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Summary. 
Experiment has already shown that the aerodynamic damping on half-span models in pitching oscilla- 

tion is subject to interference effects that may exceed 30 per cent in slotted-wall tunnels at subsonic speeds. 
An explanatory theory is presented with numerous illustrations and comparisons with measured data. 
The basic assumptions demand a small ratio of model span to tunnel breadth, small frequency parameter 
and open instead of slotted boundaries ; nevertheless, the effects of span, frequency and slot geometry are 
considered theoretically, as well as those of tunnel shape, planform, model size, Mach number and pitch- 
ing axis. 

Further experiments have been made to check the theory, and conclusions are dra_wn from studies in 
four different tunnels with their slots sealed and open. Direct comparison between prediction and 
measurement is consistently good with slots sealed and in most cases with slots open. For a particular 
tunnel large discrepancies in the latter case are attributed to viscous effects that cause a wall with too 
narrow slots to behave like a closed boundary ; wall interference then changes sign, is less severe, but can 
no longer be detected by sealing the slots. Although the theory clarifies the problem, the usefulness of 
slotted-wall tunnels for dynamic measurements is open to question when corrections are very large. 

With inviscid flow the following conclusions are drawn from the theory'  (a) that the lift-damping due 
to pitching is subject to even more serious interference than the direct pitching damping, (b) that it may 
be impracticable to obtain adequate reduction in the wall corrections simply by testing smaller models, 
(c) that complete or more slender models are less seriously affected than half-models of moderate aspect 
ratio, (d) that with horizontal models in rectangular tunnels the best remedy is to have slotted side-walls 
but closed roof and floor. 
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1. Introduction. 

The original concept of a slotted-wall tunnel appears to have been motivated by the desire to rcducc 
wall interference. There are many instances where blockage and lift interference in subsonic flow are 
altered in sign wher~ closed walls are replaced by open boundaries. Indeed, great reductions in blockage 
interference led to the design of transonic tunnels with slotted or perforated walls, so as to avoid the 
choking encountered in closed tunnels at high subsonic speeds. This important development and its 
manifold implications are fully described by Goethert 1. Slotted or perforated walls are now accepted 
as an essential feature of transonic wind-tunnel testing, for these alone permit the Mach number to be 
varied from subsonic to supersonic without change in the tunnel geometry. It is seldom possible to 
eliminate simultaneously both blockage and lift interference, but in steady flow a compromise can be 
reached whereby measured results require only small corrections. 

The use of wind tunnels for oscillatory aerodynamics predates the development of suitable lifting- 
surface theories. Although these now exist for many purposes in both subsonic and supersonic flow, 
theoretical progress is unlikely to be fruitful in the transonic speed range. Moreover, the unsteady aero- 
dynamic characteristics of slender or bluff shapes, with flow separation, remain largely beyond the scope 
of established theory which is unlikely to supplant the need for dynamic testing, even at subcritical Mach 
numbers. The correlation between theoretical calculation and wind-tunnel measurement has been 
discussed by Acum 2. Most experiments in compressible flow achieve only quite low wdues of the frequency 
parameter, so that Multhopp's 3 subsonic lifting-surface theory often forms the basis of comparison. 
Wall-interference effects are usually ignored, and under favourable conditions there is evidence of reason- 
able agreement between linearized theory and uncorrected experiment. 

The first indication of excessive interference effects from slotted walls in oscillatory experiments was 
discovered in 1960 by Bratt and Wight whilst checking the unexpectedly low pitching damping reported 
in Ref. 4. In the course of me~isuring pitching derivatives on a half-model M-wing in the NPL 25 in. × 20 
in. Tunnel with eleven longitudinal slots in the roof and floor, they progressively reduced the number 
of slots until the tunnel was completely closed. Fig. 1 shows large smooth changes in the observed 
pitching damping at Mach numbers M = 0.60, 0"80, 0-90 and 0"95. The effect of the slots increases as 
M increases until tunnel choking sets a lower limit to the number of slots. It is typical, not only of the 
M-wing, that the damping can change by 30 per cent or more. There is confirmation of slotted-wall 
interference in the NPL 9-~ in. × 9½ in. Tunnel from the measurements of Ref. 5. The full evidence from 
previous experiments has been reviewed by Wight a (1964). Although the effect of sealing the slots in the 



N P L  36 in. x 14 in. Tunnel is observed to be small, the likelihood of large effects in many other tunnels 
constitutes a threat to the validity of dynamic measurements until an acceptable explanation is found. 

Several attempts to explain the phenomenon have proved negative. One possibility, that the large 
slotted-wall interference might be associated with standing transverse waves, has been ruled out by a 
theoretical study, due to Acum 7, of acoustic resonance. He shows that the critical frequency parameter 
for resonance is higher for slotted walls than for closed walls and well outside the experimental range. 
In another investigation (Ref. 8, Part I) Rushton has considered the oscillatory flow at individual slots 
by an electrical analogue. The theoretical problem is reduced to two dimensions by confining attention 
to the distant wake; the results give no reason to doubt the validity of the boundary conditions at the 
slotted walls. A more likely explanation was thought to stem from resonances or other disturbances in 
the plenum chamber surrounding the slots or from the step at the downstream end of the slots. Molyneux 9 
refers to random disturbances of this kind, but subsequent attempts to measure unsteady pressures in 
the plenum chamber have shown negligible fluctuations due to the oscillatory motion of the model in 
the working section. 

A recent note by two of the present authors 1° gives a brief account of an extension to the classical 
theory of lift interference, that offers a convincing explanation of the cases where the aerodynamic forces 
are particularly sensitive to the sealing of the slots. Ref. 10 is superseded by this fuller presentation of the 
theory. In essence it is assumed that the model is of small span and oscillates at low frequency in subsonic 
flow, and that the slotted walls may be replaced by open boundaries, as will be given some justification 
at the end of Section 2. Under these conditions the sinusoidal interference upwash is expressible as a 
polynomial in the streamwise distance. For  a particular tunnel boundary three interference parameters 
are sufficient and these are formulated for rectangular cross-sections (Section 3.1.). A dominant role is 
played by one particular parameter that only occurs in oscillatory flow. Application of lifting-surface 
theory 3 leads to straightforward relationships between aerodynamic quantities in the tunnel and those 
in the free stream which are dependent on the Mach number, planform and pitching axis (Section 3.2.). 
On the basis of the steady lift interference it is suggested that rough estimates of the effects of slot geometry 
and model span may be made; in Section 4.2. also, the theoretical effect of small frequency is described 
and in Section 5.3. its application is discussed. There is no attempt to investigate wall interference at 
transonic speeds when many of the approximations lose their justification. 

The theory supports the evidence in Ref. 6 for the NPL  25 in. x 20 in. Tunnel with slots both open and 
sealed, as indicated by the arrows in Fig. 1. Numerical results in Section 4.1. show that the wall interference 
on pitching damping is highly dependent on the location of pitching axis. Recent experiments (Section 
5.2.) in the NPL 9½ in. x 9½ in. Tunnel confirm this and show reasonable agreement with the theoretical 
predictions. The basis of comparison is to combine the lifting-surface and wall-interference theories to 
calculate oscillatory forces on the model in the wind tunnel. In practice it may be desirable to divorce 
the wail-interference theory from lifting-surface theory, and in Section 6 corrections are applied to 
measured aerodynamic derivatives as if lifting-surface theory were untrustworthy or not available. It 
must be recognised, however, that these corrections are often large and may well be less accurate than the 
technique of measurement. In formulating the slotted-wall interference theory it is assumed that the flow 
is inviscid, but Section 7 gives a qualitative discussion of possible effects of non-ideal flow through the 
slots. This appears to provide the most likely source of discrepancies between theory and experiment 
for the NP L  36 in. x 14 in. Tunnel with slots open (Section 5.1.), for which only the theory gives large 
interference effects due to sealing of the slots. One important corollary is that the corrections may be quite 
large, even when sealing of the slots hardly influences the measurements. 

The.concluding remarks in Section 8 give a more detailed guide to the salient features of the report. 

2. Theoretical Treatment of Slotted Walls. 
It is supposed that there are uniformly spaced longitudinal slots, that the tunnel cross-section is 

constant and of unlimited streamwise extent, and that the boundary conditions may be linearized. Then 
in a flow of velocity potential (Ux + ¢) the condition 

~¢/0n = 0 at a solid wall or a slot (1) 

!!iii: . . . . .  



ensures zero outflow across a closed portion of the tunnel boundary. The requirement of constant presstlre 
sit an opcn portion is linearized to give ?<h/?x = O: then, since the uniform flow is undisturbed fiir tip- 
stream, integration with respect to streamwise distance x gives 

4, = 0 at a free boundary or a slot. (2) 

Both conditions apply in steady or unsteady flow. 

Although these mixed boundary conditions are easily formulated, mathematical solutions of Laplace's 
equation for 0 in steady flow with the necessary singularities at the edge of each slot are very few. Solutions 
exist for circular tunnels with equidistant slots, but conformal transformation to rectangular ttlnnel 
boundaries would give irregular slot spacing of no practical interest. Therefore the usual approach for 
rectangular tunnels with walls of uniform slot spacing is to replace equations (1) and (2) by a single 
homogeneous boundary condition to be satisfied at all points of a slotted wall. The idea was first developed 
by Davis and Moore I1 (1953) from a suggestion of Dr. A. Busemann. The homogeneous condilion may 
be written as 

O + K <?4, = 0 (3) 
(q, rt 

where for slots of width a and periodic spacing d in a tunnel of height h the constant K is given by the 
non-dimensional slot parameter 

2K 2d rca 
F = h = 7rh log,,cosec 2d" (41 

There is evidence in Ref. 11 that the calculated lift interference on small wings in circular tunnels with 
eight or more discrete slots can be reproduced closely by means of the homogeneous condition (31. 
Solutions by electrical analogue tbr rectangular tunnels with discrete slots and conditions (1t and (2) 
have been obtained by Rushton in Part II of Ref. 8: when there are six slots in the roof and also in the 
floor, the equivalence of condition (31 is established likewise. 

Equations (3) and (4) define the equivalent homogeneous boundary condition for an 'ideal' slotied 
wall such that viscous effects in the slots can be neglected. Baldwin, Turner and Knechtel ~ 2 have proposed 
a more general condition 

?,_~+.. ~724 1 ?4' 0 {5) 
?x K gx(G-n q- P ~?n - ' 

where the porosity parameter P regulates the pressure drop through the slots from tunncl to plenum 
chamber in proportion to the outflow. By analogy with perforated walls (K - 0) the import of fliP in 
compressible flow (fi2 1 - M  2) is fairly well understood from theoretical and experimental studies in 
steady flow (Ref. 1). But there is little apparent progress towards the evaluation of fi/P when viscous 
slot flow is thought to be significant. At the end of Appendix A of Ref. 12 it is argued that there isa 
lower limit to the open area ratio a/d below which the mathematical basis for the slot parameter K is 
unreliable : it is likely, however, that before this limit is approached the porosity parameter P will assume 
overriding importance. 

The boundary condition corresponding to equation (5) in oscillatory flow is not known with certainty, 
but it is plausible to take 

+ . . . . .  O, (6) 



where, in the usual notation, ~b is written as the real part o f ~  exp(icot). Ref. 13 is one of very few mathe- 
matical solutions based on such a boundary condition ; Drake used equation (6) with K = 0 and P real 
to represent a perforated wall, but perhaps P should be complex so as to permit a phase lag between the 
pressure drop and the outflow across the wall. For ideal slots (P - ,  ~ )  equation (6) integrates to give 

~ + K ~ n  = 0, (7) 

since ~; is identically zero as x ~ - ov upstream. Otherwise equation (6) cannot be integrated to become 
independent of the frequency co, and therefore viscous slot flow may lie beyond the scope of the theoretical 
treatment in Section 3. But when equations (3) and (7) hold, there is a simple integral relationship between 
the steady and oscillatory upwash fields due to wall interference. 

Unfortunately the state of knowledge of the steady interference upwash field in slotted-wall tunnels 
is incomplete. The known results are virtually confined to the transverse plane containing the lifting 
element itself. The information concerning the streamline curvature, that is the streamwise gradient of 
the interference upwash, is exceedingly limited. The experimental evidence of large slotted-wall inter- 
ference is from tests on half-models in rectangular tunnels with slotted roof and floor. On the reflection- 
plane principle, with models mounted on solid side-walls the tunnel breadth is effectively doubled and 
particular interest attaches to breadth to height ratios b/h as high as 2"5. Holder 14 has obtained the 
most relevant values of the steady interference parameter 

puc (8) 
6o = 2L 8z 

at the position of an element of lift Lon the tunnel axis. Here p and U are respectively the density and 
speed of the undisturbed stream, C is the cross-sectional area of the tunnel, z is measured vertically 
upwards and the interference potential ~b~ is given by 

~b = ~bm+~b i, (9) 

where ~b,, corresponds to the same element of lift L in the absence of wall constraint. Holder's results for 
small wings in duplex and square tunnels with slotted roof and floor are plotted in carpet form in Figs. 
2 and 3 with allowance for compressibility. For both shapes of tunnel 60 is presented in terms of the 

modified slot and porosity parameters (1 + F ) -  1 and (1 + ~ ) -  1. In each case 6o varies from a negative 

value for open roof and floor when both parameters are unity to a positive value for the completely 
closed tunnel when either of the parameters is zero. 

The NPL tunnels correspond to slot parameters from equation (4) in the range 0.05 < F < 0-11, so 
that roughly 0.90 < (1 + F)- 1 < 0.95 and, apart from the effects of porosity, the slotted walls operate 
m u c h  like open boundaries even when the open area ratio a/d= 1/11. A good approximation to unsteady 
slotted-wall interference can therefore be sought by considering rectangular tunnels with open roof and 
floor, for which the steady interference upwash field is amenable to analysis (Section 3.1.). Allowance 
for the slot parameter (1 + F)- 1 may be estimated on the basis of Figs. 2 and 3. Similar interpolation 

with respect to the porosity parameter 1 + has little theoretical justification, but the importance 

of this parameter for particular tunnels is discussed in Section 7. 

3. Method of Interference Correction. 
The basic idea underlying most applications of oscillatory wall interference is the relation between 

the steady acceleration potential and the unsteady velocity potential due to Goodman 15 (1953). His 



result for linearized incompressible flow of arbitrary frequency in any closed tunnel may be written in 
the form 

x 

4(x,y,z)= exp N a~. 
- c o  

(10) 

Here 4)o is the velocity potential due to a steady horse-shoe vortex of small span and the real part of 
q5 exp(io)t) is the velocity potential in phase with the oscillating strength of the corresponding semi- 
infinite vortex doublet. Equation (l 0) is not restricted to closed tunnels, but it is sufficient that the boundary 
conditions on 00 and (~ are the same in the respective steady and unsteady problems. This is true in equa- 
tions (1) and (2) for tunnels with longitudinal slots; equally well, with ideal slots, ~b o and ~ satisfy the 
homogeneous conditions (3) and (7) respectively. The more general condition (6) is dependent on fre- 
quency when the porosity parameter P is non-zero and finite; in such cases the method may not be 
applicable. 

The result in equation (101 is also derived by Acum and Garner in Section 3 of Ref. 16, and they go 
on to explain how the relation can be generalized to the case of low-frequency subsonic compressible 
flow. They show that 

_ imM2x~ 

satisfies the linear differential equation 

(~(x/l~) l~U ,,(x/l~) " 

By means of the integrating factor exp(ieJx/'fi2U) it follows that 

x/l~ 
[iw~ i~ox] ?~o(~,),,Z)d? (11) 

c~(x,y,z) = exp L}~V-u-J ,~ " 

where c~ refers to the oscillatory compressible flow but ~b0 remains the steady velocity potential in in- 
compressible flow due to the semi-infinite vortex doublet. An identical relation for elementary horse-shoe 
vortices of finite span forms the basis of Acum's '7 general theory of oscillatory wall interference for 
closed rectangular tunnels. Similarly in Ref. 18 he has treated the problem of slowly oscillating slender 
wings in subsonic wind tunnels. 

Equation (111 holds for the velocity potential with or without wall constraint, and therefore for the 
complex interference potential qS~ and the interference upwash ~ = ~i,/~?z. Expansion to first order in 
frequency gives along the axis of the tunnel 

x , / p  

13u - ~ d ~ ,  (12) 
- -  (:~> 

where w,,(f) is the steady interference upwash in incompressible flow. Corresponding to a lifting element 
L at the position { = 0 on the tunnel axis we write 

2L 
Wio(~) = l ~  8(~) for all ~ (13) 



or  

2L 
W l o ( ~ )  - 

pUC 
[ (0'} 3o + +~9 for small ~, (14) 

each a more general form of equation (8). On integration by parts equation (12) gives 

x/l~ M- , f  } 
I ~ W,o(xl/D-~ Wio(~)d~ • 

- -  o 0  

Hence by equations (13) and (14) 

,~i(x) = ovii-d 2 3h2 + o  , (151 

where 
0 

3 0  ~ m 

i 

(16) 

Equation (15) is similar to the expressions used in Refs. 16 and 18, but it includes the extra term in X 2, 
This imaginary term, also omitted in the preliminary account of the present work in Ref. 10, will be seen 
to provide contributions to the aerodynamic forces of the same order as some of those arising from the 
real term in 61. 

Although primarily concerned with a closed circular tunnel, Ref. 16 also contains in Table A.II the three 
interference parameters 6o, 61 and 6; for closed rectangular tunnels. Although 6o and 31 are known for 
other types of rectangular tunnel, there is no information concerning 6o from equation (16). It will be seen 
in Section 3.1 that its formulation is not quite straightforward in the case of practical interest when there 
are closed side-walls and open roof and floor. Although 66'0 is very small for the larger ratios b/h appropriate 
to half-models in closed rectangular tunnels, the corresponding values of `5; for open roof and floor are 
found to be fairly large. This, coupled with the fact that the contribution to ~(x) in equation (15) is in- 
versely proportional to a linear dimension of the tunnel, will provide large interference effects. The 
interpretation of '~i(x) is conveniently handled by the techniques of linearized lifting-surface theory for 
low frequency. Because equation (15) is so simple, the formulation in Section 3.2. is straightforward. 
Apart from the terms in ,5 l, the oscillatory pitching derivatives with wall constraint only involve oscillatory 
and rotary pitching derivatives in a free stream. 

3.1. Interference Parameters. 
Of the three interference parameters in equation (15), the two occurring in steady flow are well docu- 

mented. For small lifting wings centrally placed in rectangular tunnels 3 o and '51 are respectively ½,5 and 
½66', as defined and formulated for closed walls by Glauert in equations (9.01) to (9.02) and (11.1) to (I 1.4) 
of Ref. 19. Following Figs. 7 and 8 of Ref. 19, we consider rectangular tunnels of the types (1) to (4)each 
giving a doubly infinite array of images in the transverse plane at positions (y,z) = (mb,nh), where m and 
n extend over all positive and negative integral values excluding the pair (0, 0) corresponding to the 
wing itself. The signs of the image doublets are 

j = ] (1) = ( -  1)" for a completely closed tunnel [ 

j = j(2) = ( _  1)m for a completely o p e n  t u n n e l  

j = j(3) = (_  1),,+, for open sides, closed roof and floor (17) 

j = j(4) = ] for closed sides, open roof and floor 



Thus the interference parameters for steady flow are 

<, / 

bhVV ao = 8 ~ z . . . a  z . . . .  0 
m2b2_n2h z 

(m2b 2 q- n2h2) 2 

and 

c,o ! 

b h 2 V V ( ]  ) m2b2-2n2h 2 
6 1 -  8~__a /__a  (m2b2+nZh2)~/~, 

(18) 

(19) 

ac 

where ~ ~ '  denotes that (m,n) takes all possible integral pairs except (0,0). It must be recognised that, 

although equation (19) is absolutely convergent, the double summation for ~o is not. The treatment of 
equation (18) for rectangular tunnels of type (4) when j = 1 needs special care and is fully discussed in 
Ref. 20 : this type of mixed boundary is crucial to the study of wall interference in the NPL slotted tunnels. 

The upwash interference parameter ~o can be expressed as a single series in several ways. For example, 
corresponding to the four types of rectangular tunnel listed in equations (17} there are respective formulae 

~zh ~ h ' ~  - ~  n 

c3° = 6~°1) = 24b + b ~._a e 2~'~g'b + 1 

ao = a~o 2~ - ~h ~h 2 2n -1  
48b 2b e~2,- 1)~a/b_ 1 

n = l  

G = ,%3~_ nh n h 2  2 n -  1 
48b + 2b e(2n - l)na/b + 1 

n = 1 

24b b e 2n~h/b-  1 
n = [  

(20) 

There are three useful auxiliary equations concerning 3(o 4) (2) where 2 = h/b, namely 

1 
a?~ (1/;.) = - ~ . -  ~o ~ (;) 

a?~ ( ~ )  = G 2~ (2) + ~?~ (,~) , {21) 

6(o '*' (22) = 6~o 11 (2) + 6~o 4) (2) 

the first of which is given incorrectly in Ref. 19 and follows from Ref. 20, Values of ~50 from each of 
equations (20) are plotted against b/h in Fig. 4. 
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The streamline curvature parameter ~1 from equation (19) may be evaluated for the four types of 
rectangular tunnel from the convergent series 

oo co 

~z h 2 F~"n 1 + ~  ( b ) ]  
~1 = ~i ~, = ~ +  4~b-~kZ.  ~ ~ ( -  1)"sl 

m = l  n = l  

oo ~c, 

h2 [ Z ( - 1 ) "  Z ( ~ ) 1  01 = 0(2) = 4 - ~  m 3 ~- $2 

m =l  n = l  

co oo 

h l  = 6(3) = 4~zb 2 + (_ 1),S 2 nh 
m =l  n = l  

co co  

m = l  n = l  

(22) 

where 

2 
m = l  m = l  

- - =  -0.90155, 

and 

co  

$I(#) = 2 '~ mZ-2#z t #~+ m_~_~ (m 2 +#2)~ 

oo 

m m2 --2kt2  
$2 (# )  (-- 1) ( / / / 2+#2 )5 /2  

m = - - c o  

(23) 

The most convenient evaluation of $1(#) and $2(#) is by transformation into more rapidly convergent 
series of modified Bessel functions, as derived by Olver in Ref. 21. Hence 

sl(#) - 8~'~ 
p = l  

co  

p = l  

[p K 1 (2pro#) + 2p2r~#Ko (2pTz#)] 

[(2p- 1)K~ {(2p- 1)~z#} +(2p- 1)27r#Ko {(2p- 1)~#}] 

(24) 
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where 

Ko(X ) = f e-~t(t2 
1 

_ l)-~dt 

K,(x) = x i 
1 

e-xt(t2 - -  1)~dt 

$ 2 ( / / )  may be identified with the functionf '  in Table A.I of Ref. 16. Corresponding to the last two equations 
(21), superposition of the image systems leads to useful auxiliary relations 

67~ (½~) = 6~ ~) (,~) + a?~ (2) 

6 ?  ) (22) = 26] 1) (,~)-{-267 ) (2) 
) (25) 

Values of~$~ from each of equations (22)are plotted against h/h in Fig. 5. 

From the Appendix to Ref. 16 and in the notation of equations (17) to (19), the steady interference 
upwash wio of equation (13)is 

W;o(¢) - 
D U C  8TC ) k ( m 2 b ~ - n 2 / ~ 7 2 )  2 Jr- --i??i2-b2~;;~2]'12) 1''3 (26) 

w i t h  r 2 = ~2 _~_ t~12h2 4- rt2h 2. Hence by equations (13) and (16) 

t5 0 = - - 8 ~  (1) (m2b 2 +r t2h2)  3/2 
-- t 

(27) 

For tile first three types of rectangular tunncl equation (27)may be used, providcd that a sumnm,ion 
with terms of alternating sign is carried out first. Follmving the Appendix to Rcf. 16. ~c ha\c for a 
completely closed tunnel 

ct, 
b 2 

tr t=l  

(28) 

where 

/ ( s0  = 
( -  1)"p 

- 4rr ( 2 p -  l)K1 { ( 2 p -  I)~z#} 
p = |  

(29) 
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is given in Table A.I of Ref. 16. The corresponding expression for a compl&ely open tunnel is 

n = - o o  

(30) 

where 

(._ 1)ram 2 
G(l't) = (m 2 ..~ #2)3/2 

m = l  

lul 

d~c 

09 

= 2 Z [K o {(2p- 1)re#} - ( 2 p -  1)rq~K x {(2p- 1)7c#}] (31) 
p = l  

by a procedure similar to that of Ref. 21. The result for tunnels with open sides and closed roof and floor 
is more closely related to equation (28), and it is easily shown that 

6~3)= b2 mlh ) 
4zrh 2 ( -  1)mmf . (32) 

m = l  

Equation (27) is divergent when j = 1 and a different approach is necessary to evaluate the unsteady 
interference parameter 6~ 4) for the important fourth type of rectangular tunnel. 

Simple superposition of image systems leads to auxiliary equations 

~4)  (½4) = ,~2~ (,l) + a84~ (,~) 

f 6~ '*) (22) ix,(1) l~  ± ±.~,(4) = 2,,0 v.~2~,o (;0 
(33) 

corresponding to equations (25). Equations (33) are not invalidated by the divergence of eauation (27) 
when j = 1 and can be used to extend a table of 6~ 4~ provided that 6~ u and 6~ 2~ have already been cal- 
culated. Fig. 6 illustrates how a table of ~4) can be started. Consider four rectangular tunnels 

A of type (4) having breadth b and height h, 

B of type (4) having breadth 2b and height 2h, 

C of type (1) having breadth b and height h, 

D of type (2) having breadth b and height 2h. 

Convergence can then be achieved by taking the linear combination - A  +4B -- C+2D shown in 
Fig. 6. For elements of the same lift at the centres of these tunnels, the steady interference upwashes along 
the centrelines satisfy the equation 

- wia(x) + 4wiB(x) = Wlc(X) + 2ww(x). (34) 
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Since the cross-sectional arenas of the four tunnels are in the ratio 1 : 4 : 1 : 2 and their respective heights 
are in the ratio 1 : 2 : 1 : 2, it follows from the definitions of the three interference parameters in equations 
(13), (14) and (16) that 

--30A q-(~OB = 60C"~ 30D 

--2~51A+f1B = 261c+61o 

- 3{~A + 23Ln = 3{~C + 2bad 

{35) 

The wing is of small span and the parameters for tunnels A and B are identical. Therefore the relations 
(35) may be rewritten in the notation of equations (21), (25) and (33) as 

0 = 6{0 ~) {2)+ 6{o 2) {22} 

- 6 ]  4) ().) = 26{~ ~) (2) + 3] zl (2 )d  . ( 3 6 )  

~{4) (2) = ~3 (1) ( ) ~ ) + 2 ~  (2) (22) [ 

A 
The first of these, though irrelevant here, appears to be a new result and is clearly true in Fig. 4. The 
second supplements equations (25) and the third enables 3~ {'*~ to be calculated from equation (28) as it 
stands and equation (30) with the values of nh/b doubled. Both ~0 [2) and 3{/'*~ behave like {47z).)- ~ when 
b/h = 1/2 exceeds about 1.5. 

The curves of c5~ against b/h in Fig. 7 for the four types of rectangular tunnel have been determined 
from equations (28) to (33) and (36). Two striking features of Fig. 7 are the different orders of magnitude 
of 3'0 for broad tunnels according to the type of roof and floor, and the result that 6o 13) for open sides 
and closed roof and floor remains fairly small over the whole range of b/h. It is desirable to understand 
why 8'o is so small for completely closed tunnels of large breadth to height ratio while both 6o and 31 
from Figs. 4 and 5 are increasing positive functions ofb/h. The steady interference upwashes from equation 
(26) with j = j l l ) =  ( -1 ) "  and j = f 4 } =  1 have therefore been evaluated for duplex tunnels (b = 2h) 
without the approximation in equation (14}. It is seen in Fig. 8 that at roughly one tunnel height down- 
stream of the lifting clement in the complctcly closed tunnel ~5 -- pUCw.}:21, attains a maximuln value 
appreciably greater than that in the distant wake ; correspondingly, ahead of the element b(~) becomes 
negative before tending asymptotically to zero as {-+ - .vc. For the case of open roof and floor it is 
necessary to sum equation (26) by columns, first with respect to n (ReE 20), and by contrast with the 
completely closed tunnel 3 behaves monotonically against streamwise distance. The results show that, 
although -b~o 4) is less than twice e59', the integral 3~ '~) from equation (16) is practically 40 times - 3 ~  ~) 
for in this case there is near cancellation of positive and negative contributions to the integral. The signi- 
ficance of 3~ ~) is by far the most important factor in the explanation of the large interference effects on 
damping derivatives from half-model tests. In retrospect, however, it is the more remarkable that the 
leading imaginary term in equation (15) should so nearly disappear for broad rectangular tunnels with 
closed roof and floor. Slotted side-walls may well be preferable to a slotted roof and floor from the 
standpoint of lift interference; indeed for type (3) of equation (17) Figs. 4, 5 and 7 show that there is a 
range of shape just narrower than square for which each of the three interference parameters has magni- 
tude less than 0.04. 

3.2. Corrections to Pitchin,q Derivatives. 
The interference upwash is specified by equation (15), provided that the parameters 3 o, 31 and fib are 

known (Section 3.1.) and that the wing can be represented as a distribution of lifting elements 

(37) 
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along the axis of the tunnel. The frequency parameter ~ = ogUU is based on the geometric mean chord 
of the wing and is supposed to be small. Then 

l f E { ' 61 (x-~)2(2MZ- l !} l  2 61(x-~) ffh 60 6o(X-¢)~ L(~)d~ 
ff:i(X) ----- ~ 6o d" f i ~  F~- fl h 2f13h 2 

0 (38) 
where 0 ~< ~ -G< 1 denotes the streamwise extent of the wing. If the lift, pitching moment and second moment 
are defined by 

t 

½pU2S(CLR q-iVCLi ) = f L(~)d~ 
0 

lp U2S~(CmR -J7 i~Cmi) - i L(~)~d¢ , 

½p u2Se2(C*R + isc**) i L(¢)Ud~ 
then fi'om equation (38) to first order in ~ o 

------ 61C X 

+--C { 6;h 

61~ (1-2 / /2  LR-~T 

(39) 

x )} 
+ -  CLI + Cm~ (40) 

C 

In the case of oscillatory pitching motion it is desirable to express ~i/U directly in terms of the measured 
pitching derivatives. If 0 o and x = x o denote the amplitude and axis of oscillation, then the first two 
equations (39) are equivalent to 

20o( 0 } 
(m °lo) CLx = 20olo and CmI = 20O 0- - - [  

Unfortunately the second moment coefficient C*R cannot be related to measurement, and it is expedient 
to make the rough approximation that 

- C %  2 = CmR/CLR. (42) 

Although equation (42) seems likely to underestimate C*a by some 20 per cent, the approximation is 
equivalent to the assumption that the real part of the lift LR(~) is concentrated at the aerodynamic centre 
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CmRC moo 
= ~ - - X o - - -  (43) 

CLR 10 

Thus 

. 61g -- ffq(x) - 20°S [6°l°+ fih (m°+X ~ x° C 

+i9 { fig l o+6 o o--rno 

6~ (m0+X_-Xot l -2l~2[x-x~ 2 
+ f l h  c 0+ 2fi2 ~ , T ) 1 t } ]  

(44) 

where 1 o, too, lo, mo and ,'~ refer to uncorrected wind-tunnel data denoted hereafter by the subscript T. 

The interference upwash is made equivalent to incremental forces that theoretically cancel it. We 
first take the motion of oscillatory pitching with an upward displacement of the wing 

z = - 0olx -Xo) cos cot, (45) 

which leads to the complex upwash and force coefficients 

I -]t = 0 o 1 q i~(x O - xo) 

C1~ 20o(Io + iglo) 

Cm 20o(mo + i~mo) 

(46) 

To first order in frequency parameter the corresponding steady quantities from rotary pitching motion 
of angular velocity q = icoOo may be written as 

_ iOo~(X-Xo) ] 
U 

] CL = 2iOoglq 

C., = 2iOoflmq 

Equation (44) is therefore put in the form 

(47) 

~i(X) 20oS 
U C 

I6o(lo)T { 1 -t ig(x--X°) } { (m°)T + (l°)T X--X°} 

+2i~OoS 6 ' o t  {(lo)r--(mo)T--2(lo)T ; X o }  [ ~ (to)T + 6o x 

+ flh (m°)r+(l°)T--c--+ 2 f l2  ( l ° ) T ( ~  - (48) 
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where the subscript T denotes the tunnel value with wall constraint. The first term of equation (48) is 
exactly cancelled by equation (46) with pitching amplitude (20oS/C)~o(lo)r and is therefore contributing 
(2S/C)fio(Io)rI o to the derivative (lo) r, for example. Thus, from equations (46) to (48) we may write 

and 

2S 
(lo)r - lo = "-'( 

2S 
(too)r-- mo = - (  

+ ,m0)T } t0+ (10) lq 1 
}mo+- (lo)rmq] 

(49) 

(lo)r- lo = 
2S ~1~ Io + ~ (Io)rIq 

.jr (~1 ~ FL] ~(lo)rto+C~o{(lo)r(l~-2lq)-(mo)rlo} + ~  

2S ' .  61~ 
mo+ - ~  (lo)rmq 

~'oh 
+ - ~  ( lo)rmo + 6o { ( lo)r(mo - 2mq) - (mo)rmo} + ~ -1 

(50) 

where the quantities F L and F,, arising from the second and last terms of equation (48) are rather lengthy 
and require analysis by lifting-surface theory (Ref. 3). 

For this purpose it is convenient to quote Ref. 22, where in equations (39) the pitching derivatives are 
formulated. In the present notation 

-3 

lO = ~ ILl I 

t O = ~  f 1 2  M 2 1 - - ~ - I ~ t  x ~ i m  

too= V fl-----r-- Im2 X.,3 + 

+ -~ fl----5~ I z 2 + -flg l L 3 -- I ,~1 -- I m 

(51) 

where the coefficients are defined in equations (33) of Ref. 22 and the numeral subscript relates to the 
appropriate steady distribution of incidence 
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~ 1 = 1  1 

~2 = x/~ 

e3 from equation (23) of Ref. 22 with e = et 

~ = ( x / ~ )  2 

c~5 from equation (23) of Ref. 22 with c~ = e2 

(52) 

from equations (37) of Ref. 22. Likewise from Section 7.1. of Ref. 3 the rotary pitching derivatives are 

mq = ~ L lm2+--(lL2--Iml)--C IL 
(53) 

All five of the distributions in equations (52) are required to formulate FL and F,, in equations (50). By 
a straightforward analysis, based on Refs. 3 and 22, it can be shown that 

F L 

F,.  - x ° F L = ¢ 

1 M 2 M 2 

1 M 2 M 2 
+(Io)T { ~ ILs--~  IL4---~ Im2 } 

1 - 2 f i  2 

1 M z M 2 

1 M 2 M 2 ) 
+(t0)T{ ~1.5---12fi 3 .,4+2~31~2 ~ -  * 

1-2fl2 { , m 4 _ ~ l , . 2 + ( ~ ) 2 , m t }  
+ 4[~--(lo)T 

(54) 

It will be noted that the second factor in curly brackets in the first term of F L is simply (lo-l~) and relates 
to the part of the second term of equation (48) that is independent of x ; the remaining contributions 
from this and the final terms of equation (48) are equivalent to distortions of the wing in longitudinal 
bending. 

For the present investigation it is convenient to solve equations (49) and (50) for the unknowns (lo)r, 
(m0)r, (lo)r and (mo)r. We assume theoretical values of the derivatives from equations (51) and (53) without 
wall constraint and predict the wind-tunnel values to compare with those measured in the NPL slotted- 
wall tunnels. Thus 

(55) 

(lo)T - - c  '~°t° c I~h ~] +(mo)~ - ~  ~ t  =lo 

C ~ m 4  +(m°)r 1 C fih m° = mo 
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and 

( 1 - ~ - 2 S  6~  ) ( 2S 6,g ) 2S 
(lo)r - ado c flh 1~ +(mo)r C flh Io = lo+~2i 

(2S 2S6~ ) (  2S6~e "\ 2S 
( /o)r---~6omo - ~ - ~ m  +(mo)r 1 C - ~ m  9 =m°+-Cl~i 

(56) 

where 

2 i = -~-~(lo)rlo+6 o (lo)r(Io-21~)-(mo)rlo -)--~rL 
(57) 

6•h [ ] 6~g 
#i --~ (lo)Tmo + 6o (lo)T(mo-- 2mq)--(mo)rmo + - ~  F,~ 

with FL and F,, from equations (54). The formal identity of the left hand sides of the pairs of simultaneous 
equations (55) and (56) helps the computation. In most of the calculations the full equations (57) have 
been used, but the terms in F L and F,, are not of primary importance and have been omitted in a few 
instances. In such cases there is no advantage in simplifying the left hand sides as originally proposed 
in Ref. 10. 

Solutions for the corrected derivatives l o, too, lo and mo in terms of the wind-tunnel values are not 
possible with the full equations. But when the terms in Fe and F m are omitted, equations (49) and (50) 
yield 

t . ,  { Io l+-~-6o(/0)r+- C -~7(m0)r = (/0)r 1 lq 

( 1 2S 2S 2S 
--~(mo)rj ~ = (mo)r-(lo)r-~ -~mq mol  +-(ao(lo)r+-( 61e ) a~ 

lo {1+2--~ 6o(lo)r } 
2S 2S 61~ } 2S 6x? 

= (lo)~ 1 - - d  6oio c 13h l~ - (mo)~-d  -~ff 1o 

_(lo)r2S{6'oh } 2S - ~  Io- 26oiq + (mO)T ~ 601o 

(58) 

mo l +-~6o(lo)r = -(lo)r 6omo+~h mq +(mo)r 1 C flh m 

oo 2 o.} 
Equations (58) represent the best practical procedure for correcting a set of measured values (10)r, (m0)r, 
(/O)r and (mo) r. It must be anticipated that, due to various causes, these may be significantly different 
from those predicted by equations (55) to (57). Although theoretical values of the oscillatory derivatives 
need play no part in the practical interference correction, theoretical or empirical values of lq and mq 
must be known. It is no great task to obtain the aerodynamic coefficients in equations (53), but the flow 
may be such that theoretical values Of the rotary derivatives are quite untrustworthy and no estimates 
are available. Then it becomes necessary to omit terms from each of equations (58) and to incur some loss 
of accuracy, but the corrections are still worth applying (Section 6). 
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4. Application of Method. 

The method of interference correction described in the preceding sections is completely general as 
regards wing planform, pitching axis and subsonic Mach number. Although tile three interference 
parameters have only been formulated for tunnels of rectangular shape in Section 3.1., the method 
applies in principle to any cross-section for which the parameters are known, for example a closed cir- 
cular tunnel (Ref. 16): the bipolar shape appropriate to a half-model in a circular tunnel with reflection 
plane is considered crudely in Section 5.3. Furthermore, the restriction that the model is placed centrally 
on the axis of the tunnel is unnecessary, provided that the interference parameters can be adjusted. 
Most of the present calculations are for tunnels with solid side-walls, and Table 1 gives the values of 
rio, ~5~ and (Yo that are used. With the aid of Figs. 4, 5 and 7 it is just as easy to consider tunnels where 
the side-walls or all four walls are open. The mathematical analysis of Section 3.2. concludes with a pro- 
cedure for correcting measured pitching derivatives to free-stream conditions. Practical situations when 
there are insufficient experimental data are considered in Section 6. Although the analysis is specifically 
for dynamic measurements of pitching derivatives, a similar approach could be used for cases of ctmtrol- 
surface oscillation and other longitudinal wing motion. 

The Algol programme of Ref. 22 is particularly convenient for the evaluation of the required theoretical 
aerodynamic data, and the coefficients used in the present calculations are listed in Table 2. In Section 
4.1. the predicted effects of tunnel shape, pitching axis, Mach number and model size are examined for 
the two limiting cases of rectangular tunnels with open or closed roof and floor. Strictly the application 
to slotted-wall tunnel rests on a further assumption that the interference parameters ~ and '~'o arc linearly 
related to 6. as the slot geometry is varied. The curves for 3 o for ideal slotted roof and floor in Figs. 
2 and 3 enable this to be done, and in this respect it is fortunate that the slot parameter (1 + F) ~ from 
equation (4) usually lies close to the limiting value of unity for open roof and floor. A similar assumption 
enables us to estimate the effect of model span through changes in the steady interference parameter  
(5.. These two approximate extensions of the basic method are discussed in Section 4.2., where also 
rigorous allowance for the effect of a small frequency parameter is described. 

4.1. Examples ot Theoretical Predictions. 

The interference parameters are listed in Table 1 for five rectangular tunnels which include three NPL 
tunnels with half-models and intermediate breadth to height ratios. With the aid of the aerodynamic 
coefficients in Table 2, illustrative theoretical results at the three Mach numbers 0, 0.6 and 0-8 have been 
obtained for the unswept tapered planform shown in Fig. 9. Predictions for this and four other planforms 
are compared with experiment and discussed further in Sections 5 to 7. 

With fixed Mach number M = 0.8 and area ratio of planform to tunnel cross-section S/C = 0.1, the 
effect ofh/h on the pitching derivatives about the mid-chord axis is shown in Figs. 9 to 12. The constant 
free-stream values with no wall constraint are calculated from equations (51). The lift derivative ! o in 
Fig. 9 is subject to wall corrections of the order _+ 10 per cent according as the roof and floor are open 
or closed, more for the broader shapes and less for those near square. By contrast, wall interference on 
the cross-damping derivative 1 o produces the flfll and broken curves in Fig. 10 that differ by about four 
times the free-stream value of the derivative over the whole range 0-8 < b/h < 2.6. This at once establishes 
the seriousness of the predicted interference effect. For open roof and floor the sign of the derivative is 
affected, and the corrections arc greatest for the broadest shapes of tunnel ; the nearly square ttmnels sho,a 
a similar magnitude of interference whether the roof and floor are open or closed. This is roughly the 
trend shown by the dominant interference parameter fi{j in Fig. 7. The direct pitching derivatives m0 and 
m,) in Figs. 11 and 12 show much the same behaviour as 10 and 1,> respectively. The wall interference is 
again of opposite sign for the two wall conditions; the quasi-steady aerodynamic centre from equation 
(43) moves aft in the closed tunnels and forward with open roof and floor by small distances up to 0.014c 
in the broader tunnels, but by much less for nearly square cross-sections. The wall interference on m,, 
varies in magnitude from nearly 15 to 50 per cent and is consistent with observation in the NPL 25 in. x 
20 in. Tunnel (b/h = 1.905). 

The relative importance of the individual terms in equations (57) is illustrated in Fig. 13, firstly by 
including only the leading terms in 3{~ and secondly by ignoring the final terms in F,, and F,,. It has ahcady 
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been remarked that the unsteady interference parameter 6~) is of paramount importance in broad tunnels 
with open roof and floor. Here, with b/h = 1.905, the major part of the wall interference on the pitching 
damping is obtained over the whole range of pitching axis in the first approximation when 6o and 61 are 
both excluded from.the right hand sides of equations (56). Again, in Fig. 13, the major part of the deficiency 
in the first approximation is removed when in the second approximation the terms in 80 are added. 
Although the final terms in 6~ are worth including, their omission can be justified when, as in the practical 
procedure of equations (58), a real advantage accrues. 

Perhaps the most striking feature of Fig. 13 is the extent to which the wall interference on m o increases 
as the pitching axis moves aft. The change in the sign of the corrections as the pitching axis crosses a 
position near the aerodynamic centre is not surprising, since/~ in the second of equations (57) is dominated 
by its first term; therefore (m0) r - m 0  is expected to have the sign ofm o when ~ is positive. But it is notice- 
able how the secondary terms contribute to increase this difference for the rearward axes. The feature is 
not confined to the high Mach number 0.8, as a similar effect is apparent for M = 0.6 in Fig. 14. The 
latter illustrates that, for b/h = 1.905, the smaller interference effect from the completely closed tunnel 
is found over the whole range of pitching axis. 

Figs. 15 and 16 show two other aspects of the calculated wall interference on forces in quadrature with 
the pitching motion, which follow qualitatively from the terms in 6o. The curves of Io against Mach 
number in Fig. 15 are drawn as quadratic functions of 1//~ through the calculated results for M = 0, 
0.6 and 0.8; for the different wall conditions they are seen to diverge as M increases. The leading term 
in the first of equations (57) is roughly proportional to l~/~, and the interference is seen to grow slightly 
more rapidly than the factor 1//?. As model size increases, the contribution from the same leading term 
to the right hand side of the first equation (56) is proportional to (2S/C) (h/g), and therefore to (S/C)' "-. 
This effect is apparent for open roof and floor and a rearward pitching axis in the lower diagram of 
Fig. 16. The value of 6; is so much smaller for the closed tunnel, that the full curve oflo exhibits for small 
SIC the more familiar linear dependence shown by the lift derivative lo in the upper diagram. The con- 
clusion is reached that, unless g; is quite small, it is impracticable to reduce wall interference on dynamic 
measurements to negligible proportions by diminishing model size. When S/C = 0-02, for example, the 
wall interference with open roof and floor on I o in Fig. 16 at M = 0.6 is about 2 per cent while that on 
lo is no less than 50 per cent. This poses a serious threat to the validity of oscillatory experiments on half- 
models in rectangular tunnels with slotted roof and floor. 

4.2. Approximate Generalizations. 
From the boundary conditions for ideal longitudinal slots in Section 2 it follows that the present 

method of interference correction is applicable. It turns out in practice that the geometric slot parameter 
F is nearly small enough to be ignored. This is fortunate as there appear to be no reliable calculations 
of 61 and 6~ for rectangular slotted-wall tunnels; the best approach is perhaps by finite difference methods, 
and to this end Rushton has extended the electrical analogue of Ref. 8 to three dimensions. Unless values 
of 61 and 6~ are available, knowledge of 6o from Refs. 11, 12 and 14 must suffice. It will be assumed 
that, as F is varied, 61 and 6o are linear functions of 6 o. Thus, in the notation of Section 3.1, as 6o varies 
between the extremes of 6~ ~1 when F = 0 and 6~J~ when F = .zc, we take 

6 o  - 

' - " 0  - -  " 0  

(59) 

and a similar equation for c~;. The last term of equation (59) is in the nature of a small and approximate 
correction. Detailed calculation is perhaps superfluous here, so for simplicity the same equation (59) 
is used for the derivatives themselves and the factor involving 6 o is deduced from the full curves on the 
extreme left of Figs. 2 and 3. The resulting long-dashed curves in Figs. 12, 14 and 15 show the effect to 
be significant but not large. In practical application it is advisable to determine 6~01~, 6~o 4), 60, 6] 11, 6(~ I, 
6~ 1) and 6~ 4) and hence 61 and 6; on the principle of equation (59), and then to use equations (58). 
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While interference calculat ions for oscillating wings of large span are possible (Ref. 17), they are 
excessively laborious in practice, even when small frequency is assumed. Yet it is known that span ratio 
2s/h can have a marked effect on Do. The usual practice in steady flow is to evahlate the spanwise distribu- 
tion of interference upwash along a uniformly loaded lifting line of semi-span s, 

2L 
w, - . ~ = a o O , , s ) .  (6o) p c J c  

Then 6d0,0) is replaced by the average value 

1 

(8o) u = ~ 6°(Y's)d(y/s) 
0 

(61) 

for uniform spanwise loading, or preferably for elliptic spanwise loading 

11 
(00)E =!56 ~f (~0(Y't){ 1--(~i) 2 }!('i) 2 { l--(:) 2 } - ~ d ( : ) d ( . i )  " 

oo 
(62) 

A convenient  procedure  for evaluating (~$o)e is that used by Glauer t  for circular tunnels in Section 6 of  
Ref. 19. The function /)o(y,t) is expressed as a polynomial  in even powers  of the two variables 

6o(y,t ) = ~ Y, a,,,(2y/b)zm(2t/b) 2". 

Then from equat ions (62) and (63) 

E,, E,  ( 2 s )  2"+2" 
(6o)e = 4 Z  Z am, 2 m +  1 /5 

where 

1.3.5 . . . .  (2P+ 1) fo rp  = 0,1,2 . . . . . .  
Ep = 2.4.6 . . . .  (2p + 2) 

Now for closed sides and open roof  and floor it can be shown that 

(63) 

(64) 

O~o 'a') (yd) - 8a.(y 2_1.2) F 16t coth " b coth , (65) =_ 

and numerical  values of a,,,, may  be found. Calculat ions with m,n = 0 ,1 , . . . .  4 give the broken  curves of 
(($o)~ against  2s/h in Fig. 17 for square and duplex tunnels. The full curves for completely  closed tunnels 
are based on Table  6 of  Ref. 19. The effect of  wing span is clearly more  impor tan t  in the broader  tunnel 
when the theory for small span can be expected to overest imate  the wall interference for both  types of  
roof  and floor. It is quest ionable  to what  extent the factor (?io)E/8 o can be applied to ~$1 and ($'o and so 
to the increments  to the derivatives, but this simple device indicates the order  of magni tude  of the effect 
on l0 and l o in Fig. 16. When S/C = 0-1 in Fig. 16, the span ratio 2s/b = 0.48. While for larger spans it 
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would seem desirable to examine the interference parameter 6; more thoroughly, the factor (6o)J8 o 
may well be adequate up to this size of model. Then its effect is comparablewith that of the geometrical 
slot parameter discussed earlier. 

The third generalization of the method concerns the frequency parameter. It has been demonstrated 
from lifting-surface theory by Garner and Milne z3, that in the limit as frequency tends to zero there are 
very simple expressions for the rates of change of damping derivatives with respect to frequency parameter. 
In the present notation equations (18) and (19) of Ref. 23 become 

8~ (too) = Alomo 

(66) 

where A is the aspect ratio. The results hold for any uniform subsonic free stream. Now, if K(x-x ' ,  
• y - y ' ,  z - z ' )  denotes the kernel function of the integral relation between upwash and lift distribution, as 

in equation (1) of Ref. 23, under the constraint of rectangular tunnel boundaries K" is simply replaced by 

K r ( x -  x , y -  y , z -  z') = ,...,~ ( j )K . ( x -  x', y -  y' - m b ,  z -  z ' - n h ) ,  
- - o 0  

(67) 

where j is defined in equations (17). The analysis of Ref. 23 follows with R replaced by K~T, since the 
additional terms in equation (67) do not influence the singularity in the expansion for small frequency 
that leads to equation (66). Hence 

J 
(68) 

By equations (56) and (68) the slope as well as the limiting value of the damping derivatives can be predicted 
to compare with experimental values plotted against frequency parameter. The results in equations (68) 
can also be derived from equations (54) to (57) by applying equations (66) and noting that in equations 
(52) only aa and as are affected and the corresponding coefficients satisfy 

8 1 I 

c~ x o 
2fi3~, s+ c } 

--1"°21 ] 
= - ~  Alomo 

Practical applications of equations (68) are discussed in Section 5.3. 

(69) 

23 



5. Measm'ed  and Predicted Pi tching Derivatives.  

Tile survey of available experimental evidence prepared by Wighi ~' indicated that dynamic measure- 
ments might not always be subject to the htrge wall interference effects shown in Fig. 1, The tunnel-model  
configurations were too few for a definite pattern to emerge, but the additional restllts from the present 
experimental investigation enable a satisfactory comparison with theory to be made with a systematic 
wiriation of the most important  parameters involved. 

Tile effect of  tunnel shape is assessed from experiments done mainly in the three N PL tunnels shown in 
Fig. IS, ench having a slotlcd roof  and floor. The cross-sectional areas of lhe two larger tunnels arc 
appr(>xilnatcly equal, whilst the 25 in. × 20 in. Tunnel and the 9~ in. × 91 in. Tunnel are of more similar 
cross-sectional shape. It should be noted that the actual working-section heights h, measured "between 
tile slolted walls, are less than the nominal heights which describe the original tunnels with solid liners 
fitted. In addition, the effective breadth (h) of each of the tunnels is twice the actual breadth since till the 
lests :ire made with a halgmodel  rnounted on a solid side-wall. This configuration is equivalent to one 
in which a full-span model is tested in n tunnel of twice the breadth. The effective breadth to height ratios 
o['lhe tunnels arc indicated, and these show lhat the 36 in. × 14 in. Tunnel behaves as ifil is nearly square 
and the 25 in. × 20 in. Tunnel behaves as if it is nearly duplex. The two rigid half-models of M-wing and 
unswept-wing planform shown in Fig. 18 were both tested in each of the two larger tunnels, and most 
o f lhc  present tests were done with the rigid half-delta-model of aspect ratio 4 ..... 26~ m the 9~ in. "~ 9~ in. 
Tunnel. ThN model was also used in a brief experimental p rogramme in the 18; in. × 14 in. Tunnel. and 
~l few additional tests in the 9~ in. × 9 ~, in. Tunnel were made with the half-della-model of aspect ratio 
<1 .... 3. The mot ion was restricted to single degree of freedom pitching, and in most cases only pitching 
mon3cnt derivatives were measured tor subsonic Mach numbers  in the range 0.4 ~ M ~ 0.9. The facilities 
in the 9-12 in. x 9~ in. Tunnel  allowed a wlriation in the position of the pitching axis. In every case, measure- 
menls were obtained with till the slots open kind with all the slots closed. 

In Section 5.1, the previous results tor models in the 36 in .×  14in. Tunnel and the 25 in. × 20 in. 
Tunnel arc compared  with theory. Similar comparisons  with measured derivatives from the present 
invesligalion in the t)~ in. > 91 in. Tunnel are discussed in Section 5.2. The theoretical derivatives for 
each tunnel condilion are determined from equations (551 to (57), kind a good assessment of the accuracy 
of  the theory is obtained. Satisfactory correlation is found for the 25 in. × 20 in. Tunnel and the 9=~ in. × 9~ 
in. Tunnel, but there are unresolved discrepancies in the case of the 36 in. x 14 in. Tunnel where, by con- 
lrasl with experiment, the theory predicts very large changes due to sealing the slots. The present ex- 
periments cover fiequency parameters in the range 0.03 < i; < 0-28. As discussed in Section 4.2., some 
theoretical allowance can be made for such small frequency parameters, and evidence to support  this is 
fnund in Section 5.3. There is also an approximate  analysis for a half-model in low-speed closed and 
open circular tunnels with reflection planes, and measurements in the range 0-37 < i; < 1-35 are considered. 

5.1. Evidence j k o m  Pret:ious 7bsts. 

Wc first discuss the experimental restllts obtained several years ago in the 25 in. x 20 in. Tunnel and 
the 36 in. x 14 in. Tunnel. For the M-wing in the former tunnel with varying numbers  of slots. Fig. 1 
shows a systematic variation of  the pitching damping derivative with the slot pararneter (1 +-F) ~ for 
several Math  numbers. For  M -  0.g, a smooth extrapolated curve is drawn through the experimental 
points to give an estimated value for a tunnel with an open roof  and floor. For  this tunnel condition and 
for a completely closed tunnel theoretical values of the derivative, based on equations (55) lo (57) without 
the terms in t," L and F,,,, are shown. These are the best thai can be obtained from available theoretical 
d{ll~124 tllld correspond to lhe second approximat ion in Fig. 13 which is expected 1o give s',llisl'a~t~r', 
\r~l]l, leS ]l iS e\idcnt 111:.1l the change in m O between the tx\o extreme conditions is predicted rci>;~mabl 5 
well. Ahhough lie{ shown, the pitching stiffness derivative is less sensitive to wtlll interference, hut *he 
changes of order 10 per cent are in reasonable accord with theory. 

Seriously large interference effects were also found when a more conventional unswept wing was 
lesled ill the 25 in. , 20 in. Tunnel. Pi tching-moment  derivatives were measured as for tile Al-wing tests 
but restllts \\,ere obtained fi~r only two tunnel-wall conditions, namely all the slots open and kill the slots 
sealed. Values of the dampine  derivative for oscillations about a mid-chord pitching axis are plotted 
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against Mach number in Fig. 19. The theoretical treatment by means of equations (55) to (57) is applied 
and the predicted values are in good agreement with the experimental results. With slots sealed the results 
closely follow the trend of the theoretical curve but consistently show a slight reduction in magnitude. 
This is the sort of difference that may arise from any linearized theory which neglects the wing thickness 
and the boundary layers of the half-model and the side-wall on which it is mounted. A comparison 
between experimental and theoretical values with slots open shows remarkably similar agreement when 
the relatively small correction for slot parameter is included. In accord with the predictions of Section 
4.1., the difference between the measured values increases with Mach number by a factor just greater 

than 1~ft. 
Some results for the same unswept wing pitching in the 36 in. × 14 in. Tunnel are given in Figs. 20 and 

21 which show the variation with Mach number of the two in-quadrature derivatives m0 and lo. Com- 
parison of Figs. 19 and 20 shows that the theory predicts practically the same overall differences in m~ 
due to sealing the slots in the two tunnels, but for the 36 in. x 14 in. Tunnel (b/h = 0-91), closed and open 
roof and floor give approximately equal and opposite effects. These contrast the corresponding results 
in the broader 25 in. x 20 in. Tunnel (b/h = 1"905) where the open roof and floor contributed a very large 
proportion of the wall interference. The results for the lift derivative l o in Fig. 21 indicate a particularly 
large interference effect with slots sealed, which is confirmed in magnitude and trend by the experinaental 
results. Measurements with slots open are not as predicted, being of the opposite sign and quite near the 
theoretical curve for slots sealed. This discrepancy is discussed fully in Section 7. 

The present theory satisfactorily explains the large interference effects observed when the unswept 
• wing was tested in the 25 in. x 20 in. Tunnel, even when the sealing of the slots caused the pitching damping 
to double in value. With reference back to Fig. 14, it is predicted that these effects would become even 
larger if the pitching axis were moved downstream. Unfortunately, the previous tests were restricted to 
the one pitching axis, but the present measurements on a delta wing in the 9½ in. × 9½ in. Tunnel will 
be seen to indicate that this prediction is probably correct. 

5.2. P r e s e n t  E x p e r i m e n t a l  Ev idence .  

The present tests in the 9½ in. x 9½ in. Tunnel involve two rigid half-span models of cropped-delta 
planform of aspect ratios 2.64 and 3, described in Ref. 5 as 'Arrowhead No. 1' and 'Delta No. 1' respec- 
tively. As in the previous tests, boundary-layer transition was fixed by a roughness band near the leading 
edge. The oscillating rig is basically the model mounting shown in Fig. 6 of Ref. 25 ; no reflection plate 
was used, but the models were fitted with root fences. A few modifications have been made : the incidence- 
compensating spring and the eddy-current damping facility were removed, and two new cover plates 
and a new model mounting platform were fitted. With this platform three locations of pitching axis can 
be used, xo = 0-31~, 0.65~ and 1.04~ for the A = 2.64 delta wing and Xo = 0'55/:, 0-96/~ and 1.42~ for the 
A = 3 delta wing. The bulk of the experiments have been done with the A = 2.64 delta, for which the 
centre axis passes very close to the aerodynamic centre whilst the other two axis positions are as far 
upstream and downstream as practicable. Pitching-moment derivatives have been determined for Mach 
numbers in the range 0.38 ~< M ~< 0.78 about each of the three axis positions with all slots open and with 
all slots sealed, but no lift derivatives could be measured with the apparatus. The frequency of oscillation 
is varied from 12 c/sec to 85 c/sec by using four torsion bars of different stiffnesses with masses added 
when appropriate. A decaying oscillation technique is used to determine the damping derivative. The 
decaying signal, recorded electronically as described by Wight and Nixon 26, is analysed by Bratt's 
electronic integration method, described in Section 5.1.1. of Ref. 27, to give a value of too. The stiffness 
derivative mo is determined by measuring directly the change in frequency of oscillation from still-air 
to wind-on conditions and applying equation (26) of Ref. 27. Mean values from at least three separate 
decaying oscillations were determined. With the exceptions mentioned in Section 5.3., the scatter about 
the mean values of both damping and stiffness derivatives was of the order _+ 3 per cent. This was accept- 
able in view of the expected large interference effects. Measured values of the stiffness derivative and 
the damping derivative are given in Tables 3 and 4 respectively ; for reasons given in Section 5.3., the data 
plotted in Figs. 22 to 25 correspond to the averaged m o for the two lowest frequencies and the averaged 
- m  o for the two highest frequencies. 
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Calculations have been made for the Mach numbers 0, 0.661 and 0.866 for which aerodynamic co- 
efficients are available in Table 2. Figs. 22 and 23 show m0 against axis position and Mach number for 
the A = 2.64 delta wing, and in each case there is convincing agreement between the measured varialion 
and that predicted by equation (55). Apart from a range of axis position near the aerodynamic centre 
of the model where the interference is small, m o is numerically larger with slots sealed than with slots 
open and the interference effect increases linearly as the axis position is moved away from the aerodynamic 
centre. This is illustrated in Fig. 22 for the Mach number M = 0.66 used in the theoretical calculations: 
the experimental results are interpolated. Fig. 23 shows a small increase with Mach number in both 
calculated and measured wall interference. 

The corresponding variation of the damping derivative with axis position and Mach number is shown 
in Figs. 24 and 25. The allowance for slot parameter is very small and has not been plotted. By means of 
equations (55t to (57) it is predicted in Fig. 24 that m 0 will be subject to much larger wall interference for 
a downstream pitching axis than for an upstream one. This trend is similar to that shown in Fig. 14 for 
the unswept half-wing in the 25 in. × 20 in. Tunnel. However, in the present case very small interference 
corrections to m0 are predicted for an upstream pitching axis, and the theoretical curves for the closed 
tunnel and for open roof and floor do not intersect. This is contrary to the predictions for the unswept 
half-wing in Fig. 14 and to experiment in Fig. 24 where the effect of sealing the slots is of opposite sign 
for downstream and upstream pitching axes. With the slots sealed, the measured values are consistently 
just below the theorelical curve. The results with slots open are in fair agreement with calculation, but 
for the forward axis the predicled wlhle is exceeded. This disparity is found o,,er a range of Math number 
in Fig. 25, where for the pitching axis .x'~j = 0.31/~ the calculated interference effect due to sealing the slots 
is evidently too small and of wrong sign. 

Although the corresponding comparison for the second delta wing (A - 3) in Fig. 26 shows better 
agreement, the calculated slotted-wall interference effect is still rather small. The reason for this dis- 
crepancy is not clear, but it may be associated with the approximations made in the small-wing interference 
theory. For the delta wings oscillating about rearward pitching axes the ($0 terms are an order of magnitude 
larger than the other terms on the right hand sides of equations (57). The neglected terms can therefore 
be regarded as a further order of magnitude smaller and a good agreement between theory and experiment 
is expected. With forward pitching axes, the '~'0 terms are only dominant for small models. The cumulative 
effect of the neglected terms may now become significant if the area ratio S/C is too large. Support for 
lhis idea can be gleaned from the fact thai the smaller of the two models in Fig. 26 (S/C -- 0-107) gives 
appreciably better comparisons than the larger model (S/C = 0"137) in Fig. 25. There is further evidence 
in Fig. 27, which shows some results for the A = 2.64 delta wing in the 18 in. × 14 in. Tunnel with the much 
smaller area ratio S/C = 0-042. For the same forward pitching axis that was used in lhe 9~ in. × 9½ in. 
Tunnel, the magnitude and sign of the effect of sealing the slots is now in accord with theory. For the 
rearward pitching axis, Figs. 25 and 27 show that this effect only decreases roughly in proportion to 
(S/C) '2, as anticipated at the end of Section 4.1. 

The effect of Mach number is shown in Figs. 25 to 27. Results for the middle pitching axis were obtained 
for the A = 2.64 delta wing but have not been plotted as the measurements were insensitive to the slotted- 
wall condition. For the forward pitching axis in Fig. 26, the predicted effect of sealing the slots decreases 
at the higher Mach numbers. This unusual trend arises because the constraints for the two wall conditions 
are of the same sign and that for slots sealed increases more rapidly with Math  number. With slots sealed 
all the experimental points are consistent apart from possible discrepancies for wing thickness and 
boundary layers of model and side-wall: the last of these probably explains the larger discrepancies in 
Fig. 27, since the boundary layer then extends over much of the model. As half-model sizc is reduced, this 
type of discrepancy is likely to become serious before the slotted-wall interfcrencc is acceptably small. 
A general increase in wall interference with Mach number is indicated for the rearward axis positions 
and the interference effect can be seriously large. For the A = 3 delta with xo = 1-420/: in Fig. 26 for 
instance~ the measured wdue of the damping derivative at M -- 0.78 drops from 0.63 with slots sealed to 
0.17 with slots open. This large drop is predicted extremely well by the theory which gives a corresponding 
drop from 0.70 to 0'25. The calculated free-stream value of 0-62 indicates that the bulk of the large effect 
stems from slotted-wall interference. 
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5.3. Effect of  Frequency Parameter. 

Results have been obtained for several frequencies of oscillation giving frequency parameters in the 
range 0.03 < ~ < 0.28. Typical variations with frequency parameter for the Mach number M = 0"58 are 
shown in Fig. 28. At the lowest frequencies of about 12 c/sec, the amplitude of the decaying oscillations 
was subject to considerable fluctuation, possibly due to the high turbulence in the 91 in. x 9½ in. Tunnel. 
The values of the damping derivative from repeated experiments at the lowest frequency were therefore 
considerably scattered about the mean value shown in Table 4. Conversely, less confidence is placed in 
the values of the stiffness derivative measured at the highest frequency. In this case, the system is sharply 
tuned and the change in frequency from still-air to wind-on conditions is very small, being of the same 
order as the stability of the apparatus. Since the derivatives mo and - mo vary little with frequency, mean 
values from the two lowest frequencies in Table 3 and from the two highest frequencies in Table 4 have 
been used in Section 5.2. 

Under free-stream conditions the initial rate of change of damping derivatives with frequency parameter 
may be calculated from an exact theoretical result of Garner and Milne 23. As discussed in Section 4.2., 
the same principle holds under wall constraint and equations (68) are derived. For the range of frequency 
parameter shown in Fig. 28, the measured values of - mo follow the predicted linear trend. With a forward 
pitching axis (mo negative) there is a general increase in the values of -mo  with increasing frequency and, 
also in accord with the second of equations (68), there is a corresponding decrease for a rearward pitching 
axis (too positive). Theoretically the pitching stiffness is known to be independent of small changes in 
frequency parameter, and the constant values of mo in Fig. 28 are calculated from the present wall- 
interference theory. There is apparently no measurable effect of frequency on the values of mo over the 
range of ~ available. The drop in the value for the highest frequency with slots sealed was not observed 
at other Mach numbers. It seems that at least for ~ < 0"2 a variation in frequency of oscillation has little 
effect on the magnitude of tunnel interference. 

A much wider range of frequency parameter is covered by Guyett and Curran 28 in their measurements 
ofpitching-moment derivatives about the leading edge of a rectangular half-model. The wing was mounted 
on a reflection plane near the floor of a closed circular tunnel, so that the configuration is equivalent to 
a complete wing in a closed bipolar tunnel. Guyett 29 has supplied unpublished values of m 0 and m,~ for 
the corresponding open circular tunnel with reflection plane and tile results in Fig. 29 show important 
changes due to interference. The steady interference upwash parameter ((5o)v from equation (61 ~ is analysed 
by Kondo a° for uniformly loaded wings in this shape of tunnel, but the interference parameters 61 and 
6~ have not been formulated. However, from Figs. 4, 5 and 7 the interference parameters 60, 61 and 6; 
can be obtained for small wings in closed or open rectangular tunnels of the same breadth to height ratio 
b/h = 1.866. As suggested in Section 4.2., a correction factor (6o)v/6 o is applied to each interference 
parameter so that g0 is the same as (6o)v in the bipolar tunnel ; for the particular span 0.598b, (6o) v = 0.0853 
and -0.2382 respectively for the closed and open bipolar tunnels. Despite the use of such a crude approxi- 
mation there is remarkable agreement between the measured and p3~edi~'ted values ofm o. The predictions 
are less satisfactory for the pitching damping, although an interference effect of the correct sign is indicated. 
Since the model has a forward pitching axis and a very large area ratio SIC -- 0.24, the cause of the 
discrepancies is thought to be similar to that discussed in Section 5.2. for the delta wings. The predicted 
variation in mo with frequency is calculated from the second of equations (68). In view of the possible 
error in the magnitude of the theoretical interference effect, only the gradients of those curves should be 
considered. Unfortunately, there are no experimental results at a suitably low frequency for comparison. 
It is interesting that the measured differences in the values of the derivatives show little effect of frequency 
on tunnel-wall interference until the frequency parameter is of order unity. 

6. Practical Correction for Wail Interference. 

It is not always easy or convenient to calculate theoretical values of aerodynamic derivatives, especially 
for complete aircraft or under conditions of separated flow. For the present purpose of confirming the 
validity of the interference theory, tests were made on wing models amenable to a theoretical study and 
the interference theory is suitably formulated in equations (54) to (57). However, in a practical application 
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il is dcsir~tblc to calculatc corrections to measured dcriv~tivcs to give corresponding vahtcs in an tin- 
constrained flow. The equations are inverted wilh suitable approximations, and equations (58) can be 
used to determine the free-slream pitching derivatives from their measured values if the rotary deriv~ltivcs 
[~t 3FId tnq in an unconstrained flow can bc estimated. If, however, ]q and mq are not available, great simpli- 
fication is necessary. All but the dominant terms are then ncglected in equations (58), so lhal 

I, = (lo), r + C 6o(Io) r 

[ 1 mo = (too),1. 1+ 

[ 2S 6'oh ] [ 2S6 i ] - '  
: m, 1 + - 6  ol o/-,,J 

(7O) 

where the subscript Tdenotes a derivative measured in the wind tunnel. 
The accuracy of the corrections determined from equations (58) or (70) may be assessed by applying 

them to the calculated tunnel values of the derivatives. Figs. 30 and 31 show theoretical curves of pitching 
damping against axis position, respectively for the unswept half-wing at M = 0.80 in the slotted 25 in. x 
20 ill. Tunnel and for the delta (A = 2.64) at M = 0-66 in the 91 in. × 9½- in. Tunnel. In both cases the 
corrected values of mo from the alternative equations (58) and (70) are compared with the original theo- 
retical calculation without wall constraint. The simpler set of equations gives a fairly good approximation 
to the original curve, but in both Figs. 30 and 31~Ihere is only a narrow range of pitching axis for which 
equations/58) do not improve the approximation. Nevertheless, for a practical application, the simpler 
approximati~m gives a fair guide to the magnitude of wall constraint. The presence of large interference 
can be delccted readily by equations (70), whilst a small correction implies that the wall-interference 
effect is small. In either case more accurate estimates can be obtained by equations (58i, provided that 
satisfactory values of the rotary derivatives are available. 

The choice of procedure will be influenced by the type of model and the scope of the measurements;  
four different situations and methods are summarized below. 

(1) If a reasonable degree of confidence can be placed in the theory of Ref. 3, equations (58) should 
be used when all four derivatives are measured. If, however, only (too) r and (m0)T are measured, then 
l o, l 6, lq and mq may be calculated by Ref. 3 or Ref. 22 so that the four equations (58) determine (lo),r, too, 
(lo)r and mo respectively. 

(2) When the unconstrained flow is qualitatively beyond the scope of lifting-surface theory and all 
four pitching derivatives are measured, wall interference should be evaluated by equations (70) since 
calculated free-stream values of lq and mq are untrustworthy. 

(3) If only the pitching-moment derivatives, (mo)r and (mo)r are measured about two axes x0 = x~ 
and xo = x2, say, and the frequency parameter is small, the lift derivatives can be deduced. It follows 
from equations (51) that 

( /0 ) r l  = (10)r2 = (mo)rz--(mo)ra 
(x  2 --x1)/c 

(lo)r~ - (mo)r2 = 
(m0)r2 -(mo)rl 

x2 -x~)/~ = (Io)r2 - (mo)r~ t (71) 

According to the type of flow, method (1) or (2) may then be used. 
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(4) If (m0) r and (m0)r are measured about a single axis, no corrections can be applied without empirical 
or theoretical aid. But there should be little difficulty in estimating lo, so that (10) r and hence mo and m0 
can be evaluated from equations (70). 

Method (3) is appropriate for calculating lift derivatives from the present measurements of direct 
pitching derivatives in the 9½ in. x 9½ in. Tunnel. In Fig. 32a, values of (10)r deduced from the second of 
equations (71) are compared with theoretical curves given by equations (54) to (57). There is reasonable 
agreement between the estimated and predicted tunnel values, and both sets give a further indication of 
dramatically large interference in a typical experimental configuration. The result of correcting the de- 
duced values by methods (I) and (2) is illustrated in Fig. 32b. Since the terms omitted in method (2) give 
contributions of opposite sign for the two wall conditions, the corrected values, shown as small dots, 
are less convincing than the comparisons in Fig. 32a. Method (1) is quite satisfactory, since the corrected 
experimental values from the tunnel with slots sealed, shown as solid circles, lie very close to the theoretical 
interference-free curve whilst the corresponding open circles corresponding to open slots are displaced 
from it by amounts consistent with Fig. 32a. It follows that a reasonable estimate of the corrected lift is 
possible, even when only the pitching-moment derivatives are measured and the results are particularly 
sensitive to the tunnel boundary condition. 

7. Non-Ideal Slotted Walls. 

It has been shown that the present theory successfully predicts the tunnel-wall interference effects in 
both the 25 in. x 20 in. Tunnel and the 9½ in. x 9½ in. Tunnel. The predictions are confirmed experimentally 
for the 36 in. x 14 in. Tunnel with slots'sealed, but with slots open the correlation disappears. Indeed, 
in Figs. 20 and 21 for the unswept wing, mo and lo vary with Mach number as if the interference effect 
of the slotted walls were more like that of a sealed wall. Fig. 12, showing the typical effect of a variation 
in tunnel cross-sectional shape for a fixed area, includes measured values of m 0 in the 36 in. x 14 ill. 
Tunnel (b/h = 0.91) and the 25 in. x 20 in. Tunnel (b/h = 1'90s) and demonstrates clearly that it is the 
former tunnel with slots open which is not behaving as expected. Corresponding results for too, given in 
Fig. 11, show much less interference effect and are harder to interpret, as the measured values do not 
agree particularly well with the theoretical curves. Nevertheless, they confirm that the effect of sealing 
the slots of the 36 in. x 14 in. Tunnel is much smaller than the predicted difference, whereas a similar 
comparison for the 25 in. x 20 in. Tunnel shows better agreement. The authors believe that the behaviour 
of the 36 in. x 14 in. Tunnel with slots open can be explained by the action of viscosity at the slotted 
walls. 

Although no allowance for viscosity can be made in the present theory, the appropriate change of 
boundary condition in steady flow has been discussed in Section 2 and the typical behaviour of 6o is 
shown in Figs. 2 and 3. If the porosity parameter fl/P is changed from zero to be of order unity in a square 
tunnel, for instance, there is a significantly large change in ~o from -0.125 for an open roof and floor 
to a small value of positive sign as for a closed tunnel. A similar result is obtained for an ideal slotted 
tunnel (P-* oz) with (1 + F)-1 of order 0-5, so that in steady flow viscosity reduces the effective open area 
ratio of a slotted wall. It might also be anticipated that, as the Mach number approaches unity and 
fl--, 0, the porosity parameter fliP becomes small and an ideal slotted condition with negligible viscous 
effects is approached. The oscillatory results obtained in the 36 in. x 14 in. Tunnel show both these 
trends. In Figs. 20 and 21 there are very small changes in the derivatives due to sealing the slots at l o p  
Mach numbers. However, as M increases, there is an increasing &fference between the values measure6 
with the two slot conditions, the results with slots open falling away from those with slots sealed towards 
values appropriate to an ideal slotted roof and floor. This suggests that with changing [3/P the unsteady 
interference upwash may behave like 6 o. 

The 36 in. x 14 in. Tunnel and the 25 in. x 20 in. Tunnel have the same open area ratio (0-091) and 
the same number of slots (11). The slots in the 36 in. x 14 in. Tunnel are therefore narrower than those 
in the 25 in. x 20 in. Tunnel, and it is physically reasonable that viscosity could affect the former tunnel 
more than the broader 25 in. x 20 in. Tunnel. A similarity parameter is desirable to indicate the sensitivity 
of slotted-wall configurations to viscous effects, and Goethert 's 1 study of perforated walls in steady flow 
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may offer a clue. The linearized steady boundary condition at a perforated wall from equation (5) with 
K - 0 is equivalent to proportionality between the pressure drop through the wall and the velocity 
normal to it, viz., 

pU 
6p = ~ -  v,.  (72) 

Goethert  suggests that the ratio of boundary-layer displacement thickness 5" to hole diameter D is im- 
portant, and that viscous effects on P are likely to grow suddenly as 6*/D increases above about 0.75. 
Evidence of such a critical value from Ref. 1 is reproduced in Fig. 33. For Mach numbers of 0.75 and 0.80, 
the pressure drop 5p across the wall is related to the mass outflow pv,, through a perforated wall of open 
area ratio 0.225, (a) when D = ~ in. and the wall is i*~7 in. thick and (b) when the thickness is the same 
but D = ~ in. With the larger holes, the pressure drop increases linearly with increasing mass outflow 
in Fig. 33b, so that by equation (721 the effective parameter 

. . . . .  " - 0"4. 
P 2 ¢3(pv,/,o,. U) 

(73) 

The smaller perforations again give fi/P - 0.4 when the mass-flow parameter in Fig. 33a exceeds 0-03 : 
below this there is an abrupt change and the pressure drop shows considerable scatter but tends to remain 
constant. The perforated wall is thus behaving almost as if it were solid corresponding to a large wtluc of 
fi/P in place of equation (73). For small mass ['low and small perforations when 6*/D is large, Goethcrt  
suggests that viscous effects govern the wall characteristics. With increasing mass outflow ~5*/O decreases 
until it reaches some critical value near 0-75 below which the viscous effects disappear rapidly and fliP 
is determined by the wall geometry. For the wall with perforations eight times larger, the boundary 
layer will be smaller relative to hole size and will give a subcritical value of 5*/D throughout Fig. 33b. 

A rapid increase in the effect of viscosity in a slotted tunnel similar to that shown in Fig. 33 could explain 
the drastic discrepancy in Fig. 12 for the 36 in. x 14 in. Tunnel (h/h = 0-911 with slots open. As the 
boundary-layer displacement thickness (~* has little meaning in this case, it is tentatively suggested that 
viscous effects in a slot of width a may grow in proportion to the ratio l=/a where 1, is the distance between 
the model and the upstream end of the working section : future work may well show that plenum-chamber 
depth, amongst other factors, is important in this respect. The 'A ratio'  of the measured change to the 
predicted change in m0 due to sealing the slots is plotted against l,/a in Fig. 34 for delta and unswept 
tapered wings with rearward pitching axes in the three slotted tunnels shown in F'ig. 18. As a further 
check, some results haxe been obtained from the NPI~ 18 in. × 14 in. Tunnel with full slots and x\ith slot 
width crudely narrowed by about 30 per cent by means of tape. This reduction m slot width produces a 
negligible change in the geometric slot parameter (1 + F ) ~  from 0.91 to 0.90. Krona Fig. 34 it is clear thai 
the A ratio is dramalically reduced from about 1 when I,, o is small to low values when t'~,et is large and 
the slot width is relatively small. Although the analysis in Fig. 34 for ]d = 0.6 and ),1 (t.8 inxolves 
variations of ntlmerous parameters, two significant points emerge. Firstly, the 36 in. *, 14 in. Tunnel 
gives small A ratios, whcreasthe 18 in. × l din. Tunnelwith identical slots and 30 per cent shorter upstream 
working section gives A ratios of about two thirds. Secondly, when the slot width in the 18 in. × 14 in. 
Tunnel is narrowed to give I=/a roughly equivalent to the 36 in. x 14 in. Tunnel, the A ratio falls by 26 
per cent at M = (1.6 and by 16 per cent at M = 0'8. Fig. 34, although inconclusive, may provide a plausible 
explanation of the results in the 36 in. x 14 in. Tunnel. The slotted wall appears to behave as if it were 
practically closed, not because of small open area ratio, but because of the small relative slot width 
a/'l,,, which may be associated with low porosity in terms of the parameter  fliP. Indeed, the fall in A ratio 
is noticeably less at the higher Mach number when/~/P is expected to be smaller. 

Unfortunately it is difficult to estimate a value of P for steady flow in a tunnel with slotted walls. A 
further difficulty arises with unsteady flow because it is possible that there is a phase lag betwccn the 
pressure drop and the mass outflow. In the present theory, it is assumed that viscous effects arc qmtll. 
As discussed in Section 3, the simple relationship (12) between the steady and the unsteady upx~a~h 
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interference may not hold without this assumption. If, however, fliP is very large for slotted tunnels, 
the present corrections for closed walls should be adequate. Most of the present experimental data can 
be explained satisfactorily on the basis of very small or very large fliP although the few results from the 
18 in. x 14 in. Tunnel suggest that an intermediate condition can exist. Further work is planned to 
inve'stigate experimentally the effect of an artificial increase in the viscous effects at a slot ; it is necessary 
to establish that such an increase can greatly reduce the change in measured damping due to sealing the 
slots. 

8. Concludin9 Remarks. 
(1) It is shown that large wall-interference effects on dynamic measurements observed with half-models 

in slotted tunnels Can be satisfactorily explained by an extension to the classical theory of steady lift 
interference. With the assumptions of relatively small model span, small frequency parameter and open 
instead of slotted boundaries, the method gives theoretical pitching damping derivatives whose values 
are confirmed by experiment in two NPL tunnels, even when the changes due to sealing the slots exceed 
30 per cent (Sections 5.1. and 5.2.). 

(2) The large effects with slotted roof and floor are shown to stem from the parameter 6b which re- 
presents the wall-interference upwash in quadrature with the pitching motion of the model. For the crucial 
case of rectangular tunnels with closed side-walls and open roof and floor, particular care is needed in 
the formulation and evaluation of 6~ (Section 3.1.). This parameter alone determines the major effects 
of tunnel shape, model size, Mach number and pitching axis on the damping derivatives (Section 4.1.). 

(3) Subsonic lifting-surface theory is used to interpret the interference upwash as incremental forces 
on the model (Section 3.2.). Equations (54) to (57) are then derived such that values of the pitching deriva- 
tives in a tunnel can be predicted for direct comparison with experiment. Approximations to these 
equations are inverted to give equations (58) which are recommended for practical application. Measured 
derivatives can thus be corrected for wall interference with little or no reference to lifting-surface theory 
(Section 6). As a crude, but instructive, approximation the incremental corrections to the damping 
derivatives are concisely 

l o - - ( l o ) T  - -  4!s~; 

4s6'o 
too- (m0)r = - fi~- (10)r (m0)r. 

(74) 

(4) In some respects the present method is more general than the formulae suggest (Section 4). In 
particular, approximate allowance may easily be made for the geometric slot parameter and for the ratio 
of wing span to tunnel breadth (Section 4.2). The first order effect of frequency parameter on the damping 
derivatives under wall constraint is given very simply in equations (68) which should cover the range of 
frequency parameter normally encountered in slotted-wall tunnels. Limited experimental confirmation 
of the frequency effect is found (Section 5.3). 

(5) The location of the pitching axis is shown to have a significant effect on the predicted interference 
correction to pitching damping in tunnels with slotted roof and floor. For a forward axis the theory 
apparently underestimates the fairly small correction. When the axis is moved downstream of the aero- 
dynamic centre, the sign of the interference changes and its magnitude grows very rapidly and often 
in accord with experiment. The lift-damping due to pitching is subject to such serious corrections that 
its sign may change (Section 4.1). 

(6) For a given area of working section, the wall interference on half-models in tunnels with slotted 
roof and floor is greatest when the effective breadth to height ratio is large. In such cases it may not be 
practicable to diminish model size as a means of reducing the interference to negligible proportions. 
The merit of these tunnels for dynamic measurements is open to question. When interference corrections 
of 50 per cent or greater are involved, the present theory, approximate as it is, goes a long way towards 

31 



removing the uncertainty. Nevertheless the corrected derivative must often be far less accurate than the 
measuring techniques used in the experiment. Somewhat smaller corrections arc anticipated for complete 
models in slotted tunnels, especially when the planform is more slender. 

(7) A possible remedy is to use tunnels with slotted side-walls and closed roof and floor (Section 3.1.). 
Then each of the interference parameters, especially 6o, remains small over a range of cross-sectional 
shapes of practical importance. Orlik-Rtickemann and Laberge 31 have published a few experimental 
data for this configuration in subsonic flow ; they give no results with slots sealed, but report that the effect 
of sealing the slots seems to be small. 

(8) When the slots are relatively narrow, viscous effects within the slots may change the interference 
effects fundamentally (Section 7). For atmospheric tunnels it appears likely that inviscid flow may be 
assumed unless the length of working section upstream of the model exceeds about 300 slot widths. If, 
however, this length exceeds about 500 slot widths and the Mach number is not too large, then there is 
limited evidence to suggest that the slotted wall may be treated as a closed boundary. In the httter case, 
there may still be significant interference effects not revealed by sealing the slots. 

(9) Provided that viscous effects can be well understood and controlled, they could offer a possibility 
of reducing wall interference to an acceptable magnitude. Further work in slotted tunnels is needed to 
explore this possibility. 

(10) The interference effects on dynamic measurements in other types of ventilated tunnel need to be 
studied theoretically and experimentally. Solutions by electrical analogue (Ref. 8) may greatly assist 
theoretical prediction, but experimental work to establish reliable unsteady boundary conditions could 
be more crucial. 
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LIST OF SYMBOLS 

~2 

A 

b 

C 

CL 

Cm 

CL 

C,. 

d 

D 

f 
F 

FL,Fm 

G 

h 

i 

"T Lr 

l-m r 

J 
K 

Ko,K1 

lo,lo 

L 

m 

mq 

too,toO 

M 

n 

Width of slot 

Aspect ratio of wing = 2s/g 

Effective breadth of tunnel 

Geometric mean chord of wing = S/2s 

Cross-sectional area of tunnel 

Lift/½pUZS, CL eiwt 

Nose-up pitching moment/½pU2S~ 

Second pitching moment/½pU2S~ 2 

Complex lift coefficient 

Complex pitching-moment coefficient 

Periodic spacing of slots 

Hole diameter of perforated wall 

Function defined in equation (29) 

Non-dimensional slot parameter in equation (4) 

Functions defined in equations (54) 

Function in equation (31) 

Height of tunnel 

( - 1)~- 

Equivalent CL for incidence ~,. (r = 1,2 . . . .  5) 

Equivalent Cm for incidence ~.r (r = 1,2 . . . .  5) 

Equivalent C~* for incidence ~r (r = 1,2) 

Sign according to the appropriate equation (17) 

Geometric slot parameter in equation (4) 

Kernel function of integral equation (Section 4.2.) 

Modified Bessel functions of the second kind in equations (24) 

Rotary pitching derivative of lift in equations (47) and (53) 

Derivatives of lift due to pitching in equations (46) and (51) 

Lift, streamwise distribution of lift 

Integer defining column of images y = m b  

Direct rotary pitching derivative in equations (47) and (53) 

Direct pitching derivatives in equations (46) and (51) 

Mach number of undisturbed stream 

Outward normal distance from tunnel boundary 

defined in equations (33) of Ref. 22 
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n 

P 

P 

q 

S 

S 

$1,$2 

t 

t 

U 

[~n 

~2 

Wi 

WiO 

X 

X 

No 

Y 

Z 

~r 

(5 

6* 

6o 

61 

(6o)l~ 

((~o)v 

@ 

Oo 

LIST OF SYMBOLS continued 

Integer defining row of images z = nh 

Pressure 

Porosity parameter in equations (5) and (72) 

Steady rate of pitching 

Semi-span of wing 

Area of planform of wing 

Functions in equations (23) and (24) 

Time 

Semi-span of elementary horse-shoe vortex 

Velocity of undisturbed stream 

Velocity normal to perforated wall 

Complex upward component of velocity 

Interference upwash velocity, ,~e i~'t 

Complex interference upwash velocity 

Steady interference upwash velocity in incompressible flow 

Strearnwise distance from root leading edge, from lifting element in Section 3 

Aerodynamic centre of wing in equation (43) 

Value of x at pitching axis 

Spanwise distance from wing root 

Upward distance from centre of tunnel 

Steady distributions of incidence in equations (52) 

(1 -M2) ~ 

Non-dimensional steady interference upwash in equation (13) 

Displacement thickness of boundary layer 

Steady upwash interference parameter in equation (8), (20) or (601 

Steady streamline curvature parameter in equations (I 4) and (22) 

Unsteady upwash interference parameter in equations (16) and (27) 

Mean 6o for elliptic spanwise loading in equation (62) 

Mean (5 o for uniform spanwise loading in equation (61) 

Pressure drop across perforated wall 

Amplitude of pitching oscillation 

h/b 

Frequency parameter = coUU 
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P 

P~ 

~o 

6O 

(1) 

(2) 

(3) 

(4) 

A 

B 

C 

D 

I 

R 

T 

LIST OF SYMBOLS conthmed 

Streamwise distance, variable to replace x 

Local density of stream (Section 7) 

Density of undisturbed stream (Section 7) 

Perturbation velocity potential, ~e ~°~t 

Complex perturbation velocity potential 

~b corresponding to steady horse-shoe vortex in incompressible flow 

Interference velocity potential 

Angular frequency of oscillation 

Superscript denoting closed tunnel 

Superscript denoting open tunnel 

Superscript denoting open sides, closed roof and floor 

Superscript denoting closed sides, open roof and floor 

Subscript denoting tunnel A of type (4) in Fig. 6 

Subscript denoting tunnel B of type (4) in Fig. 6 

Subscript denoting tunnel C of type (1) in Fig. 6 

Subsdript denoting tunnel D of type (2) in Fig. 6 

Subscript denoting imaginary part in equations (37) and (39) 

Subscript denoting real part in equations (37) and (39) 

Subscript denoting derivative with tunnel-wall constraint 
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TABLE 1 

Intel?fi, rence Parameters fi : Small Ha!fiModels in Rectangular Tunnels. 

NPL 
Tunnel 

36in. x 14 in. 

25 in. × 20 in. 
9~ in. × 9½ in. 

Effective 
b/h 

0.9ll 
1.250 
1-667 
1.905 
2.468 

Completely closed Open roof and floor 

0'1472 
0.1213 
0.1231 
0'1322 
0.1632 

0"2546 0'0428 0'1097 
0.2277 0.0218 0.1621 
0.2542 '0.0087 0'2181 
0"2809 0'0050 0'2493 
0"3556 0'0012 0"3230 

0'1547 
0"2364 
0'3187 
0'3644 
0.4722 

0.0694 
0'0989 
0.1325 
0.1516 
0-1964 

TABLE 2 

Aerodynamic Coefficients for Various Planforms* and Mach Numbers. 

ILl 
IL2 
IL3 
IL4 
IL5 

--lml 
--lm2 
- l m s  

- -  I , n  ¢ 

- I , ~  5 

- 1 "  1 
- -  I *  2 

Unswept tapered  wing 
A = 4-329 A =  15 deg 

M = 0  

3.821 
4.051 

-0 .415  
4.622 

-0 .869  

1.911 
2.483 
0.216 
3.152 

-0.031 

1.265 
1.928 

M = 0-6 

3.467 
3.715 
0.126 
4.269 

-0-294 

1"714 
2-298 
0.490 
2.965 
0.264 

1.123 
1.796 

M = 0-8 

2.968 
3.221 
0.608 
3.733 
0.242 

1.447 
2.022 
0.715 
2.661 
0.521 

0.933 
1.593 

D e l t a  wing 
A =2 .64  A =  33.7deg 

M = 0  

2.965 
3.568 
0.526 
4.497 
0.201 

0.6614 

2.465 
3"016 

i 0.786 
i 3.843 
i 0.555 

1-853 ! 1.541 
2.666 2.294 
0.670 i 0-817 
3-687 i 3.232 
0-499 0-706 

1.432 1.181 
2.347 2-037 

0.8660 

, 1 . 8 2 0  J 
] 2,284 
, 0.858 

2.957 
0.724 

1.143 
1.788 
0.825 
2.586 
0.775 

0.867 
1.611 

*In Table 2, A denotes the angle of leading-edge sweepback. 
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TABLE 2----(contd.) 

ILl 
Im 
IL3 
IL4 
IL5 

--Imz 
- -  Im2 
- I ~ 3  

- -  I m 4  

- -  I m  5 

- I * ~  
- 1 "  2 

Delta wing M-wing Rect. 
A = 3 A = 45 deg A = 5.02 A = 3'35 

I 
M = 0 M = 0-6 M = 0-8 M = 0.9165 M = 0'8 M = 0 

3"099 
4"669 
0"423 
7"284 
0"098 

2"856 
4.851 
0"632 
8"079 
0.464 

3"128 
5'704 

2.706 
4.123 
0"656 
6.478 
0"499 

2.526 
4.353 
0.844 
7.317 
0.828 

2.777 
5.157 

2.222 
3.437 
0.788 
5.453 
0.777 

2.110 
3.707 
0.962 
6.308 
1.077 

2-334 
4-439 

1.626 
2.570 
0.766 
4.139 
0-858 

1.580 
2-852 
0-926 
4.941 
1-126 

I 1-764 i 

I 3.468 ! 

1-909 
-0"026 

0"118 

-0"705 
0"566 
0-077 

0.787 

3'332 
2'575 
0'062 
2.184 

-0 .315 

0.756 
0'951 
0.378 
0.955 
0.157 

0'363 
0"555 

TABLE 3 

Stiffness Derivative too for the Ha!f-Delta-Model A = 2'64 in the NPL 9½ in. × 9½ in. TumTel. 

M 

0"38 
0"58 
0"78 

0"38 
0"48 
0"58 
0"68 
0"78 

0"38 
0"58 
0"78 

0"38 
0"58 
0"78 

0"29 
0"19 
0"15 

0"19 
0"15 
0"125 
0"11 
0"09s 

0.09 
0.06 
0.04 s 

0.06 
0.04 
0.03 

Xo = 0.31~ 

-0 .614 
-0 .712 
-0.641 

-0 .524 
-0 .529 
-0.523 
-0 .492 
-0 .488 

-0 .427 
-0~468 
-0 .482 

-0 .475 
-0 .486 
-0 .498 

Slots open Slots sealed 

Xo = 0"65~ 

-0"006 
-0"014 
-0"013 
-0"008 
-0"011 

Xo = 1"04~ 

0'630 
0"569 
0"609 

0"552 
0"541 
0'556 
0"5565 
0'566 

0.519 
0"559 
0"581 

0.552 
0"572 
0"579 

x o = 0'31~ 

-0 .697 
-0"694 
-0 '7885 

-0 ' 589  
-0"619 
-0 ' 622  
-0"651 
-0 '6985 

-0"586 
-0"6095 
-0 .658 

-0"559 
-0.591 
-0.681 

Xo = 0-65? 

-0 .026 
-0 .024 
-O'O16s 
-0"0155 
-0-016 

Xo = 1'047 

0'410 
0'604 
0'626 

0"638 
0'636 
0'648 
0'668 
0.696 

0"606 
0'636 
0'695 

] 0'6435 
! 0'6725 
,! 0.7155 
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TABLE 4 

Dampimd Dericaticc -m,~ jbr the Ha!f  Delta-Model A = 2'64 in rhe NPL 9½ in. x 9½ in. Tunnel. 

m 

0"38 0'29 
0"58 0"19 
0.78 0.15 

0.38 0-19 
0.48 O-15 
0'58 0-125 
0"68 O" 11 

Slots open ] Slots sealed 

Xo = 0'310 Xo = 0'650 x o = 1"040 I Xo = 0"310 Xo = 0'650 x o = 1"048 
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