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SUMMARY

Simple numerical and graphical procedures are described for the
calculation of the imperfect gas effects on the properties of steady and
unsteady one-dimensional isentropic flows, the Prandtl-Meyer expansion
round a cormer and normal and oblique shock waves, The fundamental
equations of each type of flow have been put into a form in which they
mey be solved using the published tables of the equilibrium properties
of gasea. Both thermal and caloric imperfections have been taken into
account but relaxation time effects have been neglected,

Numerical examples are given for each type of flow although the
wmain emphasis has been placed on the methods rather than on the results.
These basic metheds have been used to calculate the magnitude of the
imperfect gas ¢ffects on a number of specific aerodynamic problems
which hove been ccnsidered in detail.
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4 Introduction

In the last few years, the high temperatures that have been
encountered 1n aercdynamic problems have been such that it has become
necessary to consider the effects produced by the difference in behaviour
of a real gas compared with that of a 'perfect! gas,

A perfect gas is here defined as one which has constant specific
heats (caloric perfection) and which obeys the equation of state
P R

m
z real gas deparis from the perfect gas equation of state as a result of
molecular force and molecular size effects beroming apparent, At
conaiderably higher temperatures, appreciable energy is imparted to
additional degrees of freedom and then specific heats then cease to be
constant., At st1ll higher temperatures, the composition of the gas may
change as a result of molecular dissociation and cause variation in the
specific heats and in the molecular weight, Molecular ionisation does
not commence to produce apprecisble effects until even higher temperatures
have been reached,

T (thermal perfection). At low temperatures or high pressures,

A large number of attempts have been made to modify the conventional
gas dynamic equations so that they apply to real as well as perfect gases,
Some aspects of the problem have been treated by the use of one of the
more nearly exact equatrons of state such as van der Waal's in reference 1,
Berthelot's in reference 2 and the Beattie-Bridgeman equation in refer-
ence 3, and allowance was made in several of these reports for changes in
the specific heat ratio also, Some other nethods have been suggested which
allow for changes in the specific heat ratio only, However, thas type of
treatment does not take anto account all types of imperfection ard, in
general, it is restricted to flows in which disscoiation does not occur,
The expressions which are obtained by these metheds are invariably
extremely involved and it is not easy to apply them to the spencific
problems which are encountered in practice.

& number of sets of tables have recently bheen issued which list the
equilibrium thermal properties of gases (such as entrepy, enthalpy,
density ete,) as functions of temperature ard pressure, For ainstance,
reference 4 lasts them for air up to temperatures of 5000°K and pressures
of 100 atmospheres and, in referenceé 5, data is tabulated for a number
of gases, Beth these sets of tables are based on the now cbsolete value
of 7.373 e.v. per molecule for the disscciation énergy of nitrogen, but
reference 6 gives a preliminary form of revised tables based on the
currently accepted value of 9,758 e,v, per molecule®, These tables take
into account (as far as is possible) all types of imperfection,

In references 7, 8 and 9, the normal shock wave equations are
solved for a variety of initial oorditions, by iterative methods which
meke direct use of these tables, However, 1% s assumed in all these
methods that the gas is thermally perfect, i,e., the perfect gas equation
of state still applies, This assumption is valid f'or corbinations of
high temperatures and low pressures even if the gas is dissociating, but
it is not justiried at low temperatures or high pressures. In section
2.21 of this report, a simple graphical method i1s presented for the
solution of the shock wave equations for any initlal conmiitions; the

* Unfortunately these tables were not available to the author at the time
of preparation of this report and the older sets of tables have
necessarily been used in the examples,



method uses the tabulated real gas properties which take inte account thermal
as well as caloric imperfections, The method is extended to cover cbligue
shock waves also. (Secticn 2,22),

References 7 and 8 present methods of dealing with imperfect gas
effects on the propagaticn of one~dimensional unsteady isentropic waves,
These are based on the replacement of the usual form of the Riemann variables
q_i_;%?‘a which is valid only for an ideal gas by the more fundamental
form q + ‘% dp which is valued for real gases also. This integral is

not easy to evaluate in the real gas case, and has been tabulated for a few
cases only. The method presented in Section 2.13 of the Report makes direct
use of the more fundamental equation %% =.i'§; and a simple numerical
procedure 1s given for the complete solution of the problem for any initial
conditions.

Reference 7 considers also steady asentropic Cxpansions and presents
a method which 1s again very complicated and which depends upon the gas
being thermally perfect. In Seotion 2.41 a graphical method is suggested
which 18 consistent wath that outlined above for unsteady flow., ZEuler's
eguation of motion for steady one~dimensional flow may be put into the form

1 2
éizag_l = -~% and the real gas tables enable this to be integrated directly
along any required isentrope., A simple extension of the method is given in
section 2.12 to cover the Prandtl-Meyer expansion round a corner.

It 13 not necessary to bring enthalpy into the aisentropic fiow calcula-
tions as has been done in references 7 and 8. No ateration procedures are
involvedl in any of the methods presented in this Report and they are all
far more straightforward than those which have previously been proposed,
even though they allow for thermal es well as caloric imperfections.

The magnitude of the imperfect gas effects is dependent on the inatial
temperature and pressure of the gas to such an extent that 1t is practically
impossible to compile a comprehensive set of compressible aarflow tables
for a real gas. ZEmphasis has therefore been put, in this Report, on the
development and presentation of simple numerical procedures by which tne
imperfect gas effects may be calculated in any specific example. A number
of examples are given which 1llustrate the application of these procedures
to typical problems.

It has been assumed in all these methods that relaxation time effects
may be neglected, These relaxation time effects arise because excitation
of the wvarious degrees of freedom of the molecules, the adjusiment of energy
in them, dissociation, reassociation, ionisation and recombination all
oceur as a result of gollisions hetween melecules and atoms. 4 number of
collisiens js required to produce equilibraum snd thais number varies greatly
with the type of process and the gas in which it is taking place. ZEquilibrium
1s reached very quickly between the translational and rotationel degrees
of freedem but a considerable number of collisions are required to reach
equilibrium if the vabrational modes are excited and the fluid moves a
certain distance whilst it 1s being estzblished, BSxperiments have indicated
that this "relaxation distance" rarely exceeds a few centimetres and is
usually very much less and that it decreases as the temperature and pressure
increase, Very little is known sbout rates of dissociation, although
equilibrium is probebly reached far more slowly than in the case of the
vibrational energy adjustment. Still less is known sbout rates of reassocia~
tion and these will have a very pronounced effect on the flow in the nozzle
of a hypersonic impulse tunnel. The importance of these non-equilibrium
effects will depend on the ratio of a typical dimension of the flow to these

-h =



"relaxation distences", and much work remains to be done before the
magnitude of these effects can be estimated in practical cases.

2 Methods of Analysis of Basaic Flows

241 laentrovic processes

The conventional gas dynamic equations for one-dimensional
isentropic flows are obtained from the equations of motion by use of the

perfect gas isentropic relation between pressure and density % = const. |.
In the following sections, the basic equations will be put into a form in
which they may be integrated direotly using the tabulated thermal
rroperties of real gases.

2:11 Steady one-dimensional isentropic flow

Considex the flow in a stream tube., The momentum equation is

%9 .8 _ _12p
ot * 3 T p ox (2.4)
For steady flow -g—% = 0 and, as only one dimension is involved, the

equation may be written:
qQdq = - 1 dp
P

1 g2 4
or dzq) = -7 (2.2)
dp
(For a perfect gas, this mey be integrated to give the sonventional
energy equation).

The tables list specific entropy of a real gas as a function of
temperature and pressure. The isentrope for the real gas may therefore
be constructed by looking up the value of entropy for the initial
conditions and then finding the values of temperature and pressure in
the required range for which the value of the entropy is constant. Aas
an example, the isentrope for air expanded from 5000°K and 100 atm is
plotted in Figure 1.1 and 1s compared with that given by the perfect gas

relation -% = constant., Density and speed of sound are also 1i8‘tedl"’5’6

as functions of temperature and pressure and curves of p and a (see
Figs.1.3 and 1.2) may be plotted against p for these isentropes.

The reciprocal of the density (which by equation 2,2 is equal to
i
- 4 1s then plotted against p in Fag.1.4 and these curves are inte-
dp

grated graphically to give curves of % q2 against p (Figd.5). In this
example the gas was assumed to be exponded from rest, but the initial value
of 4% 1in the integration be adjusted for any initial velocity.

Once the relation between % g¢ and p has been found, that between g and p
follaws (Fig.1.6) and this is used in congunction with the curve of a
?gainst )p Fig.1.2) to find the relation between Mach rumber and pressure
Fige1a7)e

The aocuracy of the numericel snd graphical procedures may be checked
if the curves appropriate to the perfect gas are plotted alongside those

-5 =



of the real gas in each figure. The two sets of curves were operated upon
in exactly the same manner and an indication of the accuracy of the calcula-
tions was given by comparing the calculated values of p against M for

i
the perfect gas with those given by the relation -PP- = (1 +Ig_1. M2> .
)

The continuity equation gives

A p*a¥
A*  pq (2.3)

The pressure at which M = 1 is found from Fig,1.7 and p* and q* are then
found from Figs.1.3 and 1.6 respectively. The area ratio f; may then be
found as a function of Mach number and the results for the perfeoct gas
again provided a check on the accuracy of the calculations.

In the example shown in Fig.1, there 1s considersble dissociation of
the gas under stagnation conditions and the very large departures from
perfect gas behaviour are a result of the subsequent reassociation. The
energy which is released in the reassociation process causes the temperature,
at a given pressure, to be much higher than in the case of a perfect gas
expanded to the same pressure. The speed of sound i1s therefore much higher
and the density is lower. The reciprocal of the density is higher and so
the velocity produced by a given pressure drop is higher for the real gas.
However, the effect on speed of sound is greater than that on velocity and
the Mach number for a given pressure drop is less for the real gas than for
the perfect gas. Thercis also a very pronounced real gas effect on area ratio,
the real gas requiring a far greater area ratio to reach a given Mach number.

Pigure 2 shows the corresponding results when the gas is anitially
at a temperature such that no dissociation or reassociation effeots are
encountered, There are differences of several percent between real and
perfect gas cases in the pressure versus temperature, speed of sound,
density and velocity curves but these are in directions such that they
tend to cancel cut when the Mach nunber versus pressure and area ratio
curves are celculated from them,

2+,12 Prandtl-Meyer expansion round corner

The equations of momentum for
the steady flow of an inviscid compress-
ible fluid may be written in polar
coordinates as,

you 8u v o _129

r 08 +u T = T = P ar (20}4-)
and

vy W w _ _120
The equation of continuity is:

3 3

T (pur) + 35 (pv) = © (2.6)



In the case of supersonic flow, 1t may be assumed that p, p, w and v
are functions of © only and the equations then reduce to,

v ou .V_z. 0
r o8 r
8
or v o= 6_161' (2.7)
v lép
v (ae + U.) = - P 36 (2'8)
and
d jof
pu +P§%+VE%=O (2-9)
From (2,9),
P(“"'éﬁ) = '-VE% = -?"é‘g’ (2.10)
But from (2,8),
dv 10
p<u+-5€> = -;5-3 (2.11)
Comparing (2,10) with (2.11),
v = a (2.12)

Henoe w o= V@ - P o AP (2.13)

and from (2.7) and (2.12),

ao 1

iy (2.14)
Equation (2.2) applies along a stream tube and the methods of

section 2.11 are used to construct curves of a against p, q sagainst p

and M against p, Corresponding values of u and 7 mey then be found for

any value of Mach number and these are plotted against one another as shown
in Figure 3.4, As -;- = %-g (equation 2.14), these curves may be integrated
graphically to give curves of 6 against u (Fig.3.2) and the curves of ©
agaxnst M (Fig.3.3) follow.

The flow deflection angle is given by,

0 - ‘can"'il =

B - tan~ ' WM - 1 (2.15)

¥V

1



The curves of ¥ against M are then plotted as shown in Pig.3.4
and the accuracy of the calculations may be checked by camparing the
perfect gas wvalues with those given by the conventional gas dynamics

equation,
= Riil -1 1:ﬂ./M?_' -1 /;ﬁ
v o= Y= tan eyenl 1 = tan M -1

The example shown in Figs.3.1 to 3.4 is for air expanded from a
temperature of 5000°K and a pressure of 100 atmospheres, and reassociation
again produces large imperfect gas effects. Figure 3.5 shows the corres—
ponding effect on Prandtl-Meyer angle when the stagnation temperature is
much lower and, in the absence of initial dissociation, the departures
from the perfect gas values are of the order of one or two percent only.

2.153 Propagation of one-dimensional isentropic wave

The continuity equation may be wratten,

d d )
E%*P?§+q3:% = 0, (2.16)

and the momentum equation may again be wratten,

2g 4g  13dp
at*‘lax"pax:" (2.1)

Treating p as & function of p and 8,

- (2® gp
dp = 63> 38 + 6p> ap
p 3
. e\ _ dp_,23%
Le€e (as) = 3~ % 5§ (2,47)
p
and, as the flow is isentropiec,
as 95
TTtegm = © (2.18)
. a 1 /3 .
Multiplying (2.16) by ° and (2,18) by ap (38 and adding,
A%, m), .2 _
ap at"'qax)""aax =0 (2.19)
Now, fram (2.1 and (2,19),
A - (89, 2 2p 8g 1 9p
dqiap ap = <atia.p 36, &+ ax-te.p ax ax
3 1 o
= (dx - (g z a) 4t) (B_;izﬁ_a';%) (2420)

-8 =



Therefore, if a wave satisfies the direction conditions,

-g—xE- = g+ a (2.21)
then

dg _ T L

dp = 4 B.P (2.22)

(For a perfect gas ihis may be integrated to give the well known relation

qQ _4;;%;-‘— a = constant),

Bquation (2.22) may be integrated for a real gas by a similar
process described for the integration of equation (2,2) in Section 2.11.
An example ig shown in Fig.4 for the unsteady expansion of air from 300°K
and 100 atmospheres. It can be seen from Pigure 4.5 that for a given
pressure ratio, the real gas attains a higher flow velocity than the
perfect gas.

In Figure 4.6, the flow velocity (q) is plotted against speed of
sound {a). 4 check on the eccuracy of the calculations is provided by
these curves as the perfect gas should obey the conditaion of invariance
of the Riemarm wvariasble (:;'%‘T a + q) « It may be seen from Figure 4.6 that
the real gas departs widely from this condition and, as most practical
problems are solved by using Riemann's variables, large errors would be
introduced by the assumption of a perfect gas in this example, in which
relatively moderate temperature and pressures are considered,

2.2 Shock waves

The flow through a normal shock wave is described by the equations
of continuity, momentum and energy. The cenventional normel shock wave
relations for a perfect gas are obtained by replacing the enthalpy term
in the energy equation by A—-—-{"_r_ y -Ewhich enables the pressure, temperature,
density and velocity ratios across the shock front to be found as functions
of My and Y. In the case of a real gas, however, enthalpy must be left in
the energy equations, as such, and the equations are then solved by making
use of the real gas values of specific enthalpy whick are tabulated as
functions of temperature and pressure in references 4 and 5.

It can easily be seen from momentum considerations that the tangential
component of the flow velocity is the same on both aidea of an oblique
shock wave, The equations of continuity, momentum and energy, when written
in terms of the normal velocity components, are then identical with those
for a normal shock wave. Therefore, for any flow geometry, the oblique

shock wave problem reduces to that of finding the strength of the “equivalent

normal shock wave" and this may be done by trigonometrical considerations.

2,21 Normal shock waves

The continuity, momentum and energy equations may be written,

Pr Yy = Po % (2.23)
Py Py 9f = Bty 0 (2.24)
2 2
and Ejé-* + H1 = %"’" + H2 (2'25)

-9 -



From, (2.23) and (2.24),

2 2 (1 1
2~ 4 1 Y Py Py
also
Baf-of) = defal (- %) (2.27)
1 P2
From (2.25) end (2.27),
H~H, = % (p,~p,) (31- +F’T> | (2.28)

The following procedure is adopted to solve this equation when the
gas in front of the shock wave is at a known temperesture and pressure.

(i) Pind H,, a, and p, from the thermodynamic tsbles of real gases.

1

(ii) Choose a value of Tye

(iii) Use the real gas tables to find the value of H, at this
temperature for a number of wvalues of Py and plot H, - I, Tagainst p, as

2 1
shown in Fig.b.2.

(iv) F:Lnd p, from zhe tabl.js for the seme range of values of p,

and evaluate % (p2 p1) + —) in each case. The curve of
z (Pz - P1) (‘j‘" + L against p, may be plotted on the same axes as
Po Py

that of H - H against P, and the intersection of the two curves gives
the value of‘ p2 which corresponds to the chosen value of T (See Fig.5.2).

(v) The corresponding values of P, and a, may then be found from
the tables.

The procedure is repeated for other values of T2 and consistent

P, P 2.
sets of valuss of the ratios T2 -2 P2 -?-2- and 3-2- are thus found. The
1 1 1

next step is to find the value of shock Ma.ch nunber to which each of these
sete corresponds., This is easily done as, by (2,26),

2 2 _ %4 1 P2 = P4

My 1.7 72 % 2R A
&y By P "pD

Py
.‘_’.2.., 1)
2 1 P1

i.es ¥y = a2 ( _12) (2.29)

i
=
!

1

- 10 -



It is often required to find the flow velocity behind a normal
shock wave moving into a gas at rest, This is given by,

P
end using (2.23) - q (1 )

=]
1
o

i.e. 5

a—he

Py
M (ﬁ - (2.30)

The method of solution is shown in Fig.5.2 for three values of Ty

for air initially at 300°%K and 0.1 atm. The calculations were also
carried out for a number of other values of T, and also for air initiaelly
at 0,01 atm and 3009, The shock Mach number to which each of these
solutions corresponds was found from equation 2.29 and Figures 5.3 to 5.6
show the departures from the perfect gas values of pressure, temperature,
densaty and velocity ratios across the shock and of the flow Mach number
behind a shock moving into a gas at rest.

The pressure ratio (Figure 5.3) across the shock is greater for the
real gas than for the perfect gas and there is no mignificant dependence
on pressure in the example which has been considered. The temperature
ratio (Pigure 5.4) for the real gss is far lower than that for the perfect
gas and at high shock Mach numbers, when dissociation is the dominant
factor, the effect is greater for the gas initially et the lower pressure.
However, there is still an appreciable effect at shock Mach nunbers around
five and, at these speeds, thermal imperfections cause the effect to be
slightly greater for the gas initislly at the higher pressure. Figure 5.5
shows that the density is hagher behind a shock in the real gas and the
steady flow velocity is less, According to the perfect gas theory, the
maximum flow Mach number behind an unsteady normal shock wave in a gas of
¥ = 1.4 is 1.89 but Figure 5.6 shows that the f£low Mach number in & real
gas may be very much higher.

The above results are merely given to illustrate the method and the
variation of these and other quantities for different initial conditions
may be easily calculated.

2.22 (Oblique shock waves

The equation of continuity
Eives

Py ¥y =Py ¥y (2439)

The equation of momentum mey
be applied to flow normally sand
tangentially to the wave front
to give

- 1] -



and 0 = pyu, ¥, - pyu, v, (2433)
Comparing (2.31)} with (2.33) it is seen that

v = V. = ¥V (2.314.)

02 .2 q_12 ) q22
1 2 _ .
~——=- = L% - H, -H (2435)

Hence the equations in u, and u, for the oblique shock wave are identicsal
to those in 9 and 9, f‘og the normal shock wave,

u

Let MS = -;1 be the "equivalent mnormal shock" Mach number.
1
tanao = tand
Now tanf = tan (a-6)=1+tanatan6
% b
But tanf = ~— and tana = —
v v
%
. EZ _ gl tand
" v — u

1 +—— tan &
v -

. 2 _
L] u1 —
2 2 2
T T TR L
But, u, = = 5Ty~ = z -1
1 &y u, MS
Therefore, M2
1
u2 1 - tanbd @2- - 1
2 . > (2436)
¥

Equation (2.36) enables the "equivalent normal shock" Mach number to

be plotted as a function of E— for any given flow Mach nurber and defliection
1 u
angle., (Note that the value of u_z- depends only on the ratio of hL| to MS
1
and not on thelr individusl velues so that, after one curve has been



calculated, the others for the same value of § are simply scaled from it).
These curves are based solely on geometrical considerations and hold for
real or perfect gases.

u
The shock wave equations must also be satisfied and curves of a-z-
1
against MS which do this may be obtained using the methods of section
u

a.
2.2, (4s -u—2 for the oblique shock is equal to —2 for the equivalent

normal shock). Examples of the two sets of curves are plotted in Figure 6.1
and their points of intersection give the appropriate values of the equiva-
lent normal shock Mach number for the given flow Mach number deflection
angle and initial gas conditions. There are, in general, two solutions

for each case, the first corresponds to the "weak" shock which is the

one normally observed and the seoond corresponds to the "strong" shock,
When the curves do not intersect the shock wave becomes detached.

The angle of inclination « of the shock wave is given by,

sina = — = = (2437)

As this relation 13 a function only of the ratio ﬁs_ , the family of curves
which at gives are easily constructed (Figure 6.2).

Figure 6.3 has been constructed from Figures 6.1 and 6.2 and gives

the shock wave angle as a function of M‘1 for various values of defleotion

angle for the real snd perfect gas cases. It is seen that the angle of
the "weak" shock is less for the real pgas than for the perfect gas. Also,
at any given Mach number, the shock wave remains attached until higher
values of deflection angle have been attained in the real gas than in the
periect gas. For instance, there is no solution at all at a deflection
angle of 50° for the perfect gas but the shock 1s attached abave M1 =8
for the real gas.,

Once the value of the "equivalent normal shock" Mach nunber has
been found from Figure 6.1, the normal shock wave calculations (Section 2.21)
give the ratios of pressure, density etc. acress the oblique shock wave,
The pressure ratio across the shock is plotted in Figure 7.1 and, for a
given initial Mach number and flow deflection angle, the pressure rise is
less for the real gas than for the perfect gas,

The Tlow Mach number hehind the shock is often required and is given

by,
2 = a. T &, u,
2
a
A
sMS'a2
a

(2438)

oA
|

iee. M2

- 13 w



u
For a given value of M1 and 8, MS and E?. are found from Pigure 6.4
a 1
and the corresponding wvalue of -;1 is given by the normal shock wave calcula-
2
tions, The Mach nunber behind the shock is greater far the real gas than for

the perfect gas., (Figure 7.2).

3 Application of Methods to Typical Problems

3.1 Shock tube performance

The general principles of operation of shock tubes are well known, A
tube is divided by a diaphragm into two sections, one containing gas at high
pressure and the other at low vressure., The diaphragm is ruptured and the
gas in the high pressure secticn expands isentropically into the low pressure
gection, The gas in the low pressure section 18 compressed by a shock wave
which travels into it. The gas which was originally in the high pressure
section is divided from that which was originally in the low pressure section
by a contact surface which also travels into the low pressure section.

The values of pressure end velocity are the same on eech side of the
contact surface and this provides the basis of a simple graphical method
(see Figure 8) for cslculating the performance of a shock tube for both the
perfeot and real gas cases, The methods of section 2,13 enable curves to be
constructed of flow velocity (q) against pressure (p) in the expended high
pressure gas. These are shown in Fig.8 for both air and hydrogen expanded
from 100 atmospheres and 300°K., The methods of section 2.21 may then be used
to construct curves of flow velocity behind an unsteady normal shock wave
(Uz) against pressure behind the shock (pz). These sre shown in Figure 8 for

air compressed from 0,1 atmospheres and 30C0CK, All these curves are drawn
for both the real and perfect gas cases,

As flow velocity and pressure are continuous across the contact surface,
the intersections of these two families of cuxrves give solutions of the shock
tube problem. For instence, points (A) and (B) in Figure 8 give respectively
the perfect and real gas solution for the flow velocity and pressure at
the contact surface of a shock tube having hydrogen at 100 atmospheres and
300°%K in the high pressure end and air at 0.1 atmospheres and 300 %K in
the low pressure end. In order to find the strength of the shock wave which is
produced, the methods of section 2,21 are again used to find the relation
between shock Mach number (Mg) and the flow velocity (Uz) behind it. This
is different for the real and perfect gas cases and a scale of My, for the
two cases, has been added to Figure 8, It may be seen from this that point (A)
corres;gonds to a shock Mach number of 7.39 and point (B) corresponds to one
of 7.06.

Pigures 9.1 and 9.2 have been constructed solely from the information
gaven directly by curves of the type shown in Figure 8 and show the reduction
in shock Mach number which is produced by the real gas effects. The magnatude
of the effects varies with the pressure of the high pressure gas as a result
of thermal imperfections becoming apparent at the higher pressures. One
of the advantages of this grarhiocal methed is that it mey be seen, in any
particular case, to what extent the reduction in shock Mach number is due
to effects in the expansion of the high preasure gas (mainly thermal imperfec-
tions) and what is due to effects in the compression of the low pressure gas
(mainly caloric imperfectioms)., In particular, it is seen that considerable
effeota are produced with air as the high pressure gas at 100 atmospheres
even when the shock Mach number is only two or three (see Figure 9.2).

Also, if the high pressure gas is such that the imperfections in its expansion
are negligible, it may be seen from Figure 8 that the velocaty of the contact
surface mey be increased even though the shock Mach number is reduced. In
any case, when the shock velocity is high, the velocity of the contact surface
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is not reduced as much as the shock front and so, at any point down the
tube, the interval between the arrival of the shock wave and contact
surface is reduced. As the gas between the shock wave and contact surface
is used for testing purposes in impulse tunnels, the real gas effects
ceuse a reduction in the running time., The time interval between the
shock wave and contact surface per unit length of tube is given by:

% ) (ﬁlzu aﬁ‘s)' (3.4)

and Figure 9.3 shows the reduction in running time due to imperfect gas
effects in a typical case.

3.2 Tift of flat plate

An exact solution for the 1if't of a two-dimensional flat plate at
incidence in a supersonic stream may be found by calculating the drop in
pressure over the upper surface through the Prandtl-Meyer expension and
the increase in pressure over the lower surface through the oblique shock
wave, The 1lift coefficient of a flat plate is shown in Figure 10 for
incidences of up to 4009 and at Mach numbers of 5, 10 and 15 in air at
3009%K and 0,01 atmospheres.

The Prandtl-Meyer expansion 1s treated in Seotion 2,12 but, for the
initial conditions of this exeample, the imperfect gas effects on the
expansion will be negligible, The main factor will be the pressure rise
through the oblique shock wave and this is shown in Figure 7.1 for the
real and perfect gas cases. The pressure rise 1s less for the real gas
g0 that the lift coefficient will be reduced from that given by perfect
gas theory.

%2,3  Nozzle of hypersonic impulse tunnel

The Mach number of the steady £low behind an unsteady normal shock
wave is limited to quite low values and, in order to produce higher Mach
nunbers, the flow 18 often expanded in a supersonic nozzle, Figure 11
shows the nozzle profile which would be requared to produce a steady flow
of Mach 6 at the end of a shock tube in which a shock of Mach nunber 42
is produced in air initially at 300°K and 0.5 atmospheres. The inlet
Ma.cezl)q number is higher for the real gas than for the perfect gas (see Figure
5. .

The Prandtl-Meyer angle was found for the real gas by the same
methods as those used to produce Figure Z.4. & sinusecidal distribution
of Mach number was chosen along the centre line and the methods of
chavacteristics was used to construct the flow field., The nozzle profile
was found as a atreamline of thie flow. It would be expected from Figure
1.8 that the overall area ratio would be much higher for the real gas
than for the perfect gas and this has been borne out in this exsmple. As
this example inwvolves reassociation of the initially dissociated gas, the
neglect of non-equilibrium effects may be serious,

3.4 Reflection of normal shock wave from rigid wall

Consider an unsteady normal shock wave moving in a one-dimensionel
chennel which has a closed end, When the shock wave meets the end it is
reflected and the strength of the reflected wave is determined by the
condition of zZero flow adjacent to the wall, The e in velocity
across each wave must therefore be the same (i.e. Tlgzrrg = TAqTI). For

|dal; [falp
is & funotion of MSI only and

a perfeot gas, is a function of
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MSR cnly and they may be plotted as shown in Figured2.2. In the case of a
|aq]
2
Figure 12.2. For several values of MSI' To find the value of MSR for any
|29
I

real gas, depends on MSI as well as MSR and has been plotted in

value of MSI , the value of is found for Mg and the required value of
2 -

[Balp  |ealy
%2 2
Pigure 12,2 for MSI = 8.0 for the real ad perfect gas cases, giving

MSR is that which gives + The process is illustrated in

MSR = 2.89 and 2.55 respectively. The real gas curves have all beea
calculated by the methods desceribed in Section 2.21.

The Mach nunber of the reflected shock is plotted as a function of
the Mach number of the incident shock in Figure 12.3 and it is seen that,
whereas the Mach number of the refleocted shock is ssymptotic to a value of
2.63 for a perfect gas, it may be much higher for a real gas. Figure 12.4
shows that the temperature ratio across the reflected shock is much less
for the real gas than for the perfect gas. The ratic of the temperature
adjacent o the wall before and after the arrival of the shock is shown in
Fig.12.5 and is again considerebly less for the real gas, However, it is
seen from Figure 12.6 that the pressure ratio is greater for the real gas
and, for incident shock Mach mmbers above about 8, the difference is very
significant.

3.5 Two-dimensional supersonic intake

A two-dimensional intake may be designed in whichk a wniform super-
sonic strecam is compressed by two coblique shock waves to form another
uniform stream in the same direction at a much lower Mach number. The
general configuration is shown in Pigure 13.1 for a perfect gas of ¥ = 1.4
and for air initially at 300°K and 0,01 atmospheres at intake Mach numbers
of 6, 10 and 14. An oblique shock wave is formed when the stream is
turned through an angle of 30° and the stream is returned to 1ts original
directiw: by the reflected oblique shock wave. At an intake Mach number
of 6, a solution is possible with regular reflection for the real gas but
Wach reflection occurs in the perfect geas case,

The properties of the incident oblique shock may be found for the
perfect and real gas cases from the graphs in Figures 6 and 7. These also
enable the reflected oblique shook properties to be found for the perfect
gas but, to obtain the solution for the real gas, similar curves must be
constructed for initial temperatures and pressures corresponding to those
behind the incident shock.

Pigures 13%.2 to 13.5 show the variation with intske Mach number of
the temperature and area ratics and the exit Mach number and total pressure.
It is seen that the real gas intake provides a narrower stream of air at
a lower temperature but at a higher Mach number and totasl pressure %han
that for the perfect gas.

List of Symbols

D pressure

p density

T temperature

R universal gas constant
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45}

<

M

]
h;: t&g pla ®

Supersceript

&

Subscripts

o]

1

entropy

enthalpy

moleoular weight

specific heat at constent pressure

specifiic heat at oonstant volums

speaific heat ratio

flow wvelocity
linear coordinate
radial coordinate
engular coordinate
time

radial flow velocity component in Prandtl-Meyer expansion
or normal flow velocity component through oblique shock wave

tangential velocity component

local velocity of sound

flow Mach nunber

normal shock Mach number

absolute flow velocity behind unsteady normal shock wave
cross-sectional area

flow deflection angle (Prandtl-Meyer angle)

angle between c¢blique shock wave and original flow direction
angle between oblique shock wave and final flow direction
flow deflection angle through obligue shock wave

sonic conditions

stagnation conditions
conditions in front of shock wave
conditions behind shock wave

conditions behi_nd ref'lected shock wave
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