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ROYAL ATRCRAFT ESTABLISHMENT

THEORETICAL ANALYSIS OF THE HEATING OF A COMPOSITE SLAB, WITH
APPLICATIONS TO THE KINETIC HEATING OF AN ATRCRAFT WING

by
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SUMMARY

The transient temperature distrabution 1s derived for a composite
slab, heated by raising the air temperature on one side at a constant
rate to a meximum. Numerical results are evaluated on a digatal compu-
ter from the theoretical solution, which is obtained in series form.
Results are obtained for the temperature difference across the skin in
an aircraft wing covered by insulative material; these results show
that the effect of the insulative material could be calculated with suffa-
clent accuracy by neglecting its heat capacity. The computer programmes
are applicabie to any problem in which there is no heat transfer at the cold
surface.
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1 LIST OF SYMBOLS

&!

i

I

1

thickness of lower sectaon of slab

thickness of upper section of slab

thermal conductivity of lower section of slab
thermal conductivity of upper section of slab
density of lower ssction of slab

density of upper section of slab

Epecific heat of lower section of slab

specific heat of upper section of slab

ﬁ% = diffusivity of lower section of slab
k!
oToT = diffusivity of upper section of slab

heat t{ranafer coefficient on lower surface
heat transfer coefficient on upper surface
distance from lower surface of slab

time

adizbatic wall temperature on lower surface
adiabatic wall temperature on upper éurface
temperature in lower section of slab
temperature in upper section of slab

time taken to reach finel temperature

final temperature

Laplace transform for the time

£i Vp/K

Laplace iransform of ¢'(t)

-laplace transforms of V,V!

functiong of p in equations (22) and (23)

k s <27

2 /3( non-dimensional
"",‘“"""i"

¢ K constants

hes

* \




k' K 4 . .

" = S Rr I non-dimensional
A _ £4/k i constants

- ,5!/1{! + ‘l/h' )
Ple) = expression given in equation (11)
a, = constants given by equation (12)
bn = coefficients in expansion of V in equation (3,)
N(e) = numerator in expression in equation (28) or (29)

2 INTRCDUCTION

If the external surfaces of any of the wings shown in Pig.1 are
heated, while the anternal surfaces remzin cold, thermal stresses are
preduced in the plating.  An estimate of the thermal stress can be
ocbtained by treating the wing as a slgb, one side of which is hcated, while
the other side is subjected to boundary conditions depending on the type of
wing,

e e m——— g kb bt et —t =

insulation . insulation
metal N metal
- o metal )
B insulation . ) insulation
(a) (b)
_h* insulation __
—— metal l ] _
1 b
! | i
A I
wnsulation R
(c)

Figel. Adrcraft wings subgect to surface heating.

The problem reduces to that of finding the temperature distribution
in a composite slab, cf the type shown in Fig,2, wnere ¢ and ¢' are the
adiabatic wall temperatures on erther side of the slab, and h and h' are the
heat transfer coefficients between the air and the metal and between the air
and the insulation respectively.



h' ¢'(t)

T
insulation k' p' ¢! A
Yo
T
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i
h $(t)

Fig.2 Composite slab shcwing notation.

A1l the relevant equations are linear in the temperature, thus allowing
sclutions to be obtained by superposition. The case here considered is that
of an aircraft which is accelerated in such a manner that the adisbatic wall
temperature ¢ ' rises linearly from an initial value, taken to be zero, to a
final value B, as shown in Pig.3(a). This solution can be cbtained by the
superpogition of an infinite series of solutzons for a step function variation
of ¢', as shown in Fig.3(b).

1 ¢t=ﬁ qS':B

t=T

¢’ $t
$'=0 IY >t o r !o““)t
© ¢'= 0

(a) (»)

Fige3. Variation of adiebatic wall temperature with time.

The analysis of the slab shown in Fig.2 applies directly to the wing in
Fig.1(b). It also applies to the skin of the wing in Fig.1(c) except near to
the webs, and to the wing in Fig.1(a) if h is put equal to zero, since, fram
symmetry, no heat crosses the line A'B'C'D',

The temperature distribution sand thermal stresses in a slab of the type
shown in Fig.2 have been calculated by Parkes1, making the assumptions that
the heat capacity of the insulative material can be neglected and that no heat
leaves the lower surface of the metal, which is equivalent to putting h equal
to zero. In thas report the temperature distribution and thermal stresses
are cbtained for the general case, when the heat capacity of the insulation is
taken into account, and when h may have any value.

The maximum temperature difference across the metal part of the slab as
taken as a measure of the thermal stress. This maximum temperature difference
and the time at which it occurs are computed for various materials, thick—
nesses and heat transfer coefficients using a digital computers A caomparison
is made between the results obtained by Parkes neglecting the heat capacity of
the insulative materisl and the more accurate results obtained from the analysis
in this paper.



3 METHCD OF SOLUTION

In order to cbtain the temperature dastrabution in the slab shown in
Pige2, it 13 necessary to dbtain a solution cof the dafferential equation

o>y 1 av

——

. = 0 (1)
ol K3t

in the lower section of the slab, where K is the daffusivity of the metal,
given by the equation

K = =, (2)
and of the differential equation

21 V!
_6__2_ .2 5 (3)

- s, o=
3x s at

in the upper section, where

k
Kt = -7

SigT - (%)

c

It is assumcd that k and pc are constant over ihe raange of temperatures
1avelved.

The temperature and heat flow must be continuous over the boundary
between the two materials, so that

v(¢) = V'(2) (5)
and

The boundary condition at the lower edge, x = 0, is that the heat
flcw 1s equal to the heat transfer coefficient times the difference between
ithe adiabatic wall temperature and the surface temperature, that is

. (-gg) - 0 V(o) - 9(%) ] -0, (7)

while at the upper edge, at x = & + &', the condition is that

k! <%>6+6' + h! {v(m&*) - qS'(t)} = 0. (8)
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The initiel condition is that

vV = V' = 0 (9)
et t = 0.
The solution is to be obtained for the variation of ¢! shown in Pig.3(b) with
¢ = O throughout.

A Laplace transformation is carried out on equations (1) to (9) in
Appendix 1, and the inverse transformation gives the solution

1 x
ntk u he . 2, ,,2
V(x,t) = B Tz 21t an<cos e gé-+-k-e-— gin en%) exp(—Ksnt/&) (10)
R4 HET AT n

where the first term represents the steady state solution, and the second term
the trensicnt solution., The summation in the transient term is taken over the
values of €, cerresponding to the solutions of the equation

F(e) = {(cos € cos YE~& sin & sin ye)- ey (cos € sin ¥e +o sin & cos Ye)]

+

o[>

[(sin € COS YE + @ cos £ sin ye

~ gy (sin & sin ve ~a cos & cos YeE) } = O, (11)

where @, ¥ and g are non-dimensional parameters which depend on the properties
of the materials and the heat transfer coefficients. The coefficients a are

given by the equation

2
an = . _Q-_E: . (12)
n de)e
n

There are an infinite number of terms in the series for the transient tempera-—
ture distribution; but as n increases a, diminishes rapidly, so that only the

first few terms in the series need to be evaluated.

In order to obtain the temperature dastribution when the adiszbatic wall
temperature varies as in Fig.3(a), solutions of the form shown in equation (10)
are superpcosed and integrated, Expressions for the temperature distribution
before and after the maximum adiabatic wall temperature is reached are given in
Appendix 4.

Tne temperature difference, V(€) - V(o), across the metal section is a
rough weasure of the thermal stress. When thera is no heat transfer across
the lower edge of the slab, that ie h = 0, V(&) - V(o) is given by the equations



{1~ exp(ke® t/¢”
o) = ¢ Zan (008 &y =) :,% t/22 dal (t<7) (13)
and

e 2 2 _ exn( ) 2
V(¢)-V(o) = B Zan (cos ¢ ~1 lexp(ke’ T/27) -1} exp(-Ks t/6°) -

2 1,2
— Ke T/4
(t+>1),

A camputation for evaluating and meximising the second of these expressions
was programmed for the DEUCE digital computer. It was not necessary to
evaluate the former expression, since the maximum never lies an that range.
Results for the maximum value of V(£) - V(o) and for the time at which this
maximm occurs were obtained for a number of different materials, thick-
nesses and heat transfer coefficients, and are given in Tables 2 and 3.

Ancther case which might be of some interest is that of the slab with
an infinite heat transfer coefficient h on the lower surface. This might
be avproximately realised by the use of a liquid to cool the lower surface.
The maximum temperature difference in this case 1s simply the steady state
temperature difference

2
k
v(e) = V(o) = g5y 0 . (15)
E*kT YRt
4 APPROXIMATE METHOD

Parkes? obtained an approxaimate solution to the problem of the
composite slab by assumng that, although the heat resistance of the insu-
lative material 1s greater than or comparable with that of the metal, its
heat capacity is negligible., Parkes' solution follows simply from the
general analysis, and is obtained in Appendix 2. It is shown that, in the
case when h vanishes and ¢ is taken tc be a step function,

V(x,t) = B {1 + Zan cos <sn %) exp(-Ksnz t/&z)] , (16)

where
1
en tan an = m = A,
(17)
_ £/k
- 6'/k' + 1/h!
and
- Z2A sec en
a = > (18)



5 THE PROGRAMME FOR DEUCE

The programme for this computation is in two separate parts, The first
part computes the en's and a.n's from equations (11) and (12) using a sub-
reutine to evaluate F(g) and %5 for any €. The second part uses these
values and a subroutine to evaluate V(2) - V(o) at any time, to find the
maxirum of V(€) = V(o) and the time at which it occurs. A schematic repre-
sentation of the programme is given in Appendix 3.

6 DISCUSSION OF RESULTS

1t is shown in Appendix 1 that the solution to the general problem

depends on five non-dimensional variables, a, v, ¢, A and —K%. Al the

£
calculations were made assuming » = O, that is, no heat {low over the lower
surface of the metal,

The thermal properties of aluminium alloy, stainless steel, titanium,
Durestos and paint are shown in Table 1.  Since, as far as those properties
are concerned, titanium is similar to stainless steel, and paint to Durestes,
it was decided that only two cases needed to be considered:

(i) Durestos on aluminium alloy and
(ii) Durestos on stainless steel.

Table 2 shows the valuss of a, Y and p corresponding to various thick=
nesses of metal plate, thicknesses of insulation and heat transfer coefficients.
It was considered impractical to have a metal plate pore than 2 in. thick, or a
heat transfer coefficient greater than 0,1 joules/cm® sec 20 (175 Btu/ft= hr °F).
Computations were carried out for all other cases where the thermal stresses
would be appreciable, Altogether, 28 computations were carried out, 17 with

Y # 0 and 11 withy = 0; and in each cese % was given the values 0, 2.5

£
and 5. 1%- = 5 corresponds to a very slow acceleration, so that the solutions
£

for most practical cases can be obtained by interpolation between the values

-

f‘ori\%-zo, 2+5 and 5,

Putting ¥ = O is equivalent to neglecting the heat capacity of the
insulation, and in this case the temperature dastribution for any particular

KT 1 .
value of ;—2- depends only on A = Al Figeh shows values of (V& VO)/B
Flotted against A for Er-z— = 0, 2.5 and 5. The results fory = O are shown as

&

continuous graphs and those for ¥ % O as small circles, It can be seen that
the small circles lie very near to the contxznuous lines. Thus, in all
practical cases, it is perminsible to assume that v = O and use the graphs of
Pig.ks hen the sclutions wishy = O and ¥ * O were compared more closely,
it was found that with v # O the maximum temperature difference is a little
lower and takes rather longer to reach than wathy = 0, for the same values of

IT . .
A and . + Results for (V&-Vo) /B and t .x 2¥¢ shown in Table 3 with
I;—Tz- = 0, 2.5 and 5 for the 28 sets of values of a, ¥ and H.

-9 -



The actual temperature distribution was worked out for a sample case.
Graphs cf V against ¢t are given in Fig.5 at 7 points in the metal and
insulation, for T = O (that is, for instantaneous acceleration), A = 1,

Y = 0.26?, @ = 245 and p = 04133, Beside these graphs small circles are
drawn to represent the temperature which would be reached at the same place
at the same time if T =0, A =1,Y =0 and 4 = 0,133. This figure
illustrates the fact that when y # O the heat capacity of the insulation
slows down the passage of heat into the slab, so that it takes longer for
the slab to reach any given temperature.

7 CONCLUSIONS

The temperature distribution in a composite slab consisting of a
layer of thermally insulative material fixed to a metal plate, is worked
out by an analytical method for the case where the temperature of the air
adjacent to the insulation increases linearly from an initial to a final
value. It is assumed that the heat transfer coefficients on both faces
of the slab remain constant as the air temperature increases, This problem
can be taken to represent the kinetic heating of an aircraft wing.

An approximate analysis of the problem of a wing covered with insu-
laetive material is due to Parkes1, who uses the simplifying assumption
that, while the thermal resistance of the insulative material is comparable
with or greester than that of the metal, its heat capacity is sufficiently
small to be negligible,

The most practical case is that in which there is no heat flow over
the air-metal surface; and all the computations are done using this
condition, The maximum temperature difference across the metal plate,
which is a rough measure of the thermal stress, is celculated numerically
for all combinaticns of materials, thicknesses, and heat transfer coeffi-
cients thought likely to be of practical interest, The computations show
that the thermal stresses will be small unless the skin thickness exceeds
1" for an aluminium skin, or 3" for a stainless steel skin, and, where they
do occur, they can be reduced considerably by a thin layer of insulation
such as Durestos or paint. These results were compared with those
cbtained using Parkes' simplified theory, and 1t was found that, while the
cxact thecry gives a slightly smaller value of the maximum temperature
difference acrosa the metal plate, and also retards the occurrence of this
maximum a little, both of these effects are so small as to make the use of
the simplified theory fully justified.

A table of results is presented showing the maximum temperature
difference and the time taken to reach it for all the cases computed.
A graph is drawn showing this maximum temperature difference, and comparing
the exact with the simplified theory; and, for a sample case, & saries of
graphs is d ravm showing the way in which the temperature changes with time
at variocus points in the metal and insulataion,

The apportionment of authorship is: analysis by E. C. Capey;
computaticn by K. I. kicKenzie,

LIST OF REFERENCES
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APPENDIX 1

SOLUTION OF THE HEAT FLOW BQUATIONS FOR A COMPOSITE SLAB

The temperature distribution across the sleb is obtained by taking the
Laplace transform of the heat flow equations, substituting the boundary
conditions, and then carrying out the inverse transformation.

The Laplace transforms of cquations (1) and (3) are

2
¢ = 1
<;"§ - %) V(X:P) = =-% V(x,o)
b4
& (19)
and
-‘i 2 V' (x,p) = = X vi(x,0)
p] K'} ¥ = X s .
x
A
Substituting
e = £ivVyK, (20)

and using equation (9) to eliminate the right hand sides, equations (19} give

62 82 -
<a-—-2 +--é-) V(x,p) = ©
X £

=

> (21)
and (—i—+—1{- EE)"?'(xp) = 0
1" 2 - 2
ax.?. K &2 )
the genersl solutions of which are
T(x,p) = Alp) cos 2 4 B(p) sin & (22)
= K . K
v'(x,p) = C(p) cos el e % + D{p) sin & \Er . %, (23)

where A, B, C and D are functions of p.

On applying the Laplace transformation to equations (5) to (8), they
become i~

Ve) = V'(e), (2)

]

(25)

w
&

i1

=
p—



K (%%Q ~hT(o) = O (26)

and

1 /91.'_\ IR t P_ __
k ax/e+a' +h [v(&.wa)-P} = 0 (27)

where ¢(1) is taken to be zero, and ¢'(t) a step function as shown in

Flg)' 5(1‘3)‘

(n combining these with equations (22) and (23), A, B, C and D are
evaluated, giving

-\;(x,p) = P (cos ex/4 + -2—- sin Ex/&)/p F(e) (28)

Vi(x,p) = B [(cos £ +-2- sin e) cos {_e \/;L: <%> - 1) }
- (sin £ - -}cos :-:) sin [sj%(%- 1)}}!{1}1"(8) (29)
where

Ple) = {(cos € cos Ye~a 8in & sin ye) - eu(cos € sin ye +a sin ecosys)}

+ %{(Sin £COS YE4+X COS £ Sin Ye-ep(sin £ sin Ye -0 cosS € cO8 Ye)}
(30)

and

=1

]
|
|

I

=<

i
ml‘f‘_’,
-
bRt

-l

and

Exoressions far V(x,t) and V'(x,t) can be obtained by separating the
expressions in equaticn (28) and (29) into partial fractions, then carrying
out the inversc Laplace transformation on the separate fractions. As

e = €i/p/K

- 12 -



both the numerators end denominators in equations (28) and (29) are converging
power series in p, and can therefore be represented to any degree of accuracy
by polynamals to the (M~1)'® and (M41)th powers respectively; and conse-
quently V(x,p) can be broken up i1nto partial fractions as follows:

v b Y b
= o _ 1 2 M
v = = [ 1
R I T e N T (1)

vhere, ia large e s approximate to the roots of equation ’
h if Mis 1 » the p ! imate to th ts of tion (30)

provided that this equation does not possess multiple roots. If equation {30)
hed possessed multiple rools for any of the sets of values of vy, a and u used

in the computations, this would have heen noticed; but in fact it did not
QCCUT,.

If both sides of equation {31) are multiplied by (p—pn), and then p
tends to P> bn can be evaluated and is given by the equation

o’
H

. = lm Top)(pp)

'o-+p

= A (32)

while %o

bo':}‘l‘o ’ (33)

where N is the numerator of the exXpression in equation (28) or {29).

The inverse transformation of equation (31) is

t
Vi(x,t) = bo+zbn efn’ (2)

n=1

On substituting equations {32) and (33) into equation (%), then substituting
inte the constant term bo for a, ¥, 4 and A, the temperature distribution is

given by the equations

4

+
I

PRy

1
h

V(X,t) = B ;

~IR

Lz
k-i'

ol

-1_ + 7 a, (coa &, -v%— sin € %) exp(-Kei t/&z)
*imoa n l(f@)



and

1.8 x4 _
ikt K N A F %
t - LS A A
Vi(x,t}) = B 1.2.0 1 +> anL<cos e +5- sin en> cos{&‘n = (& 1
I h Tk YRTRT W n
" |
. A . K (x 2
- (s:.n sn-en cos Gn) sin [en\/K' (5 1)}:|exP(—Ken t/&z) [ ,
! (36)
where the en's are the solutions of the equation
F(Sn) = 0 >
and the an‘s are given by the equation
ar
a = /e (de) (37)

(>
n

Equations (35) and (36) gaive the temperature dastribution resulting
from an appliel air temperature as shown in Fig.3(b). If this distribution
is called ¢1'(t), then the distribution in Fig.3(a) can be written as

t

g
]T¢1(z) dz for t< T
o

\
95'

or | (38)
T

]-%ﬂ(z) dz for t>T.
o

56!

-

As 21l the equations are linear the solution for this case can be obtained
by superposition, and V(x,t) is given by the equation

t 1 x
_[ B .__.._E_.___ X A . b'Y kel (4_n\/2
V(x,t) _/ T{T. 2. 0.1 +) a (cos e, f’+8n sine % expl Ke (t-z)e“} | az
o] h k¥ k'nh'
1 X ) )
nte o 1-exp(-Kej, t/4
_—.ETE r 611&1.: . +B ankcos en%+§-sinen%>L @(hgna/ )
ST LT n I{Ten/6

for t < 7T (39)

-1 -



*

i.x |

h "k X A . X 2 2,1
Tt ) &y <cos e gtz sin e/ -E) expi—Ksn(t—z)/& }?dz
URSY i J

1 x 2 .2 2
1.z o bep (ke /0% ep(ere’ /)
AR +B an(cos £, 7+ sin Enf) 5%
T—— +B—l- KTEn /fz

for t > T. (1.0)

The temperature difference across the metallic section of the glab is
V(&) - V(o), which is given by the equations:-

£ t
A k° Yﬂ"
W) v | _ET V7, (cose +2 s e ..1>
TR ART n
i'I—exp(—Kei t/f'z)}
v 5> for t < T (1)
KTe /¢
and
£
VGEVO = 3 {,’1;, T+ an<cosen+£-smen—1>
RtEtET TRt n

{exp(xe? 1/6%) ~1}exp(-kel t/6%)

2,2
Kre /L

for t> 7T . (42)

Special cases

(1) No heat transfer on lower surfece.

This 15 the case considered by Parkes, and is the one which is likely to
be most practical, Equations for this case can be obtained by substituting
h =0 and A = 0 into the equations derived above. The temperature difference

across ithe metallic section of the slab 1s obtained from equations (L1) and
(42) and is

for + < T (4.3)

£ EVL}O = Zan (cos & ~1) {1-exp(-KBI21 ol

2,,2
Kre | /L

- 15 -



and

2 .2 2, ,,2
v(e) - (o) _ :i:a- (o0 &= 1) {exp(Ksn T/4 )~1Iexp(-Kbn t/2%) ()
p n n KTEn2/'32

for t>T .

The summation is carried cut over those values of € which obey the
equation

F(e) = (cos € cos ve —a sine sinye) -ep(cos € sin ye+a sin & cos ¥e) = O
(:5)
The an’s are given by equation (37), which can be expanded and becomes

a 2/ + (16)

n - (1+oy+au) sin &, ©OS «{an-enp(‘l-;- ay) sin e sinye,

+ enp.(a +Y) cos £ co8 YE_ +{a+y +4) cos g, sinye

(i1) Perfect conduction on the lower surface.

Similar equations cen be obtained for this case by letting h and A
tend to infinaity. In this case the temperature difference always increases
with time, so that the maximum temperature difference is the steady state
temperature difference. This is obtained by meking h, A and t in equation
(42) infinite, so that

O - - (47)

+h|

o o JEEN

¥
s

+
el

- 16 -



APPENDIX 2

TEMPERATURE DISTRIBUTION WITH THE HEAT CAPACLTY
OF THE INSULATION NEGIECTED

!
Wher: the thermal resistance -E-,— of the insulative materisl is very much -
greater than the thermal resistance -f—; of the metal, the thermal stresses are

1
negligible. On the other hand, when -ﬁ—,— is very much less than 1% the insula~
tive material is ineffective, Therefore, analysis is required only for
¥
values of -g-f,s of the order of magnitude of 1., The insulation will naturally

te a material with low conductivity, so thai & considerable reduction in the
thermal stresses will be cbtained with a small thickness of insulation. Such
a small thickness of insulation will have a small heat capacity, and this may
be small enough to be negligible,

It follows from these assumptions that ¥ is small, and it 1s allowable
to make the substitutions

cos Y& =+ 1
and

Sin YE = YE .

Substitution of these two relationships into equations (11) and {(12)
gives

>
h . nf . A
F = (cos e, =7 sin En) iy (s:.n e+ cos sn) = 0 (48)

n n
and
-2/¢
a.n = 8 n [ ]
. A n A . 1 A
(3111 Sn+en cos E'.n) + n (cos En— sn sin sn> + 8in en (A—e 2)

(1))

The equations (35 amd (39) to (44) which give the temperature in terms of the
sn‘s and an's remain unchanged. For the special case when there is no heat

transfer on the lower surface these equations reduce to

En ten En = A (50)
and 2A sec en
a = = (51)
n A4 A2 + E‘.nz

These are the equations derived by Parkes. It is seen that in this case the
temperature distribution in the metal does not depend on &, v and p separately,
but only on A.

-17 =






APPENDIX 3

SCHEMATIC REPRESENTATIONS OF THE DEUCE PROGRAMMES

Programme for evaluating &, and a,

i

Read in a, '\{,p.,m

Set € = 0.25
and F(eo) = 1

I*

Y

Increase € by Q.25

0 D

—

Form F(e) and F'(e) | B

| ] .

Heve F(e) and F(e )
the same sign?

If so
N If not

Replace F(e,) by new
value of F(e)

J

=1

F(er_1)
Form €y = Epg
F(e

1)
Is-1<——T—)— <12

- Ft(gr—‘lj

H =~

Form F(e,), F'(e.)
Is €, pa > 212 ¢

If not

‘w}

Is IF I <2"'13‘?

\‘\_

G

Sound

Punch P.!

alarm

I

h P

= —

If not

[Punche,a ’

| ;—janf'é'&{? I

If not

A\

If so

\W{Fm <t — 5|

Is this

a | < m?
n

If not I
w—d

If so

Calculate one more an l

/N




B,C,D

M, N

The parameters are read ine o, v and y are given in the list of
symbols, 6anci m is the minimum value of a required, m was faken
to be 2~

Starting frome = 0, & is increased by steps of 0,25 until F{z)
changes sign. As soon as F(e) does change sign it is lknom that
a root cf F(e) = O lies between this value of F(e) and the previous
one.

This value of F(e) becomes the new F(e ), which will be used to
find the next root.

The root which has been approached 1s now evaluated, correct to
twelve binary places, by the Newton-Raphson methed, ‘There is a
limitation to the automatic davider on DEUCE, in that 1t fails if
the quotient numerically exceeds 1, This 153 not likely in thas
case, and if it did occur, would mean that a root had been missed.
Ir e paz 212, the capacity of the machine would have been

eXceeded, In practice, neither of these things happened.

To guard against the limitation of the davider in werking out a s

lhe davisor 1s tested to see if it is less than or equal to the
dividend, and if so, is multiplied by 2. This is done repeatedly,
until the quotient would be less than unity, and compensated for
after division. In practice a, never exceeded 2,

&, & are punched in binary to 20 places.

8, 18 tested to see whether it is less than m, If it is, one
further &, is computed to guard ageinst the possibility of getting

onc small value of & between two larger ones,

Having worked out one set of en's and an's s the programme returns

to the begimning to read in more data.

- 19 -



r

B | Read ine 's a's |
S __l_f}m.__.n-"
|
| Put t =T for T # 0 j
{

¢ | ‘
l\ E%* for T =0
w |

D l} Form V(&) = V(O) (v, J

1 Kt
| —— —_—
< Add o to 5 (

‘—Form v(e) = v(o) (V,) ‘]

b e L
- L7 1
¢ [ IsVy <V, ?
IOUTE 1 If s¢
Replace V, by V, ] l .

Punch V and the

1
l correspond:.ng value
! of t

- 20 -



D-H

N is the pumber of terms taken in the series for V(£) - V(o).
In order not to exceed the capacity of the machine

59

+ 1

82<

ol

which in turn sets a limitation on N.

The en's and an's mist he stored for use in the subroutine for
working out V(&) - V(o).
Owing t¢ numericel inaccuracies 1t sometimes happens that for

values of t near t = 0, V(&) ~ V(o) decreases as t increases,
This gives an apparent maximum at t = O,  To prevent this from

appe?ring in the results, the first value of -I%- taken when T = O
Was ge £

-K—Z is now repeatedly increascd by -i- , working at v(¢&) = V(o)
4
each time, until a maxamum of V(&) - V(o) is reached.

The value of V(&) - V(o) nearest to the maximum, and the corres—
ponding tume, are punched to 22 binary places.

The programme returns to the beginning amd reads in more data.

—21_-



TAELFE 1

pre e aanl SV

Thermsl Propertics of Materials

b k c p K
(joules/cm sec °C) | (goules/gm %C) | (gm/cc) (J‘J&sec)
Almninll.u'n alloy 1 - 3 O. 88 2' 8 Oc 082
Stainless steel 0.2 0. 50 7.8 0.0081
Tataniwa 0.15 0. 61 L5 00081
Duregtos Oa OO}'— J,l 5 1 L 7 O. 0%28
Paant 0,002 1e2 1.8 0.00015
to l to
0.00%. 00,0003

Case 1 Durestos (or paint) on aluminium alloy

x = 20 N o= 17 go= .
Case 2 Durestos (or paint) on stainless steel (or titanium)

¢! 0,022
L A

1



TABLE 2

Temperature DifferencesAcross Selected Camposite Slabs

Durestes on Aluiinium Alloy

~23 -

He2t transfer Max umam
Thickness coeff el ent Thichness o] Taaperature [ Computation
of metal " Insulatten| A (& | ¥ B | Difference | en
L) | (gomes/arPsec)| &' (In) P (reoy |
| | (v
— = i T
>a 11ing oontains wore shan 4 inches of solid aluminium, which 1s Imprectical
>0,1 Heat wransfer coefficient more than 175 Bru/ttehra, which is fm-
I l : practical
2 0.1 o 0,357 20§ 0 DLk ; Oe1 i3 Pa i
| {175 Btu/£t2hrOF) <0,02 |Effect of fnsulation is small
0,02 | 04161 ;goi 017 |ouh ;0,07 61
0,04 10,104 an f 0,30 | G 4 ! 0,048 g2
> 0,00 i Thermal stresses negligtble
0,05 o oammlo |ozs| oom Pa 2
< 0,02 ]Ertect c¢f Insulation anz;ll
0,02 0,111 ‘:20'; 0.17 [ 0.28 0,051 53
0,04 | 0,08t ;:ao% 0,34 | 0,28 0,037 ¢l
> 0404 !Themal stresses neglizible
04025 0 {0,087 0 E 0 0476 0.0kt Pa 1
Thermal stresses ﬁegligible, 50 no insalation required
< 0,025 ! Thermal stresces negligible
1| 0u 0 0,76 feojo | o0.28 | 0,073 Pa 2
< 0,02 Effect of lnculation is small
0,02 10,08 |20} 0,34 | 0,28 i 0,037 G4
> 0,02 Thermal stregses negligible
1| 0,05 0 0,089 |0}o  fo. I oo Pa 1
l Thermal stresses neglinible
0.5 i'I'her'mal stresces negliglible
Purestos on Stainless Stecl ' f I
2 (O 0 2.27 10% 0 ]0.0M; O. 4 See graph
< 0,02 Effect of Insulation Is snall
0,02 11,010 |10] 0,085 io.om g,310 €5
0,0 |0,649 [10] 0,11 jo,0nk| 0,227 66
i 0,08 0,379 {10 | 0422 §0.oim* 0,119 G7




TABLE 2 {CONTD. )

Burestos on Stainlegs Steel (Contd,}

- 24 =

Thickness Hf;g{;ﬁgiiir Thickness of TC—Il:i}Ec«L::n:APU' Cemputation
of metal ht insulatlon Aol vy 1} Difterence At e
¢ (1n) {Joules/en®sec’) &' (i) (‘(,T S ©
falN .
2 Ol 0,16 0.2071 10§ C.lth | OOLL] ~0.0 Siniiar te
G 11
032 0,108 | 10| 0,88 | 0,04, ~ 0400 Sinilar te
; ‘ G 12
> 0,32 Thermal stresseslnegligible
0405 ¢ 1,14 l 10': 0 ! 0,088 0,335 Soe craph
< 0,02 Effect of Insulation small
| ,
0,02 0,693 |10 0,055 0,085 0210 c8
2 0,050 G0k 0a05 | 10| 0,11 0,068 0,160 G 9
0,08 0432510, 0,22 | 0,088 0,11 c 10
Q.16 0.489 110 6Ll | 0,083 54031 G
0,32 0.03)10] 0,08 | 0,080]  o0.0h0 G 12
> 0.32 Thermal stresses regligible
0.025 0 0,568 1 1¢ l 0 5 0.176! 0,206 Pa 5
< 0,0 Effect of fnsulation asmall
0.0l 0,350 | 10 ; 041 {0,176 0.1L0 613
0,08 0,253 1101 0,22 | 0,176 0,105 G1hL
0,16 0,152 10! Ol | 0,176 0,071 ¢ 15
0,32 0,095 i 10] 0,48 | 0,761 ~0.05  [smitar to
| | vi2
> 0432 Trermal st‘.r‘es,:es negligible
040125 0 oamiitolo  |oal o018 Pa 3
< 0.08 Effect of lnsulaticn .mall
0,08 0,175 110, 0,22 | 0,352 0,07 G16
o6 0,126 10| O,k | 0u352¢ 0,056 617
> Cel6 ibemal stresses negllgible
0,00625 0 otz | 10% o |osoul 0085 |sce gram
No lmsulatlon needed, Thamal stresses negligible
< 0,00025 Thermal stresses negliyible
1 0.1 0 ik T0] o owssl 033 |see gram
< 0.01 Etfect of Inswlatlon amall
0,01 0,699 l 10 0.055| 0.088; o210 ¢ 8
0,02 0,505 { 10] 0,11 | 0,088 0,138 G9
o0l 0,225 { 10l 0,22 | 0,086] 0,13 G 10



TABLE 2 (CONTD, )

Durestos on Stajnless Steel (Contd, )

Hax irim
el ISR el N O (O e P
tlin) ( joules/com'secOC) & (1n) (T=0)
(Vg¥o)IP
0408 0,189 10 0,4 § 0,083 0,061 G 11
0.16 0,103| 10| 0.88 | ©,083 0,046 ¢ 12
0,05 0 C.568| 10] 0 0,176 0,206 Pa 5
0,02 0,350 101 Q11 | 0,176 0,140 613
0,04 0,253; 10| 0,22 | C,176 c,105 c 14
¢,08 0.162] 10| 0,4 | 0,176 0,07 G15
0,6 0,095] 10} 0.83 | 0.176 § ~ 0,05 Sieilar to
G12
0,025 0 0,254 101 O 0,252 0,118 Pa %
0,04 0,175] 10§ 0,22 | 0,32 0,076 c 16
0,08 Cu126] 10| Cully | 04352 0,056 G 17
0,0125 0 0.102f 10] 0 G704 0,065 See prach
0.5 0,1 0 0.568; 10f 0 0176 0,206 FPa 5
0,01 0.350| 10{ 0.1 | 0,176 0,140 C13
0,02 0,253] 104 0,22 | 0,176 0,105 G 14
0.0k 0,462] 10] o4 | 0,176 0,071 G15
0,08 0,095 10} 0,88 ] 0,176 | ~0,05 Similar to
¢ 12
0,05 0 C.204] 10! 0 0.352 0,118 Fa 3
0,02 0,175| 10] 0,22 | .32 0,076 616
0,04 G.126| 10} 0,4 | 0,352 0,056 Gi7
0,025 0 0.142] 10| 0 0,704 0,065 See graph
0,25 0.1 4] 0.28L{ 10} O C.l52 0,118 Pa 3
0,01 0.175{ 10| 0,22 } 0,352 0075 G 16
0,02 0.126¢ 10} 0 bh + 0,352 0,056 G617
0,05 0 C.1h2) 10f 0 Ce70h | 04068 3ee graph
0125 0,1 0 0.1142' 10} 0 F 070k 0,065 Sce graph
<0,125 Thermal stresses neglipible

- 25 .




TABLE 3

Computed Results

V(£yV(o) Klpay V(£ )=Vio}) Kfpax V{L)Vio) | Ky
Sorlafr | w o faf P ¢? b I3 e &
tor BL-0 | ror BZoodtor KL=2,5 | tor K22 2,5] rer KL =5 for K= 5

L2 e £ & & £

G 1 | 0161017 {044 120 00715 Ould 00623 2,61 0,05208 5405
¢ 2] cJdoh]0.3h 0L {20} 0,047 0,48 0,0435 2467 o390 5e11
G 3]0.311[0,17 0,28 |20} 06,0507 0445 0.0ubt 2,64 0,0L09 5,08
G L] G0ul | 0,30 | 0,28 |20} 0,0374 0,7 0.031% 2,70 C.0319 S5.th
G 5| 1.010§0055) 0644110 0,3097 0.2 0,1672 2,50 00976 5400
G 6 | 0,649]0,11 | 006410 o,2272 0,27 R FIIS 2402 G.0027 540
G 7 |0.37910,22 |0,004] 10| 0,1488 C.33 0,1110 2,55 0,0800 5,02
¢ 8 | 0,699 0,055| 0,088} 10 0,2l01 0,27 0,1489 2,52 0,0938 5,00
6 % {0,505]0,1 j0,088|10} 0,187 0,30 0,1294 2,03 0,0579 500
G 10 [ 0,325] 0,22 | C088]{10 | 0,138 0,34 o013 2,56 0,0760 5402
G611 | 0,189} 0,44 | 0,088|10 | 0,084 O, Lhy 0,0696 2,04 0,0578 5.08
612 | 0,103] 0,80 | 0,088} 10 | 0,0458 0,70 0,00t 2,83 0.0379 525
G12 ] 0,350 10,4t [0,176510 | 0,139 0,23 20,1061 255 0,0783 5400
G 14 | 0,253 0,22 | 0,176} 10| 0,1055 0.37 0,085 2,50 0,0678 5,03
G 15 | 0,1G2] 0,64 | 0,176| 10 | 0.0707 0,47 0,0013 2,56 0,0525 5,11
G 16} 0,175 0,22 } 0,352} 10 | 0,0761 Gl 0,0057 2,61 0,0052 5406
G 17 | 0.126| 0,4h | 0,352] 10 | 0,0560 Ceb2 0,053 2,70 0,040 el ly
Pa i | 0,08910 - - 0,0415 0.L5 0.07333 2.5h 0,0748 £408
a2z} o0 - |- 0.0784 0.39 0,067k 2,58 0,056 5403
Pa 3 | 0,284 0 - g 0,118 el 0,0936 2455 0,071 5402
Pa L | 0,357] 0 - - 0,1429 0.3t 0,1078 2e53 0,0792 5.00
Pa 5 | 0,568( 0 - |~ 042061 0,28 0,1 370 2,52 0.0904 5400
Pa 6| 0,9 0 - - 0,2074 0,23 0,162 2,50 009067 5600
Pa7i1,2 |0 - e 0.345h 0,22 0,1743 2.50 0,04606 5400
pa 8 §1,5 0 - - 06,3955 0,19 C 85 2,50 0,0994 5.00
Pa G | 1,8 0 - - 0.4374 0,19 0,15 2,50 0,0097 5600
Pa 10| 2,1 |0 - |- 0470 0.17 01392 2,50 0,099 5400
Pa 15| 2.4 o - - 04,5053 0,16 04913 2,50 o101 B 600

- 26 =~
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