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SUMMARY

The two-dimensional flow considered is that of an ideal,
compressible fluid bounded by two rigid, non-conducting, parallel walls
of infinite extent. A shock wave normal to the rigid boundaries divides
the flow into subsonic and supersonic régimes. In the suvpersonic region
a normal static temperature variation, which is sectionally invariant
but fluctuates periodically with time, when convected through the shock
wave results in a perturbation of the flow in the subsonic region. By
assuming that the magnitude of the fluctuations of the static temperature
are small an expression for the acoustic pressurce fluctuation in the
downstream part of the gas is deduced.

Introduction

Experimental evidence obtained in recent years has Tirmly
established the fact that a large increase in Jjet noise arises when the
Jjet is, running beyond or at least closec to its choking condition.
Powell', Burgers<, Ribner3, Lighthill4 and many others have endeavoured
to explain analytically how this large increase in jet noise occurs.,
The outcome of their investigations suggests in general that any once of
the upstream fluctuations of entropy, pressure and vorticity, on being
convected through a shock-wave system, give rise to all three modes of
disturbances in the subsonic downstream regilon,

The analysis contained herein is an advance on a paper by
Pewelll in that it considers two-dimensional motion, but it concerns
itself with the acoustic disturbances produced downstream duve to the
convection of entropy fluctuations only through a normal shock wave,

The analytic model chosen for investigation consists of a
two~dimensional bounded channel within which supcrsonic and subsonic
flows are separated by a normal shock wave., The boundaries are two
parallel rigid non-conducting walls of infinite extent. An upstream
static temperature fluctuates in a periodic manner about a mean valuc.
This gives rise to disturbances of the normal shock wave profile which
in turn vroduces a sound field within the subsonic downstrcam region.

The mean value of the upstream static temperature is dependent only on
the co-ordinatc normal to the channel centre linc and is symmetric about
this centre line. As the reduced equations governing the flow are lincar
the perturbation of the downstream {low duc to the mean value of the
upstream static temperature is scparable from thc unstcady perturbation
due to the fluctuations of the upstream static tempcraturc about the mean

value,
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Notation
Ag speed of sound
CP specif'ic heat at constant pressure

D width of channel

Mg Mach number
Py static pressurc
QS velocity vector
Ry density
o
R symbol denoting rarefraction wave; arrow denotes direction
Tq absolute temperature
Ug velocity parallel to channel centre line
a perturbation of the speed of sound
P perturbation of static pressure
q perturbation velocity vector
1 - suffix denoting supersonic régime
° T {2 - suffix denoting subsonic régime
t time variable
u perturbation of velocity parallel to channel centre line
v perturbation of velocity normal to channcl centre line
X, ¥ orthogonal cartesian co-ordinates
0% ratio of specific heats
p perturbation of density
Theory

The physical state contemplated in the thecoretical investigation
is shown in Fig.1. Thc origin of the co-ordinate system uscd in this
analysis is located on the centre line of the channel at the undisturbed
shock front,

The unsteady equations expressing conservation of mass, momentum
and energy are, for an ideal gas

DR _

-- + R div Q = 0 .. (1)
Dt

g 1

~~ +-grad P = O .. (2)
Dt R

DP DR

- - 42 - = 0 e (3)
Dt Dt
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where - - + (Q.grad).
Dt ot
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Following a lincar trcatment for two-dimensional flow of an ideal
compressible fluidq, the flow variablcs dowvnstresm of the shock may be
written os

P, + p(xyt), Ry + o(xyt), &, + alxyt), Q + alxyt)

where the components of thc velocity vector arce Uy + u(xyt), v(xyt).
Equations (1), (2) and (3) then simplify to the form

ap -
——+R divg = 0 oy
at
dg 1
-+ —~grad p = O ... (5)
dt R,
dp dp
- J.l2 —_— = O ..,(6)
at dt
d G| G]
where -— E ==+ U, --,
dt ok ax

Zlimination of p and q yiclds the pressure perturbation equation
dzp
- R
--- - I div,grad p = O L (7
at
where the non-dimensional co-ordinates

x* = x/D, y* = y/D, T = U,t/D

are used in the expanded form, In the remasinder of this work the suffix

2 on the Mach number, M,, and velocity, U will be omitted.

27 0?2

Steady TFerturbation

The total pressure perturbation may be regarded as the sum of
two parts: (i) the steady perturbstion of the downstream flow due to
the mean of the upstream static temperature and (i1) the unstesady
perturbation due to the time fluctuations of the upstream static
temperature about the mean value,

Tn the steady case, equation (7) reduces to
9%p &*p
(1t = M) —oee gt == = 0, ...(8)
Ix*? By *?

In order to solve this equation it is necessary to obtain an expression
for p at the shock front in terms of the disturbing agent which, in
this case, is the upstream static temperature variation, T(y). This
temperature variation may be represcnted by

T(y) = T.[1 + 7 (y)], T'(y) << 1.

The Mach number of the flow along ¢ gencral strecamline in the subsonic
region of the channcl is then given by

o= ¥ - 1(y)] ... (9)
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neglecting O}T'(y)gg. The pressure ratio across an obligue shock wave,
correct to the first order of the inclinstion of the shock to the
y-axis is given by

P, +p(xy) 2y y-1
________ B | A
P, v+1 y+1
where ...(10)
P, 2y y-1
= = e M2 e e,
P, y+1 y+1

Hence, from (9) and (10) the pressure perturbation in the subsonic region
at the shock front is given by

2YMEP,

p(xy) = = —=--—- T (y).
y+1

In what follows this boundary condition will be tsken on the y-axis,
i.e., the above brundary condition will be interprcted as

2N T,
p(0y) = - ------ T (y).
y+1
In particular, assuming a static temperaturc distribution within the
channel ]y*[ < 1 which is symmetric about y* = 0 the pressure
perturbation at the undisturbed shock front may be writtcn in the form
- 00
2YMI P,
P(O .V) = - e Z T;l cos 2nmy ¥,
y+1 j
n=0

This condition together with that at infinity, i.e., p(xy) = 0 as

x* 2+ oo are sufficicnt to uniquely determine the solution of (8) by the
method of scparation of variables, Thus, the steady pressure perturbation
of the downstream flow due to the mean of the upstream static temperature
is given by

co ' ‘\
2y L J 2nw X k 2nm
p(xy) = - --- BN Zi, T} exp <= --= . ===--- T+ COS —==J e
y+1 / L D (1-2)Z( D
n=0 /

The isobaric contours of the subsonic region for the particular
case when the upstream static temperature profile is given by a simple
cosine wave are shown in Fig, 2.

Unsteady Perturbation

In this casc the downstream perturbation, which is due to the
oscillation of the temperature variation about the mcan, satisfies cquation
(7). As in the steady case, the condition at the shock front is applied
along the line x = 0 and on the assumption that the inclination of the
shock to the y-axis is small. This is justified provided that the
variation of upstream static temperature is small”, It remains to
investigate the interaction problem of a shock wave with a temperature
gradient in the x-dircction constituted by a number of planc entropy waves
parallel to the normal shock wave, the shock wave being taken to move
into a fluid which is at rest. DIig.5 illustratcs this physical situation
in the x,t-planc where O0x is taken to be sufficiently small such that the

static/
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static temperature profilc in the x~direction can be represented
approximately by a continuous function. In devcloping this argument it
is also necessary to assume that reflection, refraction and small
alterations in strength of the resulting pressure wave system, on being
convected through the subscquent entropy wave, is sufficiently small to
be neglectch.

A note by Powell’ and a subsequent report by Appleton6 develop
an expression for the acoustic disturbance produced by the passage of a
single plane cntropy wave through a normal shock wave, It was shown that
within the limitations of the lincar theory, the magnitude of the resulting
acoustic disturbance was directly proportional to the magnitude of the
entropy disturbance and was given by

6p2 = RS . 6T1 . Cpo o

where 08T, is the static tempcraturc change which defincs the entropy
wave in the fluid ahead of the shock, ©p, is the magnitude of the
resulting pressure perturbation in the region behind the shock wave, and
0 is a transmission coefficient dependent only on the shock wave Mach
number (sec Ref, 4, Pig,7 for variation of o with M).

The change in the static pressure behind the shock wave
immediately after the general entropy wave designated by r (see Fig,3)
has been convccted through it, is given by the expression

™
Y}

PA - PG = 6p2 = RECPO' 2—' 6TI‘ .
r=1

This expression is true to within the degrce of accuracy implied in the
previous assumptions, i.c¢., terms such as 80,07 arc of second order
importance and can therceforce be neglected., If a sufficiently large
number of entropy waves arc considcred so that the static temperature
profile in the x-direction can be represented by a continucus function,
which will be assumed to be sinusoidal, then &Op, may be written in the
f'orm

8p, = R,CoO0T. exp (ionx/c).
A transformation of the form x = U, t fixes the shock wave relative to
a stationary observer. The pressure perturbation just downstream of the
shock wave may then be written

il

Do chpcrm: exp (iwt) ...(12)

where W ZWUi/c.

The above argumcnt has becn developed for a one-dimensional flow
system confined to an element of the shock front., However, provided that
natural convection of the fiuid in the supersonic region upstream of the
shock wave is neglccted and also that the disturbed shock wave remains
normal to a first order approximation equation (12) may be gencralised to
give the pressure perturbation immediatcly downstream of the shock wave.
Then AT is given as a function of the normal co-ordinate y. Thus,
with an upstrcam static temperaturc symmetrical about the centre line
y = 0, the downstream pressure perturbation at the undisturbed shock

front may be writtcen as
co

p(yt)x:o K exp (iwt) QZJ T! cos 2nn 5 .ol (13)
n=0

1

i

where K RQCPOAT.
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A general solution of equation (7) for simple harmonic
oscillations can be obtained following Temple7 to give

p = exp i(A7 + kx*) £(x*y*)
where N = WD/U, k = A?/(1 - ¥®), and the reduced pressure function
f(x y) satisfies the equation
V3f = - n'®f
-
in the co-ordinate system x = x¥*/(1 -M)2, y = y* and where
n'® = AM?/(1 - M), This equation may be solved by separation of

the variables, The particular solution of (7) which satisfies the
boundary condition (13) and is finite for all values of x dis then
obtained in the form

M oxN e
plxyt) = Kexpi w (t + o - ) ;ZJ T! exp(- mx/D) cos (enmy/D)
12 U
n=0 (1)
where K = RQCPGAT and
AN
m® = 40 - e ...(15)
142
Conclusion

Equation (14) gives the magnitude of the pressure perturbation
at any point in the subsonic downstream region due to periodic upstream
static temperature fluctuations. The steady pressure perturbation of
the downstream region due to the mean value of the upstream static
temperature distribution is given by equation (11)., As these are
solutions of a lincarised field the total downstream pressure perturbation
is given by the sum of (11) and (1L4).

From equation (14) it is seen that the acoustic disturbances
of the downstream region are attemuated only if m° > O, There is thus

a critical frequency given by w,/2% satisfying m® = 0, i.e.,, from (15)
1
A, U W, U (1 - n2)2
2% D 2% D M

Below this frequency acoustic waves can be propagated; above this
frequency the wave undergoes attenuation.
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