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SUMMARY 

The camber and twist distributions needed to produce a constant span- 
wise CL-distribution aoil certain linear chordwise load distributions have 

been calculated by linesrued supersonic theory at MO = 1.2 for a set of 34 

thin sweptback wings. The wing planforms cover a r-e of "sopect ratios 
from 2.0 to 3.5 and leading-edge sweep angles from 55 to 70 . Both leading 
and trailing edges are subsonic at the design Mach number, and the slender- 
ness parameter @s/8 is between 0.19 and 0.4.0. 

The lift-dependent vortex and wave drags associated with these loadings 
have also been calculated, and appear not to be excessive in almost all the 
cases considered. 
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1 INTRODUCTION 

In Ref.1, an attempt was made to set down the aerodynamic principles 
which should be employed in the design of a swept-winged aircraft intended 
to operate at low supersonic speeds, and to show in particular how a suitable 
design might be evolved for a long-range transport aeroplane. Predominant 

. among these aerodynamic principles is the n8ed to design the wing 30 that 
essentially shook-free flow is maintained over the whole wing in the cruising 
condition. Unless this is done, there is a oonsiderable risk that separated 

i 
or unsteady flows will be obtained, and it is likely that the drag will be 
large. 

In the partioularly simple case of a swept wing with constant sections 
and inf%ite span (the so-oalled "infinite sheared wing"), it is well-known 
that a shook-free "sub-critical" flow which gives no normal-pressure drag 
can be obtained at zero lift provided the Mach number oomponent normal to 
the wing isobars nowhere exoeeds unity. The isobars on such a wing are 
naturally straight lines, parallel to the leading- and trailing-edges. A 
considerable body of theoretiodl and experimental work has shown that similar 
sub-critical flows oan be obtained on swept wings of finite span, by combining 
them with suitably designed fuselages, and that again there is essentially no 
normal-pressure drag arising on the wing itself at zero lift. The 'wave drag' 
of such a wing-fuselage oombination need not be much more than that of the 
fuselage itself. 

In Ref.1 the suggestion is made, and applied, that a lifting wing- 
. fuselage combination should also be designed so that the isobars on the wing 

are straight and the local Mach number oomponent perpendicular to them nowhere 
exceeds unity, in which case a sub-critical, essentially shock-free, flow 

. should again be obtained on the wing. Such a flow should oertainly be well- 
behaved, but this does not imply that the normal-pressure drag will still be 
negligible a3 it is is on the constant-section wing at zero lift. 

By using linearised supersonic theory, the drag associated with any 
distribution of lift forces can be calculated. It can be shown (see, for 
eX3IUple, Ref.2, p.222) that this drag can be separated into two terms: one 
depending on the spanwise lift distribution, and one depending on the length- 
wise lift distribution. The former, the so-called "vortex drag",is inde- 
pendent of Mach number; while the latter tern, the "lift-de ndent wave drag", 
appears only at supersonic speeds ard increases with (Mo 2-,r Thislift- 

dependent wave drag must appear as a normal-pressure drag on the oonfiguration, 
and one purpose of the present work is to investigate how large this drag term 
is likely to be on wings which are intended to have sub-critical flows at lift. 

The present work has, in faot, a dual origin. In the first place, there 
was a requirement to find out what camber shapes would be needed on a wide 
range of wing planforms to obtain the type of load distribution proposed in 
Ref.1 - namely a constant spanwise CD-distribution with straight isobars. 

This purpose has largely controlled the choice of wing planforms and loadings 
which have been dealt with. Secondly, there was the desire to have more 
example3 of the lift-dependent wave drag caloulated on reasonably "practical" 
wings, and to relate these to calculations of the spanwise drag distribution3 
to see where the normal-pressure drag is aotually concentrated. 

In principle, a wing of given planform can be cambered and twisted to 
have any prescribed load distribution at a speoified speed. This load distri- 
bution will not, of course, be maintained at inoidenoes other than the design 
value. In the present work, supersonio thin-wing theory has been used to 
oaloulate the warp distributions needed on 34 wing planforms to produce 
oertain load distributions at Mo = 1.2. To reduce the computation8 to 
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manageable proportions, only simple loadings have been considered: these 
sxe of the form 

- AC,(x,y) = A + x 

where A and B are constants and E, = ; 1 ; i 3(y) and X,&Y) being the 

equations of the wing leading- and trailing-edges. All the results have 
been calculated, and are presented here, for a lift ooeffioient CL = 0.25. 

The wing slopes are all proportional to the lift coefficient, so the camber 
and twist needed on wings designed for a lower CL would be proportionately 
reduoed . 

The simple load distributions considered will only give an approtiation 
to the. desired type of pressure distribution with straight isobars, except on 
wing-fuselage combinations with a special thickness distribution such that the 
zero-lift pressure distribution also has straight isobars, snd then only within 
linearised theory. Another defioiency of these loadings is that, in the 
linearised theory, the finite load specified at the leading-edge leads to a 
logarithmic singularity in the wing slope there. Even though this singularity 
is removed (in a rather arbitrary fashion) by the calculation method adopted 
here, the shapes calculated offer no guarantee that the flow will be attaohed 
at the leading-edge in the design conditions, and there is considerable risk 
of the flow separating from the lower surface. In practice, this difficulty 
oan probably be overoome by suitably modifying the wing sections, particularly ' 
near the nose, but this will in itself further modify the wing isobar pattern. 

A further simplification had perforce to be adopted in these calou- 
lations: they were all made for isolated wings, since no practical method 
exists for calculating the influence of a fuselage at supersonic speeds. 
In Appendix 1 (which is sn extension of work by Webers) slender-body theory 
is applied to calculate the shape needed for the junction section of an 
untapered sweptback wing mounted on a oylindrical fuselage at eero inoidenoe. 
This is compared with the shape calculated for the centre of an isolated wing 
designed to oarry the same load distribution. It is concluded that the 
shapes calculated for isolated wings should provide an acceptable approxi- 
mation to the shapes needed on wing-fuselage combinations with near-oiraiL8r 
fuselage cross-sections. It is olesrly not permissible to assume (as has 
sometimes been done) that the extremely twisted part of the wing near the 
centre will be covered in practice by the fuselage of a wing-fuselage 
combination. 

The wing planforms whioh have been considered are detailed in section 2; 
they 
from 

ooger a red.nge 
55 to 70 . 

of aspeot ratios from 2.0 to 3.5, and leading-e$ge sweeps 
The minimum trailing-edge sweep considered is 35 , so all 

the wings have subsonic leading- and trailing-edges at MO = 1.2. All the 
wings are members of a particular family with curved leading-edges over the 
outer part, and streamwise tips. 

The calculation of the camber distributions is described in section 3.1, 
with some discussion of the significance of the results in section 3.2. The 
determination of lift-dependent drags from the spanwise and lengthwise losd 
distributions is presented in seotions 4.1 and 4.2. The spanwise drag distri- 
bution has been calculated for a few of the wings in section 4.3, and these 
are integrated to compare with the other method of estimating lift-dependent 
drags. 
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From the lengthwise loading, the centre of pressure position can also 
be determined, and in section 5 these positions are compared with calculated 
positions of the low-speed aerodynamic centre. Any large differenoe between 
these positions implies that a trimming load is needed, since the centre of 
gravity of an aircraft must be close to the low-speed aerodynamic centre if 
it is to be stable at low speeds. The comparison presented may therefore be 
of some value in assessmg the relative difficulty of trimming wings with 
different planforms, although it is not possible to make estimates of the 
actual trim-drag penalties. 

2 THERAXGE OF PLANFOFXS CONBIBEREB 

The family of swept wings considered in this survey (originally 
described by Beasley in an unpublished R.A.E. note) are shown in Fig.2, with 
an explanation of the symbols used in defining them in Fig.1. This family 
is a fairly arbitrary selection of planforms which represents an attempt to 
extend the small number of wings considered in Ref;l to cover the range of 
aspect ratios and sweep angles thought to be of interest for the design of 
transport aeroplanes intended to cruise at low supersonic speeds. 

All the wings considered have edges swept back at more than the Maoh 
angle for the design speed MO = 1.2; all have straight trailing-edges and 
leading-edges composed of a straight inner half with a parabolic curved tip. 
This particular parabolic shape has no peculiar merit - any curved edge which 
fairs into a streamwise tip would probably also be aercdynamioally satis- 
factory. An experiment by Hall and Rogers4 on a particular wing with a 
square-cut tip has illustrated the complicated flow patterns which develop 
at transonio speeds near the tip. Most of these complicated features appear 
to be connected with the presence of the discontinuity at the square tip, 
and this lends support to the arguments which have been put forward (e.g. 
in Ref.1) in favour of curved tip shapes. It is also worth noting that 
Lock's works, referred to in section 3.2 below, also leads to similar ourved 
tip shapes. 

Each planform of the family is defined by four parameters: the sweep- 
baok angles of the leading-edge, e,, and of the trailing-edge, v,; the 

aspect ratio A; and the fraction of the semi-span occupied by the straight 
segment of the leading-edge, qt. (For all the wings considered here, qt = 4; 

in practice a range 0.3 d q+, d 0.7 might cover all cases of practical interest, 

and within this range changes in the calculated warp distribution are not 
likely to be significant.) 

Other geometrical parameters of interest are the semi-span s, root 
chord o o, overall length ( in the x-direction) 4, and the "projected tip 

chord", ct, defined as shown in Fig.1 by extending the straight part of the 

leading-edge. None of the more conventional definitions of "taper ratio" 
appears to be convenient for wings of this sort, so a taper ratio T defined 
as c 

t/CO 
is used here. 

Let xl Y, e be right-handed Cartesian coordinates with x measured 
streamwise, y spanwise, s upwards and the origin at the apex. Then the 
leading-edge of sny planform in the family is given by 

x = 

x = 

"OY 

moY + Ct f(m) 

for 

for 

o<y<r+s 

3 
(1) 

rlts < Y -z s 
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where 

or 

Also, 

f(q) = 1 - 2.p.L++L 

r-- ‘nt -nt 

m 
0 = t-'PO, ml = tan 'p, ) rl = Y/S 

The trailing-edge is given by 

x = co + m,y 

It can easily be shown that 

4$ 
A= 0 

I+ l-+(mo- 
c 0 

22 
12 

= A 
+ b. -m,) (2 +“t) 

s 5+rlt 

T = 
$ - 3(mo - m,) 

2 + (2 + “J cm0 - m, 1 

(2) 

(3) 

(4) ” 

Em3 B 5+nt 
= 12 

- 
e (5) 

r + mot2 + %I + 3m, 

Values of these parameters for the 34 wings shown in Fig.2 are tabu- 
lated in Table I. It may be worth drawing attention to the fact that all 
the wings considered are aerodynamicall fairly slender; at the design speed 
MO = 1.2, the slenderness parameter bs & lies between O.+Y and 0.4.0 for aJ..l P 
the wings considered.. 

3 CAbfBEX AND TWIST DISTRIBUTION 

3.1 Calculation methods 

As is shown for example in Sears2, Section D.10, pp.148 et seq, a thin 
wing in a supersonic stream of velocity V. and Mach number M. which carries 

a load distribution AC&x,y) can be represented by a planar distribution of 

vortices which produce a perturbation veloaity potential 
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v 
&Y,Z) = - 2 

2.(x - x, ) ACp(x,,y,) d", dy, 

(y - Y, I2 + z* 
I[ 

(x - 3 )* - $(y - $2 " $2 
I 

4 

. 
(6) 

4 where p* = Mz - 1, and the integration is carried out over all points 

(x,,y,) on the wing plane lying within the Mach forecone of the point (x,y,s). 

The wing shape can be calculated as a stream surface of this velocity field: 
applying a linearised boundary condition gives 

qx,Y,4 
g (X,Y) = v 

0 
= t 2 (X,Y,Z) 

To find the wing shape needed to support a prescribed load distribution 
thus requires first an integration to determine the potential #, which is 
differentiated with respect to s to obtain the distribution of surface slope 
on the wing. 

By oonsidering only load distributions of the form -ACp(x,y) = A + x, 

the practical application of equation (6) can be simplified (at the expense 
of certain disadvantages pointed out in section 1). Two slightly different 
techniques for dealing with equation (6) have been used to produce the 
present results. 

By performing the integration on the right-hand side of (6) first with 
respect to x,, differentiating with respect to e and. taking the limit as 

e -f 0, Rope 2 has obtained an expression involving a singular integral with 
respect to y,, which is valid for wings of zero thickness. A numerical 

method of performing the final integration and obtaining the desired limit 
has been developed by Watt6, in a form suitable for calculation on a digital 
computer, and the DEUCE computers of Mathematical Services Department, R.A.E. 
have been used to perform these caloulations for the present work. 

Using this approach, the value of az/ax becomes logarithmically infinite 
at points on the centre-line y = 0, and on the leading- and trailing-edges 
unless ACp = 0 there. 

The singularities at the le&i.ng- end trailing-edges do not appear in 
the results reproduced in Figs.3 to 40. Values of az/ax were Odculated on 
DEUCE for the points g = 0.01, 0.03, 0.05 and 0.1 (0.1) 0.9; these6were 
used in an interpolation and integration routine (described by Watt ) which 
extrapolates to give finite values at c = 0 and & = 1, and this process 
produoes the values of e(x,y) shown in Figs.3 to 40. 

on most wings, results were obtained for the spanwise stations 
y/s = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 an& 0.9; on a few wings extra points 
were calculated which are included in the appropriate figures. It may be 
of interest tc record that the actual time needed to produce the standard 
set of 84 values of dzjax on the DEUCE was about 2+ hours for each wing and 
each load distribution. 
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To avoid the logarithmic singularity at the centre of the wing, in the 
case of a constant-chord wing, Weber3 has deelt with equation (6) by inte- 
grating first with respect to y,, differentiating with respect to s, and 

taking z = zt(S) in the result, where z,(c) are the ordinates of an appropriate 
unosmbered wing of finite thickness. For points on the centre-line y = 0 the 
resulting integrals with respect to x, can be obtained in closed form for . 
loadings of the speoified type, and explicit expressions for the slope of the 
wing centre-line are derived. Cooke7 has developed this method to obtain 
approximate results at the oentre-line of wings with tapered planforms. 
Results from Refs.3 and 7 for the wings considered here are included in .!! 
Figs.3 to 40; these calculations were made (on desk caloulating machines) 
using values of z+, appropriate to a @ thick RLU 101 wing section. 

Cooke's results7 are strictly valid only for wings on which the ourved 
part of the leading edge does not intrude into the Mach forecone of the 
centre-line trailing-edge point, i.e. for wings of the family described in 
section 2 for which 

z? 6 
m. + P 

S ZmoP 

This condition is not satisfied for most of the smaller aspect-ratio 
wings, but the errors should be small ad confined to the neighbourhood of 
the trailing-edge. 

3.2 Discussion of results 

Two particular chordwise load distributions have been taken for the 
examples calculated here: 

(4 atriangularloading givenby 

- AC 
P 

= 0.5 - 0.5c; 

(b) a uniform loading given by 

- ACp = 0.25 

Both give a sectional lift coefficient CL = 0.25, and.,of course, an overall 

wing lift coefficient x = 0.25. 

For the triangular loading, the osmber shapes needed for all 34 plan- 
forms shown in Fig.2 have been oaloulated; for the uniform loading only four 
wings (wings 3, 5, 17 and 24 in Fig.2 and Table 1) have been considered. The 
results are shown in Figs.3 to 4.0: of these, Figs.6, 9, 22 and 30 show the 
results for the wings osrrying uniform lo&. 

These figures show that the most significant feature of all these wing 
shapes is the large incidence required at the wing centre, and the large 
spsnwise twist variation. The values of centre-line incidence, a,, for the 

various planforms are summarx 'sed. in Fig&l(a), from Ref.7; as explained 
above, these results sre strictly valid only for wings on whrch 
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Furthermore, these results have been calculated assuming a 6% thick RAE 101 

* wmg seotlon, and different results would be obtained if a different thickness 
distribution were assumed. The effect of changing the thiokness-chord ratio 
on one particular planform is shown in Fig.lcl(b), taken from Ref.3.' 

. Comparison between the results presented for two different loadings on 
wing8 3, 5, 17 and 24 shows that there is a broad similarity between the 
shapes needed to produce different loadings, but the section camber-lines 
are naturally quite different and the spanwise twist distributions do differ 
to a oertain extent. The variation in shape of the camber-lines is illustrated 
in Fig.42, showing results for a particular wing. (In this figure, the actual 
camber-line ordinates are plotted; the local twist which is included in 
Figs.3 to 40 is here subtracted at each station.) 

The differenoes in spanwise twist variations associated with the 
triangular and unif'orm chordwise loadings is illustrated in Fig.43. This 
shows results for the inner half of wing 3, compared with some oalculations 
made (at MO = 1) for a wing of infinite span, obtained by integrating 

equation (67) of Ref.3. It is noteworthy that the values for the 'infinite 
sheared wing' (obtained as Y-D =) are approached very slowly. Even at 
y/o = 2, which would represent mid-semigpan on an untapered wing of aspect 
ratio 8, the local inoidence is still4 higher than on the infinite wing. 

To examine further the changes in wing shape required to produce 
different chordwise loadings, caloulations were med.e at MO= 1 of the centre- 

section shapes associated with the two chordwise load distributions already 
disoussed and also with the loading -ACp = C& which is of the same type as that 

of a flat plate at inoidence. These oalculations are described in Appendix 2, 
and the results for an untapered wing with 55' sweep ere shown in Fig.52. 
These confirm that the main feature is the large loosl_inoidence x%&red at 
the wing root. 

In this context, some work by Lock8 is also relevant. He he8 considered 
the problem of designing the planform of e flat thin wing 80 that, at inoi- 
dence, the singularity in the load distribution at the leading-edge has a 
constant strength outboard of a specified point. The chordwise load distri- 
butj.onsthen have a leading term of the form -AI+, = C/e, ami the coefficient 

C is constant over the outer psrt of the wing. 

Lock prescribed an untapered inner part of the wing, and. found that the 
planf'orm needed over the outer part comprised s. curved leading-edge and a 
streamwise tip. The planform obtained is similar to wing 3 of the family 
shown in Fig.2. Not only is the leading-edge singularity constant over the 
curved part, but the whole chodwise load. distribution is found to be almost 
the same over the outer part of the wing. 

Thus, Lock has obtained a wing on whioh nearly constant chordwise 
loadings are associated with constant (uncambered, untwisted) wing shapes 
over the whole outer part of the planform. However, the load distributions 
over the inner part of the planform do vary oonsiderably; to maintain the 

4 The results in Fig.4l(b) are actually from calculations made at MO = 1, 

but it is shown in Ref.3 that the differenoes from calculations at MO = 1.2 
are small. 
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sane chordwise loading there also, camber and twist would be needed. It 
follows from the results shown in Fig.52 that the centre-section inoidenoe 
would have to be of the same order as is shown in Figs.5 and 6 for wing 3 
with triangular and uniform chordwise loadings. 

4 CALClJLATION OFLIXT-DEPENDENTDFAGS 

The total lift-dependent drag on any wing can be defined as being 
equal to the momentum transported through a oylindricd. control surface 
surrounds the wing (see e.g. Ref.2, p.222). This can conveniently be 
separated into "vortex drag" and "wave drag" compcnsnts, which are equal 
to the momentum transported through the parts of the control surface 
respectively perpendicular and parallel to the stream direction. 

4.1 Vortex drag 

The vortex drag oan be shcwn to be 

Where I‘ = &v. CL c 

is the oirculaticn round a section of the wing 

8 

and 
1 al! 

W 

i 

a? 
01 =z dyiJT- 

-S 

is the downwash in the Treffte plane far downstream cf the wing. 
It is noteworthy that this relation does nut, depend on Mach number. 

Thus the vortex drag oceffioient, based on wing area S, is 

'DV 

where y is the (geometric) mean chord of the wing. 

For wings designed, as here, to have constant C,(y) =FL, the vortex 

drag factor $ is then: 

This is simply a function of the planform shape, and for the present series 
of wings with "t constant it is clear from equations (1) an3 (4) that I$ is 
a function of the taper ratio T only. Equation (8) has been integrated 
numerically, and the result is shown in Fig.& 
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It is noteworthy, that, except for wings with T c 0.25, values of I$ 

leas than 1.1 are obtained. There 18 clearly a considerable range of plan- 
forma on which it should be possible to design for straight isobars without 
inourring an excessive vortex drag penalty. 

If equation (7) is integrated by parts, it yields 

'DV = (9) 

-1 -1 

This symmetrical form is analogous to the expression (equation (10)) obtained 
for the wave drag. The vortex drag can thu be obtained from the spanwise 
load distribution by using Eminton'a method 8 ori&ally developed for calou- 
lating the zero-lift wave drag of slender bodies. As a-matter of interest, 
this method was applied to several examples from the present series of wings, 
and polnta were obtained agreeing very closely with the curve in Fig.ld+. 

4.2 Lift-dependent wave dra& 

A lifting wing at supersonic speeds can be represented in a linearised 
theory by a planar distribution of doublets, and their influence at large 
diatanoea (in particular the momentum transport across a oylirdrical oontrol 
surface whioh can be equated to the wave drag) can be represented by a set 
of equivalent distributions of singularities along a streamwise line. 
this principle, Heaslet, Lomsx and SpreiterlO have expressed the lift- 

Using 

dependent wave drag of a wing as a triple integral involving the streamwise 
distributions of the lift intercepted by oblique planes, in airect analogy 
to the 'auperaonio area rule' used for oaloulating the wave drag due to 
thickness of non-lifting bodies. This result can be expanded" as a series 
of terms involving powers of a slenderness parameter (Ps/~)~; the leading 
term in this series involves only the distribution of the cross-load L(x) 
defined by 

5 

L(x) = ;p?', 
I 

('acp) dY 

-5 

where u(x) is the local semispan. 

For sufficiently small values of (pa/e)', the lift-dependent wave drag 
is then given by 

% -(ME - 1) 
-- 
&If - 16x 

m L'b,) 

&go 
- &nix - x, Idx I$ 

+p< 
(10) 

00 

L'(x) denotes 

provided that L(o) = L(d) = 0. This condition is satisfied by all the wings 
treated here. 
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If the oross-load distribution is elliptioal, equation (IO) yiel&s 
R.T. Jones' lower bound to the lift-dependent wave drag for a wing of given 

semispsn and overall length and small (@s/4)': 

-2 

'DW 
cL = xA.2 (< - 1>(f) (11) 

* 

If the cross-load distribution is not elliptical, it is sometimes 
convenient to write 

'DW I &.2(kf”9(;) (12) 

where the factor % is a measure of the extent to which the actual oross- 

load distribution differs from an ellipse. (This faotor is not in general 
a function of any particular simple geometriosl parameter.) 

On the wings of the present series, the slenderness parameter @s/8 
has values up to 0.40, which is probably small enough for equation (10) to 
give an sdequate approximation sinoe the lift-dependent wave drag at 
MO = 1.2 is only about 2C$ of the total lift-dependent drag, which is itself 
only about one-third of the total drag of a 
oorditions. The error in using equation (10 P 

raotioal aeroplane in qruising 
might be more significant for 

other planforms, for example 
Heaslet, Lomsx and Spreiter" 

M-wings, an3 the full result obtained by 
involving the oblique loading should then be 

used. 

A convenient method of evaluating the double integral in equation (10) 
is to use the numerical method developed by Emintod for dealing with the 
oorresponding problem for non-lifting bodies. This was done by Beasley in 
the present case, and is disoussed in more detail in Appendti 3. The 
results of the oalculations are shown in the form of a drag faotor 

'DW at 
MO 

= 1.2 

in Figs.ks(a) and 45(b) for triangular and uniform chordwise loadings 
respectively. 

The results are also related to R.T. Jones' lower baud in Fig.46 
which shows the factor KW of equation (12). (As was pointed out above, 
there is no reason to expect any relation between $ and T - the ohoioe 

of T as ordinate in Fig.46 is merely for convenience). It appears that 
$ lies between about 1.2 and 1.4 for all the wings and loadings oonsidered 

here. This suggests that no excessive penalty in lift-dependent wave drag 
would be inourred by designing wings to have straight isobars. 

Combining the vortex and wave drags gives the total lift-dependent drag 
factor 
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which is shown in Figs.47(a) and 47(b) for the two chordwise loadings consi- 
dered. For wings of given aspect ratlo and leading-edge sweep, it seems that 
minimum drag should be obta;ned at about T = 0.7, but there is little signif'i- 
cant change in Crag over the range 0.5 < T d 1.0. On the otner hand, highly- 
tapered wings designed to have constant chordwise lodtig are at a definite 
disadvantage. 

. 
4.3 >anwise drag distribut?.. 

Although the dlvlsion of liPt-dependent drag into vortex and wave-drag 
3 elements just presented 1s convement for many purposes, it is also instructive 

to consider the spsnwlse distribution of streamwzee forces acting on the wing* 
This can be done by multiplying the local load by the local surface slope and 
integrating to obtain the sectional drag coefficients: 

%! 

C,(Y) = - 
J 

ACp(x,~) $j ax 

"s 

The results obtained lnthisway for several wings are shown in Fig,48. 

For comparison, the spanwisc distributions of sectional &rag coefficients 
for wings with the same planforms whicn are canibered to produce the same 1os.d 
distributions at Mo = 0 are also shown. These were obtained by Vickers- 

Armstrongs Ltd.':! in a programme of calculations undertaken in parallel with 
the present investigation, and are oalculated from the relation 

C&(Y) = 'L(Y) ai 

where the induced incidence distribution ai was calculated by Multhopp's 
method.* 

It is noteworthy that at supersonic wings there is a marked conoentration 
of local normal-pressure drag near the centre of the wing, and that in fact 
some thrust force is carried on the outer part of the wing. 

By integrating the spanwise distributions of C,(o/) in Fig.48, the 

overall drag coefficient can be obtained and compared with the values obtained 
above for the separate vortex and wave &rag elements. In principle, the value 
obtained from the integration of local forces should be more accurate than the 
other, since the theory used. in section 5.2 to obtazn the lift-dependent wave 
drag involves the additional assumption that the wing is slender. However, 
in practice the numerical result for the overall drag is obtained by a 
succession of graphical integrat;tlons, in vhioh the singulsrities at the edges 
of the planforms are not properly dealt with, and It is impossible to obtain 
very aoourate results from the limited number of points available. The order 
of agreement shown in Fig.49 for a number of the wings therefore seems to be 
reasonable, and it serves to some extent to provide an independent check of 
the shapes calculated in section 2. It is clearly not possible to use theoe 
comparisons as a check on the validity of the assumption, made in section 4.2, 
that equation (10) could be used although some of the wIngo may not be strictly 
slender. 

0 An exact calculation of ai would have shown a logarithmic singularity 

at the centre of the tapered wings: h!ulthopp's method evades this by effec- 
tively modifying the wing planform near the centre. 
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5 CENPRES OF PRESSURE AND LOW-SPEED AERODYNAMIC CEXCRE POSITIONS 

On a complete aeroplane, the requirement for low-speed longitudinal 
stability demands that the aerodynamic centre is close to the aircraf't 
centre of gravity. Therefore, unless the centre of pressure at oruise is 
also close to the low-speed aerodynamio oentre, some form of trimming load 
is required. This can be done in various ways: for example by a tailplane 
or foreplane, or by a suitable distribution of load along the fuselage, and 
the consequent drag penalty vii11 depend on the precise method of do' 

Y it- (It need not even be a penalty, as has been pointed out by Riohsrdson 3.) 

It is thus not practicable to compare the trim drags associated with 
the various plsnforms considered here in the quantitative fashion whioh can 
be done for the other lift-dependent drag terms. Some form of comparison 
seemed to be desirable, however, so in Fig.2 there are shown the centres 
of pressure assooiated with the triangular and uniform loadings on eaoh of 
the 34 wings, together with the low-speed aerodynamic centre position. 
These positions are also tabulated in Table 1. The oentres of pressure at 
MO = 1.2 were calculated from the cross-load, distribution, as explained in 

Appendix 3: the two loadings considered probably represent reasonably 
adequately the range of loail3ngs likely to be used in practical cases. 

The low-speed aerodynamic oentre positions were calculated by 
Kiiohemsnn's method'&, assuming that attached flow will be maintained in 
the low-speed condition, and toking no account of the loading likely to 
be obtained by deflecting flaps or similar devioes. With these limitations, 
however, it may be fair to conclude from the results shown in Fig.2 that for 
a fairly wide range of sweep and aspect ratio it should not be diffioult to 
arrange that the design centre of pressure is close to the low-speed aero- 
dynamic centre, and hence to the airoraft oentre of gravity, so that little 
or no trim load should be needed in cruising flight. 

6 CONCLUSIONS 

Supersonic thin-wing theory has been used to calculate the camber and 
twist distributions which would be needed to obtain, at M. = 1.2, a constant 

spsnwise CL-distribution and particular chordwise loadings on a particular 

family of sweptback wing planforms. The shapes needed to produce triangular 
ohordwise load distributions have been calculated for 34 wings, and the 
shapes needed for uniform loading have also been calculated for four of these. 
This programme of oaloulations was originally projected as an extension of 
the work of Ref.1, to survey a side range of wing planforms whioh might be 
applicable to the design of transport aeroplanes cruising at low supersonic 
speeds. 

The resulting wing shapes are all generally similar in character, 
having a large incidence at the centre-line and a considerable variation 
in incidence aoross the span. 

Although the shapes presented here were all oaloulated for M = 1.2, cl 
Weber has shown3 that the centre-section shapes of constant-chord wings 
designed to have a linear chordwise load distribution at MO = 0, 1.0 and 

1.2 sre all very similar. In addition, a series of calculations msde at 
M. = 0 for the same planforms and load distributions as the present series 

(by Vi&era-Armstrongs Ltcl.'2) has also prcduced wing shapes very similar 
to the MO = 1.2 results given here. It is therefore suggested that the 

general character of these results would be found also in calculations made 
at other speeds. 
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The lift-dependent vortex and wave drags asscclated with both tri- 
angular and uniform chordwlse load dlstrlbutions cn this family of wing 
planforms have been calculated, and the values obtained are not much greater 
than the lower bounds for wmgs of these planforms. The vortex drag factors, 
$, 1~ between 1.01 and 1.12 for all wings with taper ratlo less than 5 to 1, 

and the lift-dependent wave drag factcr I$, 1s between 20/i and 40$ greater than 

R.T. Jones' lower bound. This indicates that wings designed tc have constant 
CL and chordwise loading (hence straight Isobars) need not have high lift- 

t dependent drags, unless they have highly tapered plsnfcnns. 

Since these calculated drags are not much greater than the lower-bound 
values, there does not seem to be much sccpe for attempts to find wng shapes 
with lower theoretical drags. The obJects of future research in this field 
should rather be to find cut bar closely the theoretxsl values can be 
approximated in practxe in a real flow on thick wags; and possibly to 
find less extravagant shapes with sirmlar characteristics. In the latter 
context, the use of asynmetrx body walstlng cvhlch should reduce the large 
local lncdences needed 111 the wmg root appears partxularly attractive. 

The calculated vortex drag factors are independent of %ch number, and 
thus refer to wxngs of this fsmdy, deslgned to have constant spanwlse CL- 

distrlbutlons at any speed. The lift-dependent wave drag factcrs are calcu- 
lated using a theory11 which assumed. that the slenderness parameter OS/-~ 1s 
small; they shculd be correct for wings d.esl@ed tc have these load dlstrl- 
butlons at low supersonx s-,eeds for values of @s/8 sun~1s.r to these cons1- 
dered here (I.e. up to 0.40 ) . At higher supersonic speeds tne lift-dependent 
wave drag forms a higher proportxon of the total drag cf a practical aircraft, 
and the use cf equation (10) would be val~rl only for smaller values of ps/& 

To provide some mdlcatlon of pcsslble t rinmxng problems, the centre of 
pressure associated vJlth these load distributions has been calculated, and 
compared with the aerodynamic centre posItIon at low speeds calculated fcr 
attached flour. It appears that, on some of the wmgs at least, there should 
be no great drfficulty 111 arranging for the design centre cf pressure at 
Mo = 1.2 to be close to the low-speed aerobsmlc centre, m which case 

trwxrn.ng problems should not be serious. 
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APPENDIX1 

THE SHAPE OF A SWEPTBACK WING WHICH FRODUCES A CONSTANT 

SPANVISE LOAD DISTRIBUTION WHl3N COMBINED 
WITHA CYLINDRICALFUSELAGE 

A combination comprising & sweptback wing mounted in the mid-wing 
position on a oylindrioal fuselage at zero incidence to the free stream is 
oonsidered. The wing is cambered and twisted so that the spanwise load 
distribution is constant aoross the wing of the combination. It was suggested 
in Ref.3 that an acceptable approximation to the camber and twist needed in 
and near the wing-fuselage junction might be obtained by taking the wing 
shape calculated at and near the centre of an isolated wing carrying the 
same load distribution. 

To investigate theproprietyof such a prooedure, the shape of the 
junction section of an untapered sweptback wing combined with a cylindrical 
fuselage of oircular cross-section is calculated, using slender-body theory 
(i .a. for MO 3 1). The apex of the wing planform (extended inside the body) 
is taken as the origin of right-handed Cartesian coordinates x, y, e with x 
measured streamwise and y spanwise. The wing chord is taken as unity, the 
body radius as R, the wing sweepbaok as q? and g = x - Iy] tan cp. 

As in the main text of this report, only linear chordwise load distri- 
butions of the form 

- ACp(x,y) = A + Bt; 

are considered. With this given load distribution, the disoontinuity in the 
velooity potential between the upper and lower surfaces of the wing, 
W = $s - Cp,,, is also prescribed: 

- $ ACp(x,~) 

v = $ AE; +; Bg* = + (x - !yl tan cp) + g (x - lyl tan Id* 
0 

(13) 

The task is to determine, for each cross-sectional plane x = const., 
the two-dimensional flow which has a vanis ' 

-Y 
normal velocity component at 

the b&y contour and satisfies the condition 13) for the velocity potential 
at the wing aontour. 

This two-dimensional problem can be solved by transforming the plane 
x = oonst. 
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into a z plane by the transformation 

so that the body contour, ICI = R, is transfomed into the slit 7 = 0, 

17 < 2.R. The wing is transformed into the straight line 

lrjl c:(x) = s(x) -R2/s(x), y = 0, where s(x) = x/tan cp. Points on the 

original and the transformed wing contour are related by:- 

y = q;+@Tq 

The transfomatron does not alter the value of the discontinuity in the 
velocity potential so that by equations (13) and (I&):- 

AQ(.v, ;=O; xl 

vO 

= I3 t-m rp - tan gJ=] 

(.rlc) 

+fk 1 2x - 171 tan q - tan q,/n] 2 

(15) 

The flow wkoh satisfies equation (15) induoes at the point 7, x the 
downwash:- 

For y = 0, i.e. points corresponding to the body oirounferenoe, the down- 
wash is thus given by:- 

0 
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For;+ 0, ye (and with it the downwash in the original plane, vz) 

tends to a logsrithmioeJ.ly infinite value. Therefore, vs is caloulated at 

a finite distance e,(x), corresponding to half the local wing thickness; 

the argument for this prooedure is disoussed in detail in Ref.3. For 

. lzl < R, i.e. lel < 2R, performing the integration gives 

I qx, y=o, 8) 

V f - 
0 

* (A + Bx) 

(16) 

The vs-velooity in the original plane is related to -2 in the trans- 

formed plane by the mapping ratio 16$<1:- 

Vz(X,Y,Z) = qxa g 
I I 

For the wing-body junction (y = yJ, z = e,(x)) the mapping ratio is:- 

and z = 22 t 

The downwash in,+& win&b&iy$&tion is thus given by the relation:- ~. 
,- 
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where 

-R l-2 
[ 

The shape of the junction section of the wing is obtained by integrating 
this downwash:- 

Some numerical calculations have been carried out for a 4.56 thick wing with 
RAE 101 thickness distribution and 55' sweep. The results are given in 
Figs.50 and 51 for trian,@ar and uniform chordwise load distributions 
respectively, together with those for the centre section of the isolated 
wing which are equivalent to those derived for an infinite body radius. 
(The ssne limit is not obtained as R/c + 0 since equation (17) is valid 

only for lztl < R.) 

The wing shapes required in the wing-fuselage junctions are quali- 
tatively similar to those calculated for the centre of the isolated wing, 
but the local wing incidence has to be somewhat greater when the.bcdy is 
present. In most practical oases, the ratio R/o will lie between the values 
0.1 an6 0.2 which are considered in Figs.50 and 51. 

These results were obtained for wings mounted on a fuselage which is 
at zero incidence. If the fuselage is at positive incidence (or is cambered 
so that it carries a positive load), the upwash which it produoes in the 
wing-body Junction should reduce the local wing incidence needed there. 
These considerations, m conjunction with the demonstration in Ref.3 that 
calculations of the wing shape needed to produce a given loading at MO = 1.0 
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and at MO = 1.2 give very similar results, suggest that the wing shapes 

presented in the main text of this report should be satisfactory approximations 
to the wing shapes needed. for combFnations with near-circular fuselage cross- 
sections. 
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APPFNDIX 2 

THE SHAPE OF THE CENTRE-SECTION OF A SWKPTHACK WING 

DESIGNED TO HAVE VARIOUS CHORDWISE LOAD DISTRIBUTIONS 

In the main report only load distributions of the form -ACp = A c BE; 

have been considered. It is however of interest to know how muoh the results 
depend on the chosen load distribution, in partioular to know whether the 
large angles of twist required at the oentre seotion are a oonsequenoe of 
this choice. 

A variety of load distributions is easily investigated at M = 1. 
0 

Sweptbaok wings of oonstant ohord are considered, which are cambered and 
twisted so that the spanwise load distributions are constant. The symbols 
used are the same as in Appendix 1 and Ref.3. For MO = 1, the downwash at 

points on the centre-seotion of such a wing is:- 

Qx. 0, zt) 
v. = 

x 
1 

5 I 
ACpk' ) 

( E;') tan ql 

(x _xF;;,' 
0 

+ z; tan2qJ 

In Ref.3, load distributions whioh oan be written as polynomials in E; 
were considered, and explicit expressions for the section slope were obtained. 
It is also of interest to investigate load distributions which have the same 
singular behaviour near the leading-edge as the load distribution for the 
two-dimensional flat plate, i.e. load distributions whose leading term is 
proportionalto l/,'E;. Putting 

- ACp(X’Y) = c & 

in the expression above and performing the integration gives 

2 c tan 

i 

.+(x2+,; tan2fq)- : - 2&(x2+s; tan2rp)h 003 0 9 
v. = , 

x2+zz tan2cp)~ 
00s Q log 

x+(x2+zZ tar?lp)~ 2Jx(x2+s~ 
1 

44 + tan21p)~ 003 0 

-2 sinOt3n4 
2&4x2+s; tan*& sin 0 

v 1; 
x-(x2+2; t3n2c+7)" 

Over most of the chord st tan IJI << x and it is convenient to use the following 

expression, obtained by expanding in powers of 
Zt tan cp 

for practical 
oaloulatiorx- x ' 



+ terms of order ** ta& 

x2 

The shape of the wing oentre-section is obtained by integrsting this 
downwash. In Fig.52, the result is shown for a wing with 'p = 55 , oompared 
with the shapes required to give triangular em3 uniform ohordwioe load 
distributions with the same sectional lif't ooeff'icient. The local incidence 
required in eeoh case is substantially similar. 
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APPENDIX3 

CALmION OF CEMm OF PRESSURE' AND LIFT-DEPJSWDENl' 

VJAW3 DRAG FROM CROSS-LOAD DISTPJBUTIONS 

The centre of pressure and lift-dependent wave drag are calculated from 
the cross-load L(x) given by:- 

b(x) 
L(x) = 2 

i 
- A$,(x,Y) dy (18) 

44 

where a(x) and b(x) are the inboard snd outboard limits, respectively, Crp a 
spanwise cross-section of the half-wing. Load distributions of the form: 

x- 
- AC 5, 

P 
= A-B 

XL-% 

sre considered. The equation of the leading-edge is 

where 

% = mcY for o<y<q$ 

3 = mJ + f(7)) ct for qts i y < 1 

f(q) = I - 2LsL+jsL I 2’-rL, -% 

The equation of the trailing-edge is 

(20) 

(21) 

The explicit form of (18) gives different formulae in different re ions 
of the wing, depending on the limits a and b, and on whether (20) or (21 7 is 
the appropriate expression for xL. Thus a = 0 for x < cc, a = yt for x > oc 

am3 b = yL. yL has different forms for x ( h and x > h where 

YTs h-7 
0 

Further divisions arise from the different equations for ACp (due to the 

different expressions for xL) for x < d and x > d where d = h + "('4;s). 

This leeds to a definition of five regions in which L(x) has different forms, 
four of which occur on any particular wing. Two classes of wings can be 
distinguished in which cc < h or o c > h ad the regions may be defined as 
shown belcw:- 
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Class A Class B 
Region 1 0 < x < o. 0 <x < h 

Region 2 co< x < h h < x < co 

Region 3 h c x < d oo< x < d 

Region 4 d < x < 8 a c x c c 

The explicit formulae for L(x) are identical for Class A and Class B 
in all regions except region 2. Region 2 of Class A and Class B will be 
referred to as regions 2A and 2B respectively. 

Formulae may now be developed for L(x) for the five regions:- 

Region 1 

(23) 

ana for m. = m,: 

L(x) z. + + +g (24) 
0 0 0 . 

Region 2A 

L(x) = 2(A+&)(~-7)-~(,-~)8n~ (25) 

and for m. = m,: 

L(x) = 
(2A + B) co 

m 0 

Region 2B 

+ 4sk 
2Bctm,sk 

-- (1-t) + 
P2 

(26) 

(27) 
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For mo = m, the first two terms of this expression become: 

2(A+B$j’its-B~(~s)* 

1 
Region2 

t L(x) = 2 [+ + $$++I (e-m,Q-x) - 

+ 4sk 
B( ct-mask 

2P 

(28) 

(29) 

For m. = m, the first two terms beoome: 

2(A+B$&ts-~)-B3$s)2-(732] (30) 

Region 4 

L(x) = l+sk + -. 
CL- 

where k EI 

P = 

uL= 

bnJ 

(mo-m,)sk - ot 

% - &-( ct-mosk)(&x) 

ct - mask 

I”-x 
411 =dm,sx 

(31) 

To oalculate L(x) upon DEUCE by means of a tabular interpretive pro- 
gramme it is convenient to write the above expressions in one general form, 
which may be applied to all regions and both alasses: 
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(G, +G2A, $ - G2A $f + G2B "tS + G3 f-;;">] 

~~mooo~~~~'x+G2A~~~ + 

+ G2B &I 
co-( mo-m, )\s 2 

0 
0 1 

mc 
+G ot 

3 ma-m 1 1 “, 1 Ctfbo-y &I 
Cn ~~ + m o- , )(x-mos)-moot /I 

+ (G2B+G3+G4) 4sk 
Bbt-mosk) 

2p hpJ + 

2 

+ 'Tsk B(l$ Gn %+2ct 1 %+2ct 3 (32) 

where I+ = G4 $$ 

J 

+1-G 4 

When m. = m, , the first two terms of equation (32j are replaced by:- 

” (G, + 
0 

x + G2Aoo, + y+ 

+(A+B$-'; 

+ G& + G3(x-co)2 1 
(Gu+G3) 2719 - G3 - (G2A 

(33) 

The factors G,, G2A eto. have been introduced as a means of eliminating 

those terms which are not required in specific regions. They are equal to 
zero except in the regions inaicated by their respective suffiaes where they 
become unity, thus: 

G, = 1 where x<c 0 anah 

G2A = 1 where co< x < h 

G2B = ' where h<x < o. 

G3 = 1 where 0 oardh<x<a 

GL = 1 where cl < x =z 8 
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These columns of O's and l's can be generated very simply; for 
example G 

3 
can be obtained by evaluating the function: 

G3 = (fw) fw) f=;j$-oo’) (34) 

In equations (27) to (33) a difficulty occurs when (no-m,)sk-ot 

'9 approaches zero, that is when T approaches - . 
2""t 

Consequently it was not 

possible to calculate L(x) with sufficient aoouracy for wings 16 ad 21 for 
a finite value of B. 

L(x) was calculated for the 34 wings at x/8 = O(O.Ol)l; by using the 

trapezium rule, both i L (f) d($) and /$.L ($d($) were found, and 

0 0 
hence the oentre of pressure position. 

The lift-dependent wave drag is given by 

Double integrals of similar form occur in the oalculation of the zero- 
Uft wave drag of bodies and a method of evaluating them on a digital computer 
has been developed by Emintonv. The formula in Ref.9 corresponding to (35) is 

00 

and the numerical method evaluates this from a table of values of S(x) at 
equally spaoed points. To evaluate (35) the same method is used, replaoing 

s(x) by r L (5) a($) at 5 = O(O.05)l.O. Thus 

0 

s, M;-l 

z= 
a 4 (37) 
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A 

C(Y) 

c 0 
c 

% 

C,(Y) 

% 

cDVycDW 

DV>DW 

K 

L(x) 

XL(Y) 

$Y) 3 

$F;) 

+J 

ACp(x,~) 

LIST OF PR~HCIPAL SYMBOLS 

Aspeot ratio 

Local chord 

Root chord 

Geometric mean chord 

Frojeoted tip chord (see Fig.1) 

Local sectional lift coefficient 

Overall wing lift coefficient 

Lift-dependent vortex and wave drag coefficients 

Total lift-dependent vortex and wave drag 

'DV + %i zz 
+A 

Total lift-dependent drag factor 

Lift-dependent vortex arag factor, see equation (8) 

Lift-d.ependont wave drag factor, see equation (12) 

Overall length of wing 

Cross-load = $pv', c (-ACp) dy 
i 

-3 

Free-stream Mach number 

Wing semispan 

wing area 

"Taper ratio" 
ati0 

Cartesian coordinates: x streamwise 

y spanwise 
z vertical 

Leading- and trai.ling-'cd% 5 

Wing camber-line ordinates 

Wing thiokness ordinates 

Looal load coefficient, equal to pressure. difference aoIpos9 
wing divided by dynamic pressure of free stream 
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a(y) 

a 0 

aJ 

B 

11 

F; 

LISP OF PREVXPAL SYMBOLS (Contd.) 

Looal inoidenoe 

Incidence of wing centre-line 

Incidence of wing-fuselsge junction se&ion 

P 
J" 

-1 
0 

= Y/S 

X- 
XL 

=xT-z 

Local semispan 

Leading- and trailing-edge sweep angles 
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TABLE I 

Some characteristics of the wiws considered 

Centre of pressure 

0.24 0.9541 0.604 0.469 0.535 0.474 
,I ,, 0.48 0.8181 0.550 0.449 0.508 out5 

1.00 0.623' 0.487 0.435 I 0.483 0.412 
0.06 i.092 0.558 0.471 0.541 0.491 
0.23 0.956 0.511 0.454 0.512 0.470 

tt 11 0.60 0.762 0.457 0.489 0.441 
0.35 1.124 0.548 0.463 
0.57 0.988 0.503 0.449 0.436 
1.00 0.793 0.450 0.487 0.403 
0.18 1.262 0.540 0.553 0.489 

,, I, ,I 0.35 1.126 0.470 0.525 0.463 
0.67 0.932 0.424 0.441 0.432 
0.49 1.422 0.471 0.465 0.440 
0.67 1.286 0.438 0.W 0.413 
1.00 i.097 0.397 0.423 0.490 0.3a3 
0.34 1.560 0.442 - 0.561 0.467 

17 " " 0.49 1.424 0.413 0.459 0.534 0.44+ 
0.75 1.229 0.376 0.438 0.504 0.413 
0.25 0.949 0.421 0.441 0.487 0.461 
1.00 0.623 0.361 0.442 0.477 0.435 
0.33 0.897 0.329 - 0.465 0.454 
0.00 7.450 0.465 0.483 0.556 0.509 
0.13 0.344 0.432 0.465 0.53i 0.487 

24 II tt 0.36 i ,119 0.393 0.453 0.501 0.462 
1.00 0.793 0.340 0.438 0.480 0.427 
0.05 1.393 0.354 O&7 0.502 0.480 
0.44 7.067 0.3il 0.439 0.479 0.457 
0.17 1.747 0.409 0.492 0.574 0.507 
0.29 I.611 0.383 0.473 0.547 0.477 
0.49 4.417 0.352 0.452 . 0.515 0.448 

CL&84 0.410 
0.554 0.507 
0.524 0.483 

34 " " , 0.494 0.451 
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‘2t = + FOR ALL WIN45 CONSIDERED HERE. 

T=Ct/Co 

FIG. I GENERAL SHAPE AND NOMENCLATURE OF 
SWEPT BACK WINGS WITH CURVED TIPS. 
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FIG.2. PLANFORMS OF 34 SWEPT BACK WINGS WITH CURVED TIPS. 
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FIG.3.WlNGI. A=3-5,~,=5S0,(P,-=3S”; 

-ACp = 05-0-5 5 ; MO = la2. 
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FIG.4. WING 2. A=3*5, Cpo =5s”, ‘p, ~45~; 

-ACp -0-s -0.5 S ; IVI~ = 19. 
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FIG.5 WING 3. A=3*5,~o=5S0, Q, =5S”; 

-ACp= 05-0-5 5 ; MO = l-2. 
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FIG. 6. WING 3. A~3.5, v. = 55; f = 55; 
-AC/D = O-25; Mo=I’2 s 
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FIG.7. WING 4. A=3*5,~,=60°, 9,=35’; 

-ACp=O+O=S5; Mo=l-2. 
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FIG.8.WlNG5. A=3*5,(Po=600~~,=450; 

-ACp=O+0*55; MO+2. 
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FIG.9. WING 5. A = 35, q. =60°, tp, = 4S” ; 

-ACp =0*25 ; MO = l-2. 
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FIG.10. WING 6. A=35,(P,=60°, tp,=ss’; 

-ACp =0-S-OM; t&=1*2. 
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FIGJI. WING 7. A=2275, (po=55’, Cp, =3S”; 

-AC p=o*s -035; Mo=l*2. 
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FIG.12. WING 8. A =2-75, q,= 55; ‘p, = 45; 
-ACb =0,5 -0.5 j; Mo=I.2. 
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FIG. 13. WING 9. A=2-75, ~&PO= 55: $? = 550 
-ACb=0*5- 0.5 jj MO= l-2. 
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FIG.14. WING IO. A=2075 % = 60: 
-ACba 0.5 - O*S $ j 

49 =35; 
MO 0 l-2. 
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FlG.15. WING II. A=2-75, % = 60”, f = 45; 
-ACb=O*S-O*5 5; Mo=I*2. 
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FIG. 16. WING 12. A=2-75, (PO= 60: 9 = 
-ACb =0-S-0.5 3; Mo= 1.2. 

55’; 
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FIG. 17 WING 13. A=2.0, yb = 559 Y? = 353 
-A(&= 0.5-0.5 f; Mo=I*2.- 
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FIG.18. WING 14. A=2, % = 559 ‘cp, = 45; 
-bCb = O’S-0.5 f j tVlo=Ie2. 
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FIG.19. WING IS. A=2, % - 55; $= 55; 
-ACp P 0.5 - 0.5 fj MO= 1.2. 
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FIG.20. WING 16. A=2, %= 60: q,=35; 
-ACb = 0.5 -0-5 5, Mo=I*2. 
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FIG.21. WING 17. A=2.0, %= 600, q=459 
-hCb = 0.5 - 0.5 3, M,= 1.2. 



7'0' 

7 

03- 

2 LC 

s 

02- 

Ol- 

O- 
0 02 0 6 oa- 

x- XT 

S 

I 

I 

FIG.22. WING I7 A=2-0, (p,=60; fl=45; 
-ACI,= 0.25; M,=l~2. 
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FlG.23. WING 18. A =24, GO =60°, Ip,= 55’; 
-ACp =O*S - O*s& ; Mo+2. 
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fW.24. WING 19. A = 35, qo= 65’, ‘p, ~55”; 
-ACp=O*S -0.5 4; M,=102. 
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FIG. 25. WING 20. A = 3.5, Q. = 65’, (9, = 65’; 

-ACp=O*S -0.5 4; Mo=I+2. 
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FIG.26. WING 21. A =3-S, vo=700, $J, =65”; 

-ACp=O*S -0.5 4; Mo=l*2. 
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FIG. 27. WING 22. A = 2.75, &, = 6S”, I& = 35’; 

-ACp=O*S -0-S &; M,=l-2. 



flG.28. WING 23. A = 2.75, Qo= 6S”, (4, = 45O; 
-ACp=O*S - 0.5 t,; Mo=I-2. 
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FIG.29.WlNG 24. A = 2.75,rp, = 65', Lp,=55'; 
-ACp=O*S -0.5 4; Mo=l*2. 



FIG. 30. WING 24. A = 2.75, Q. = 65’, Q, =55’; 

-ACp=O*2S; Mo=l~2. 
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FIG. 31. WING 25. A = 2-75, Q. = 6S”, Cp, = 65’; 

-ACp=O=s -o-5,4; ~~q.2. 
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FIG.32. WING 26. A =2-75, qpo =70°, Cp, = 55’ I 

-A+=0.+0~55; Mo=l-2. 
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FIG.33. WING 27. A=2-7~~o=700, 9, =65O: 

-ACp so-5 -035; MO = I-2 l 



-1 i -1.4 -1.2 x-xT-I.o -, 

S 

L 

\ 

T- 

\ 

/- 

E 
04 

FlG.34.WlNG 28. A=2-0, &,=65’, 9, =35’: 
-ACp=0+055; Mo=l-2. 
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FIG.35 WING 29. A = 2, & = 65’7 tp, = 45’ ; 
-ACp =0*5 -0.5 5 ; MO = 1.2. 
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FIG.36.WlNG ;O. A=2-0, Cp,36S”, ‘p,=SS’; 

-ACb =0~5-0*5<; tvlo’l.2. 
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FIG.37. WING 31. A-2-0,&=6S0v (p,=65’; 

-ACp=O*5-O*5<; t&=1*2. 
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FlG.38.WlNG 32. A=2*0,$l,=70°v 9, =45’; 
-ACp=0*5 -0.55; Mo=l-2. 
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FIG.39. WING 33. A q 2.0, Cpo =70°, Cp, = 55’ ; 

-ACp =0.5-0.55; Mo=I*2. 
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FIG. 40. WING 34. A=2-0, Y. = 70; Y, - 6!?; 
-A&= 0.5-0.5 f; M, = 1.2. 
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FlC.42. WING 3. CAMBER-LINES FOR 
DIFFERENT LOADINGS. 
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FIG. 43. SPANWISE VARIATION OF TWIST FOR 
DIFFERENT LOADINGS ON WINGS WITH 
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FlG.44. VORTEX DRAG FOR WINGS IN FIG. 2, CAMBERED TO HAVE 
CONSTANT C, ACROSS SPAN. 
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FIG.45 (a) LIFT-DEPENDENT WAVE DRAG AT Mo=l.2 FOR WINGS IN FIG. 2, 
CAMBERED TO HAVE CONSTANT CL ACROSS SPAN AND TRIANGULAR 

CHORDWISE LOAD DISTRIBUTION. 
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FIG.45 (b) LIFT-DEPENDENT WAVE DRAG AT Mo=I.2 FOR WINGS IN FIG.2, 
CAMBERED TO HAVE CONSTANT ACp OVER WHOLE WING. 
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FIG.46. LIFT- DEPENDENT WAVE DRAG FOR WINGS IN FIG. 2, 
CAMBERED TO HAVE CONSTANT CL ACROSS SPAN. 
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FlG47(a)TOTAL LIFT -DEPENDENT DRAG AT M. =I*2 FOR WINGS IN FIG. 2, 
CAMBERED TO HAVE CONSTANT CL ACROSS SPAN AND TRIANGULAR 

CHORDWISE LOADINGS. 
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FIG.48 (a 6 b) SPANWISE DRAG DISTRIBUTIONS FOR SEVERAL WINGS, WITH 
LOADING -ACp =0.5 -0.5 &, DESIGNED FOR MO=0 AND M,=I.2. 
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FIG.49. COMPARISON OF LIFT -DEPENDENT DRAG 
FACTORS CALCULATED BY TWO METHODS ON 

SEVERAL WINGS. 
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FIG. SO. WING - ROOT SECTIONS 
OF WING - FUSELAGE COMBINATIONS; 
TRIANGULAR CHORDWISE LOADING. 
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FIG. 51. WING - ROOT SECTIONS 
OF WING -FUSELAGE COMBINATIONS; 
UNIFORM CHORDWISE LOADING. 
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FIG. 52. CENTRE - SECTION SHAPES OF WINGS 
WITH VARIOUS CHORDWISE LOADINGS. 
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