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SUMMARY

The camber and twist distributions needed to produce a constant span-
wise GL*distribution and certain linear chordwise load distributions have

been csalculated by linearised supersonic theory at Mo = 1.2 for a set of 34

thin sweptback wings. The wing planforms cover a range of agpect ratios
from 2.0 to 3,5 and leading-edge sweep angles from 55 to 70 . Both leeding
and trailing edges are subsonic at the design Mach number, and the slender-
ness parameter Ps/¢ is between 0,19 and 0.40.

The lift-dependent vortex and wave drags associated with these loadings
have also been caloulated, and appear not to be excessive in almost all the
cases considered.
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1 INTRODUCTTON

In Ref.1, an attempt was made to set down the aerodynamic principles
which should be employed in the design of a swept-winged aircraft intended
to operate at low supersonic speeds, and to show in particular how & suitable
design might be evolved for a long-range transport aeroplane. Predominant
among these asrodynamio principles is the need to design the wing so that
essentially shock-free flow is maintained over the whole wing in the cruising
condition. Unless this is done, there is a considerable risk that separated
or unsteady flows will be obtained, and it is likely that the drag will be
large.

In the particularly simple case of a swept wing with constant sections
and infinite span (the so~called "infinite sheared wing"), it is well~known
that a shock-free "sub-critical" flow which gives no normel-pressure drag
can be obtained at zero lift provided the Mach number component normal to
the wing iscbars nowhere exceeds unity. The isobars on such a wing are
naturally straight lines, parallel to the leading- and trailing-edges. A
considerable body of theoretical and experimental work has shown that similar
sub-critical flows can be obtained on swept wings of finite span, by combining
them with suitably designed fuselages, and that again there is essentially no
normal-pressure drag arising on the wing itself at zero 1lift. The 'wave drag'
of such a wing-fuselage combination need not be much more than that of the
fuselage itself.

In Ref.1 the suggestion is made, and applied, that a lifting wing-
fuselage combination should also be designed so that the isobars on the wing
are straight and the local Mach number component perpendicular to them nowhere
exceeds unity, in which case a sub-critical, essentially shock-free, flow
should again be obtained on the wing. Such a flow should certainly be well-
behaved, but this does not imply that the normal-pressure drag will still be
negligible as it is is on the constant-section wing at zero lift.

By using linearised supersonic theory, the drag asscciated with any
distribution of lift forces can be calculated. It can be shown (see, for
example, Ref.2, p.222) that this drag can be separated into two terms: one
depending on the spanwise lift distribution, eand one depending on the length-
wise 1ift distribution. The former, the so-called "vortex drag", is inde-
pendent of Mach number; while the latter term, the "lift-dependent wave drag",
appears only at supersonic speeds and increases with (M% -1). This 1lift-

dependent wave drag must appear as a normal-pressure drag on the configuration,
and one purpose of the present work is to investigate how large this drag term
is likely to be on wings which are intended to have sub-critical flows at 1lif't.

The present work has, in fact, a dual origin. In the fairst place, there
was a requirement to find out what camber shapes would be needed on a wide
range of wing planforms to obtain the type of load distribution proposed in
Ref.1 - namely a constant spanwise CL—distribution with straight iscbars.

This purpose has largely controlled the choice of wing planforms and loadings
which have been dealt with. Secondly, there was the desire to have more
examples of the lift-dependent wave drag calculated on reasonably "practical"
wings, and to relate these to calculations of the spanwise drag distributions
to see where the normal-pressure drag is actually concentrated.

In principle, a wing of given planform can be cambered and twisted to
have any prescribed load distribution at e specified speed. This load distri-
bution will not, of course, be maintained at incidences other than the design
value. In the present work, superscnic thin-wing theory has been used to
calculate the warp distributions needed on 34 wing planforms to produce
certain load distributions at M0 = 1.2. To reduce the computations to

-l -



manageable proportions, only simple loadings have been considereds +these
are of the form

- qu(x,y) = A+ BE

X ™

el x (y) and x,(y) being the

equations of the wing leading- and trailing-edges. All the results have
been calculated, and are presented here, for a 1lif't coefficlent CL = 0.,25.

The wing slopes are all proportional to the 1lift coefficient, so the camber
and twist needed on wings designed for a lower GL would be proportionately
reduced.

where A and B are constants and g =

The simple load distributions considered will only give an approximation
to the desired type of pressure distribution with straight isobars, except on
wing-fuselage combinations with & special thickness distribution such that the
zero=lift pressure distribution also has straight iscbars, and then only within
linearised theory. Another deficiency of these loadings is that, in the
linearised theory, the finite load specified at the leading-edge leads to a
logarithmic singularity in the wing slope there. Even though this singularity
is removed (in a rather arbitrery fashion) by the calculation method adopted
here, the shapes calculated offer no guarantee that the flow will be attached
at the leading~edge in the design conditions, and there is considerable risk
of the flow separating from the lower surface. In practice, this difficulty
can probably be overcome by suitebly modifying the wing sections, particularly
near the nose, but this will in itself further modify the wing iscbar pattern.

A further simplification had perforce to be adopted in these calou-
lations: they were all made for isolated wings, since no practical method
exists for caloulating the influence of a fuselage at_supersonic speeds.

In Appendix 1 (which is an extension of work by WeberJ) slender-body theory
is applied to calculate the shape needed for the Jjunction section of an
untapered sweptback wing mounted on a cylindrical fuselage at zero inoidence.
This is compared with the shape calculated for the centre of an isclated wing
designed to carry the same load distribution. It is concluded that the
shapes calcoulated for isolated wings should provide an acceptable approxi-
mation to the shapes needed on wing-fuselage combinations with near-circular
fuselage cross-sectiona. It is clearly not permissible to assume (as has
sometimes been done) that the extremely twisted part of the wing near the
centre will be covered in practice by the fuselage of a wing-fuselage
combination.

The wing planforms which have been considered are detailed in section 2;
they coyer a range of aspeot ratios from 2.0 to¢ 3.5, and leading—e%ge sweeps
from 55° to 70 . The minimum trailing-edge sweep considered is 357, so all
the wings have subsonic leading- and trailing-edges at MO =1.2. All the

wings are members of a particular family with curved leading-edges over the
outer part, and streamwise tips.

The caloulation of the camber distributions is described in section 3.1,
with some discussion of the significance of the results in section 3.2. The
determination of lift-dependent drags from the spanwise and lengthwise load
distributions is presented in sections 4.1 eand 4.2. The spanwise drag distri-
bution has been calculated for a few of the wings in section 4.3, and these
are integrated to compare with the other method of estimating lift-dependent
drags.



From the lengthwise loading, the centre of pressure position can also
be determined, and in section 5 these positions are compared with calculated
positions of the low-speed aerodynamic centre. Any large difference between
these positions implies that a trimming load is needed, since the centre of
gravity of an aircraft must be close to the low-speed aerodynamic centre if
it is to be stable at low speeds. The comparison presented may therefore be
of some value in assessing the relative difficulty of trimming wings with
different planforms, although it is not possible to make estimates of the
actual trim-drag penslties.

2 THE RANGE OF PLANFORMS CONSIDERED

The family of swept wings considered in this survey (originally
described by Beasley in en unpublished R.A.E. note) are shown in Fig,.2, with
an explanation of the symbols used in defining them in Fig.1. This family
is a fairly arbitrary selection of planforms which represents an attempt to
extend the small number of wings considered in Ref:1 to cover the range of
aspect ratios and sweep angles thought to be of interest for the design of
transport aeroplanes intended to cruise at low supersonic speeds.

All the wings considered have edges swept back at more than the Mach
angle for the design speed Mo = 1.,2; all have straight trailing-edges and

leading-edges composed of a straight inner half with a parabolic curved tip.
This particular parabolic shape has no peculisr merit - any curved edge which
fairs into a streamwise tip would probably also be aserodynamically satis-
factory. An experiment by Hall and Rogers™ on a particular wing with a
square-cut tip has illustrated the complicated flow patterns which develop
at transonic speeds near the tip. Most of these complicated features appear
1o be connected with the presence of the discontinuity at the square tip,
and this lends support to the arguments which have been put forward (e.g.

in Ref.1) in favour of curved tip shapes. It is also worth noting that
Lock's works, referred to in section 3.2 below, also leads to similar curved
+ip shapes.

Each planform of the family is defined by four parameters: the sweep-
back angles of the lesding-edge, Py and of the trailing-edge, Py 3 the

aspect ratio A; and the fraction of the semi-span occupied by the straight
segment of the leading-edge, Ny (For all the wings considered here, M = %;

in practice a range 0.3 € My € 0.7 might cover all cases of practical interest,
and within this range chenges in the calculated warp distribution are not
likely to be significant.)

Other geometrical parasmeters of interest are the semi-span s, root
chord Cy? overall length (in the x—direction) £, and the "projected tip
chord", Cys defined as shown in Fig.1 by extending the straight part of the

leading-edge. None of the more conventional definitions of "taper ratio"
appears to be convenient for wings of this sort, so a taper ratio T defined
as cﬁ/co is used here.

Let x, y, 2 be right-handed Cartesian coordinates with x measured
gstreamwise, y spanwise, z upwards and the origin at the apex. Then the
leading-edge of any planform in the family is given by

e
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where f{n) = 1 ~2 1:71 + 1 -
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The trailing-edge is given by
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T+ mo(2 + “t) + 3m,

Values of these parameters for the 34 wings shown in Fig.2 are tabu-
leted in Table 1. It may be worth drawing attention to the fact that all
the wings considered are aerodynamicelly fairly slender; at the design speed
Mo = 1.2, the slenderness parameter Ba/z lies between 0.19 and 0.40 for all

the wings considered.

3 CAMBER AND TWIST DISTRIBUTIONS

3.1 Calculation methods

As is shown for example in Searsz, Section D.10, pp.148 et seq, a thin
wing in a supersonic stream of velocity Vo and Mach number Mo which carries

a load distribution Acp(x,y) can be represented by a planar distribution of
vortices which produce a perturbation velooity potential
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s - E?E{f [(.v -3, + zz:“:(x - %) = By - 3y) - 6222]%

(6)

where Bz = Mi ~ 1, and the integration is carried out over all points
(x1,y1) on the wing plane lying within the Mach forecone of the point (x,y,z).

The wing shape can be calculated as a stream surface of this velocity field:
applying a lineasrised bourdary condition gives

oz VZ(X:Y:Z) a
E(XJ.Y) = Vo = '—ﬁ-’; 'a'g (x,y,z)

To find the wing shape needed to support a prescribed load distribution
thus requires first an integration to determine the potential ¢, which is
differentiated with respect to z to obtain the distribution of surface slope
on the wing.

By oonsidering only load distributions of the form ~ACP(x,y) = A + BE,

the practical application of equation (6) can be simplified (at the expense
of certain disadvantages pointed out in section 1). Two slightly different
techniques for dealing with equation (6) bave been used to produce the
present results.

By performing the integration on the right-hand side of (6) first with

respect %o Xy s differentiating with respect to z and taking the limit as

z >0, Roper5 has obtained an expression involving a singular integral with
respect to ¥qo which is valid for wings of zero thickness. A numerical

method of performing the final integration and obtaining the desired limit
has been developed by Watt®, in a form suitable for calculation on a digital
computer, and the DEUCE computers of Mathematical Services Department, R.A.E.
have been used to perform these calculations for the present work.

Using this approach, the value of 3z/dx becomes logarithmically infinite
at points on the centre-line y = 0, and on the leading- and trailing-edges
unless ACP = O there.

The singularities at the leading- end trailing-edges do not appear in
the results reproduced in Figs.3 to 40. Values of 3z/dx were calculated on
DEUCE for the points E = 0.01, 0,03, 0.05 and 0.1 (0.1) 0.9; these,were
used in an interpolation and integration routine (described by Watt ) which
extrapolates to give finite values at £ = 0 and § = 1, and this process
produces the vaelues of z(x,y) shown in Figs.3 to 4O.

On most wings, results were obtained for the spanwise stations
y/s = 0.05, 0.1, 0.2, 0.k, 0.6, 0.8 and 0,9; on a few wings extra points
were calculated which are included in the appropriate figures. It may be
of interest tc record that the actual time needed to produce the standard
set of 84 values of 9z/3x on the DEUCE was sbout 2% hours for each wing and
each load distribution.



To avoid the logerithmic singularity at ithe centre of the wing, in the
case of a constant-chord wing, Weber? has deelt with equation (6) by inte-
grating first with respect to Yy differentieting with respect to z, and

taking z = zt(a) in the result, where zt(g) are the ordinstes of an appropriate

uncambered wing of finite thickness. PFor points on the centre~line y = O the
resulting integrals with respect to x, can be obtained in closed form for

loadings of the specified type, and explicit expressions for the slope of the
wing centre~line are derived. Cooke/ has developed this method to obtain
approximate results at the centre-line of wings with tapered planforms.
Results from Refs.3 and 7 for the wings considered here are included in
Figs.3 to 40; these calculations were made (on desk caleculating maohines)
using values of z, appropriate to a &% thick RAE 101 wing section.

Cooke's reaul’cs7 are strictly valid only for wings on which the curved
part of the leading edge does not intrude into the Mach forecone of the
centre-line trailing-edge point, i.e. for wings of the family described in
section 2 for which

¢ mn+
o v P

Q
—rne g
3 2moﬁ

This condition is not satisfied for most of the smaller aspect-ratio
wings, but the errors should be small and confined to the neighbourhood of
the trailing-edge.

3.2 Discussion of results

Two particular chordwise load distributions have been taken for the
examples caloulated here:

(a) & triangular loading given by
- AC = O- - Ot
o 5 5€
(b) & uniform loading given by
- A =) 0.2
Cp 5

Both give a sectional 1if't coefficient CL = 0425, and, of course, an overall
wing 1ift coefficient ‘E; = 0.25.

For the triangular loading, the camber shapes needed for all 34 plan-
forms shown in Fig.2 have been caleculated; for the uniform loading only four
wings (wings 3, 5, 17 and 24 in Fig.2 and Table 1) have been considered. The
results are shown in Figs.3 to 40: of these, Figs.6, 9, 22 and 30 show the
results for the wings ocarrying uniform load.

These figures show that the most significant feature of all these wing
shapes is the large incidence required at the wing centre, and the large
spanwise twist variastion. The values of centre-line incidence, Gy for the

various planforms are summarised in Fig.k1(a), from Ref.7; as explained
sbove, these results are strictly valid only for wings on which
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Furthermore, these results have been calculated assuming a 6% thick RAE 104
wing section, and different results would be obtained if a different thickness
distribution were assumed. The effect of changing the thickness~chord ratio
on one particular planform is shown in Fig.41(b), taken from Ref.3.*

Comparison between the results presented for two different loadings on
wings 3, 5, 17 and 24 shows that there is a broad similarity hetween the
shapes needed to produce different loadings, but the section camber-lines
are naturally quite different and the spanwise twist distributions do differ
to a certain extent. The variation in shape of the camber-lines is illustrated
in Fig.42, showing results for a particular wing. {(In this figure, the actual
camber-line ordinates are plotted; the local twist which is included in
Figs.3 to 40 is here subtracted at each station.)

The differences in spanwise twist variations associated with the
triangular and unif'orm chordwise loadinge is illustrated in Fig.h3. This
shows results for the immer half of wing 3, compared with some calculations
nmade (at M = 1) for a wing of infinite span, obtained by integrating

equation (67) of Ref.3. It is noteworthy that the values for the 'infinite
sheared wing' (obtained as y + =) are approached very slowly. Even at

y/c = 2, which would represent mid—semigpan on an untapered wing of aspect

ratio 8, the local incidence is still 1~ higher than on the infinite wing.

To examine further the chanpges in wing shape required to produce
different chordwise loadings, celoulations were mede at Moz 1 of the centre-

section shapes associated with the two chordwise load distributions alreedy
discussed and also with the loading uACp = C/VE which is of the same type as that

of a flat plate at inoidence. These calculations are described in Appendix 2,
and the results for an untapered wing with 550 sweep are shown in Fig.52.
These confirm that the main feature is the large looal_incidence reguired at
the wing root.

In this context, some work by Lockﬁ is also relevant. He has considered
the problem of designing the planform of a flet thin wing so that, at inci-
dence, the singularity in the load distribution at the leading-edge has a
constant strength outboard of a specified point, The chordwise loed distri-
Tutions then have a leading term of the form -ACP = C/VE, and the coefficient

C is constant over the outer part of the wing.

Lock prescribed an untapered immer part of the wing, and found that the
planform needed over the outer part comprised a curved leading-edge and &
streamwise tip. The planform obtained is similar to wing 3 of the family
shown in Fig.2. Not only is the leading-edge singularity constant over the
curved part, but the whole chordwise load distribution is found to be almost
the same over the outer part of the wing.

Thus, Lock has obtained a wing on which nearly constant chordwise
loadings are associated with constant {uncambered, untwisted) wing ghapes
over the whole outer part of the planform. However, the load distributions
over the immer part of the planform do vary considerably; +to maintain the

* The results in Fig.}1(b) are actually from calculations made at Mo =1,

but it is shown in Ref.3 that the differences from calculations at Mo = 1.2
are small.



same chordwise loading there also, camber and twist would be needed. It
follows from the results shown in Fig.5z that the centre-section incidence
would have to be of the same order as is shown in Figs.5 and 6 for wing 3
with trianguler and uniform chordwise loadings.

& CALCULATION OF LIFT~-DEPENDENT DRAGS

The total lift-dependent drag on any wing can be defined as being
equal to the momentum transported through a cylindriocal control surface
surrounding the wing (see e.g. Ref.2, p.222). This can conveniently be
separated into "vortex drag" and "wave drag" components, which are equal
to the momentum transported through the parts of the control surface
respectively perpendicular and parallel to the stream direction.

4.1 Vortex drag

The vortex drag can be shown to be

)
Dv = -%P f T Wwdy

-8
-
where I' = 2Vo CL c
is the circulation round a section of the wing

8 ay
o 2% dyd ¥y =¥y
-3
is the downwash in the Trefftz plane far downstream of the wing.
It is noteworthy that this relation does not depend on Mach number.
Thus the vortex drag coeffioient, based on wing area S, is
U 1
PR S f"""[f d(c_s.)_fl}dn
DV "is BrA L= an, \Lg/n-m,

(7

where ¢ is the {geometric) mean chord of the wing.

For wings designed, as here, to have constant CL(y) ='E;, the vortex
drag factor Kﬁ is then:

1 1
voms i [ 3£ @

This is simply a function of the planform shape, and for the present series
of wings with m, constant it is clear from equations (1) ard (4) that K, is

a function of the taper ratio T only. Equation (8) has been integrated
numerically, and the result is shown in Fig.i.



It is noteworthy, that, except for wings with T < 0.25, values of Kv

less than 1.1 are obtained. There is clearly a considerable range of plan-
forms on which it should be possible to design for straight isobars withoub
incurring an exceasgive vortex drag penalty.

If equation (7) is integrated by parts, it yields

1 1
C, ¢
4 a f1% & /M
Cov = ~%om f f 'em( 5 )dn, (Cs?"’n!””“*lld“ any (9)

-1 -1

This symmetrical form is analogous to the expression (equation (10)) obtained
for the wave drag. The vortex drag can thus be obtained from the spanwise
load distribution by using Eminton's method” originally developed for calcus
lating the zero~lift wave drag of slender bodies. As a matter of interest,
this method was applied to several examples from the present series of wings,
end points were obtained agreeing very closely with the curve in Fig.W4.

L.2 Lift-dependent wave drag

A lifting wing at supersonic speeds can be represented in a linearised
theory by a planar distribution of doublets, and their influence at large
distances (in particular the momentum transport across a cylindrical control
surface which can be equated to the wave drag) can be represented by a set
of equivalent distributions of singularities along a streamwise line. Using
this principle, Heaslet, Lomax and Spreiter!C have expressed the 1ift-
dependent wave drag of & wing as a traiple integral involving the streamwise
distributions of the 1lift intercepted by oblique planes, in direct analogy
to the 'supersonic area rule' used for calculating the wave drag due to
thickness of non=lifting bodies. This result can be expanded!! as a series
of terms involving powers of a slenderness parameter (Bs/€)2: the leading
term in this series involves only the distribution of the cross-load L(x)
defined by

o
L(x) = V" f (-ac,) ay
-

where o(x) is the local semispan.

For sufficiently small values of (Ba/&)z, the lift-dependent wave drag
is then given by

2 Z
Dw _ -(MO = 1) ) L'(El L'(x1) _
2 [ e 0o

0

dx

<ﬁhere L'(x) denotes QLLEl{) s

provided that L{o) = L(£) = O, This condition is satisfied by all the wings
treated here,



If the oross-load distribution is elliptical, equation (10) yields
R.T. Jones' lower bound to the lift-dependent wave drag for a wing of given

semispan and overall length and small (ﬁs/&)zz

c Ezzzfmz AVAY
v T \o“><'€) (11)

If the oross-load distribution is not elliptical, it is sometimes
convenient to write

E—2

o = -‘l't-I-‘A- 2 (Mi - 1) (%)2 (12)

where the factor KW is a measure of the extent to which the actusl cross-

load distribution differs from an ellipse. (This factor is not in general
a function of any particular simple geometrical parageter, )

On the wings of the present series, the slenderness parameter Bs/¢
has values up to 0.40, which is probably small enough for equation (10) to
give an asdequate approximation since the lift-dependent wave drag at
Mo = 1.2 is only ebout 2% of the total lift-dependent drag, which is itself

only about one-third of the total drag of a practical aeroplane in oruising
corditions. The error in using equation (10) might be more significant for
other planforms, for example M-wings, and the full result obtained by
Heaslet, Lomax and Spreiterﬂo involving the oblique loading should then be
used.

A convenient method of evaluating the double integral in equation (10)
is to use the numerical method developed by Eminton? for dealing with the
corresponding problem for non-lifting bodies. This was done by Beasley in
the present case, and is disocussed in more detail in Appendix 3. The
results of the caloulations are shown in the form of a drag factor

in Figs.45(a) and 45(b) for triangular and uniform chordwise loadings
respectively.

The results ere also related to R.T. Jones' lower bound in Fig.4b
which shows the factor Ky of equation (12). (As was pointed out above,
there is no reason to expect any relation between Kﬁ and T - the choice

of T as ordinate in Fig.46 is merely for convenience). It appears that
Kw lies between about 1.2 and 1.4 for all the wings and loadings considered

here. This suggests that no excessive penalty in lift-dependent wave drag
would be inourred by designing wings to have straight isobars.

Combining the vortex and wave drags gives the total lift-dependent drag
factor

K = qz_ W
CL A

r



which is shown in Figs.h?(a) and 47(t) for the two chordwise loadings consi-

dered. For wings of given aspect ratio and leading-edge sweep, it seems thet

pinimum dreg should be obtained at about T = 0.7, but there is little signifi-
cant change in drag over the range 0.5 €« T € 1.0. On the other hand, highly-

tapered wings designed to have constant chordwise loading are at a definite
isadvantage.

4.3 Spanwise drag distribution

Although the davision of lift-dependent drag into vortex and wave-drag
elements just presented 18 convenmient for many purposes, it is also instructive
to consider the spanwise distribution of streamwage forces acting on the wing.
This can be done by multiplying ihe local load by the local surface slope and
integrating to obtain the sectional drag coefficients:

%7
CD(y) = = f Acp(x:Y)%';zcdx

x,

P
The results obtained inthis way for several wings are shown in Fig.4S.

For comparison, the spanwisc digtributions of sectional drag coefficients
for wings with the same planforms whicn are cambered %o produce the same load
distributions at MO = 0 are also shown. These were obtained by Vickers-

Armstrongs Ltd.12 in a programme of calculations undertaken in parallel with
the present investigation, and are calculated from the relation

Gy) = c(y) ay(y)

where the induced incidence distribution mi(y) was calculated by Multhopp's
method.*

It is noteworthy that at supersonic wings there is a marked concentration
of local normal-pressure drag near the centre of the wing, and that in fact
some thrust force is carried on the outer part of the wing.

By integrating the spanwise distributions of CD(q/E) in Fig.48, the

overall drag coefficient can be obtained and compared with the values cbtained
above for the separate vortex and wave drag elements. In principle, the value
obtained from the integration of local forces should be more accurate than the
other, since the theory used in section 5.2 to obtain the lift-dependent wave
drag involves the additional assumption that the wing is slender. However,

in practice the numerical regult for the overall drag is obtained by e
succession of graphical integrations, in which the singularities at the edges
of the planforms are not properly dealt with, and 1t is impossible to obtain
very accurate results {rom the limited number of points available. The order
of egreement shown in Fig.49 for a number of the wings therefore seems to be
reasonable, and it serves to some extent to provide an independent check of
the shapes calculated in section 2. Ii is clearly not possible to use these
comparisons as a check on the validity of the assumption, made in section L.2,
that equation (10) could be used although some of the wings may not be strictly
slender.

* An exact calculation of mi(y) would have shown a logarithmic singularity

at the centre of the tapered wings; Multhopp's method evades this by effeo-
tively modifying the wing planform near the centre.
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5 CENTRES OF PRESSURE AND LOW-SPEED AERODYNAMIC CENTRE POSITIONS

(n & complete aeroplane, the requirement for low-speed longitudinal
stability demands that the serodynamic centre lis close to the aircraft
centre of gravity. Therefore, unless the centre of pressure at cruise is
also close to the low-speed aerodynamic centre, some form of trimming load
is required. This can be done in various ways: for example by a tailplane
or foreplane, or by a suitable distribution of load along the fuselage, and
the consequent drag penalty will depend on the precise method of doing it.
(It need not even be a penalty, as has been pointed out by Richardson 3.)

It is thus not practicable to compare the trim drags associated with
the varlous planforms considered here in the quantitetive fashion which can
be done for the other lif't-dependent drag terms. Some form of comparison
seemed to be desirable, however, so in Fig.2 there are shown the oentres
of pressure assooiated with the triangular and wniform loadings on each of
the 34 wings, together with the low-speed aerodynamic centre position.
These positions are also tabulated in Table 1. The centres of pressure at
Mo = 1.2 were caloulated from the cross-~load distribution, as explained in

Appendix 3: the two loadings considered probably represent reasonably
adequately the range of loadings likely to be used in practical cases.

The 10w-speed serodynamic centre positlions were calculated by
Klchemann's method h, assuming that attached flow will be maintained in
the low-speed condition, and taking no account of the loading likely to
be obtained by deflecting flaps or similar devices. With these limitations,
however, it may be fair to conclude from the results shown in Fig.2 that for
a fairly wide range of sweep and aspect ratio it should not be difficult to
arrange that the design centre of pressure is clese to the low-speed aero~
dynamioc oentre, and hence to the aircraft centre of gravity, so that little
or no trim load should be needed in cruising flight.

6 CONCLUSIONS

Supersonic thin-wing theory has been used to calculate the camber and
twist distributions which would be needed to obtain, at Mo = 1.2, a constant

spanwise CL-distribution and particular chordwise loadings on a particular

family of sweptback wing planforms. The shapes needed to produce triangular
chordwise load distributions have been calculated for 34 wings, and the
shapes needed for uniform loeding have also been calculated for four of these.
This programme of caloulations was originally projected as an extension of
the work of Ref.1, to survey a wide range of wing planforms which might be
applicable to the design of transport aeroplanes cruising at low supersonic
speeds.

The resulting wing shapes are all generally similar in character,
having a large incidence at the centre-line and a considerable variation
in incidence aocross the span.

Although the shapes presented here were all calculated for M = 1.2,

Weber has shown5 that the centre-section shapes of constant-chord wings
designed to have a linear chordwise load distribution at Mo =0, 1.0 apd

1.2 are all very similer. In addition, a series of calculations made at
M 2 0 for the same planforms and load distributions as the present series

(by Vickers-Armstrongs Ltd. ) has also produced wing shepes very similar
to the Mo = 1.2 results given here. It is therefore suggested that the

general charaoter of these results would be found also in celculations made
at other speeds.
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The lift-dependent vortex and wave drags associated with both tri-
angular and unifcrm chordwise lecad distributions cn thas family of wang
planforms have been calculated, and the values obtained are not much greater
than the lower bounds for wings of these planforms. The vortex drag factors,
KV, li1e between 1,071 and 1.12 for all wings with taper ratic less than 5 %o 1,

and the lift-dependent wave drag facter KT 15 between 20 and 40% greater than

R.T. Jones' lower bound. This indicates that wings designed tc have constant

CL and cherdwise loading (hence strailght iscbars) need not have high 1ift-

dependent drags, unless they have highly tapered planforms,

Since these calculated drags are not much greater than the lower-bound
values, there does not seem to be much scope for attempts te find wing shapes
with lower theoretical drags. The objects of future research in this field
should rather be tc find cut how closely the theoretical values can be
approximated in practice in a real flow on thick wings; and possibly to
find less extravagant shapes with simlar characteristics. In the latter
context, the use of asymmetric body waisting which should reduce the large
local incidences needed an the wing root appears particularly attractave.

The calculated vortex drag factors are independent of Mach number, and
thus refer to wings of this family, designed to have constant spanwise GL—

distributions at any speed. The 1lift-dependent wave drag factors are calcu-
lated usging a theony11 which assumed that the slenderness parameter fs/& 1s
small; they should be correct for wings designed tc have these lead dastra-
butions at low supersonic speeds for values of Bs/£ similar to those consi-
dered here (1.e. up to O.LO&. At higher supersonic speeds the lift-dependent
wave drag forms a higher proportion of the total drag cf a practical aircraft,
and the use of eguation (10) would be valid only for smaller values of Ps/4.

To provide same indication of pessible trimming nroblems, the centre of
pressure associated with these load distributions has been calculated, and
compared with the aerodynamic centre position at low speeds calculated fer
attached flow. It appears that, on some of the wings at least, there should
be no great dafficulty in arranging for the design centre of pressure at
ME = 1.2 to be close to the low-speed aerodynamic centre, in which case

trammang problems should not be serious,
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APPENDIX 14

THE SHAPE OF A SWEPTBACK WING WHICH PRODUCES A CONSTANT
SPANWISE LOAD DISTRIBUTICN WHEN COMBINED
WITH A CYLINDRICAL FUSELAGE

A combination comprising a sweptback wing mounted in the mid-wing
position on a cylindrical fuselage at zero incidence to the free stream is
considered. The wing is cambered and twisted so that the spanwise load
distribution is constant across the wing of the combination. It was suggested
in Ref.3 thet an acceptable approximation to the camber and twist needed in
and near the wing-fuselage junction might be obtained by taking the wing
shape calculated at and near the centre of an isolated wing carrying the
same load distribution.

To investigate the propriety of such & procedure, the shape of the
junction section of an untapered sweptback wing combined with a cylindrical
fuseleage of oircular croas-section is calculated, using slender-body theory
(i.e, for M = 1). The apex of the wing planform (extended inside the body)

is taken as the origin of right-handed Cartesian coordinates x, y, z with x
measured streamwise and y spanwise. The wing chord is taken as unity, the
body radius as R, the wing sweepback as ¢ and £ = x -~ |y| tan ¢.

As in the main text of this report, only linear chordwise load distri-
butions of the form

- ﬂcp(x,Y) = A+ BE

are considered. With this given load distribution, the disocontinuity in the
velocity potential between the upper and lower surfaces of the wing,
A = ¢US - ¢LS’ is also prescribed:

2 (.éﬂ_w) = -5 80, (xy)

90X v
o

Adl x 1 4 A B 2
—ﬂf‘u= 4+ BE = 5 (x - ly| tang) + 7 (x = |y| tan 9)
o
(13)
The task is to determine, for each cross-sectional plane x = const.,
the two~dimensional flow which has a vanishing normal velocity component at

the body contour and satisfies the condition 13) for the velocity potential
at the wing contour.

This two-dimensional problem can be solved by transforming the plane

X = const.

L = y+ iz

-19 -



into a Z plane by tke transformation

2
7 = z-%
& = &-%

50 that the body contour, |Z| = R, is transformed into the slit y = O,
[Z| < 2R. The wing is transformed into the straight line
7] <3(x) = s(x) -Rz/s(x), z = 0, where s{x) = %x/tan ¢. Points on the
original and the transformed wing contour are related by:-

-12-[3’; +m (14)

The transformation does not alter the value of the discontinuity in the
velocity potential so that by equations (13) and (14):-

QQ(.Y:VZ=0; x) = -;% 2x-|..Y-l 'b&ncp—tancpa'§2+h32
0

- et

~— -2
B - ,..2 2
+ 72 2x-|y|tancp—tancpj\y + 4R

(15)

The flow which satisfies equation (15) induces at the point y, z the
downwash: -

s (z 3. 3(x) .
V?(y\; Z; JC) _ 1 f a A¢(—' v - g d&'

]

269 ¥ -5) +73

For 3; = 0, i.e. points corresponding to the body ciroumference, the down-
wash is thus given by:~

T-(x, 30, ) 5(x) - -
AN J=Y, _ .1. [ _Fa_ <A2!JE| 2) JC' d_y_‘
vo T B}' 1‘Io -3;'2 + ;2
o]

8{x) - -

i E‘%"ﬁ (h + ) [ [:1 ' f;tzy; mz];,zy
o}

sdey [ [ ] s

+

- 20 =

e

"
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For z -+ O, ;z (and with it the downwash in the original plane, vz)
tends to a logarithmically infinite value, Therefore, v, is calculated at
a finite distance zt(x), corresponding to half the local wing thickness;
the argument for this procedure is discussed in detail in Ref.3. For
lz| <R, i.e. |z| < 2R, performing the integration gives
-;'E(x’;ﬂ’;) ’ +z[s+fs +l|.R l

2Rz

= - 2809
v = = (A + Bx)

e

+
o+
.F-E
A
6]
wl
+
wl
N
T}
?;M
1
)
o]
]
=
o
8
-
wllol
+

T it kadiall
aﬂ;_m— HjZm J_2*j[mdﬁii

(16)

The vz—velooity in the original plane is related to -1;-2— in the trans~
formed plane by the mepping ratio |dZ/dZ|:-

&

vz(x’Y: z) = ;'g(x:;:;)

For the wing-body junction (y = Yy 2 = zt(x)) the napping ratio is:-
- Z,\2

% = 211 - b

dz R

z = 2z

and %

The downwash in .thé‘wing‘:bddy,jﬁﬁgti‘.on ias thus given by the relation:-



A Lo, | s «] 38 + LR
v (%, ¥ 2,) z,\2 J8+ tl: :I
z VJ t =_lag_9(A+Bx)\/1_<_E) log -
n R
o thR
-2 2
zt 1 SJR - ?‘t
——ﬁ-ta.n —_——
z \]';2 + L;Rz
t
2 %\ 2 -
tan (X - -3 2 _ _ -1 s
+ 222 B4 4 (R> s+,Js + LR® -~ 2R - 2z tan N
N "o o7
2, o ES'MRZ + i/az—zi—J Zy
-~ R [1-—2 (Tf) Jlog
- 2 2
{s +hzt [%.+ fR -Zt l
(17)
- - X R2 tan
where g = S(X) = tanq)— - O

The shape of the junction section of the wing is obtained by integrating
this downwashi=~

3%-2 _ f v, (&') -
Lo

v

Some numerical calculations have been carried out for a L.5é thick wing with
RAE 101 thickness distribution and 55° sweep. The results are given in
Figa.50 and 51 for triangular and uniform chordwise load distributions
respectively, together with those for the centre section of the isolated
wing which are equivalent to those derived for an infinite body radius.

(The same limit is not obtained as R/c - O since equation (17) is valid
only for |z.]| < R.)

The wing shapes required in the wing-fuselage junctions are quali-
tatively similar to those calculated for the centre of the isolated wing,
but the local wing incidence has to be somewhat greater when the body is
present. In most practical cases, the ratio R/c will lie between the values
0.1 and 0.2 which are considered in Figs.50 and 51.

These regults were cbtained for wings mounted on a fuselage which is
at zero incidence. If the fuselage is at positive incidence {(or is cambered
80 that it carries a positive load), the upwash which it produces in the
wing-body gJunction should reduce the local wing incidence needed there.
Thege considerations, in conjunction with the demonstration in Ref.3 that
calculations of the wing shape needed to produce a given loading at Mo = 1.0



and et Mo = 1.2 give very similar results, suggest that the wing shapes

presented in the main text of this report should be satisfactory approximations

to the wing shapes needed for combinations with near-circular fuselage cross-
sections.
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APPENDIX 2

THE SEAPE OF THE CENTRE-SECTION OF A SWEPTBACK WING
DESIGNED T0 HAVE VARICUS CHORDWISE LOAD DISTRIBUTIONS

In the main report only load distributions of the form --ACP = A + BE

have been considered. It is however of interest to know how much the results
depend on the chosen load distribution, in particular to know whether the
large angles of twist required at the centre section are a consequenoe of
this choice.

A variety of load distributions is easily investigated at MO =1

Sweptback wings of constant chord are considered, which are cambered and
twisted s0 that the spanwise load distributions are constant. The symbols
used are the same as in Appendix 1 and Ref.3. For M, = 1, the downwash at

points on the centre-~section of such a wing is:-

(x, 0, 3 :
V& Zt) 1 ACP(E') (x - g_) tan o aE!

Yo 2n (x - g‘)z + zi tan2¢

I

In Ref.3, load distributions which can be written as polynomials in g
were considered, and explicit expressions for the section slope were cobtained.
It is also of interest to investigate loed distributions which have the same
singular behaviour near the leading-edge as the load distribution for the
two-dimensional flat plate, i.e. load distributions whose leading term is
proportional to 1/vE. Putting

=
—Acp(x’y') = C_J'E

in the expression above and performing the integration gives

1 A
x+(x2+zi tan2¢)2 - 24&(x2+z§ tan2¢)4 cos @

-‘-r-ﬁ = Ctan o — <co3 ® log ; 1
Yo hx(x2+zi tanch)z x+(x2+z§ tan2¢)§ + 2Jk(x2+zi tanch)"z cos ©
1
» 2#k(x?+zi tan?¢)4 sin @
- 2 s5in @ tan Y
5 P Py
x~(x +zy, tax ¢)
Z, tan
where ® = % ta.n"‘| (_t_...f..j)

Over most of the chord zZy tan ¢ << x and it is convenient to use the following
Z_  tan ¢

expression, obtained by expanding in powers of
calculation:~

s for practical
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2 2
Z C tan z tan % tan ® 2z tan

2 2
+ terms of order E____j‘_a_g_n__tg
%

The shape of the wing centre-section is obtained by integrating this
downwash. In Fig.52, the result is shown for a wing with ¢ = 557, compared
with the shapes required to give triangular and uniform chordwise load
distributions with +the same sectional 1ift coefficlent. The local incidence
required in each ocase is substantially similar.



APPENDIX 3

CALCULATTION OF CENTRE OF PRESSURE AND LIFT-DEPENDENT
WAVE DRAG FROM CROSS~LOAD DISTRIBUTIONS

The centre of pressure and lift-dependent wave drag are calculated from
the oross-load L(x) given by:~

b4 b(x)
L(x) = 2[ —Acp(x,y)ay (18)

a(x)

where a(x) and b(x) are the inboard and outboard limits, respectively, of a
spanwise cross~section of the half'-wing. Load distributions of the form:

* oA
*L "

are considered. The equation of the leadingw~edge is

- A = A -
CP B

(19)

' x, = my for 0 <y <ms (20)
. X, = By + £(n) o, forn,s <y <1 (21)
1-mn . 1-7
where fin) = 1 = 2/ +
N1-m 1-my

Xp = Cy + mY (22)

The explicit form of (18) gives different formulae in different regions
of the wing, depending on the limits a and b, and on whether (20) or (21) is
the appropriate expression for X Thus a = QO for x < Cos & = ¥y for x > °,

and b = yir I, has different forms for x < h and x > h where

Further divisions arise from the different equations for AC_ (due to the
different expressions for xL) for x <d and x >d where d = h + o(nts).

This leads to a definition of five regions in which L(x) has different forms,
four of which occur on any particular wing. Two classes of wings oan be
distinguished in which o, < h or e, > h and the regions may be defined as
shown below:~
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Clasa A Class B

Region 1 0 < x < °, 0 < x < h
Region 2 e, < X < h h < x < c,
Region 3 h <« x < @& 6 < x < 4

)
Region & d < x < & d < x < &

The explicit formulae for L(x) are identical for Class A and Class B
in all regions except region 2. Region 2 of Class A and Class B will be
referred to as regions 24 and 2B respectively.

Formulae may now be developed for L(x) for the five regions:-

Region 1
R o m ¢ ~(m ~m )
A B 2B 0 oo ‘o 1
L(x)=2(-ﬁ'+m-m ) <x—m0-m>8n< m o x)
4} o 1 o 1 o 1 o0
(23)
and for B, = my 3
L(x) = 22X B2 (2%)
X =TT oL %
0 o 0
Region 2A
Bm p dale] m o m
2B 0o 0 1
L(x) = 2 (A + Efiﬁ’ (ﬁi —— d) - (& - ) en = (25)
o 1 o 1 o 1 o 1 0
and form = m,
(24 + B) o
L(x) = = (26)
0
Region 2B
Bm n_ o c =(m ~m, )1, 8
L(x) = 2<A+m—-1:>nts"m2?m (x"mo-mo)&n . g 1% +
o 1 o 1 o 1 o
c,.-m 8 2Bc, m, sk
+ hak ﬂ:‘%.& - lB L Po 1?(1—- 2) ~ t21 (1-—1]1') +
P
m sk P+2o
B(1—x)
P3 PuL+20} (27)
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For B, = o, the first two terms of this expression become:

2(A+B c)nts—B-—(-nts) (28)

Region 3

Bm
- A o - -
L{x) = 2 [m1 + W (¢ m1ks~x)

m, © m, [c,+(m_~m, Jks]
x-m s - t P 1-7% o 1
I o™ ) m -, n (mo-mfjfk-mos)—moot

B(c,~m sk 2Bc, m, sk
A t o 2 t 1
+ bk {['2' - op l<1"' ) T TR (1~w) +

i P; = - bl on (58] (29)

For m, = M, the first two terms beoome:

(DT 3]

) = o [ [3- 220 () 2O (s

s, (P“T;jg:)] o)

where k = (1~nt)

P = (mo—m1)sk -0

t
o, nljci-(ct-mosk)(c-x)
Y, = o, - m sk
t o]
o= x
Up = m, sk

To oalculate L{x) upon DEUCE by means of a tabular interpretive pro~
gramme15 it is convenient to write the sbove expressions in one general form,
which may be applied to all regions and both classes:
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L{x) = 2<A+B

2B [
mo~m1

o 4

+ G3

+ (GZB+G +G ) hsk

3

where

6n

1

m < oo-x &-m1ks-x
- ) {("’1*@2;1) w " GzA"E;" + Gop 3 + Gg ( z )}

moct
[:x-mos-m_m :If;n

o 1

B(o

b5

mysk  p(q_y) 1_x ]an Pup2¢, } (52)

2
t ™

P

G,

4 g ak

(m -m, )X n
o 1 1
— +G-2A&n---m +
00 o

PP iy

2B ¢
o]

i

2Bc 1;m‘I sk

o, [ °t+(mo"m1 Yks]
(ﬁo-m1)(x—mos)~moo

Pu'L+2° £

= X

When B, = By, the first two terms of equation (32) are replaced by:-

o]

The factors G,, G

17 24

those terms which are not required in specific regions.
zero except in the regions indicated by their respective suffices where they

become unity, thus:

Gop

Gop

G3

&,

n

where

where

where

where

where

24 2 2 2
== (G-1x + Gy,0 0) § — mo° [G,!x * Gy + Gj(x-co) :l

XeG
+ (A + B -clu) {(GZA"' G5) 2nys - Gy (Tf‘)] - (GZA + G3) B

m
2
;—:' (ny8)

(33)

eto. have been introduced as a means of eliminating

They are equal to

x < ¢ and h
o

oo<x<h
h<:r.<e0
o amd h < x < 4

d < x < &

~29—
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These columns of O's and 1's can be generated very simply; for
examnple G3 can be obtained by evaluating the function:

ey = ((d-;?dtxid—x] ((x—g?xih}xwhl) <(X"°;ix:clrﬁco|> (31)

In equations (27) to (33) a difficulty occurs when (mo—m1 )sk-ct
1
approaches zero, that is when T approaches 3 . Consequently it was not

possible to calculate L{x) with sufficient acouracy for wings 16 ard 21 for
a finite value of B.

L(x) was calculated for the 34 wings at %x/¢ = 0(0.01 )1; by using the

1 1
X X X X
trapezium rule, both'/' L (—5> d(z) and fz.L (&> a
0

o
hence the centre of' pressure position.

(%) were found, and

The lift-dependent wave drag is given by

Lo

Dy (1) L) 2(%)

Py Wﬁ—” ryes il e x| dx ax, (35)
P¥o 5 o P¥o 0

Double integrals of similar form occur in the calculation of the zero-
1ift wave drag of bodies and a method of evaluating them on a digital computer
has been developed by FEminton?. The formule in Ref.9 corresponding to (35) is

1 1
4§ = —%[{ §"(x) s"(x,) en|x=x,| dax dx, (36)
oo

and the numerical methed evaluates this from a table of values of S(x) at
equally spaced points. To evaluate (35) the same method is used, replacing

%/¢
s(x) byf L (%‘) d(%‘) at % = 0{0,05}1,0. Thus

(¢]

z = 5 ¢ (37)
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LIST OF PRINCIPAL SYMBOLS

A Aspeot ratio
ely) Local chord
°, Root chord
© Geometric mean chord
oy Projected tip chord (see Fig.1)
GL(y) Local sectional 1lift coefficient
E; Overall wing 1ift coefficient
GDV’CDW Lift-dependent vortex and wave drag coefficients
DV’DW Total lift~dependent vortex and wave drag
K = EEEE:“EEE Total lift-dependent drag factor

Cr/=a
Ky Lift-dependent vortex drag factor, see equation (8)
Ky Lift-dependent wave drag factor, see equation (12)
£ Overall length of wing

g
L{x) Cross-load = %pvi j' (~AGP) dy
~0

Mo Free~stream Mach number
2} Wing semispan
3 Wing area
T "Taper ratio" ot/co
XY, 8 Cartesian coordinates: =x streanwise

¥ spanwise

z vertiical
x (¥) C -
} Leading- end trailing-edge
% (¥)
zc(g) Wing camber-~line ordinates
zt(g) Wing thickness ordinates

-

ac_(x,y) Loocal load coefficient, equal to pressure difference across
P wing divided by dynemio pressure of free stream
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LIST OF PRINCIPAL SYMBOLS (Contd.)

a(y) Local inoidence
Oy Incidence of wing centre-line
Oy Incidence of wing~fuselage junction section
B - -1
n = y/s
E = i
i s 7
o(x) Local semispan
P29y Leeding- and trailing-edge sweep angles
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TABLE 1

Some characteristics of the wings considered

Centre of pressure | Low-speed
W:Ln Rero-
Nog A 9, | 9 T co/s s/¢ | Triangular | Uniform| dynamio
¢ load load centre
xcp/e xop/z xad/ﬂ
1 3.5 | 55%| 357 | 0,24 | 0,954 | 0.604 | 0.469 0.535 0.47h
2 L " 45| 0.48 | 0.818| 0.550 |  0.hk9 0.508 0.445
3 " "1 55, | 1,001 0,625 1 04871 0.435 0.183 0,412
L | " 60°| 35° | 0,06 | 1.092 | 0.558 1 0.471 0.541 0.491
5 | " 452 0.23 | 0,956 0.511 0.454 0.512 0.470
6 t " | 55, 0.600.762 | 0.457 |  0.442 0.489 0.4
7 |2.75| 557 | 35| 0.351 1.124 0.548 0.469 0.542 0.463
8 | " 145 10.5710.988 0.503 0,449 0.516 0.436
g " "1 55,1 1.00 10,793 | 0.450 | 0.430 0.487 0.403
10 " €07 | 35 10,18 | 1.262 | 0.510 |  0.479 0.553 0.489
1 " " | 451 0.35 | 1,426 [ 0.470 0.460 0.525 0.463
12 " " | 55, | 0467 | 0.932 1 Oubi2h | 0.kl 0.496 0.432
13 { 2.0 | 55 35, | 049 | 1.422 | 0471 0.465 0.549 0.440
W | v " 145 (0,67 | 1,286 | 0.438 |  O.hbk 0.521 0.413
15 | "1 550 1-00{1.091]0.397 | 0.423 0.490 0.383%
16 " 607 | 35° | 0.34 | 1.560 | O.442 - 0.561 0.467
17 " " 452 049 | 1424 1 O 143 0.459 0.534 Cdhid
18 | v " | 55, | 0-75 [ 1.229 1 0.376 |  0.438 0.504 0413
19 | 3.5 | 657 | 55. | 0.25 | 0,949 | O.421 0441 0.487 0.461
20 | ¢ " 65, | 1.00 0.623 | 0.364 0,42 0.477 0.435
24 " 70, | €5, | 0.33 | 0.897 | 0.329 - 0.465 0454
22 | 2,75 | 65 350 0.00 | 1.450 | 0,465 0.483 0.556 0.509
23 " "1 4501043 [ 0314 | 0,432 0.465 0.531 0.487
24 " " |55, 0.36 11,119 | 0.393 0.453 0.501 0.462
25 | "1 650 |1.00 10,793 {0,340 | 0,438 0.480 0.427
26 " 70 550 0.05 {1.393 10,354 0.447 0,502 0.480C
27 | "o 1650 | Ok | 1,067 | 0,311 0.439 0.479 0.457
28 | 2,0 | 657 |35 | 0.7 |1.747 | 0.409 | 0.492 0.57h 0.501
29 | " | 450 10.29 | 1,611 10.383 | 0.LT3 0.547 0.477
30 " "1 550 | Ouk9 | 1417 [0.352 | 0,452 0.515 0.448
34 " " |65, |1.00 [1.091 |0.309 | 0.432 0.4:84 0.410
32 " 70° | 15° 1 0.07 {1.885 {0,347 0.480 0.554 0,507
33 " v 155 10,22 [1.691 |0.321 0.462 0.524 0.483
3 | " 1 65% 1 0,56 |1.365 | 0.285 | O..hh 0494 0.451

WP,2078.0,P,512,K3 ~ Printed wn England

- 33 -







1<

Mo = TAN (o § M= TAN {§,
M4 = % FOR ALL WINGS CONSIDERED HERE.
T=ly/Co

FIG.| GENERAL SHAPE AND NOMENCLATURE OF
SWEPT BACK WINGS WITH CURVED TIPS.
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TRIANGULAR CHORDWISE LOADING.
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