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Summary.

Experiment has already shown that the aerodynamic damping on half-span models in pitching oscilla-
tion is subject to interference effects that may exceed 30 per cent in slotted-wall tunnels at subsonic speeds.
An explanatory theory is presented with numerous illustrations and comparisons with measured data.
The basic assumptions demand a small ratio of model span to tunnel breadth, small frequency parameter
and open instead of slotted boundaries ; nevertheless, the effects of span, frequency and slot geometry are
considered theoretically, as well as those of tunnel shape, planform, model size, Mach number and pitch-
ing axis.

Further experiments have been made to check the theory, and conclusions are drawn from studies in
four different tunnels with their slots sealed and open. Direct comparison between prediction and
measurement is consistently good with slots sealed and in most cases with slots open. For a particular
tunnel large discrepancies in the latter case are attributed to viscous effects that cause a wall with too
narrow slots to behave like a closed boundary ; wall interference then changes sign, is less severe, but can
no longer be detected by sealing the slots. Although the theory clarifies the problem, the usefulness of
slotted-wall tunnels for dynamic measurements is open to question when corrections are very large.

With inviscid flow the following conclusions are drawn from the theory: (a) that the lift-damping due
to pitching is subject to even more serious interference than the direct pitching damping. (b) that it may
be impracticable to obtain adequate reduction in the wall corrections simply by testing smaller models,
(¢) that complete or more slender models are less seriously affected than half-models of moderate aspect
ratio, (d) that with horizontal models in rectangular tunnels the best remedy is to have slotted side-walls
but closed roof and floor.
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1. Introduction.

The original concept of a slotted-wall tunnel appears to have been motivated by the desire to reduce
wall interference. There are many instances where blockage and lift interference in subsonic flow are
altered in sign wheri closed walls are replaced by open boundaries. Indeed, great reductions in blockage
interference led to the design of transonic tunnels with slotted or perforated walls, so as to avoid the
choking encountered in closed tunnels at high subsonic speeds. This important development and its
manifold implications are fully described by Goethert!. Slotted or perforated walls are now accepted
as an essential feature of transonic wind-tunnel testing, for these alone permit the Mach number to be
varied from subsonic to supersonic without change in the tunnel geometry. It is seldom possible to
eliminate simultaneously both blockage and lift interference, but in steady flow a compromisc can be
reached whereby measured results require only small corrections.

The use of wind tunnels for oscillatory aerodynamics predates the development of suitable lifting-
surface theories. Although these now exist for many purposes in both subsonic and supersonic flow,
theoretical progress is unlikely to be fruitful in the transonic speed range. Moreover, the unsteady aero-
dynamic characteristics of slender or bluff shapes, with flow separation, remain largely beyond the scope
of established theory which is unlikely to supplant the need for dynamic testing, even at subcritical Mach
numbers. The correlation between theoretical calculation and wind-tunnel measurement has been
discussed by Acum?. Most experiments in compressible flow achieve only quite low values of the frequency
parameter, so that Multhopp’s® subsonic lifting-surface theory often forms the basis of comparison.
Wall-interference effects are usually ignored, and under favourable conditions there is evidence of reason-
able agreement between linearized theory and uncorrected experiment.

The first indication of excessive interference effects from slotted walls in oscillatory experiments was
discovered in 1960 by Bratt and Wight whilst checking the unexpectedly low pitching damping reported
in Ref. 4. In the course of medsuring pitching derivatives on a half-model M-wing in the NPL 25 in. x 20
in. Tunnel with eleven longitudinal slots in the roof and floor, they progressively reduced the number
of slots until the tunnel was completely closed. Fig. 1 shows large smooth changes in the observed
pitching damping at Mach numbers M = 0-60, 0-80, 0-90 and 095. The effect of the slots increases as
M increases until tunnel choking sets a lower limit to the number of siots. It is typical, not only of the
M-wing, that the damping can change by 30 per cent or more. There is confirmation of slotted-wall
interference in the NPL 9% in. x 93 in. Tunnel from the measurements of Ref. 5. The full evidence from
previous experiments has been reviewed by Wight® (1964). Although the effect of sealing the slots in the



NPL 36 in. x 14 in. Tunnel is observed to be small, the likelihood of large effects in many other tunnels
constitutes a threat to the validity of dynamic measurements until an acceptable explanation is found.

Several attempts to explain the phenomenon have proved mnegative. One possibility, that the large
slotted-wall interference might be associated with standing transverse waves, has been ruled out by a
theoretical study, due to Acum’, of acoustic resonance. He shows that the critical frequency parameter
for resonance is higher for slotted walls than for closed walls and well outside the experimental range.
In another investigation (Ref. 8, Part I) Rushton has considered the oscillatory flow at individual slots
by an electrical analogue. The theoretical problem is reduced to two dimensions by confining attention
to the distant wake; the results give no reason to doubt the validity of the boundary conditions at the
slotted walls. A more likely explanation was thought to stem from resonances or other disturbances in
the plenum chamber surrounding the slots or from the step at the downstream end of the slots. Molyneux®
refers to random disturbances of this kind, but subsequent attempts to measure unsteady pressures in
the plenum chamber have shown negligible fluctuations due to the oscillatory motion of the model in
the working section.

A recent note by two of the present authors!® gives a brief account of an extension to the classical
theory of lift interference, that offers a convincing explanation of the cases where the aerodynamic forces
are particularly sensitive to the sealing of the slots. Ref. 10 is superseded by this fuller presentation of the
theory. In essence it is assumed that the model is of small span and oscillates at low frequency in subsonic
flow, and that the slotted walls may be replaced by open boundaries, as will be given some justification
at the end of Section 2. Under these conditions the sinusoidal interference upwash is expressible as a
polynomial in the streamwise distance. For a particular tunnel boundary three interference parameters
are sufficient and these are formulated for rectangular cross-sections (Section 3.1.). A dominant role is
played by one particular parameter that only occurs in oscillatory flow. Application of lifting-surface
theory® leads to straightforward relationships between aerodynamic quantities in the tunnel and those
in the free stream which are dependent on the Mach number, planform and pitching axis (Section 3.2.).
On the basis of the steady lift interference it is suggested that rough estimates of the effects of slot geometry
and model span may be made; in Section 4.2. also, the theoretical effect of small frequency is described
and in Section 5.3. its application is discussed. There is no attempt to investigate wall interference at
transonic speeds when many of the approximations lose their justification.

The theory supports the evidence in Ref. 6 for the NPL 25 in. x 20 in. Tunnel with slots both open and
sealed, as indicated by the arrows in Fig. 1. Numerical results in Section 4.1. show that the wall interference
on pitching damping is highly dependent on the location of pitching axis. Recent experiments (Section
5.2.) in the NPL 94 in. x 9% in. Tunnel confirm this and show reasonable agreement with the theoretical
predictions. The basis of comparison is to combine the lifting-surface and wall-interference theories to
calculate oscillatory forces on the model in the wind tunnel. In practice it may be desirable to divorce
the wall-interference theory from lifting-surface theory, and in Section 6 corrections are applied to
measured aerodynamic derivatives as if lifting-surface theory were untrustworthy or not available. It
must be recognised, however, that these corrections are often large and may well be less accurate than the
technique of measurement. In formulating the slotted-wall interference theory it is assumed that the flow
is inviscid, but Section 7 gives a qualitative discussion of possible effects of non-ideal flow through the
slots. This appears to provide the most likely source of discrepancies between theory and experiment
for the NPL 36 in. x 14 in. Tunnel with slots open (Section 5.1.), for which only the theory gives large
interference effects due to sealing of the slots. One important corollary is that the corrections may be quite
large, even when sealing of the slots hardly influences the measurements.

The concluding remarks in Section 8 give a more detailed guide to the salient features of the report.

2. Theoretical Treatment of Slotted Walls.

It is supposed that there are uniformly spaced longitudinal slots, that the tunnel cross-section is
constant and of unlimited streamwise extent, and that the boundary conditions may be linearized. Then
in a flow of velocity potential (Ux + ¢) the condition

d¢/on = 0 at a solid wall or a slot )



ensures zero outflow across a closed portion of the tunnel boundary. The requirement of constant pressure
at an open portion is lincarized to give d¢/'x = 0: then, since the uniform flow is undisturbed far up-
stream, integration with respect to streamwise distance x gives

¢ = 0 at a free boundary or a slot. (2)

Both conditions apply in steady or unstcady flow.

Although these mixed boundary conditions are easily formulated, mathematical solutions of Laplace’s
equation for ¢ in steady flow with the necessary singularities at the edge of each slot arc very few. Solutions
exist for circular tunnels with equidistant slots. but conformal transformation to rectangular tunnel
boundarics would give irregular slot spacing of no practical interest. Therefore the usual approach for
rectangular tunnels with walls of uniform slot spacing is to replace equations (1) and (2) by a single
homogencous boundary condition to be satisfied at all points of a slotted wall. The idea was first developed
by Davis and Moorc'! (1953) from a suggestion of Dr. A. Buscmann. The homogencous condition may
be written as

2

on

$p+K 0, (3)

where for slots of width ¢ and periodic spacing d in a tunnel of height h the constant K is given by the
non-dimensional slot parameter

2K 2d na
F = W log, cosec o (4)
There is cvidence in Ref. 11 that the calculated lift interference on small wings in circular tunnels with
cight or more discrete slots can be reproduced closely by means of the homogeneous condition (3).
Solutions by clectrical analogue for rectangular tunnels with discrete slots and conditions (1} and (2)
have bgen obtained by Rushton in Part II of Ref. 8: when there are six slots in the roof and also in the
floor, the equivalence of condition (3) is cstablished likewise.

Equations (3) and (4) define the equivalent homogeneous boundary condition for an ‘ideal’ slotted
wall such that viscous cffects in the slots can be neglected. Baldwin, Turner and Knechtel'? have proposed
a more general condition

0 0? )
P S (5)

Ox cxén P On

where the porosity parameter P regulates the pressure drop through the slots from tunncl to plenum
chamber in proportion to the outflow. By analogy with perforated walls (K = 0) the import of /P in
compressible flow (2 = | —M?) is fairly well understood from theoretical and experimental studics in
steady flow (Ref. 1). But there is little apparent progress towards the evaluation of fi/P when viscous
slot flow is thought to be significant. At the end of Appendix A of Ref. 12 it is argued that thercisa
lower limit to the open area ratio «/d below which the mathematical basis for the slot parameter K is
unrcliable it is likely, however, that before this limit is approached the porosity parameter P will assume
overriding importance.

The boundary condition corresponding to equation (5) in oscillatory flow is not known with certainty,
but 1t is plausible to take



where, in the usual notation, ¢ is written as the real part of @ exp(iwt). Ref. 13 is one of very few mathe-
matical solutions based on such a boundary condition ; Drake used equation (6) with K = 0 and P real
to represent a perforated wall, but perhaps P should be complex so as to permit a phase lag between the
pressure drop and the outflow across the wall. For ideal slots (P — o) equation (6) integrates to give

" 0P
K—=0, 7
F+K ™
since ¢ is identically zero as x - — oo upstream. Otherwise equation (6) cannot be integrated to become
independent of the frequency w, and therefore viscous slot flow may lie beyond the scope of the theoretical
treatment in Section 3. But when equations (3) and (7) hold, there is a simple integral relationship between

the steady and oscillatory upwash fields due to wall interference.

Unfortunately the state of knowledge of the steady interference upwash field in slotted-wall tunnels
is incomplete. The known results are virtually confined to the transverse plane containing the lifting
element itself. The information concerning the streamline curvature, that is the streamwise gradient of
the interference upwash, is exceedingly limited. The experimental evidence of large slotted-wall inter-
ference is from tests on half-models in rectangular tunnels with slotted roof and floor. On the reflection-
plane principle, with models mounted on solid side-walls the tunnel breadth is effectively doubled and
particular interest attaches to breadth to height ratios b/h as high as 2-5. Holder!* has obtained the
most relevant values of the steady interference parameter

pUC 3¢,

do = —— 8

0 2L 0z @®

at the position of an element of lift Lon the tunnel axis. Here p and U are respectively the density and

speed of the undisturbed stream, C is the cross-sectional area of the tunnel, z is measured vertically
upwards and the interference potential ¢, is given by

where ¢, corresponds to the same element of lift L in the absence of wall constraint. Holder’s results for
small wings in duplex and square tunnels with slotted roof and floor are plotted in carpet form in Figs.
2 and 3 with allowance for compressibility. For both shapes of tunnel 8, is presented in terms of the

p

modified slot and porosity parameters (1+F)" ! and | 1+ ﬁ)— 1. In each case 8, varies from a negative

value for open roof and floor when both parameters are unity to a positive value for the completely
closed tunnel when either of the parameters is zero.

The NPL tunnels correspond to slot parameters from equation (4) in the range 0-05 < F <011, so
that roughly 090 < (1+ F)~! <095 and, apart from the effects of porosity, the slotted walls operate
much like open boundaries even when the open area ratio a/d = 1/11. A good approximation to unsteady
slotted-wall interference can therefore be sought by considering rectangular tunnels with open roof and
floor, for which the steady interference upwash field is amenable to analysis (Section 3.1.). Allowance

for the slot parameter (1+F)~* may be estimated on the basis of Figs. 2 and 3. Similar interpolation
-1

with respect to the porosity parameter 1+—1€ has little theoretical justification, but the importance
of this parameter for particular tunnels is discussed in Section 7.

3. Method of Interference Correction.

The basic idea underlying most applications of oscillatory wall interference is the relation between
the steady acceleration potential and the unsteady velocity potential due to Goodman!?® (1953). His



result for linearized incompressible flow of arbitrary frequency in any closed tunnel may be written in
the form

Fxyz) = jexp et~ X)J oD g (10)

—

Here ¢, is the velocity potential due to a steady horse-shoe vortex of small span and the real part of
¢ explint) is the velocity potential in phase with the oscillating strength of the corresponding semi-
infinite vortex doublet. Equation (10} is not restricted to closed tunnels, but it is sufficient that the boundary
conditions on ¢, and ¢ are the same in the respective steady and unsteady problems. This is true in equa-
tions (1) and (2) for tunnels with longitudinal slots: equally well, with ideal slots, ¢, and ¢ satisfy the
homogeneous conditions (3) and (7) respectively. The more general condition (6) is dependent on fre-
quency when the porosity parameter P is non-zero and finite; in such cases the method may not be
applicable.

The result in equation (10) is also derived by Acum and Garner in Section 3 of Ref. 16, and they go
on to explain how the relation can be gencralized to the case of low-frequency subsonic compressible
flow. They show that

- iwM?:
¢ = ¢exp (~za[);70x>

satisfies the linear differential equation

d¢,  iwg, g

e e + s = e |
ox/f) BU  ax/B)
By means of the integrating factor exp(iwx/f2U) it follows that

x/B

z _ i _iwx | do(S.y.2)
d’(-’@yw) - J exp |:'BU U :I aé dé: (11)

— w0

where ¢ refers to the oscillatory compressible flow but ¢, remains the steady velocity potential in in-
compressible flow duc to the semi-infinite vortex doublet. An identical relation for elementary horse-shoc
vortices of finite span forms the basis of Acum’s'” gencral theory of oscillatory wall interference for
closed rectangular tunnels. Similarly in Ref. 18 he has treated the problem of slowly oscillating slender
wings in subsonic wind tunnels.

Equation (11) holds for the velocity potential with or without wall constraint, and therefore for the
complex interference potential ¢, and the interference upwash W, = 0¢,/0z. Expansion to first order in
frequency gives along the axis of the tunnel

x/f

75 = iwd _iox] dig
wix) = j [Hﬁu UJ E dé, (12)

—a

where w;,(£) is the steady interference upwash in incompressible flow. Corresponding to a lifting element
L at the position & = 0 on the tunnel axis we write

2L
wio(§) = SUC o(¢) for all & (13)



or

2L 0,8 (¢

3
w;o(é) = p% [50 +T+'O(ﬁ) :l for small &, (14)

each a more general form of equation (8). On integration by parts equation (12) gives

x/f

i M? 1
i) = wiolx/B)+ [—Bz—xwio(x/ﬁyﬁ f wio(é)dé} .

-

Hence by equations (13) and (14)

_ 2L 8,x \ iwh (8, Sox 8,x*(2M*—1) x 3]
= ue [(‘5°+FE>+7(F“T+W +O(Eﬁ) ’ )
where
0
5=t j (6)ae. (16)

Equation (15) is similar to the expressions used in Refs. 16 and 18, but it includes the extra term in x*.
This imaginary term, also omitted in the preliminary account of the present work in Ref. 10, will be seen
to provide contributions to the aerodynamic forces of the same order as some of those arising from the
real term in §;.

Although primarily concerned with a closed circular tunnel, Ref. 16 also contains in Table A.Il the three
interference parameters d,, 6, and J;, for closed rectangular tunnels. Although é, and 8, are known for
other types of rectangular tunnel, there is no information concerning §;, from equation (16). It will be seen
in Section 3.1 that its formulation is not quite straightforward in the case of practical interest when there
are closed side-walls and open roof and floor. Although &% is very small for the larger ratios b/h appropriate
to half-models in closed rectangular tunnels, the corresponding values of &5 for open roof and floor are
found to be fairly large. This, coupled with the fact that the contribution to wy(x) in equation (15) is in-
versely proportional to a linear dimension of the tunnel, will provide large interference effects. The
interpretation of W{x) is conveniently handled by the techniques of linearized lifting-surface theory for
low frequency. Because equation (15) is so simple, the formulation in Section 3.2. is straightforward.
Apart from the terms in 8, the oscillatory pitching derivatives with wall constraint only involve oscillatory
and rotary pitching derivatives in a free stream.

3.1. Interference Parameters.

Of the three interference parameters in equation (15), the two occurring in steady flow are well docu-
mented. For small lifting wings centrally placed in rectangular tunnels 8, and 3, are respectively 36 and
15, as defined and formulated for closed walls by Glauert in equations (9.01) to (9.02) and (11.1) to (11.4)
of Ref. 19. Following Figs. 7 and 8 of Ref. 19, we consider rectangular tunnels of the types (1) to (4) each
giving a doubly infinite array of images in the transverse plane at positions (y,z) = (mb,nh), where m and
n extend over all positive and negative integral values excluding the pair (0,0) corresponding to the
wing itself. The signs of the image doublets are

j=iY=(=1)" for acompletely closed tunnel
j=j?= (-1 for a completely open tunnel
j =7 = (=1y"*" for open sides, closed roof and floor (17)

j=j® =1 for closed sides, open roof and floor




Thus the interference parameters for steady flow are

bh —n?h?
2b2 + nth)

and

b? —2n%h?
1n2b2 +nlh?)¥’

ORI

(19)

where ) Y denotes that (m,n) takes all possible integral pairs except (0,0). It must be recognised that,

although equation (19) is absolutely convergent, the double summation for §,, is not. The treatment of
equation (18) for rectangular tunnels of type (4) when j = 1 needs special care and is fully discussed in
Ref. 20; this type of mixed boundary is crucial to the study of wall interference in the NPL slotted tunncls.

The upwash interference parameter d, can be expressed as a single series in several ways. For example,
corresponding to the four types of rectangular tunnel listed in equations (17) there arc respective formulae

nh zh h
(S — S _ " T oanh/b 1
0 (50 24b+ b eZnnh,’b+ 1
n=1
(2) mh Th \ -]
8o = 0 TR P Diaklh |
n=1
) ) h wh 2n—1
00 = Og) = _@+Ebz E(ZT—TW
n=1
1 nh Twh - h
=6 = 4 Y 1
50 50 4 24b b Z 2nwhib -1

n=1

N

J

There are three useful auxiliary equations concerning 8%P (1) where 1 = h/b, namely

1
= o

3 (44) = o)

v

(A)+ 57 (4) :

861 (23) = 84 () + 85 (4)

4

21

the first of which is given incorrectly in Ref. 19 and follows from Ref. 20. Values of §, from cach of

equations (20) are plotted against b/h in Fig. 4.
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The streamline curvature parameter §; from equation (19) may be evaluated for the four types of
rectangular tunnel from the convergent series

N DD YRSE)

“~

h? . (—1y" . nh
o S[EE S
m=1 n=1
>, (22)
h? . (—1y" i nh
= 53) — —1y
01 = 9i 4nb? [Z T (=175, b
m= 1 n=1
1 nh
— 5@ il ks
01 =00 = T g [Zn*ES(bﬂ
=1 n=1 J
where
Zi = 1-2020,, Z(—:?— = —09015;,
m
m=1 m=1
and
2 . m?>—2p*
Sy () = F+Z_ L
r. (23)
m M 2 _2u?
SZ(.“) Z(") m + 2)5/2

The most convenient evaluation of S,(u) and S,(u) is by transformation into more rapidly convergent
series of modified Bessel functions, as derived by Olver in Ref. 21. Hence

Si(p) = = [p K, @prp)+2p*nuK,(2pru)]

Sy(u) = —%2 [@p— DK, {2p—V)mu} +(2p— 1npuKo {(2p— Dmpf]
p=1

11



where

Kolx) = f e (12 —1)"*dr

1

K (x) = xj e (2~ 1)idt
1

S,(1) may be identified with the function f” in Table A.I of Ref. 16. Corresponding to the last two equations
(21), superposition of the image systems leads to useful auxiliary relations

8 (32) = o () +0(" (2)

(25)
8 (24) = 2811V (A)+ 28 ()

Values of 6, from cach of equations (22) are plotted against b/h in Fig. 5

From the Appendix to Ref. 16 and in the notation of equations (17) to (19), the steady interference
upwash w;, of equation (13) is

Wiolf) = 2L bh —n?h? | £ n2h?¢ %
v o mo TR & N 2
0 pUC 8n 2bz-l-n;’h )? . C(m + itk (26)

with r? = &%+ m?bh? + n*h% Hence by equations (13) and (16)

For the first three types of rectangular tunnel equation (27) may be used. provided that a summation
with terms of alternating sign is carried out first. Following the Appendix to Ref. 16, we have for a
completely closed tunnel

b2 mb
P E (Y
% 4rh? mf( h ) ’ (28)

where

.f'(u)zz(n(:”” Zap—l K, {(2p—Du} (29)



is given in Table A.I of Ref. 16. The corresponding expression for a complétely open tunnel is

1 nh
W2 . - ni
%7 =~ G( b) : (30)

where
(= 1ymmr?
o =Z TR
m=1

1 1 1 ¥ 1
=3 [m—ﬂf(ll)] ) J [F—f(h‘):l dic
)

= Z [Ko {2p—V)mpu} —(2p— 1)nuK | {(2p—1)nu}] G

by a procedure similar to that of Ref. 21. The result for tunnels with open sides and closed roof and floor
is more closely related to equation (28), and it is easily shown that

b2 - mb
M3y . _ 7 —1ym hhliad
Z —WE (-1) mf(h)- (32)
m=1

Equation (27) is divergent when j = 1 and a different approach is necessary to evaluate the unsteady
interference parameter 5§* for the important fourth type of rectangular tunnel.
Simple superposition of image systems leads to auxiliary equations

55 (42) = 3 () + 549 i) }
55 24) = 4557 () +458° )

(33)

corresponding to equations (25). Equations (33) are not invalidated by the divergence of equation (27)
when j = 1 and can be used to extend a table of 3§* provided that §§" and 6} have already been cal-
culated. Fig. 6 illustrates how a table of 5§* can be started. Consider four rectangular tunnels

A of type (4) having breadth b and height h,

B of type (4) having breadth 2b and height 2h,

C of type (1) having breadth b and height &,

D of type (2) having breadth b and height 2h.
Convergence can then be achieved by taking the linear combination —A+4B = C+2D shown in

Fig. 6. For elements of the same lift at the centres of these tunnels, the steady interference upwashes along
the centrelines satisfy the equation

—Wig(x) +4wip(x) = wic(x)+ 2wip(x). (34)
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Since the cross-sectional archs of the four tunnels are in the ratio 1 : 4 : 1 : 2 and their respective heights

are in the ratio 1 :2:1:2, it follows from the definitions of the three interference parameters in equations
(13), (14) and (16) that

—804+0d05 = Goc+00p
—2014+615 = 201c+01p . (35)
— 0804 +280p = p¢c+2d5p

The wing is of small span and the parameters for tunnels 4 and B are identical. Therefore the relations
(35) may be rewritten in the notation of equations (21), (25) and (33) as

0= 8" (A)+ 52 (24)
-0 (1) = 20V () + 6% (24) . (36)
S5 () = 8D (A)+ 28,2 (27)

The first of these, though irrelevant here, appears to be a new result and is clearly true in Fig. 4. The
second supplements equations (25) and the third enables 8, to be calculated from equation (28) as it
stands and equation (30) with the values of nh/b doubled. Both §;'® and 5, behave like (4r/)” ! when
b/h = 1/ exceeds about 1-5.

The curves of d, against b/h in Fig. 7 for the four types of rectangular tunnel have been determined
from equations (28) to (33) and (36). Two striking features of Fig. 7 are the different orders of magnitude
of 8, for broad tunnels according to the type of roof and floor, and the result that J,'* for open sides
and closed roof and floor remains fairly small over the whole range of b/h. It is desirable to understand
why &, is so small for completely closed tunnels of large breadth to height ratio while both ¢, and 4§,
from Figs. 4 and 5 arc increasing positive functions of b/h. The steady interference upwashes from equation
(26) with j = j'" = (=1)" and j = j = 1 have therefore been evaluated for duplex tunnels (b = 2h)
without the approximation in equation (14). It is seen in Fig. 8 that at roughly one tunnel height down-
stream of the lilting element in the completely closed tunnel & = pUCw,, 2L attains a maximum value
appreciably greater than that in the distant wake; correspondingly, ahead of the element 4(¢) becomes
negative before tending asymptotically to zero as £ — —oc. For the case of open roof and floor it is
necessary to sum equation (26) by columns, first with respect to n (Ref. 20), and by contrast with the
completely closed tunnel § behaves monotonically against streamwise distance. The results show that,
although — 8 is less than twice 84, the integral §{* from equation (16) is practically 40 times — ;"
for in this case there is near cancellation of positive and negative contributions to the integral. The signi-
ficance of §¢* is by far the most important factor in the explanation of the large interference effects on
damping derivatives from half-model tests. In retrospect, however, it is the more remarkable that the
leading imaginary term in equation (15) should so nearly disappear for broad rectangular tunnels with
closed roof and floor. Slotted side-walls may well be preferable to a slotted roof and floor from the
standpoint of lift interference; indeed for type (3) of equation (17) Figs. 4, 5 and 7 show that there is a
range of shape just narrower than square for which each of the three interference parameters has magni-
tude less than 0-04.

3.2. Corrections to Pitching Derivatives.

The interference upwash is specified by equation (15), provided that the parameters d,, ¢, and 4§ are
known (Section 3.1.) and that the wing can be represented as a distribution of lifting elements

L(OdE = [Lg(&)+iVLA(&)]dE (37)



along the axis of the tunnel. The frequency parameter v = »¢/U is based on the geometric mean chord
of the wing and is supposed to be small. Then

1

o2 0,(x—=&)  h _Oo(x =)  di(x—8&)*(2M*— I)H .
o]

(38)

where 0 < £ < I denotes the streamwise extent of the wing. If the lift, pitching moment and second moment
are defined by

1

$pUPS(C g +i7Cyy) = J‘ L(&)dé

0
1

2PUSECpp +17C,p) = ~f L(&)éds o, (39)

0
]

LpU?SeH(Cxp +i7CE) = —I L(&)Ede

Y

then from equation (38) to first order in ¥ 0

wix) S 0. x
”—“((] ) C {5 Crr+ Blh ( CLR+CmR)}
ivS | duh X
{ — Crrtdo (—‘: CLR_CmR+CLI)
fe Z
dief1-2p% {x\? 2x . X 0
+—ﬁ—ﬁ 257 Z CLR+?CmR_CmR +E Cor+Cs . (40)

In the case of oscillatory pitching motion it is desirable to express w,/U directly in terms of the measured
pitching derivatives. If 8, and x = x, denote the amplitude and axis of oscillation, then the first two
equations (39) are equivalent to

CLR = 260[9 al’ld CmR = 290 (mg"‘? lg)

CLI = 26019 and CmI = 290 (me‘—zc(_?olg)

Unfortunately the second moment coefficient C}, cannot be related to measurement, and it is expedient
to make the rough approximation that

—Cor = Cr%lR/ Crr (42)

Although equation (42) seems likely to underestimate CZp by some 20 per cent, the approximation is
equivalent to the assumption that the real part of the lift Lx(£) is concentrated at the aerodynamic centre

15



C,.rC meC (43)

=% = - e
CLR ° lﬂ
Thus
wix) 20,5 | . 0,¢ X—X
U“ = (;) I:Oolg‘l_ﬁlﬁ <M()+ E o lg)
doh -
+iv {—O;lomo (zé—m‘,—x _x"zg)
pe c
8¢ X —Xq 1—2[)’2(x—)_c)2 )}}
+ﬁ/’l <)’I’lé+ z lo+ 24 z ly > (44)

where I, my. [, my and X refer to uncorrected wind-tunnel data denoted hereafter by the subscript T.

The interference upwash is made equivalent to incremental forces that theoretically cancel it. We
first take the motion of oscillatory pitching with an upward displacement of the wing

z = —{)ylx —Xq) cos wt, (45)
which leads to the complex upwash and force coefficients
w iv(x —x,) ] ]
2= _p, |10
U 0 [ T3
C, = 20,(ly+ ivly) - (46)
C,, = 204(my+ivmy)

4

To first order in frequency parameter the corresponding steady quantities from rotary pitching motion

of angular velocity g = iwf, may be written as

~

W _if)ofz(x—xo)
U ¢
C, = 2i0,¥l, r (47)
Cm = 2100\_)mq
J
Equation (44} is therefore put in the form
wix) 20,8 iv(x — xq) d,C X—Xx
00 _ 5 [y, {am0] e f gy ]
2iv0,S | dph X—x
+ ° L_(le)T*‘éo (Ug)g — (mo)y —2(lg)r —— 0
C pc é
8,¢ X—x, 1-28% x—%r \?
+[% {(”19)T+(lé)7‘ Z 4 zﬁzﬂ (IB)T< E T) }jl ) (48)



where the subscript T denotes the tunnel value with wall constraint. The first term of equation (48) is
exactly cancelled by equation (46) with pitching amplitude (28,5/C)d,(ls); and is therefore contributing
(28/C)8(lp)1ls to the derivative (Iy)7, for example. Thus, from equations (46) to (48) we may write

28 8,¢
Uohr=lo="Z [{ Sollobr+ g (me)r} o (le)rl}

(49)
28 5. 5,6
(mp)y—mg = Vol [{5O(IG)T+ﬁ(m9)T } m,,-l——BEC(la)qu]
and
28 S5.¢
Uoyr=ly =7 H 50(19-)T+ﬁ#,f(mg»} + LW
+ Joh 5,é
ﬁ- —= (o)rlg+d {( o) (lé_zlq)—(mG)Tla} +E FL]
T (60

28 8,8
)y —my = 7 H 5(;(1&)T+ﬁ—;(mg)r} + 2 U

5’ h 8,é
,3‘ —=(lg)ymy+ 6, { (lo)zlmy—2my) — (mo)Tmo} + FhEFnZI /

where the quantities F; and F,, arising from the second and last terms of equation (48) are rather lengthy
and require analysis by lifting-surface theory (Ref. 3).

For this purpose it is convenient to quote Ref. 22, where in equations (39) the pitching derivatives are
formulated. In the present notation

1
ly 2—[}1"1
1 X
my = 28 |:Im1+ OILI]
1 2 1 M? X .
la=§B[ﬁ % IL2+ﬂ2 L3~ *ﬁTIml““EQILl] roo (51)
1[W—M2 1 M?
S I I*
Mg Zﬁ ‘Bz m2+ﬁ2 m3+ ﬁz mt

Xy } p2—-M? 1 1 X \2
{EF gttt () 1]

where the coefficients are defined in equations (33) of Ref. 22 and the numeral subscript relates to the
appropriate steady distribution of incidence
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oy =1 A

oy = Xx/¢

oy from equation (23) of Ref. 22 with o = «, < (52)
oy = (x/0)?

as  from equation (23) of Ref. 22 with ¢ = «, ]

from equations (37) of Ref. 22. Likewise from Section 7.1. of Ref. 3 the rotary pitching derivatives are

~

1 2
mq:ﬁ[lmz'*' Ty —In)— <?) IL1:|

All five of the distributions in equations (52) are required to formulate F . and F, in equations (50). By
a straightforward analysis, based on Refs. 3 and 22, it can be shown that

x 1 M? M?
Fy = {(mo)r—?o(lo)r } {Eﬁlw—Z_ﬁlu—ﬁjlm}
1 M? M?
+(IB)T{ EFILS_Z—[?IM—EFI"'Z }
1-287 2% X\
+7ﬁ3ﬁ—(lo) {IL4—TZIL2 ('C_“T> ILl}
X X 1 M? M?
Fm"'?OFL = {(mG)T——(?‘o(lﬂ)T} {263 m3 2ﬁ3 Im2+2B3 ml }

1 M2 M
+(IH)T EE,‘IMS“EFIm4+?ﬁ§ImZ

- (54)

It will be noted that the second factor in curly brackets in the first term of F, is simply (I;~1 ,) andrelates
to the part of the second term of equation (48) that is independent of x; the remaining contributions
from this and the final terms of equation (48) are equivalent to distortions of the wing in longitudinal
bending.

For the present investigation it is convenient to solve equations (49) and (50) for the unknowns (e)g
(mg)r, (l)7 and (my);. We assume theoretical values of the derivatives from equations (51) and (53) without
wall constraint and predict the wind-tunnel values to compare with those measured in the NPL slotted-

wall tunnels. Thus
28 28 o,¢ 28 8¢
(lo)r (1—“55019_6 ﬁ—lhlq) + (my)y (—E ﬁle) =lg
28 28 6,¢ 28 d,c¢
(lo)r (—Eéoma——E E%m) +(m9)7<1 el Lhm9> = my
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and

25 28 6,¢ 28 5,¢ 28
(lé)T (1__6'—5010_6— Elﬁlq) +(mé)T ( C ﬂlh le) = lé+E/1i

28 28 6,¢ 28 §,¢ 28
(lé)T( C 50’"6—“6 ﬁ—lhmq) + (mg)r (1*6 T;ﬁm(;) = my+5 J

roe (56)

where \
5, =20 H%[@Nrﬂ)mm@ ¢
] ﬁ— 6 T'6 ﬁh
r (57)
’ 5 1 .
M= Ooh ——(lg)rmg+ 3o [(IG)T(mé —2m,) — (mg)rmy } + %1€ F,
pe Bh |

with F; and F,, from equations (54). The formal identity of the left hand sides of the pairs of simultaneous

equations (55) and (56) helps the computation. In most of ‘the calculations the full equations (57) have

been used, but the terms in F, and F,, are not of primary importance and have been omitted in a few

instances. In such cases there is no advantage in simplifying the left hand sides as originally proposed
in Ref. 10.

" Solutions for the corrected derivatives I, my, I; and m, in terms of the wind-tunnel values are not

possible with the full equations. But when the terms in F, and F,, are omitted, equations (49) and (50)

yield
28 28 6,¢ 28 6,¢
ly {1"‘ Sollg)r +— C ,Blh (m, o)r} = (lp)r { 1~E ﬁ_lhl"}

28 28 §,¢ 28 o,¢
g {1"“5 50(10)7‘“""5 Flh‘(me)r} = (mﬂ)T_(le)TE ﬁ—lhm

28 28 25 6,¢ 28 6,¢
ly {1+—CT50(19)T} =(lo)r{ 1“—C‘5c)le—-(—: —ﬁlﬁl‘l} —(my)r — c ﬁlh Iy

28 ) 64k 28
(ZB)T C {'ﬂo_é lo - 2501‘1} -+ (mg)T E 50[0

28 25 5. 28 0,¢
mé{ 1+—550(la):r} = —(lr— C {5014194- ,Blh q } +(mg) { 1——5 —ﬁlﬁma}

28
00 B g 250m} +mn 2 m

o

Equations (58) represent the best practical procedure for correcting a set of measured values (lp)r, ()7,
(ls)r and (mg)r. It must be anticipated that, due to various causes, these may be significantly different
from those predlcted by equations (55) to (57). Although theoretical values of the oscillatory derivatives
need play no part in the practical interference correction, theoretical or empirical values of /, and m,
must be known. It is no great task to obtain the aerodynamic coefficients in equations (53), but the flow
may be such that theoretical values of the rotary derivatives are quite untrustworthy and no estimates
are available. Then it becomes necessary to omit terms from each of equations (58) and to incur some loss
of accuracy, but the corrections are still worth applying {Section 6).
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4. Application of Method.

The method of interference correction described in the preceding sections is completely general as
regards wing planform, pitching axis and subsonic Mach number. Although the three interference
parameters have only been formulated for tunnels of rectangular shape in Section 3.1., the method
applics in principle to any cross-section for which the parameters are known, for example a closed cir-
cular tunnel (Ref. 16): the bipolar shape appropriate to a half-model in a circular tunnel with reflection
planc is considered crudely in Section 5.3. Furthermore, the restriction that the model is placed centrally
on the axis of the tunnel is unnecessary, provided that the interference parameters can be adjusted.
Most of the present calculations are for tunnels with solid side-walls, and Table 1 gives the values of
do. &1 and &, that are used. With the aid of Figs. 4, 5 and 7 it is just as easy to consider tunnels where
the side-walls or all four walls are open. The mathematical analysis of Section 3.2. concludes with a pro-
cedure for correcting measured pitching derivatives to free-stream conditions. Practical situations when
there are insufficient experimental data are considered in Section 6. Although the analysis is specifically
for dynamic measurements of pitching derivatives. a similar approach could be used for cases of control-
surface oscillation and other longitudinal wing motion.

The Algol programme of Ref. 22 is particularly convenient for the evaluation of the required theoretical
aerodynamic data, and the coeflicients used in the present calculations are listed in Table 2. In Scction
4.1. the predicted effects of tunnel shape, pitching axis, Mach number and model size are examined for
the two limiting cases of rectangular tunnels with open or closed roof and floor. Strictly the application
to slotted-wall tunnel rests on a further assumption that the interference parameters &, and 9, arc linearly
related to d, as the slot geometry is varied. The curves for &, for ideal slotted roof and floor in Figs.
2 and 3 enable this to be done, and in this respect it is fortunate that the slot parameter (1+ F)~' from
equation (4) usually lies close to the limiting value of unity for open roof and floor. A similar assumption
enables us to estimate the effect of model span through changes in the steady interference parameter
dy. These two approximate extensions of the basic method are discussed in Section 4.2.. where also
rigorous allowance for the effect of a small frequency parameter is described.

4.1. Examples of Theoretical Predictions.

The interference parameters are listed in Table 1 for five rectangular tunnels which include three NPL
tunnels with half-models and intermediate breadth to height ratios. With the aid of the acrodynamic
coefficients in Table 2, illustrative theoretical results at the three Mach numbers 0, 0-6 and 0-8 have been
obtained for the unswept tapered planform shown in Fig. 9. Predictions for this and four other planforms
are compared with experiment and discussed further in Sections 5 to 7.

With fixed Mach number M = 0-8 and area ratio of planform to tunnel cross-section $/C = 0-1, the
cffect of h/h on the pitching derivatives about the mid-chord axis is shown in Figs. 9 to 12. The constant
free-stream values with no wall constraint are calculated from equations (51). The lift derivative Iy in
Fig. 9 is subject to wall corrections of the order + 10 per cent according as the roof and floor are open
or closed, more for the broader shapes and less for those near squarc. By contrast, wall interference on
the cross-damping derivative /; produces the full and broken curves in Fig. 10 that differ by about four
times the free-stream value of the derivative over the whole range 0-8 < h/h < 2:6. This at once establishes
the scriousness of the predicted interference effect. For open roof and floor the sign of the derivative is
affected, and the corrections are greatest for the broadest shapes of tunnel; the nearty squarce tunnels show
a similar magnitude of interference whether the roof and floor are open or closed. This is roughly the
trend shown by the dominant interference parameter 8}, in Fig. 7. The direct pitching derivatives m, and
my in Figs. 11 and 12 show much the same behaviour as [, and I; respectively. The wall interference is
again of opposite sign for the two wall conditions; the quasi-steady acrodynamic centre from equation
(43) moves aft in the closed tunnels and forward with open roof and floor by small distances up to 0-014¢
in the broader tunnels, but by much less for nearly square cross-sections. The wall interference on m,
varies in magnitude from nearly 15 to 50 per cent and is consistent with observation in the NPL 25 in. x
20 in. Tunnel (b/h = 1-905).

The relative importance of the individual terms in equations (57) is illustrated in Fig. 13, firstly by
including only the leading terms in &, and sccondly by ignoring the final terms in F, and F,,. It has already
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been remarked that the unsteady interference parameter dy is of paramount importance in broad tunnels
with open roof and floor. Here, with b/h = 1-905, the major part of the wall interference on the pitching
damping is obtained over the whole range of pitching axis in the first approximation when J, and &, are
both excluded from the right hand sides of equations (56). Again, in Fig. 13, the major part of the deficiency
in the first approximation is removed when in the second approximation the terms in &, are added.
Although the final terms in &, are worth including, their omission can be justified when, as in the practical
procedure of equations (58), a real advantage accrues.

Perhaps the most striking feature of Fig. 13 is the extent to which the wall interference on m, increases
as the pitching axis moves aft. The change in the sign of the corrections as the pitching axis crosses a
position near the aerodynamic centre is not surprising, since g; in the second of equations (57) is dominated
by its first term ; therefore (my); — m, is expected to have the sign of m, when &y is positive. But it is notice-
able how the secondary terms contribute to increase this difference for the rearward axes. The feature is
not confined to the high Mach number 0-8, as a similar effect is apparent for M = 0-6 in Fig. 14. The
latter illustrates that, for b/h = 1-905, the smaller interference effect from the completely closed tunnel
is found over the whole range of pitching axis. :

Figs. 15 and 16 show two other aspects of the calculated wall interference on forces in quadrature with
the pitching motion, which follow qualitatively from the terms in 5. The curves of I; against Mach
number in Fig. 15 are drawn as quadratic functions of 1/ through the calculated results for M = 0,
0-6 and 0-8; for the different wall conditions they are seen to diverge as M increases. The leading term
in the first of equations (57) is roughly proportional to IZ/8, and the interference is seen to grow slightly
more rapidly than the factor 1/8. As model size increases, the contribution from the same leading term
to the right hand side of the first equation (56) is proportional to (2S/C) (h/¢), and therefore to (S/C)' 2.
This effect is apparent for open roof and floor and a rearward pitching axis in the lower diagram of
Fig. 16. The value of ; is so much smaller for the closed tunnel, that the full curve of /; exhibits for small
S/C the more familiar linear dependence shown by the lift derivative I, in the upper diagram. The con-
clusion is reached that, unless J; is quite small, it is impracticable to reduce wall interference on dynamic
measurements to negligible proportions by diminishing model size. When S/C = 0-02, for example, the
wall interference with open roof and floor on I, in Fig. 16 at M = 06 is about 2 per cent while that on
Iy is no less than 50 per cent. This poses a serious threat to the validity of oscillatory experiments on half-
models in rectangular tunnels with slotted roof and floor.

4.2. Approximate Generalizations.

From the boundary conditions for ideal longitudinal slots in Section 2 it follows that the present
method of interference correction is applicable. It turns out in practice that the geometric slot parameter
F is nearly small enough to be ignored. This is fortunate as there appear to be no reliable calculations
of §; and ;, for rectangular slotted-wall tunnels ; the best approach is perhaps by finite difference methods,
and to this end Rushton has extended the electrical analogue of Ref. 8 to three dimensions. Unless values
of §; and 9§, are available, knowledge of §, from Refs. 11, 12 and 14 must suffice. It will be assumed
that, as F is varied, &, and d; are linear functions of §,. Thus, in the notation of Section 3.1, as J, varies
between the extremes of 5§ when F = 0 and 6} when F = «, we take

50 - 5(04]

51 = 5(14)+5(1)_5(4) (5(11)_6(14)) (59)
0 0

and a similar equation for d;. The last term of equation (59) is in the nature of a small and approximate
correction. Detailed calculation is perhaps superfluous here, so for simplicity the same equation (59)
is used for the derivatives themselves and the factor involving d, is deduced from the full curves on the
extreme left of Figs. 2 and 3. The resulting long-dashed curves in Figs. 12, 14 and 15 show the effect to
be significant but not large. In practical application it is advisable to determine 84, 84, 8,, 8\", &(¥,
58 and §§® and hence 8, and &, on the principle of equation (59), and then to use equations (58).
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While interference calculations for oscillating wings of large span are possible (Ref. 17), they are
excessively laborious in practice, even when small frequency is assumed. Yet it is known that span ratio
2s/h can have a marked effect on 8. The usual practice in steady flow is to evaluate the spanwisc distribu-
tion of interference upwash along a uniformly loaded lifting line of semi-span s,

2L
W;

(= uc Fo(s) - (60)

Then 6,(0,0) is replaced by the average value

1

(So)y = J Oo(y,8)d(v/s) (61)

0

for uniform spanwise loading, or preferably for elliptic spanwise loading

11
N2 )i 2 2y -4
il FOO-O T OO
00

A convenient procedure for evaluating {d,), is that used by Glauert for circular tunnels in Section 6 of
Ref. 19. The function d4(y.t) is expressed as a polynomial in even powers of the two variables

Solyt) =3 Y. Amdl20/b)*"(2t/b)>", (63)

Then from equations (62) and (63)

E E 2S 2m+2n
So)y = 4 —'2—"() : 64
(O)Iz Zzamn2m+1 b ( )
where
13.5....2p+1)

forp=0,12,.....

Now for closed sides and open roof and floor it can be shown that

28}

b? b n(y—mb—1t) aly—mb+1)
W (pfy = —— o — th —————~ —coth ———~: . 65
SEP (nat) 8n(y2~tz)+ G E [ co 5 co a : (65)
and numerical values of 4, may be found. Calculations with mn = 0,1,....4 give the broken curves of

(d4); against 2s/b in Fig. 17 for square and duplex tunnels. The full curves for completely closed tunnels
are based on Table 6 of Ref. 19. The effect of wing span is clearly more important in the broader tunnel
when the theory for small span can be expected to overestimate the wall interference for both types of
roof and floor. It is questionable to what extent the factor (3,)g/3, can be applied to §, and §; and so
to the increments to the derivatives, but this simple device indicates the order of magnitude of the effect
on l, and [, in Fig. 16. When 5/C = 0-1 in Fig. 16, the span ratio 2s/b = 0-48. While for larger spans it

22



would seem desirable to examine the interference parameter d, more thoroughly, the factor (84)z/5,
may well be adequate up to this size of model. Then its effect is comparable with that of the geometrical
slot parameter discussed earlier. '

The third generalization of the method concerns the frequency parameter. It has been demonstrated
from lifting-surface theory by Garner and Milne??, that in the limit as frequency tends to zero there are
very simple expressions for the rates of change of damping derivatives with respect to frequency parameter.
In the present notation equations (18) and (19) of Ref. 23 become

I3} r .,
(‘jﬂ—‘_}(la) = EAI" ]
, (66)
0 1
55(””9) = RAleme

where A is the aspect ratio. The results hold for any uniform subsonic free stream. Now, if K(x —x/,
. y—¥', z—z') denotes the kernel function of the integral relation between upwash and lift distribution, as
in equation (1) of Ref. 23, under the constraint of rectangular tunnel boundaries K is simply replaced by

Rylx—x,y—=y,z—2)= Y Y (DK(x—x",y—y —mb, z—z —nh), (67)

where j is defined in equations (17). The analysis of Ref. 23 follows with K replaced by K, since the
additional terms in equation (67) do not influence the singularity in the expansion for small frequency
that leads to equation (66). Hence

0 1
gg(le)r = EA(IB)%
(68)

. 1
5 (Mg)r = 3 A(lp)y(mg)r

By equations (56) and (68) the slope as well as the limiting value of the damping derivatives can be predicted
to compare with experimental values plotted against frequency parameter. The results in equations (68)
can also be derived from equations (54) to (57) by applying equations (66) and noting that in equations
(52) only a3 and a5 are affected and the corresponding coefficients satisfy

0 1 o,
E/{ﬁﬁlm} = EAZ(,

0 1 X 1

Er {QF(I"’S_[“E_I”) } = RAlome
0 1 1 Xg
%{E‘B“jllls} —RAI@(lq‘i'Flg)

é 1 X 1 x
—6‘6 {‘Z‘B‘j([m5+‘CTOIL5) } = E Amo(lq'i‘?olﬂ)

Practical applications of equations (68) are discussed in Section 5.3.
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5. Measured and Predicted Pitching Derivatives.

The survey of available experimental evidence prepared by Wight® indicated that dynamic measure-
ments might not always be subject to the large wall interference effects shown in Fig. [ The tunnel-model
configurations were too few for a definite pattern to emerge. but the additional results from the present
experimental investigation cnable a satisfactory comparison with thecory to be made with a systematic
variation of the most important parameters involved.

The cffect of tunnel shape is assessed from experiments done mainly in the three NPL tunnels shown in
Fig. 18, cach having a slotted roof and floor. The cross-scctional areas of the two larger tunnels are
approximately equal. whilst the 25 in. x 20 in. Tunnel and the 95 in. x 9% in. Tunnel are of more similar
cross-sectional shape. It should be noted that the actual working-section heights i, measured between
the slotted walls, arc less than the nominal heights which describe the original tunnels with solid liners
fitted. In addition. the effective breadth (b) of cach of the tunncls is twice the actual breadth sinee all the
tests are mande with a half~-model mounted on a solid side-wall. This configuration is equivalent to one
in which a full-span model is tested in a tunnel of twice the breadth. The effective breadth to height ratios
of the tunnels are indicated, and these show that the 36 in. x 14 1n. Tunnel behaves as if it is nearly square
and the 25 in. x 20 in. Tunnel behaves as if it is nearly duplex. The two rigid half-models of M-wing and
unswept-wing planform shown in Fig. 18 were both tested in cach of the two larger tunncels, and most

Tunnel. This model was also used in a brief experimental programme in the 18 in. x 14 in. Tunncl. and
a few additional tests in the 95 in. x 91 in. Tunnel were made with the half-delta-model of aspect ratio
A == 3. The motion was restricted to single degree of freedom pitching, and in most cases only pitching
moment derivatives were measured for subsonic Mach numbers in the range 0-4 < M < 0:9. The facilitics
inthe 94 in. x 9% in. Tunncl allowed a variation in the position of the pitching axis. In cvery case. measure-
ments were obtained with all the slots open and with all the slots closed.

In Section 5.1, the previous results for models in the 36 in. x 14 in. Tunnel and the 25 in. x 20 in.
Tunnel are compared with theory., Similar comparisons with measured derivatives from the present
investigation in the 9% in. » 9} in. Tunnel are discussed in Section 5.2, The theoretical derivatives for
cach tunnel condition arc determined from equations (55) to (57), and a good assessment of the accuracy
of the theory is obtained. Satisfactory correlation is found for the 25 in. x 20 in. Tunnel and the 94 in. x 9}
in. Tunnel, but there arce unresolved discrepancies in the case of the 36 in. x 14 in. Tunncl where. by con-
trast with ¢xperiment, the theory predicts very large changes duc 1o scaling the slots. The present ex-
periments cover frequency parameters in the range 0-03 < § < (:28. As discussed in Section 4.2, some
theoretical allowance can be made for such small frequency parameters, and cvidence to support this is
found in Scetion 3.3, There is also an approximate analysis for a half-mode!l in low-speed closed and
open circular tunnels with reflection planes, and measurements in the range 0-37 <2 ¥ < 1-35are considered.

5.1, Evidence from Previous Tests.

We lirst discuss the experimental results obtained several years ago in the 25 in. x 20 in. Tunnel and
the 36 in. x 14 in. Tunncl. For the M-wing in the former tunnel with varying numbers of slots. Fig. |1
shows a systematic variation of the pitching damping derivative with the slot parameter (1 +F) ' for
severial Mach numbers. For M = 0-8, a smooth extrapolated curve is drawn through the experimental
points to give an estimated value for a tunncl with an open roof and floor. For this tunnel condition and
for a completely closed tunnel theoretical values of the derivative, based on equations (53) to (57) without
the terms in F, and F,,, arc shown. These are the best that can be obtained from available theorctical
data®* and correspond to the second approximation in Fig. 13 which is expected to give satislactory
vahues Tt s evident that the change in - my between the two extreme conditions is predicted reasonably
well. Although not shown, the pitching stiffness derivative is less sensitive to wall interference. but the
changes of order 10 per cent are in reasonable accord with theory.,

Seriously large interference effects were also found when a more conventional unswept wing was
tested in the 25 in. x 20 in. Tunnel. Pitching-moment derivatives were measured as for the M-wing tests
but results were obtained for only two tunnel-wall conditions, namely all the slots open and all the slots
sealed. Values of the damping derivative for oscillations about a mid-chord pitching axis are plotted
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against Mach number in Fig. 19. The theoretical treatment by means of equations (55) to (57) is applied
and the predicted values are in good agreement with the experimental results. With slots sealed the results
closely follow the trend of the theoretical curve but consistently show a slight reduction in magnitude.
This is the sort of difference that may arise from any linearized theory which neglects the wing thickness
and the boundary layers of the half-model and the side-wall on which it is mounted. A comparison
between experimental and theoretical values with slots open shows remarkably similar agreement when
the relatively small correction for slot parameter is included. In accord with the predictions of Section
4.1., the difference between the measured values increases with Mach number by a factor just greater
than 1/8.

Some results for the same unswept wing pitching in the 36 in. x 14 in. Tunnel are given in Figs. 20 and
21 which show the variation with Mach number of the two in-quadrature derivatives m, and [;. Com-
parison of Figs. 19 and 20 shows that the theory predicts practically the same overall differences in m,
due to sealing the slots in the two tunnels, but for the 36 in. x 14 in. Tunnel (b/h = 0-91), closed and open
roof and floor give approximately equal and opposite effects. These contrast the corresponding results
in the broader 25 in. x 20 in. Tunnel (b/h = 1-905) where the open roof and floor contributed a very large
proportion of the wall interference. The results for the lift derivative I, in Fig. 21 indicate a particularly
large interference effect with slots sealed, which is confirmed in magnitude and trend by the experimental
results. Measurements with slots open are not as predicted, being of the opposite sign and quite near the
theoretical curve for slots sealed. This discrepancy is discussed fully in Section 7.

The present theory satisfactorily explains the large interference effects observed when the unswept

_wing was tested in the 25 in. x 201in. Tunnel, even when the sealing of the slots caused the pitching damping
to double in value. With reference back to Fig. 14, it is predicted that these effects would become even
larger if the pitching axis were moved downstream. Unfortunately, the previous tests were restricted to
the one pitching axis, but the present measurements on a delta wing in the 94 in. x 94 in. Tunnel will
be seen to indicate that this prediction is probably correct.

5.2. Present Experimental Evidence.

The present tests in the 93 in. x 94 in. Tunnel involve two rigid half-span models of cropped-delta
planform of aspect ratios 2-64 and 3, described in Ref. 5 as ‘Arrowhead No. 1" and "Delta No. 1" respec-
tively. As in the previous tests, boundary-layer transition was fixed by a roughness band near the leading
edge. The oscillating rig is basically the model mounting shown in Fig. 6 of Ref. 25; no reflection plate
was used, but the models were fitted with root fences. A few modifications have been made: the incidence-
compensating spring and the eddy-current damping facility were removed, and two new cover plates
and a new model mounting platform were fitted. With this platform three locations of pitching axis can
be used, x, = 0-31¢, 0-65¢ and 1-04 for the A = 2:64 delta wing and x, = 0-55¢, 0-96¢ and 1-42¢ for the
A = 3 delta wing. The bulk of the experiments have been done with the 4 = 2:64 delta, for which the
centre axis passes very close to the aerodynamic centre whilst the other two axis positions are as far
upstream and downstream as practicable. Pitching-moment derivatives have been determined for Mach
numbers in the range 0-38 < M < 0-78 about each of the three axis positions with all slots open and with
all slots sealed, but no lift derivatives could be measured with the apparatus. The frequency of oscillation
* is varied from 12 c/sec to 85 ¢/sec by using four torsion bars of different stiffnesses with masses added
when appropriate. A decaying oscillation technique is used to determine the damping derivative. The
decaying signal, recorded electronically as described by Wight and Nixon?®, is analysed by Bratt’s
electronic integration method, described in Section 5.1.1. of Ref. 27, to give a value of m,. The stiffness
derivative m, is determined by measuring directly the change in frequency of oscillation from still-air
to wind-on conditions and applying equation (26) of Ref. 27. Mean values from at least three separate
decaying oscillations were determined. With the exceptions mentioned in Section 5.3., the scatter about
the mean values of both damping and stiffness derivatives was of the order +3 per cent. This was accept-
able in view of the expected large interference effects. Measured values of the stiffness derivative and
the damping derivative are given in Tables 3 and 4 respectively ; for reasons given in Section 5.3., the data
plotted in Figs. 22 to 25 correspond to the averaged m, for the two lowest frequencies and the averaged
—my for the two highest frequencies.
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Calculations have been made for the Mach numbers 0, 0-661 and 0-866 for which aerodynamic co-
efficients are available in Table 2. Figs. 22 and 23 show My against axis position and Mach number for
the 4 = 264 delta wing, and in cach case there is convincing agreement between the measured variation
and that predicted by equation (55). Apart from a range of axis position near the aerodynamic centre
of the model where the interference is small, m, is numerically larger with slots sealed than with slots
open and the interference effect increases linearly as the axis position is moved away from the aecrodynamic
centre. This is illustrated in Fig. 22 for the Mach number M = 0-66 used in the theoretical calculations;
the experimental results are interpolated. Fig. 23 shows a small increase with Mach number in both
calculated and measured wall interference.

The corresponding variation of the damping derivative with axis position and Mach number is shown
in Figs. 24 and 25. The allowance for slot parameter is very small and has not been plotted. By means of
equations (55) to (57) it is predicted in Fig. 24 that m, will be subject to much larger wall interference for
a downstream pitching axis than for an upstream one. This trend is similar to that shown in Fig. 14 for
the unswept half-wing in the 25 in. x 20 in. Tunnel. However, in the present case very small interference
corrections to m, are predicted for an upstream pitching axis, and the theoretical curves for the closed
tunnel and for open roof and floor do not intersect. This is contrary to the predictions for the unswept
half-wing in Fig. 14 and to experiment in Fig. 24 where the effect of scaling the slots is of opposite sign
for downstream and upstream pitching axes. With the slots sealed, the measured values are consistently
Just below the theoretical curve. The results with slots open are in fair agreement with calculation, but
for the forward axis the predicted value is exceeded. This disparity is found over a range of Much number
in Fig. 25, where for the pitching axis x, = 0-31¢ the calculated interference effect due to sealing the slots
is evidently too small and of wrong sign.

Although the corresponding comparison for the second delta wing (4 = 3) in Fig. 26 shows better
agreement, the calculated slotted-wall interference effect is still rather small. The reason for this dis-
crepancy is not clear, but it may be associated with the approximations madc in the small-wing interference
theory. For the delta wings oscillating about rearward pitching axes the d terms are an order of magnitude
larger than the other terms on the right hand sides of equations (57). The neglected terms can therefore
be regarded as a further order of magnitude smaller and a good agrecment between theory and experiment
is expected. With forward pitching axes, the 8, terms are only dominant for small models. The cumulative
effect of the neglected terms may now become significant if the area ratio S/C is too large. Support for
this idea can be gleaned from the fact that the smaller of the two models in Fig. 26 (S/C = 0-107) gives
appreciably better comparisons than the larger model (S/C = 0-137) in Fig. 25. There is further evidence
in Fig. 27, which shows some results for the 4 = 264 delta wing in the 18 in. x 14 in. Tunnel with the much
smaller area ratio S/C = (0-042. For the same forward pitching axis that was used in the 95 in. x 94 in.
Tunnel, the magnitude and sign of the effect of sealing the slots is now in accord with theory. For the
rearward pitching axis, Figs. 25 and 27 show that this effect only decreases roughly in proportion to
(S/C)2, as anticipated at the end of Section 4.1.

The effect of Mach number is shown in Figs. 25 to 27. Results for the middle pitching axis werc obtained
for the A = 2-64 delta wing but have not been plotted as the measurements were insensitive to the slotted-
wall condition. For the forward pitching axis in Fig. 26, the predicted effect of sealing the slots decreases
at the higher Mach numbers. This unusual trend arises because the constraints for the two wall conditions
are of the same sign and that for slots sealed increases more rapidly with Mach number. With slots scaled
all the experimental points are consistent apart from possible discrepancies for wing thickness and
boundary layers of model and side-wall; the last of these probably explains the larger discrepancies in
Fig. 27, since the boundary layer then extends over much of the model. As half-model size is reduced. this
type of discrepancy is likely to become scrious before the slotted-wall interference is acceptably small.
A general increase in wall interference with Mach number is indicated for the rearward axis positions
and the interference effect can be seriously large. For the 4 = 3 delta with Xy = 1-420¢ in Fig. 26 for
instance, the measured value of the damping derivative at M = 0-78 drops from 0-63 with slots sealed 1o
0-17 with slots open. This large drop is predicted extremely well by the theory which gives a corresponding
drop from 0-70 to 0-25. The calculated free-stream value of 0-62 indicates that the bulk of the large effect
stems from slotted-wall interference.

26



5.3. Effect of Frequency Parameter.

Results have been obtained for several frequencies of oscillation giving frequency parameters in the
range 0-03 < ¥ < 0-28. Typical variations with frequency parameter for the Mach number M = 0-38 are
shown in Fig. 28. At the lowest frequencies of about 12 ¢/sec, the amplitude of the decaying oscillations
was subject to considerable fluctuation, possibly due to the high turbulence in the 93 in. x 95 in. Tunnel.
The values of the damping derivative from repeated experiments at the lowest frequency were therefore
considerably scattered about the mean value shown in Table 4. Conversely, less confidence is placed in
the values of the stiffness derivative measured at the highest frequency. In this case, the system is sharply
tuned and the change in frequency from still-air to wind-on conditions is very small, being of the same
order as the stability of the apparatus. Since the derivatives m, and —m, vary little with frequency, mean
values from the two lowest frequencies in Table 3 and from the two highest frequencies in Table 4 have
been used in Section 5.2.

Under free-stream conditions the initial rate of change of damping derivatives with frequency parameter
may be calculated from an exact theoretical result of Garner and Milne??. As discussed in Section 4.2.,
the same principle holds under wall constraint and equations (68) are derived. For the range of frequency
parameter shown in Fig. 28, the measured values of —m, follow the predicted linear trend. With a forward
pitching axis (m, negative) there is a general increase in the values of —m, with increasing frequency and,
also in accord with the second of equations (68), there is a corresponding decrease for a rearward pitching
axis (m, positive). Theoretically the pitching stiffness is known to be independent of small changes in
frequency parameter, and the constant values of m, in Fig. 28 are calculated from the present wall-
interference theory. There is apparently no measurable effect of frequency on the values of m; over the
range of ¥ available. The drop in the value for the highest frequency with slots sealed was not observed
at other Mach numbers. It seems that at least for ¥ < 02 a variation in frequency of oscillation has little
effect on the magnitude of tunnel interference.

A much wider range of frequency parameter is covered by Guyett and Curran®® in their measurements
of pitching-moment derivatives about the leading edge of a rectangular half-model. The wing was mounted
on a reflection plane near the floor of a closed circular tunnel, so that the configuration is equivalent to
a complete wing in a closed bipolar tunnel. Guyett*® has supplied unpublished values of m, and m, for
the corresponding open circular tunnel with reflection plane and the results in Fig. 29 show important
changes due to interference. The steady interference upwash parameter (d,), from equation (61) is analysed
by Kondo3° for uniformly loaded wings in this shape of tunnel, but the interference parameters d, and
&7, have not been formulated. However, from Figs. 4, 5 and 7 the interference parameters d,, d; and 3,
can be obtained for small wings in closed or open rectangular tunnels of the same breadth to height ratio
b/h = 1-866. As suggested in Section 4.2., a correction factor (J,)y/d, is applied to each interference
parameter so that J, is the same as (§,)y in the bipolar tunnel ; for the particular span 0-598b, (3,), = 0-0853
and —0-2382 respectively for the closed and open bipolar tunnels. Despite the use of such a crude approxi-
mation there is remarkable agreement between the measured and prediéted values of my. The predictions
are less satisfactory for the pitching damping, although an interference effect of the correct sign is indicated.
Since the model has a forward pitching axis and a very large area ratio S/C = 0-24, the cause of the
discrepancies is thought to be similar to that discussed in Section 5.2. for the delta wings. The predicted
variation in m, with frequency is calculated from the second of equations (68). In view of the possible
error in the magnitude of the theoretical interference effect, only the gradients of those curves should be
considered. Unfortunately, there are no experimental results at a suitably low frequency for comparison.
It is interesting that the measured differences in the values of the derivatives show little effect of frequency
on tunnel-wall interference until the frequency parameter is of order unity.

6. Practical Correction for Wall Interference.

It is not always easy or convenient to calculate theoretical values of aerodynamic derivatives, especially
for complete aircraft or under conditions of separated flow. For the present purpose of confirming the
validity of the interference theory, tests were made on wing models amenable to a theoretical study and
the interference theory is suitably formulated in equations (54) to (57). However, in a practical application
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it is desirable to calculate corrections to measured derivatives to give corresponding values in an un-
constrained flow. The equations are inverted with suitable approximations, and cquations (58) can be
used to determine the free-stream pitching derivatives from their measured values il the rotary derivatives
[, and m, in an unconstrained flow can be estimated. If, however, I, and mg are not available, great simpli-
fication is necessary. All but the dominant terms are then neglected in equations (58). so that
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where the subscript T'denotes a derivative measured in the wind tunnel.

The accuracy of the corrections determined from equations (58) or (70) may be assessed by applying
them to the calculated tunnel values of the derivatives. Figs. 30 and 31 show theoretical curves of pitching
damping against axis position, respectively for the unswept half-wing at M = 0-80 in the slotted 25 in. x
20 in. Tunnel and for the delta (4 = 2:64) at M = 0:66 in the 9% in. x 94 in. Tunnel. In both cases the
corrected values of m; from the alternative equations (58) and (70) are compared with the original theo-
retical calculation without wall constraint. The simpler sct of equations gives a fairly good approximation
to the original curve, but in both Figs. 30 and 31sthere is only a narrow range of pitching axis for which
equations (58) do not improve the approximation. Nevertheless, for a practical application. the simpler
approximation gives a fair guide to the magnitude of wall constraint. The presence of large interference
can be detected readily by equations (70), whilst a small correction implies that the wall-interference
effect is small. In either case more accurate estimates can be obtained by equations (58), provided that
satisfactory values of the rotary derivatives are available.

The choice of procedure will be influenced by the type of model and the scope of the measurements;
four different situations and methods are summarized below.

(1) If a reasonable degree of confidence can be placed in the theory of Ref. 3, equations (58) should
be used when all four derivatives are measured. If, however, only (mg)y and (my); are measured, then
lp, 4. I, and m, may be calculated by Ref. 3 or Ref. 22 so that the four equations (58) determine (1)), m,,
(I3)y and m, respectively.

(2) When the unconstrained flow is qualitatively beyond the scope of lifting-surface theory and all
four pitching derivatives are measured, wall interference should be evaluated by equations (70) since
calculated free-stream values of /, and m, are untrustworthy.

(3) If only the pitching-moment derivatives, (m,); and (m,); are measured about two axes X¢ = X,
and x, = x,. say, and the frequency parameter is small, the lift derivatives can be deduced. It follows
from equations (51) that

U)rs = (lo)gy = )2 = (M),

(xz —Xx,)/¢
1)
(rs = (mp)yy = T2 =0T
(Xz - X4)/¢

According to the type of flow, method (1) or (2) may then be used.



(4) If (my)7 and (mg) are measured about a single axis, no corrections can be applied without empirical
or theoretical aid. But there should be little difficulty in estimating [, so that (ly); and hence m, and my
can be evaluated from equations (70).

Method (3) is appropriate for calculating lift derivatives from the present measurements of direct
pitching derivatives in the 9% in. x 93 in. Tunnel. In Fig. 32a, values of (l); deduced from the second of
equations (71) are compared with theoretical curves given by equations (54) to (57). There is rcasonable
agreement between the estimated and predicted tunnel values, and both sets give a further indication of
dramatically large interference in a typical experimental configuration. The result of correcting the de-
duced values by methods (1) and (2) is illustrated in Fig. 32b. Since the terms omitted in method (2) give
contributions of opposite sign for the two wall conditions, the corrected values, shown as small dots,
are less convincing than the comparisons in Fig. 32a. Method (1) is quite satisfactory, since the corrected
experimental values from the tunnel with slots sealed, shown as solid circles, lie very close to the theoretical
interference-free curve whilst the corresponding open circles corresponding to open slots are displaced
from it by amounts consistent with Fig. 32a. It follows that a reasonable estimate of the corrected lift is
possible, even when only the pitching-moment derivatives are measured and the results are particularly
sensitive to the tunnel boundary condition.

7. Non-Ideal Slotted Walls.

It has been shown that the present theory successfully predicts the tunnel-wall interference effects in
both the 25in. x 20in. Tunnel and the 95 in. x 9% in. Tunnel. The predictions are confirmed experimentally
for the 36 in. x 14 in. Tunnel with slots sealed, but with slots open the correlation disappears. Indeed,
in Figs. 20 and 21 for the unswept wing, m, and [, vary with Mach number as if the interference effect
of the slotted walls were more like that of a sealed wall. Fig. 12, showing the typical effect of a variation
in tunnel cross-sectional shape for a fixed area, includes measured values of m; in the 36 in. x 14 in.
Tunnel (b/h = 0:91) and the 25 in. x 20 in. Tunnel (b/h = 1-905) and demonstrates clearly that it is the
former tunnel with slots open which is not behaving as expected. Corresponding results for m,, given in
Fig. 11, show much less interference effect and are harder to interpret, as the measured values do not
agree particularly well with the theoretical curves. Nevertheless, they confirm that the effect of sealing
the slots of the 36 in. x 14 in. Tunnel is much smaller than the predicted difference, whereas a similar
comparison for the 25 in. x 20 in. Tunnel shows better agreement. The authors believe that the behaviour
of the 36 in. x 14 in. Tunnel with slots open can be explained by the action of viscosity at the slotted
walls.

Although no allowance for viscosity can be made in the present theory, the appropriate change of
boundary condition in steady flow has been discussed in Section 2 and the typical behaviour of §, is
shown in Figs. 2 and 3. If the porosity parameter f§/P is changed from zero to be of order unity in a square
tunnel, for instance, there is a significantly large change in §, from —0-125 for an open roof and floor
to a small value of positive sign as for a closed tunnel. A similar result is obtained for an ideal slotted
tunnel (P — oo) with (1 + F)~! of order 0-5, so that in steady flow viscosity reduces the effective open area
ratio of a slotted wall. It might also be anticipated that, as the Mach number approaches unity and
B — 0, the porosity parameter /P becomes small and an ideal slotted condition with negligible viscous
effects is approached. The oscillatory results obtained in the 36 in. x 14 in. Tunnel show both these
trends. In Figs. 20 and 21 there are very small changes in the derivatives due to sealing the slots at low
Mach numbers. However, as M increases, there is an increasing difference between the values measured
with the two slot conditions, the results with slots open falling away from those with slots sealed towards
values appropriate to an ideal slotted roof and floor. This suggests that with changing /P the unsteady
interference upwash may behave like J,,.

The 36 in. x 14 in. Tunnel and the 25 in. x 20 in. Tunnel have the same open area ratio (0-091) and
the same number of slots (11). The slots in the 36 in. x 14 in. Tunnel are therefore narrower than those
in the 25 in. x 20 in. Tunnel, and it is physically reasonable that viscosity could affect the former tunnel
more than the broader 25 in. x 20 in. Tunnel. A similarity parameter is desirable to indicate the sensitivity
of slotted-wall configurations to viscous effects, and Goethert’s' study of perforated walls in steady flow
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may offer a clue. The linearized steady boundary condition at a perforated wall from equation (5) with
K = 0 1s equivalent to proportionality between the pressure drop through the wall and the velocity
normal to it, viz.,

Sp = —=-v,. (72)

Goethert suggests that the ratio of boundary-layer displacement thickness §* to hole diameter D is im-
portant, and that viscous effects on P are likely to grow suddenly as 6*/D increases above about 0-75.
Evidence of such a critical value from Ref. 1 is reproduced in Fig. 33. For Mach numbers of 0-75 and 0-80,
the pressure drop ép across the wall is related to the mass outflow pv, through a perforated wall of open
area ratio 0-225, (a) when D = {4 in. and the wall is 1% in. thick and (b) when the thickness is the same
but D = } in. With the larger holes, the pressure drop increases linearly with increasing mass outflow
in Fig. 33b, so that by equation (72) the effective parameter

ﬁ — /)i i@fl/%”agﬁ = (4. (73)

P 2 dlpv,/p, U
The smaller perforations again give f/P = 0-4 when the mass-flow parameter in Fig. 33a exceeds 003
below this there is an abrupt change and the pressure drop shows considerable scatter but tends to remain
constant. The perforated wall is thus behaving almost as if it were solid corresponding to a large valuc of
/P in place of equation (73). For small mass flow and small perforations when §*/D is iarge, Goethert
suggests that viscous effects govern the wall characteristics. With increasing mass outflow 8*/D decreases
until it reaches some critical value near 0-75 below which the viscous effects disappear rapidly and p/P
is determined by the wall geometry. For the wall with perforations eight times larger, the boundary
layer will be smaller relative to hole size and will give a suberitical value of 5*/D throughout Fig. 33b.

A rapid increase in the effect of viscosity in a slotted tunnel similar to that shown in Fig. 33 could explain
the drastic discrepancy in Fig. 12 for the 36 in. x 14 in. Tunnel (h/h = 0:91) with slots open. As the
boundary-layer displacement thickness 6* has little meaning in this casc, it is tentatively suggested that
viscous effects in a slot of width @ may grow in proportion to the ratio /,/a where [, is the distance between
the model and the upstream end of the working section : future work may well show that plenum-chamber
depth, amongst other factors, is important in this respect. The ‘A ratio” of the measured change to the
predicted change in m, duc to sealing the slots is plotted against [,/a in Fig. 34 for delta and unswept
tapered wings with rearward pitching axes in the three slotted tunnels shown in Fig. 18. As a lurther
check, some results have been obtained from the NPL 18 in, x 14 in. Tunnel with full slots and with slot
width crudely narrowed by about 30 per cent by means of tape. This reduction in slot width produces a
negligible change in the geometric slot parameter (1+ F) "' from 091 to 0-90. From Fig. 34 it is clear that
the A ratio is dramatically reduced from about 1 when /'« is small to low values when I, wis large and
the slot width is relatively small. Although the analysis in Fig. 34 for M = 06 and M = 0-8 involves
variations of numerous parameters. two significant points emerge. Firstly, the 36 in. » 14 in. Tunnel
gives small Aratios, whereas the 18 in. x 14 in. Tunnel with identical slots and 30 per cent shorter upstream
working section gives A ratios of about two thirds. Secondly, when the slot width in the 18 in. x 14 in.
Tunnel is narrowed to give [,/u roughly equivalent to the 36 in. x 14 in. Tunnel, the A ratio falls by 26
percentat M = 0-6 and by 16 per centat M = 0-8. Fig. 34, although inconclusive, may provide a plausible
explanation of the results in the 36 in. x 14 in. Tunnel. The slotted wall appears to behave as if it were
practically closed, not because of small open area ratio, but because of the small relative slot width
a/l,, which may be associated with low porosity in terms of the parameter /P. Indeed, the fall in A ratio
is noticeably less at the higher Mach number when f3/P is expected to be smaller.

Unfortunately it is difficult to estimate a value of P for steady flow in a tunnel with slotted walls. A
further difficulty ariscs with unsteady flow because it is possible that there is a phase lag between the
pressure drop and the mass outflow. In the present theory, it is assumed that viscous effects are small.
As discussed in Section 3, the simple relationship (12) between the steady and the unsteady upwash
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interference may not hold without this assumption. If, however, /P is very large for slotted tunnels,
the present corrections for closed walls should be adequate. Most of the present experimental data can
be explained satisfactorily on the basis of very small or very large /P although the few results from the
18 in. x 14 in. Tunnel suggest that an intermediate condition can exist. Further work is planned to
investigate experimentally the effect of an artificial increase in the viscous effects at a slot ; it is necessary
to establish that such an increase can greatly reduce the change in measured damping due to sealing the
slots.

8. Concluding Remarks.

(1) Itis shown that large wall-interference effects on dynamic measurements observed with half-models
in slotted tunnels can be satisfactorily explained by an extension to the classical theory of steady lift
interference. With the assumptions of relatively small model span, small frequency parameter and open
instead of slotted boundaries, the method gives theoretical pitching damping derivatives whose values
are confirmed by experiment in two NPL tunnels, even when the changes due to sealing the slots exceed
30 per cent (Sections 5.1. and 5.2.).

(2) The large effects with slotted roof and floor are shown to stem from the parameter §, which re-
presents the wall-interference upwash in quadrature with the pitching motion of the model. For the crucial
case of rectangular tunnels with closed side-walls and open roof and floor, particular care is needed in
the formulation and evaluation of 8; (Section 3.1.). This parameter alone determines the major effects
of tunnel shape, model size, Mach number and pitching axis on the damping derivatives (Section 4.1.).

(3) Subsonic lifting-surface theory is used to interpret the interference upwash as incremental forces
on the model (Section 3.2.). Equations (54) to (57) are then derived such that values of the pitching deriva-
tives in a tunnel can be predicted for direct comparison with experiment. Approximations to these
equations are inverted to give equations (58) which are recommended for practical application. Measured
derivatives can thus be corrected for wall interference with little or no reference to lifting-surface theory
(Section 6). As a crude, but instructive, approximation the incremental corrections to the damping
derivatives are concisely

4455,
=t = -
f : (74)
456
my— (my)y = _%(le)r(”ne)r

~

(4) In some respects the present method is more general than the formulae suggest (Section 4). In
particular, approximate allowance may easily be made for the geometric slot parameter and for the ratio
of wing span to tunnel breadth (Section 4.2). The first order effect of frequency parameter on the dampin g
derivatives under wall constraint is given very simply in equations (68) which should cover the range of
frequency parameter normally encountered in slotted-wall tunnels. Limited experimental confirmation
of the frequency effect is found (Section 5.3).

(5) The location of the pitching axis is shown to have a significant effect on the predicted interference
correction to pitching damping in tunnels with slotted roof and floor. For a forward axis the theory
apparently underestimates the fairly small correction. When the axis is moved downstream of the aero-
dynamic centre, the sign of the interference changes and its magnitude grows very rapidly and often
in accord with experiment. The lift-damping due to pitching is subject to such serious corrections that
its sign may change (Section 4.1).

(6) For a given area of working section, the wall interference on half-models in tunnels with slotted
roof and floor is greatest when the effective breadth to height ratio is large. In such cases it may not be
practicable to diminish model size as a means of reducing the interference to negligible proportions.
The merit of these tunnels for dynamic measurements is open to question. When interference corrections
of 50 per cent or greater are involved, the present theory, approximate as it is, goes a long way towards
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removing the uncertainty. Nevertheless the corrected derivative must often be far less accurate than the
measuring techniques used in the experiment. Somewhat smaller corrections are anticipated for complete
models in slotted tunnels, especially when the planform is more slender.

{7) A possible remedy is to use tunnels with slotted side-walls and closed roof and floor (Section 3.1.).
Then each of the interference parameters, especially dy, remains small over a range of cross-sectional
shapes of practical importance. Orlik-Riickemann and Laberge®! have published a few experimental
data for this configuration in subsonic flow : they give no results with slots sealed, but report that the effect
of sealing the slots seems to be small.

(8) When the slots are relatively narrow, viscous effects within the slots may change the interference
effects fundamentally (Section 7). For atmospheric tunnels it appears likely that inviscid flow may be
assumed unless the length of working section upstream of the model exceeds about 300 slot widths. If,
however, this length exceeds about 500 slot widths and the Mach number is not too large, then there is
limited evidence to suggest that the slotted wall may be treated as a closed boundary. In the latter case,
there may still be significant interference effects not revealed by sealing the slots.

(9) Provided that viscous effects can be well understood and controlled, they could offer a possibility
of reducing wall interference to an acceptable magnitude. Further work in slotted tunnels is needed to
explore this possibility.

(10) The interference effects on dynamic measurements in other types of ventilated tunnel need to be
studied theoretically and experimentally. Solutions by electrical analogue (Refl. 8) may greatly assist
theorctical prediction, but experimental work to establish reliable unsteady boundary conditions could
be more crucial.
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LIST OF SYMBOLS

Width of slot

Aspect ratio of wing = 2s/¢

Effective breadth of tunnel

Geometric mean chord of wing = §/2s

Cross-sectional area of tunnel

Lift/3pU?S, Cpe'

Nose-up pitching moment/3pU>S¢

Second pitching moment/3pU?*S¢?

Complex lift coefficient

Complex pitching-moment coefficient

Periodic spacing of slots

Hole diameter of perforated wall

Function defined in equation (29)

Non-dimensional slot parameter in equation (4)
Functions defined in equations (54)

Function in equation {31)

Height of tunnel

(=1

Equivalent C, for incidence «, (r = 1,2,...5)

Equivalent C,, for incidence %, (r = 1,2,...3) defined in equations (33) of Ref. 22
Equivalent C% for incidence «, (r = 1,2)

Sign according to the appropriate equation (17)
Geometric slot parameter in equation (4)

Kernel function of integral equation (Section 4.2.)
Modified Bessel functions of the second kind in equations (24)
Rotary pitching derivative of lift in equations (47) and (53)
Derivatives of lift due to pitching in equations (46) and (51)
Lift, streamwise distribution of lift

Integer defining column of images y = mb

Direct rotary pitching derivative in equations (47) and (53)
Direct pitching derivatives in equations (46) and (51)
Mach number of undisturbed stream

Outward normal distance from tunnel boundary
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LIST OF SYMBOLS continued

n Integer defining row of images z = nh
p Pressure
P Porosity parameter in equations (5) and (72)
4 Steady rate of pitching
s Semi-span of wing
S Area of planform of wing
S, Functions in equations (23) and (24)
t Time
t Semi-span of elementary horse-shoe vortex
U Velocity of undisturbed stream
v, Velocity normal to perforated wall
w Complex upward component of velocity
w; Interference upwash velocity, w;e'*
7 Complex interference upwash velocity
Wio Steady interference upwash velocity in incompressible flow
X Streamwise distance from root leading edge, from lifting element in Section 3
X Aerodynamic centre of wing in equation (43)
Xo Value of x at pitching axis
¥y Spanwise distance from wing root
z Upward distance from centre of tunnel
o, Steady distributions of incidence in equations (52)
B (1—M*?
] Non-dimensional steady interference upwash in equation (13)
o* Displacement thickness of boundary layer
dg Steady upwash interference parameter in equation (8), {20) or (60)
o4 Steady streamline curvature parameter in equations (14) and (22)
i Unsteady upwash interference parameter in equations (16) and (27)
(60} Mean &, for elliptic spanwise loading in equation (62)
(S0 Mean d, for uniform spanwise loading in equation (61)
op Pressure drop across perforated wall
t, Amplitude of pitching oscillation
A h/b
v Frequency parameter = wc¢/U
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LIST OF SYMBOLS continued

& Streamwise distance, variable to replace x
P Local density of stream (Section 7)
Poo Density of undisturbed stream (Section 7)
¢ Perturbation velocity potential, ¢e'!
¢ Complex perturbation velocity potential
bo ¢ corresponding to steady horse-shoe vortex in incompressible flow
¢; Interference velocity potential
w Angular frequency of oscillation
(1) Superscript denoting closed tunnel
2) Superscript denoting open tunnel
3 Superscript denoting open sides, closed roof and floor
4) Superscript denoting closed sides, open roof and floor
A Subscript denoting tunnel A of type (4) in Fig. 6
B Subscript denoting tunnel B of type (4) in Fig. 6
C Subscript denoting tunnel C of type (1) in Fig. 6
D Subscript denoting tunnel D of type (2) in Fig. 6
I Subscript denoting imaginary part in equations (37) and (39)
R Subscript denoting real part in equations (37) and (39)
T Subscript denoting derivative with tunnel-wall constraint
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TABLE |

Interference Parameters for Small Half-Models in Rectangular Tunnels.

Completely closed Open roof and floor
NPL Effective | I
Tunnel b/h do : 4, ‘ —dg —dg -0, do
36 in. x 14 in. 0911 0-1472 ‘ 0-2546 0-0428 0-1097 0-1547 0-0694
1-250 01213 | 02277 00218 01621 02364 0-0989
1-667 01231 | 02542 0-0087 02181 i 0-3187 01325
25 in. x 20 in. 1-905 0-1322 ‘ 0-2809 0-0050 02493 . 03644 0-1516
9% in. x 94 in. | 2-468 0-1632 ‘ 0-3556 0-0012 0-3230 i 0-4722 0-1964
TABLE 2
Aerodynamic Coefficients for Various Planforms* and Mach Numbers.
Unswept tapered wing Delta wing
A = 4329 A= 15deg A =264 A =337 deg
M=20 M =06 M =08 M=0 0-6614 ’ 0-8660
1.4 3-821 3467 2:968 2-965 2:465 1-820
I, 4-051 3715 3221 3-568 3-016 2-284
I —0415 0-126 0-608 0-526 0-786 0-858
I, 4622 4-269 3-733 4-497 3-843 2957
I s —0-869 . —0294 0242 0-201 0-555 0-724
-1 1911 1-714 1-447 1-853 r 1-541 1-143
—1,; 2483 2-298 2:022 2-666 ‘ 2:294 1-788
— 1,3 0216 0-490 0-715 0-670 0-817 0-825
—1,. 3152 2-965 2-661 3-687 3-232 2:586
— 1.5 —0:031 0-264 0-521 0-499 0-706 0775
e 1-265 1-123 0-933 1-432 1-181 0-867
~ 1%, 1928 1-796 1-593 2:347 2:037 1611
,,,,,,,,, _ l ] . I

*In Table 2, A denotes the angle of leading-edge sweepback.
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TABLE 2—{contd.)

Delta wing M-wing Rect.

A=3 A =45deg A =502 A =335

M= M =06 M =038 M = 09165 M =08 M=0
I, 3-099 2-706 2:222 1-626 1-909 3332
Iy, 4-669 4123 3437 2-570 - 0026 2:575
I 0-423 0-656 0-788 0-766 0-118 0-062
Ia 7-284 6478 5453 4-139 2-184
Is 0-098 0-499 0-777 0-858 —0315
— I 2-856 2:526 2-110 1-580 —0-705 0-756
e 4-851 4-353 3707 2-852 0-566 0-951
. 0-632 0-844 0-962 0-926 0-077 0-378
™ 8079 7-317 6-308 4-941 0955
—I,.s 0-464 0-828 1-077 1-126 0-157
—I%, 3-128 2777 2-334 1-764 0-787 0-363
e 5:704 5157 4-439 | 3-468 0-555

TABLE 3

Stiffness Derivative my for the Half-Delta-Model A = 2:64 in the NPL 9% in. x 9% in. Tunnel.

Slots open Slots sealed
M v
Xg = 0'316 Xg = 0'656 Xg = 1045 Xo = O'3IE Xg = 0'655 Xo = 104E
0-38 0-29 —0614 —_ 0-630 — 0697 — 0-410
0-58 0-19 —0712 — 0-569 —0-694 e 0-604
0-78 015 —0-641 — 0-609 —07884 — 0626
0-38 019 —0:524 —0-006 0-552 —0:589 — 0026 0638
0-48 0-15 0529 -0014 0-541 -0619 -0024 0636
0-58 0125 —0-523 - 0013 0556 —0622 00165 0-643
0-68 011 ~0-492 - 0-008 0-5564 — 0651 —0015, 0-668
0-78 0-09; 0488 —-0011 0566 — 0698, -0-016 0-696
0-38 0-09 ~ 0427 — 0-519 —0586 — 0-606
0-58 0-06 ~ 0468 — 0-559 — 0609, — 0-636
0-78 0045 — 0482 — 0-581 —-0658 — 0-695
0-38 0-06 - 0475 — 0552 —0559 — 0643,
0-58 0-04 — 0486 — 0-572 —0591 — 0672,
0-78 003 —0-498 — 0-579 —0-681 e 07155
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TABLE 4

Damping Derivative —my for the Half-Delta-Model A = 264 in the NPL 9% in. x 9% in. Tunnel.
Slots open Slots sealed
X =031¢ ' xog =065¢ | xg =104 | xo = 031¢ | xo = 0:65¢ | x, = 1:04¢

0-38 029 1-058 - 0-042 1-011 — 0-144
0-58 0-19 1-145 0-058 1-025 - 0-231
078 015 1-291 0-133 1-164 — 0-462
0-38 0-19 1-054 0-375 0-020 0962 0-406 0-177
0-48 0-15 1-130 0-383 0-020 0956 0-391 0-199
0-58 012, 1-178 0-426 0-037 0957 0-426, 0257,
0-68 0-11 1-298 0-4805 0-1034 1-032 0-480 0-309
0-78 0-09, 1-352 0-583 0-209 1-149 0617 0479,
0-38 0-09 1174 0027 0-964 0164
0-58 0-06 1-118 0119 0-887 — 0273
0-78 004, 1-198, — 0412 1-003 — 0-537
0-38 006 1-356 - 0-076 1337 | — 0-2004
0-58 004 1-084 0-099 1126 0-229
0-78 0-03 1-128 e 0-331 1-0525 - 0-728
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Fi1G. 12. Calculated and measured pitching damp-
ing of an unswept tapered wing at M = 08 in
slotted rectangular tunnels of constant area.
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FiG. 13, llustration of the relative importance of terms on the right-hand sides of equations (56).
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F16. 14.  Calculated and measured pitching damp-
ing against axis position for an unswept half-wing

in the 25 in. x 20 in. Tunnel at M = 0-6.
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F1G. 15, Calculated /; against Mach number for
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interference in the 25 in. x 20 in. Tunnel.
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Tunnel against Mach number.
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Fi16. 22, Calculated and measured pitching stiff-
ness of a half-delta-model in the 94 in. x 9% in.
Tunnel against pitching axis at M = 0-66.
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Mach number for two pitching axes.
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FiG. 24. Calculated and measured pitching damp-
ing of a half-delta-model in the 9% in. x 9% in.
Tunnel against pitching axis at M = 0-66.
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(A = 3) in the 93 in. x 9% in. Tunnel against Mach
number for two pitching axes.
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F1G. 33. Pressure-drop coefficient against mass
flow ratio across perforated walls of open area
ratio 0-225.
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F1G. 34. Effect of relative slot width on the ratio
of measured to predicted changes in m, due to
sealing the slots.



R. & M. No. 3500

Cy Crown copyright 1968

Published by
HER MAJESTY'S STATIONERY OFFICE

To be purchased from
49 High Holborn, London w.c.1
423 Oxford Street, London w.i
134 Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol |
25%- 259 Broad Street. Bifmingham |
7-11 Linenhall Street, Belfast BT2 8AY
or through any bookseller

R. & M. No. 3500

5.0, Code No. 23-3500



