the flow, but this is beyond the scope of this paper. 

5.2 Criterion for adiabatic flow 

The condition chosen for the flow to be adiabatic is that the 
energy radiated per unit time must be small compared with the rate of 
change of enthalpy, so that 

der ai 
-<<< - 

dt I I dt 
be. (36) 

where der - = energy radiated per unit mass per unit time, with x/m taken 
dt 

as the unit of energy. Clearly if this criterion is satisfied then the 
total energy radiated by a unit mass of gas on passing through the nozzle 
will always be much less than the total change of specific enthalpy. 

Equation (36) will be used in the more convenient form 

de r di 
-<< - 

a;: ar: 

since, for equilibrium adiabatic flow 

= 

C 

: (I + a) 
2 

= f (a, T) 

5 
-T+l 

J I 
da dl: 

from equations (jl) and (30), and da/q may be found from equation (31). 

But/ 
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But 
de, der I 

i 

I.ZA” 
-=-- - 

di: dt vKll x 

from equation (7) and the definition of c, 

and 
der an’ 
-= -huL 
dt dt 

.  .  l ( I  5) 

where % -1 
- = pa-f2 
at 

= (I - a> Te-‘lT in equilibrium 

from the results of Bond (Ref.5) as quoted in equation (UC). Hence 

% -= - (I - a) T e"'T h v 
dt 

&r r&A*1 1 
and -= 

der dt der -*- = -* --•- = F (a, T, d 
a;: at a;; dt J- x K. v 

and the criterion for adiabatic flow becomes: 

F (a, T, v) <x f (a, T) . 

The quantities F and f have been calculated from the equilibrium 
isentropic results of Section 4 (i.e., 
satisfied), and the ratio 

assuming that the criterion is 
F/f has been found to lie between 

F 
go-33 2 - 

If-1 
3 1cr38 for u = Id" c.p.s. 7.949 x 105 

F 
and 10W3' 3 - 

If I 
3 1o-3g for u = Id5 c,p.s. = 6.385 x 104 

for the cases considered, These results confirm that the assumption of 
adiabatic flow is justified, at least for conditions close to equilibrium. 

Freezing will tend to reduce cli 

I I -z 
in the downstream part of the nozzle 

where v"v max' and it may also tend to inprease hl/di: b ecause of the 
temperature. It follows that radiated enerm will be relatively more 
important in a freezing flow than in an equilibrium flow, but the magnitude 
of the figires quoted above for the equilibrium case leads one to believe 
that it will still be a neC;ligibly small effect. The figures quoted by 
Hirschf'elder, Curtis and Bird (Ref.9) confirm this conclusion, 

6. Conclusions 
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temperaties nx-c rc(@xd to d&crr,line the properties af the relaxing flow. 
It is aho shotvn that energy radiated as a result of two-body recombinations 
will lead to a nelj;li@ble deviation from adiabatic flow. 

Equilibrium and frozen flow calculations are performed for the 
case of an ideal ionising monatomic gas; the approach of this gas to a 
perfect gas as the ionisation fraction becomes small is also discussed.. 

The authors wish to thanl~ Dr, 5. Be Willis CC the Department of 
Computation, University of Southampton, for his assistance with the numerical 
oomputations. 
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