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SUMMARY

The differential equations, resulting from the one-~dimensional
liquid-fucl rocket combustion flodel II of Spalding, have been integrated,
and terperature and vclocity profiles for the fuel droplets derived.

A simple approximate procedure for solving the equations is also given
which gives good rcsults when compared with cxact integration.
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1.  Introduction

In a precvious paper, Spalding1, has considered a onc—dimensional
model for liguid-fucl rocket combustion. Iy use of laws for droplet
vaporisation and drag and the conservation of energy it has been possible
to setl up first order total differential cquations for the temperature,
droplet radius and velocity. In these equations the independent variable
is the distance of the droplets lrom the point of injection. To
facilitate the derivation of solutions certain simplifying assumptions
were madc. If' the chemical loading parameter, L, is taken as zero,
ifodel T of Jpalding's paper, the temperaturc along the length of the
combustion chambcr is uniform and cqual to the cquilibrium gas
tenperaturc. An additional simplification is obtained by assuming
that Stolzs' Law is applicable for the droplet drag, Model I(a), in which
casc the equations may casily be intcgrated to give analytical solutions.
L1t has veen shown that the qualitative behaviour of these solutions is
what onc would expect from physical considerations. If L 4is not zero,
chenical rcaction is of importance in determining the behaviour of the
droplets. since under practical liquid-fuel rocket operating conditions
chemical reaction is likely to be of importance it is nccessary to
determine what its cifcct is on the overall performance and in particular
whether the solutions of Model I are of sufficient accuracy as L
approaches its critical value Lc’ The nature of the initial

diffcrential cquations is such as to makc desk computation impracticable
and it has therefore been found nccessary to programme a high-speed
clectronic digitcl computer for their solution.
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2. Differential Equations

2.1 Dimensionless form of equations

The differential equations for the droplet radius, velocity,

and temperature and the equation for the gas velocity may be

following convenient dimensionless form, c.f. Ref. 1,

in which the syubols have the
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Since the dimensionlrss distauce variable does not cccur explicitlg in
the equatiors it may be eliminated by combining (1) with (2) and (3).

One obtains
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2.2 Combustion Model II(a)

Py

Spalding has shown that if Re < 0 the ratio f, /T, does
not differ by more than about 6% from unity. We therefore take this
ratio to be unity. If in addition it is assumed that for the particle
dreg Stokes' Law is operative onc will have f, = 1. We make the
further assumptions, that

o(r) = 7 eee(7)
m(’r) = 1 ...(8)
§(r) = 4 .. (9)
1
g o= -. ..+ (10)
Z

Equations (8) anc (9) imply that the gas viscosity and density do not
depend cxplicitly on temperature.  Equation (10) arises under pure
vaporisation conditions, cf., Rel. 2.

mo conforn with the dcfinition of the reaction rate function
we shall talke
n

1
W) = <n+ﬂ><4+—> (1 = )" oo (1)

n

with n dinteger. This function has a singlc maximum and rises from
zero to unity and returns to zero as T goes from zero to unicy. It
has the forn of a typical reaction rate function, cf., Ref. 3

With conditions (7) - (10) the differential cquations become

dx S
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2.3 Boundary conditions

At the point of droplet injection the following conditions
apply:

g o= 1 x o= X T = T, oo o (ih)
where T, is determined by the requirement

g = 1/
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Examination of (13) shows that for this to be satisfied one must have
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Equation (16) determines real values of T, only if the loading
parameter L 1lies between zero and a critical value L . Tor the
reaction rate function (11) ©

. /n+ 1. 1\1’1 1 n-2
Ly = ${ - (1 + -) <—1 - ——— > X o eeo(17)
\n -1 n n -1
The functional relationship between LC/X.O and n dis shown in Fig. 1.

By application of L'Hospital's theorem to equation (13) at

Z = 1 one can determine (15). With (11) one obtains
ar . (8 = 10)(1 - 710)
< -—) T e e e e T e e = — . 000(18)
a /, 1 - (n=-2)(1 - TO)
At the point of disappearance of the droplet,
& = 0:xX =1, 7 = 7, <1, eeo(13)

By intcgration of (1) with appropriatc substitution, it is seen that
this occurs at a distance

g =/ -z & ...(20)
o]

{rom the point of injection,

2.4 Numcrical procedure

To facilitate the forward step-by-stcp integration of
equatiors (12) and (13) it is convenient to replace & by an auxiliary
rariable. We therefore make the substitution

Z; = 1 -7 000(21)

so that (12) and (13) become
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With new boundary conditions:

n = o X = X‘O-’ T = TO x
dr , ar (5 -1)(1 -7) ¢ ° vee(2)
—_— = - I e e o e o o e o e 0 s o
an \ dn /o (n=-2)(1 -75) -1 |
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A Ferranti liark I* high-speed computer was programmed to deal with the
step~by=-step integration of equations (22) and (23). The programme
employs Gill's form of the Runge-Kutia processh'which is of fourth order.
Unfortunately the method is not applicable to (23) at m = 0O so that
it was neccssary to start the integration procedure away from the
boundary. The values ol the functions at the first step were taken as

» aX

Xi = XD +( e \ h ooo<25)
\ CU’. /o
/ dr \
Ti = TO +\ '—"") h ono(26)
an /o
in which h is the step size for the integration. Since the right-hand
side of (22) becomes indeterminate at m = 1 the integration process
was terminated at m = 1 -~ h,

3.  An Apnroximate Solution

Bauation (16) shows that as L - 0, 7, - 1 and hence that
ar

< - ) = Q. Since T is & monotonic function of & for most of
az /a1
0 <& <1, arcasonable approximation to make, when L << 1 is

ar
-p = -- = 0 in 0 ¥ < 1. oo (27)
dg
Equation (13) now becoues
y(r) L%
——— 5 - —_ O, -¢0(28)
7 X

or & given & and X(ﬁ), T(é) is detecrmined from (28). This value
f T may then be uscd for a new step in the integration of (12),
giving a next value wWg). Continvation of the process eventually
results in X(g) and 7(%) profiles.

o H

Examination of (28) shows that all 7(Z) profiles pass
through 7 = 1 when J = 0, so that for L not very small, the
approximation will overestimate 7 Tor wost of its rangec. On
rearrangement of (13)

L (1 -2~ y(7)
= ey ees(29)
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In the region where p < 0, p = O underestimates 7 and where
p>0, p = 0 gives an overestinate it being assumed that the change
in X can be neglected. The total effect, as shown by Figs. 2(a) and
2(b), is to displace the profile towards the injection end.

Equation (22) has been integrated in combination with (28) to
deternine the accuracy of the approxination. Since (22) is a lincar
differential equation this could casily have been donc by use of a
desk machine, but since only few modilications to the iark I¥ programme
were necessary, the calculation was completcd using the high-speed computer,

he  Results

Dguations (12) and (13) have been integrated for the following
parancters:

XO = 0.5 n = 2{., 8
X = 1 n = kL, 8,

The valucs of L have boen chosen so that in all cascs L < LC. As

shovm by TFig. 1, LO is a function of' X, and n. Iun every casc the

1
choice 3 = 1 has been madc. Figs. 3(a) and (b) show the results
for % = 0.5 and Figs. 4(a) and (b) those for ¥ = 1.

Lguation (22) has been integrated in combination with (28) for
he porticular casc:

So= A Xo = 04D n = L L = 0:.25,

The resulting curves are shown in Pig. Do The corresponding exact
o o
integration is also again displayed for comparison.

£11 curves heve been plovted against n = 1 -4, IT T
is the droplet redius at injection erd I the radius at any subsequent
pocition, thon

Iy =T
T & eem—— «ea(30)
To

)

so that v is the fractionsl decrease in the croplet radius.

Values of &% have been evaluabted using equation (20) and are
shown on Fizs. 5 - b,

5. Discnssion

Txacination of the teupcrature profiles of Figs. 3 - 4 shows
that r 15 veerlr in all cascs a wmoprotounic function of M. Jhon the
loeding nararcter is closc to its critical velue there is an initial
drop in temperature vhich then rises to its maximum value 7,. As T,
is less than wity, chemical reaction is incomplele at the point of
disappearance of the droplets and an additioncl distance is required for
the process to go o completion. This distance, which has not been

eveluated, should be added to I*  to give the mininmun roclzet length
Lor elfficient combustion,

The droplet velocity profiles show that for given initial
conditions they are nearly indepeadent of Yariations in the loading
parameter. This indicates thet Hodel I(e) of Spalding will give good
rosults even when L is not zero.  All velocitics initially fall below

those/
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those at the point of injection, and as previocusly, reach the gas
velocity at the disappearance of the droplets.

The values of &% are increasing functions of the loading
parancter L. This, as may be secn, is due to an overall drop in
temperaturc as L increases,

The maxi.wum chemical loading Lc’ is determined by the shape

of the reaction rate function, characterized by n, and by Yo, the
injection velocity of {the droplets. Tguation (17/ shows that LC

increases lincarly with ¥, and decreases with increasing activation
CNCTEY o

Ixamination ol the approximate solutions, plotted in Fig. D,
shows that the velocly profile is practically coincident with that
given by exact integration. The temperature profile, as predicted,
lies slightly above the exact solution, but this discrepancy will
disappear with decreasing L and increasing n.
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