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C.P. No.446 
A One-Dimensional Theory of 

Liquid-Fuel Rocket Combustion II: 
The Influence of Chemical Reaction 

- Ey - 
J. Adler, 

Mechanical Engineering Department, 
Imperial Colluge, London 

The differential equations, 
lisuid-fuel rocket combu-"' 

resulting from the one-dimensional 

an.2 temperature 
argon Model Ii of Spalding, have beer1 integrated, 

L and velocity profiles for the fuel droplets derived. 
A simple approximate procedure for solving the equations is also given 
which gives good results when compared with exact integration. 

I. Introdi2otion _I__. --- --as 

In a previous paper, Spalding', has considered a onodimensional 
model for liquid-fuol rock& con?0ustion. 2y use of laws for droplet 
Va~JOrisat~On and drag and the conservation of energy it has been possible 
to set up first order total differential equations for the temperature, 
droplet radius and velocity. 
is the dis-kancc 01' thr; drop1 ;-t- 

In these equations the independent variable 
t a 3om the point of injection. To 

facilikrte the derivation of solutions certain simplifying assumptions 
were made l I-f the ohemical loading parameter, L, is taken as zero, 
i." ode1 I of Sgalding's paper, the temperature along the length of the 
combustion ohambc r is -uniform and equal to the equilibrium gas 
tenpcraturc. An eduitionsl simplification is obtained by assuming 
thil-t :3a:,ts ' Lnv? is applicable for the droplet drag, Model I(a), in which 
caw the equations may t;asily be integrated to give analytical solutions. 
it has beei1 sho$m thz, k the qualitative behaviour of those solutions is 
wl1s-t one mould expect from physical considerstions. If L is not zero, 
chemical reaction ii; of importance in dotermini.ng the behaviour of the 
dr‘0p1cts. S~~XX+ unddr practical liquid-fuel rocket operating conditions 
clieiKiC~1 reaction is lilwly to be of importance it is necessary to 
determine what its ei'fctct is on the overall performance and in particular 
whether the solutions or‘ Model I are of sufficient accurncy as L 
approaches its critical value L 

C' 
The nature of the initial 

differential equations is such as -to make desk computation impracticable 
and it has therefore been found necessary to pro,granme a high-speed 
electronic digital computer for their solution. 
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2. Differential Equations -w, 

2.1 Dimensionless form of equations 

The differential equations for the droplet radius, velocity, 
and temperature and the equation for the gas velocity may be put in the 
following convenient dimensionless form, c.f. Ref. q. 

dr "r Ji 
we = - ---me- 

a; Ll-s" 

1-c 
Go = m---w- 

6 

. ..(3> 

. ..(4) 

in which the symbols have the following meanings: 

dimensionless droplet radius 

dimensionless droplet velocity 

dimensiol?less distance variable 

dimensionless vaporisation rate 

dimensionless droplet drag (constant) 

dimensionless gas velocity 

dimensionless chemical loading parameter 
(constant) 

dimensionless temperature or reactedness 

functional dependence of vaporisation on 
reactcdness 

fuxtional dependence of drag on reactedness 

functional dependence of gas density on 
reactedncss 

dimensionless reaction rate function 

function of droplet Reynolds number Re 

function of droplet Reynolds number Be 

Since the dime~sionl.~ss distarlce varriable does not OCCIIZ~ explicit T in 
the eq-uatiorsit !lay LB eII:i.minnted by combining (I) with (2) and (2 "5 . 
One obtains 

dX 
mm 
G i 



. ..(5) 

. ..(G) 

2 .2 Combustion IGO& II(a) -.-- 

spslc3-Lng has ShGWl that if Re < j0 tl~ ratio f,/f, does 
not differ by more than about 6% from unity. We therefore take this 
ratio to be unity. If in addition it is assumed that for the particle 
arag stokes' Lav: is operative one will have f2 = 1. We make the 
further assumptions, that 

o-(r) = T . ..(7) 

m(r) = I . ..(8) 

8(r) = 1 . ..(Y) 

1 
p = -. l ..(lO) 

r, 

Equation:, (3) ant? (9) imply that the gas viscosity and density do not 
&pond explicitly on tcmporature. Equation (10) arises under pure 
vaporisation coditions, cf., Ref. 2. 

To conform with the definition of the reaction rate function 
ve shall take 

l I Q(T) = (n + I) \ I c - 
) 

i1 (1 - r)P ..&I) 
\ 11 

with n in-tegcr. This function has a sin&c maximum and rises from 
zero t0 UKity CLEd 3?~?tLEllS t0 ZCrO &S T goes from zero to unizy. It 
has t& i'orrl of ;i typic&l reaction rate function, cf., Ref. 3. 

IWith conditio;;s (7) - (10) the differential equations become 

dr I lj 
_- = - ------ -- 
a;: 

5 (--x-3+ 
(I-z;')\L7 

. ..(w) 

. ..03) 

2.3 Boundzl~x~titions ---- y_uL-- 

At the point of clroplet injection the followk2g conditions 
appljr : 

where To is determined by the requirement 

c = I/ 
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a7 dl- \ 2; = 1 : -- = -- 
( I 

z finite. . ..05) 
dts dg i 

F&knation of (13) shows that for this to be satisfied one must have 

1 Jlfql> 
- em--- 

x, -jr0 = 0. . ..(16) 
L i-0 

Equation (76) determines real values of 7O only if the loading 
parameter L lies between zero and a critical value Lc. For the 
reaction rate function (11) 

The functional relationship between Lcho and n is shown in Fig. 1. 

By application of L'Hospital's theorem to equation (13) at 
z L-z 1 one can determ5ne (15). Vith (II) one obtains 

dr \ 
-- 

( J 

( s - 7cJl - 70) 
- ------------------ ..*(lG) 

a 1 - 1 - (11 - 2)(-I - To)’ 

At the point of d-i.sappearance of the droplet, 

2; = 0:x = I, T ZG Ti61. . ..(w) 

By integration of (I) riiith appropriate substitution, it is seen that 
this occurs at a distance 

from the point of injection. 

. ..(20) 

To facilitate the forc:ard step-by-step integration of 
equatio= (12) and (13) it is convenient to replace c by an auxiliary 
variable. We therefore make the substitlltion 

g z I -;? 

so that (12) and (13) become 

dX s 
-- = 
a-ii 

dr (I - 7-J ;-- 1 $ 
-- = -------------- 

I- 
- - X- 3(1’ - -a 

i-r1 n($ - 371+3) LT 

. ..(21) 

. ..(22) 

‘1 
.-_ 

a.(23 

With/ 
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With new boundary conditions: 

dl- (s - -ro>o - To) 
-- = 1 cI---------^--I---- 
dr, 

; ;) = 

";1 0 ( n - 2)(1 - To) - 1 

r7 

/ s . 
r 

* ..(24.) 

I i 
‘J 

h Ferranti Piark 1" high-speed computer v:as programmed 
step-by-step integration of equations (22) and (23). 
employs C-ill's form of the Rung-Kutta proccss'i- t;ihich 
Unfortunately the method is not applicable to (23j at 

to deal with the 
The programme 

is of fourth order. 
T-j = 0 so t&at 

it was necessary to start the integration procedure away from the 
boundary. The values of the functions at the first step were taken as 

6X 
x, = %J + ( ;; ) h 0 

r1 = 7-o 

. ..(25) 

. ..(26) 

in which h is the step size for the integration. Since the right-hand 
side of (22) becomes indeterminate at ri = I the integration process 
was terminated 3 i; 72 = 1 - h. 

3. An J~~ximate Solution --_*---.-------I- *- 

Equation (16) shows that as L-:0, To-* I and hence that 
a7 \, 

( J 
-- 3 0. Since 7 is a i;iOEOtOXiC function Of g for most Of 

afz 1 

O< < < 1, a reasonable ap,proxiiastion to make, when L << 1 is 

c3.T 
-p = -- = 0 in O<<<ll. . ..(27) 

ii;; 

Equation (13) now becomes 

4Jb> I,;: 
--em -3-- = 0. . ..(28) 

T3 x 

For a given ;: and X(2:), 7(1:) is determined. from (28). This value 
of T may then be usoct for a new ste;? in the integration of ('i2), 
giving a next value X(i;). Continuation of the prOCeSS eventually 
results in X(z) tl.Fid T(z) profiles. 

Examination of (23) shows that all T(Z) profiles pass 
through T = 1 ;Jhen ;: = 0, so that for L not very small, the 
apprcximation nill 0vcresti::is-k 7 for most of its range. On 
rcarrsn~5mei~t of (13) 

L (I - ;;" j -j *b> 
3 k; 7 + IJ -------- , = -..--.-• 429) 

x- c -.! 7 

in/ 
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In the region where p < 0, p = 0 underestimates T and where 
P>O, P = 0 gives an overestimate it being assumed that the change 
in X 
204, 

can be neglected. The total effect, as shown by Pigs. 2(a) and 
is to displace the profile towards the injection end. 

Equation (22) has been integrated in combination with (28) to 
determine the accuracy of the approxiz,ation. Since (22) is a linear 
differential equation this could easily have been done by use of a 
desk machine, but since only few notifications to the i&ark 1':' programme 
were necessary, the calculation was complctcc? using the high-speed computer. 

4. Rcsul-ts - --. -- 

Cqmtions ('12) and. (:3) I: lavc been integrated for the following 
pnrsmcters: 

r, = 1 n = 4,8. 

The valws of L have bden chosen so that in all casts L < L a As C 

shawl by Pig. 1, Lc is a function of X0 and n. Iii every case the 

choice 3 z I has been ma&. J'igs. 3(a) a;xl (b) show the results 
for & = 0.5 an& Pigs. &(aj and (b) those for X0 = I. 

Equation (22) has been integrated in combination with (28) for 
the px35cular case: 

s L-- 1 x, = 0.5 n = 4 L = 0,25. 

The resulting curves arc: shown in Fig. 5. The corresponding exact 
integration is a Is0 again S.isplayed for comparison. 

&LlJ cumcs h::.vc been plo Ited against 11 = 1 - ;j m If To 
is the droplet raci-3-u; at injwtion cud I' t11i: radius at any subsequent 
position, thin 

I', -r 
7; E.z --1--B . ..(30) 

I’, 

so Chat "1 is the fractional decrease in the croplet radius. 

Jf;Aluc s or' .- " 
sho;rn 01'1 I"i,;e 9 L 3 l (>“. 

have been evZlusted using equation (20) and are -5 
5. Ci:; 0.1'7s3 on ---- *__..- _.- 

Lxai.,inat 1011 oi the temperature profiles of Figs. 3 - l+ shows 
-&hat i is n~eri-i in all casts a mor?otonic functioil Of v. :Ih on the 
lo;2dln~; ya.ra::etcr is clox t0 its ci>ltical value there is an initial 
?roF in tcq~~rtttur~ i;lKi.cli then X%iS?S tc its maximum value 71. As ri 
is less than unity, chemical reaction is incomplete at the point Of 
tisappearancc of the L'Lrople~ *s an6 an additiOna distance is required for 
the process to go to coi?.iylctio::. This distance, which has not been 
cvLluzted, Sli@Ulc j)e ,CJ&fjec -to G" t0 give t'ne minimum r0ck-t; length 
Ior e.?ficL,tlt con?k3uction. 

Th:: dropl,: t velocity profiles show that for given initial 
conditions they are nearly iniliepe-- odent of variations in the loading 
parameter. This inticates -that I;"iocicl I(a) of Spalcikg will give good 
results even xhen L is not zero. All velocities initially fall below 

those/ 
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those at the point of injection, and as previously, reach the gas 
velocity at the disappearance of the droplets. 

The val-xs of E:x are increasing functions of the loading 
paraxter L. This, as may be seen, is due to an 0veraXL drop in 
temperature as L increases. 

The mak.ium chemical 1oadi.n~ Lc, is determined by the shape 

of the reaction rate function, characterixed by n and by 'X0, the 
injection velocity of the droplets. Equation (j7) shows that Lc 

increases linearly with X0 and decreases vkth increasing activation 
cncrgy. 

Fxaminntion ol the approximate solutions, plotted in Fig. 5, 
shows that the vcloci';y profile is practically coincident with that 
given by exact integ7stion. The temperature profile, as predicted, 
lies slightly above the exact solution, but this discrepancy will 
disappear with decreasiag 1, and increasing n. 

The author wishes to thank Dr. D. D. Spslding for suggesting 
the p?0b2crz1 and for helrJfrr1 discussions. Thanks are also due to 
A.R.D.X., Fort Halstead for use of the electronic digital computer A.?4Gs. 
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FIG. 1. 

Region in which cambu&on 
not possi bte 

I 
I 

TL= bo asymptQte I 
_L--.- 
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I 

G~phica.l co&h&ion for d&m-mining r from typiUal reaction 

rate function ?I/ (7) 

0 

7 !f 
= I- 1 

(b) 
Typica! T versus e curve showing effect of neg!ecting tmperatxm 

griidient Pa 
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T and x versus q curves -For x0 =CI*5 m. ~4. 
7, xa: LSO 9 $j*= 0’267 
Tb xb : L = O-10, If* 0.276 

Tic! xc : L = 045, p- 04282 

Q Xd : L = 0*20, !? = 0*291 

Q Xe : L = O-25, r:= o-304 

7f x&f 
: L== 0130, p= On344 
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0 034 0.6 I.0 
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T and 2 versus rf curves fat x, =05 n S 8. 
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' Exact 

Exact 
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“t” and A( versus q curves for x0 = O-5 n ==4 L==O+ZS showing 

effect of ne~~ec~inc~ kempwature gradient; P, 

Exact inkeqation @” cc 0*304 
P = 0 qqxoximation e*= 0 ~298 
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