
R° & Mo No. 3418 

M I N I S T R Y  O F  T E C H N O L O G Y  

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  ' , ', 

,t!i¢ li,~,,, !{L,,,~" Ir 

!, ̧, ] 

Calculation of the Response of a Fle×ible 
Aircraft to Harmonic and ]Discrete Gusts 

by a Transform Method 

By C. G. B. Mitchell 

L O N D O N :  H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  

1968 

PRICE 15s. 0d. NET 



Calculation of the Response of a Flexible 
Aircraft to Harmonic and Discrete Gusts 

by a Transform Method 

By C. G.  B. Mi tche l l  

Reports and Memoranda No. 3498* 

November, 1965 

Summary. 
The equation of motion for a flexible aircraft responding to a step gust is derived, and the relation 

developed between this and the response to an array of harmonic gusts. A Fourier transform method is 
used to solve the equation of motion. This allows the rigorous inclusion of indicial effects in both the 
gust and response aerodynamic forces. 

As an example the symmetric responses of a flexible slender-wing aircraft in subsonic flight to harmonic 
and step gusts are calculated. The aircraft is given two rigid and four flexible degrees-of-freedom. 
Aerodynamic forces are calculated by a lifting-surface theory and include unsteady effects. 
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1. Introduction. 

The formal requirement for the strength of an aircraft to withstand atmospheric turbulence is set by 
postulating that it encounters a single gust of defined shape and size. On the other hand, an increasing 
number of calculations are being made of the random response of aircraft flying in relatively continuous* 
random turbulence. The question as to which of these models is the best representation of atmospheric 
turbulence is beyond the scope of this Report and is discussed by Zbrozek 1' 2 among others. 

A semi-empirical method is usually used to calculate the peak incremental** normal acceleration An 
of an aircraft entering a discrete gust. This computes the acceleration that the aircraft would experience 
if the gust did not cause the aircraft to pitch or deform and if the airforces on the aircraft instantly adopted 
the values appropriate to the incidence induced by the gust. This acceleration is then multiplied by a 
'gust alleviation factor' (which typically varies from 0'5 for a light aircraft to 0.9 for a dense military 
one) to allow for pitching, gust gradient length, and unsteady aerodynamic effects. Because aircraft 
flexibility is ignored the peak stress at some point on the structure during the gust entry is taken to be 
the steady level flight stress at that point multiplied by the peak acceleration, in g units, caused by the 
gust. 

This method has worked in the past because of the general dynamic and aerodynamic similarity that 
existed between different aircraft designs. The changes from straight to swept to slender wings, the wider 
range of powerplant positions, and the increasing structural flexibility of modern aircraft have removed 
these similarities. This makes it necessary to include pitching, flexibility, and if possible unsteady aero- 
dynamic effects in the rigorous calculation of the response of an aircraft to a discrete gust. Calculations 
of this type have been made 3'4 using normal modes to represent flexibility and exponential approximations 
for-the unsteady (indicial) aerodynamic effects, solving the equation of motion by step-by-step methods. 

This Report shows how a single calculation can be made to provide both the time history of the 
transient response of a flexible aircraft to a discrete gust and also the transfer function needed for the 
calculation of the random response of the aircraft to continuous turbulence. This calculation of the 

*That is, not a series of non-interacting discrete events. 
**By convention, level flight is taken as a normal acceleration of 19. 



response of the aircraft is performed in the frequency domain and the transient response in the time 
domain recovered by the use of the Fourier inverse transform. 

The oscillatory airforces on a harmonically oscillating lifting surface vary with frequency as a result 
of the same physical processes that cause the variation with time of the indicial aerodynamic functions. 
Because the aircraft response calculation is made in the frequency domain unsteady aerodynamic effects 
appear as a variation with frequency of the oscillatory aerodynamic generalised forces. These can be 
calculated by existing lifting surface computer program for arbitrary planforms in compressible flow 5, 
supported by the extensive knowledge of oscillatory aerodynamics gained from the study of flutter 
phenomena. 

As an example, this method is used to calculate the transient response and transfer function for a 
slender-wing transport aircraft in subsonic flight through turbulence. 

2. The Response of a Flexible Aircraft to a Discrete Gust. 
2.1. The Flexible Aircraft. 

An aircraft in flight is a flexible structure on which are imposed force systems due, among other things, 
to gravity, acceleration, the propulsion system and the air. This report discusses disturbances of the 
aircraft about a steady flight path and it is assumed that a set of aerodynamic forces balance those due 
to gravity and the propulsion system in this steady condition. These are henceforth omitted and only 
the forces and motions of perturbations about a condition of steady flight considered. 

The aircraft flexibility is represented approximately by a number of normal modes with generalised 
co-ordinates qi(t), and the generalised forces that disturb the aircraft from its steady flight path (at this 
stage these need not be due to gusts) are ~i(t). Because the aircraft is disturbed it will experience structural 
and aerodynamic forces which will, if it is not unstable, tend to restore it to its trimmed flight condition 
(this need not be the same as the initial steady flight path). The structural response forces are due to 
inertia, damping and stiffness and at a time t depend only on the response acceleration, velocity and 
displacement at that time. Because of indicial aerodynamic effects the response airforces at time t depend 
on the whole history of the response and must be represented by a superposition integral. 

The system is assumed to be linear and the equation of motion derived from Lagrange's equation 6 

A ~(t) + B gl(t) + C q(t) = ~(t)  + f  F { t -  z, gl(Z), q(~)}d~ 
0 

(1) 

where A, B, C are square matrices of generalised structural inertia, damping and stiffness, q(t) is a column 
matrix of generalised co-ordinates, if(t) a column matrix of disturbing generalised forces and F{ t -T ,  
0 (z), q(z)} a column matrix of response aerodynamic generalised forces which is a linear function of q 
and q. 

The aircraft as a dynamic system is the same whatever form of excitation is applied to it. Thus the 
whole range of aeroelastic problems of aircraft are in principle represented by equation (1). For example, 
the stability of motion when if(t) = 0 covers flutter, divergence and aircraft stability; o~(t) being harmonic 
is the problem of forced response to excitation by out of balance rotating machinery; o~(t) being the 
airforces due to a transient control movement or gust represent control runaway and gust cases; o~(t) 
being the airforces due to random gusts is the turbulence response problem, and associated with this is 
the concept of o~(t) being the airforces due to flight through an infinite array of harmonic gusts to give 
the matrix of transfer functions for the harmonic responses of the aircraft to excitation by gusts. 

Although equation (1) describes all aspects of the dynamics of an elastic aircraft in practice it is solved 
by different methods for different types of phenomena. This Report develops the equation for the transient 
response of a flexible aircraft to a step gust and shows how this can be obtained from the corresponding 
transfer function. Throughout the analysis the aircraft's forward speed is assumed constant, the system 
to be linear, and the controls to be fixed. However the equations could easily be extended to include the 
effect of an autostabiliser. 



2.2. The Use qf the Step Gust. 
One feature of the discrete gust response of an aircraft that can be studied by a full dynamic analysis 

is the variation in the response as the gust shape and length are altered. It is not efficient to solve the 
full equation of motion for each gust shape. If the equation is solved for the response to a step gust then 
the response to any other gust shape can be calculated by the use of Duhamel 's  superposition integral 6. 
In this case it would take the form 

t 
t *  

z(t) = Z(t) w(0) + |  Z ( t -  z) ~(z) dz (2) 
e J  

0 

where z(t) is the displacement response of some point or generalised co-ordinate of the aircraft to a gust 
with velocity history w(t) and Z ( t - ~ )  is the response of that point or generalised co-ordinate at time t to 
a unit step gust at time z. For multi-degree-of-freedom systems these terms are matrices. 

2.3. The Relation Between Harmonic and Transient Response. 
The responses of a linear system to harmonic excitation are described in terms of 'transfer functions'. 

For such a system, once the starting transients have decayed, any response parameter, such as displace- 
ment, acceleration, stress, etc., varies harmonically at the frequency of, although not necessarily in phase 
with, the excitation. That is, if the harmonic excitation is ]~(t) = :~[h ei°'t], and the response is f(t), then 

?(t) = ~[r(~o) e'~°'], (3) 

and the transfer function T(co) is defined by 

r(@ = T(~o) h.  (4) 

The transfer function relates to a condition of non-decaying harmonic oscillation. If the system con- 
cerned is an aircraft in flight the aerodynamic excitation and response forces can be calculated rigorously 
to the limit of accuracy of existing computer programmes. Alternatively, forces measured on an oscillating 
model in a wind tunnel may be used. 

If the transfer functions of a system are known then its transient reponse to transient excitation can 
be calculated by the use of a relation that involves the use of the Fourier transform. 

The Fourier transformation 6 is a method of representing a transient function of time as a function of 
frequency. If the function of t imer( t )  satisfies the condition that 

i l f(t)ldt--is finite 
- c o  

(5) 

then the Fourier transform F(m) off( t )  is given by 

V((n) = _f f(t):~ e-io, t dt.  (6) 

The inverse transform is 

1; 
f ( t)  = ~ F(oJ) e i~t do~. (7) 



If f (t) does not satisfy equation (5) its transform F(~o) may still exist, but is likely to contain improper 
functions. 

The relation between any response parameter of a linear system that can be represented by equation 
(1) to transient excitation is v 

R(~) = T(w)E(~)  (8) 

where E(co) is the Fourier transform of the transient excitation, R(rn) that of the transient response and 
T(co) is the transfer function already defined in terms of the harmonic response. In particular the Fourier 

Lim 
transform of a unit step (taken for example asf(t)  = 0, t ~< 0 ;f(t) = fi ~ 0 e-~t, t > 0) is 1~ion, so the response 

to a unit step is given by 

T(o_)) 
R(co) - (9) 

ico 

Thus the relation between the responses of an aircraft to continuous harmonic gusts and to a single 
step gust is very simple and is illustrated in Figure 1. 

This relation between the harmonic and transient response of linear systems has been used to determine 
the harmonic response of an aircraft from flight measurements of the transient response to a transient 
control movement 8. 

2.4. The Symmetric Response to a Step Gust. 
The aircraft in symmetric perturbed motion has two rigid-body degrees-of-freedom, normally repre- 

sented by heave and pitch, and an infinite number of elastic degrees-of-freedom which can in practice 
be represented by a limited number of symmetric normal modes. These may be those calculated for the 
aircraft with structural damping neglected, in which case they will be orthogonal with respect to inertia. 
Alternatively, measured natural vibration modes may be used. These may be only approximately 
orthogonal. 

For each mode the principal generalised structural inertia is 

I f r l  mr Aii = Z 2 2 
over 

aircraft 

(10) 

where A u is the generalised direct inertia in mode i, l is a reference length, fr~ is the non-dimensional 
displacement at point r associated with a unit displacement of the reference point in mode i, and m~ is 
the mass associated with point r. 

The normal or natural mode will have associated with it a natural frequency co i. For a structure with 
small damping the direct structural stiffness is given approximately by 

Cu = A u o ~ .  (11) 

This expression is exactly true if the damping is zero. 
If measured modes are used and cross inertia terms included these are 

Aij = ~ 12 f.lf.j mr 
over 

aircraft 

(12) 



This introduces the problem of how to represent the cross-stiffness terms. It will be found that if the 
expression 

C i j  : A i j  09 i cgj (13) 

is used the structural stiffness matrix is symmetric, as it must be. There is however no theoretical 
justification for the use of,~quation (13). 

The aerodynamic generhlised forces on the aircraft during a gust encounter are of two types, as noted 
in equation (1). The first, ,~-(t) in equation (1), are those due to the gust forces acting on the aircraft which 
is restrained against responding. These can be described at time t by the expression 

9fi.i(t) = pV2S l w V K2i(t) Qi(O) (14) 

where ,~( t )  is the generalised aerodynamic force in mode i due to encountering a step gust of velocity 
w at time t = 0, p is the air density, V the flight velocity, Q'i(O) the zero frequency value of Qi(v)+i @'(v), 
the non-dimensional oscillatory aerodynamic generalised force in mode i due to harmonic gusts of 

reduced frequency v = V '  and K2i is its associated indicial aerodynamic function. K2~ tends to unity 

as t tends to infinity, and is often referred to as a Kfissner function to mark that Kfissner evaluated the 
function K2(t ) for the lift on a two-dimensional wing in incompressible flow encountering a step gust. 

The second set of forces, F [ t -  T, 0(T), q(T)], are due to the response of the aircraft. Because the response 
history is not a simple step function it is necessary to build up the response airforces by superposition 
from the histories of the airforces after step changes in the responses in the separate modes. If the displace- 
ment o f the j th  generalised co-ordinate is increased as a step from zero to qj at time T then the generalised 
force in mode i due to this can be written 

Fi~(t - T) = p V2SI qj K l ( i j ) ( g  - -  T) QIj(0) (15) 

where Fii( t -T)  is the aerodynamic generalised force in mode i at time t due to a step displacement in 
mode j at time r, QIj(0) is the zero frequency value of Qij(v)+ iv@)(v), the non-dimensional oscillatory 
aerodynamic generalised force in mode i due to motion in mode j  at reduced frequency v, and Kl(ij~(t - T) 
is the associated indicial aerodynamic function. KI~ij)(t-T) tends to unity as t tends to infinity, and is 
often referred to as a Wagner function. Wagner evaluated the function Kl(t  ) for the lift on a two- 
dimensional wing in incompressible flow following a step change of heaving velocity. 

The exception to equation (15) is for motion in translational modes such as heave, or an assumed 
bending mode with no associated torsional deformation. Here there is no force due to steady displace- 
ment but only due to steady motion. To maintain the relation that makes K, i , , ) ( t -T )  tend to unity as t 
tends to infinity (mode m being translation) requires the airforces in this case to be defined as 

Fim(t - "c) -= p V 2S12 ~, K t ore) (t - 7:) Q'i'm(O). 
v (16) 

For  the case of general response the aerodynamic generalised forces at time t are built up by the use 
of Duhamel 's  integral 

and 

t 

Fit(t) = p V 28l QIj(O) f K 1(ij)(t- ~) c~j(z) d~ 

0 

(17) 

t 

Fire(t) = p V SI 2 Q i'~(O) f K ,  (i,.) (t -- ~) iil,,(T) dr. 
0 

(18) 



The equation of motion for the response of the aircraft to a step gust at time t = 0 can now be written. 
If the aircraft is represented by n degrees-of-freedom (of which p are translational modes) the single 
matrix equation of motion consists of n linear simultaneous differential equations, of which the ith is 

• (Aijglj(t) + Bijgl~(t) + Cijqj(t) ) 
j = l  

t 

P (O) fK ( )q ) d pVSl  ( ) Q'i(O) pVSl2m2 . . . .  = wK2~t  + Q~m ~(~m) t - - z  m(Z Z+ 
= i  0 

t 

+pVESl  ~, Q'ij(O)f Kl<ij>(t-Z)glj(Z) dz. 
j = p + l  0 

(19) 

This equation can be conveniently reduced to non-dimensional form by making the substitutions 

Vt Vz A 0 bo = B~j C 0 
s = --if, a = -1- '  a~j = pSi3,  pSI2 V , c 0 - pS1V 2 

and noting that 

d V d d 2 V 2 d 2 
d~ = I ds '  dt--- ~ = 12 ds 2 . (20) 

The indicial aerodynamic functions are rewritten in terms of the new variable s, K(s) meaning K(t) at a 
value of t corresponding to s. Equation (19) can now be written in non-dimensional form as 

• (aij ~lj(s) + bij Oj(s) + c ~j q~(s)) 
j = l  

= v K.,(s) O (OI + Z K,.m, (s- + 
m = l  0 

$ 

j = p + l  0 

(21) 

Because of the superposition integrals it contains equation (21) can only be solved in the time domain 
by using step-by-step methods. 

2.5. Solution o f  the Equation of  Motion by the use of  the Fourier Transformation. 
It has been suggested previously 9' lO that a transform relation can be used to solve the equation of 

motion, equation (21). One immediate difficulty is that the Fourier transforms of some of the rigid body 
responses of an aircraft to a step gust do not exist. The responses concerned are the heave velocity and 
displacement and the pitch displacement. This non-existence appears as a singularity in the transform 
at zero frequency. However, if calculations are always confined to the acceleration responses to a step 
gust, and if the aircraft is stable, transforms of all the response histories will exist. Once the transient 
acceleration response has been calculated the velocity and displacement histories can be found by 
integration. 



Before solving equation (21) by the use of the Fourier transform certain basic relations, in addition to 
equations (6) and (7), are needed. These are firstly, addition 

A(~o) + B(¢o) = ; [a(t) + b(t)] e-i,ot dt 
- o o  

(22) 

and secondly, multiplication (also called convolution, because of the term a( t -z)  b('c)) 

era t 

A ( @ B ( @ = f e - i ~ t f a ( t - ~ ) b ( . O d ~ d t .  

- ~  o 
(23) 

In this application the integral a(t - z) b(r) is only non-zero in the interval 0 < z < t. The transforms of the 
indicial aerodynamic functions K will be denoted by K"; of q, ?/; of/~, ~ and we note that ~ = - v 2 ~/. The 
non-dimensional parameters s and v will be used. 

The Fourier transform of equation (21) may now be taken, applying equations (6), (7), (22) and (23) 
term by term and using ~ as the response variable to ensure its existence. This leads to 

L (-- v 2 au+ iv bli+ cij)~j(v) 
j =  1 

P 

= - - V  2 W p Z Qi(O) Kzi(v)- v 2 QI',,(O) -~l(im)(V)@m(V)"3r 
nl = ] 

+iv L Q'ij(0) Kl(ij)(v)~j(v). 
j = p + l  

(24) 

Now a key relation in this work is that due to Garrick 11 connecting the oscillatory and indicial aero- 
dynamic functions. In the notation of this Report the relation is 

K ~ . , . ~  - Q ' ~ . ( 0 )  v 2 

1{ } 
Iq.j~ - O;~(o) Q.~(v) - i  Q'I j(v) (25) 

IK2'-  Q',(O,1 {Qi'(V)v i Q~(v)} 

These relations are developed by superposing a number of steps to form a harmonic oscillation and 
calculating the resulting oscillatory aerodynamic generalised force. They can be used simply to calculate 
indicial aerodynamic functions from oscillatory aerodynamic forces. Alternatively, substituting them in 
equation (24) leads to 

- vZa l j+ ivbu+ci j -Qu(v l - l vQu(v  0;(v)= v i'(v)-iQ'i(v " 
j =  1 

(26) 



Equation (26) is solved to give n sets of response transforms-~j(v). These are transformed back to the 
time domain to give the transient response/~.(s) by the use of equation (7). Since~(v) is likely to be known 
as a function defined numerically rather than analytically the inverse transformation process is a simple 
numerical integration. A computer program to perform this integration is described in the Appendix. 

Equation (26) can be obtained by a different approach. If the aircraft is flying through an infinite 
array of harmonic gusts the excitation forces ~i(t) of equation (1) are the gust forces of which the non- 
dimensional form is Qi(v)+ i Q'i'(v), while the response airforces Fij are the normal oscillatory aerodynamic 
generalised forces Qi~(v)+ iv Q'i~(v). Thus equation (1) gives 

v2 a i j + i v b i j + c i j - Q ~ j ( v ) - i v Q ' i ) ( v )  / l j (V)=-v2 V ~(v)+iQ~'(v . 

j = l  

(27) 

In this equation the matrix/~(v) / ( V )  is the transfer function for the acceleration response in the 

generalised co-ordinates due to gust excitation and, following equation (9), if this is divided by iv it will 
be found to give the transform of the transient response to a step gust as calculated by equation (26). 

It will be remembered that equations (21), (26) and (27) apply to perturbations of the aircraft from a 
condition of steady flight; that the forward speed is assumed constant; that the aircraft is a linear dynamic 
system; and that the controls are fixed, both during harmonic motion (equation (27)) and during the 
response to a step gust at s = 0 (equations (21) and (26)). 

3. Applicat ion to a Slender-win9 Aircraft.  

3.1. The  Aircraft.  

An example of the use of the method outlined in Section 2 is the calculation of the harmonic and 
transient response of the slender-wing aircraft shown in Fig. 2. This is a project design of which engineer- 
ing aspects have been studied by the British Aircraft Corporation (Operating) Ltd., Filton Division. 
Principal data for the aircraft are given in Table 1. 

The symmetric response only is considered and the aircraft is represented by the rigid-body degrees- 
of-freedom heave and pitch about the rear spar. Flexibility is represented by the first four calculated 
normal modes (Fig. 3). These were provided by the British Aircraft Corporation 12. The flight condition 
considered is a Mach number of 0.8 at an altitude of 20 000 feet. 

The wing oscillatory aerodynamic generalised forces were calculated by the computer program 
RAE 161A 5, using the 35 collocation points shown in Fig. 4. The same program was used to calculate 
the generalised forces due to flight through an infinite array of harmonic gusts. This cannot be done 
directly as the program calculates aerodynamic forces due to modes whose displacements are related to 
axes that move with the undisturbed motion of the aircraft 

zj(x,y,t) 
1 = fq(x ,y)  qjo ei~°t (28) 

where qjo is the peak amplitude of the jth generalised co-ordinate. To represent the case of flight through 
gusts a mode shape is required that sweeps back over the wing at the flight speed. This should take the 
form la 

w(x,y,t) x 
V = e'°*-~ ~ • (29) 

.... 



It is found that if mode shapes of the form 

are taken, and these are combined as 

so that the displacements are 

X . COX 
f l  r(X) = "~ s i n  - - ~  

x c o x  
f2r(x) = ~- cos -V-- 

L(x) = f2r(x)-  iLr(x) 

Z { X  fOX . X 
1 t, Tcos_v_,7 - = s l n - v - ) e  

then the downwash due to this mode is 

(30) 

(31) 

(32) 

W . X 
V e'~(t-T) (33) 

Fuselage and nacelle aerodynamic loading, and the effects of separated leading edge vortices, were 
ignored. 

3.2. Details of the Calculation. 

The calculation of the transient response of the aircraft to a step gust can be broken into several sections. 
(i) Calculation of the oscillatory aerodynamic generalised forces by program RAE 161A for a number 

of reduced frequencies. This requires information about the aircraft geometry, mode shapes and Mach 
number. For the particular calculation described the typical length was 78 feet (the wing span) and the 
flight speed 830 ft/sec. Reduced frequencies of 0.01, 0-76, 1.6376, 2-8364, 4.9127, 6.8475 and 10.5856 were 
used, but the results for the highest frequency were considered to be very inaccurate and were not carried 
on to later sections of the calculation. 

(ii) The aerodynamic generalised forces are plotted against reduced frequency to allow interpolation. 
Some typical examples are shown in Fig. 5. 

(iii) Using a simple computer program,equation (27) is solved to give the transfer function. This 
requires the aircraft structural data and, for each frequency at which the transfer function is calculated, 
the aerodynamic generalised forces. At this stage of the calculation varying the kinetic pressure at constant 
Mach number is possible by straightforward scaling of the structural data. The calculation is in non- 
dimensional terms for a gust velocity w/V of unity. To obtain the acceleration in 9 units for a gust velocity 
w the non-dimensional acceleration must be factored by wV/91. 

(iv) The transfer functions are plotted as vector diagrams to allow interpolation. A typical example 
is shown in Fig. 6. 

(v) At suitable frequencies the transform of a response is calculated 

~ R ( V ) + i - ~ f ( V )  - -  Oh(V) i glR(v) (40)  
v r 

where the suffices R and I indicate real and imaginary parts. 

10 



(vi) At chosen values of s the physical response is recovered by the use of a computer program to 
evaluate separately 

cO 

Cl(S) = 2 f-~R(V ) COS VS dv 
0 

CO 

(s) = - 0 (v) sin vs dr. 
0 

(41) 

Since this Report was prepared the process has been automated and it is only necessary to supply the 
response program with the aerodynamic generalised forces at the frequencies at which they were 
calculated. This automated program prints out the transfer function at preselected frequencies and the 
transient response at preselected times. 

3.3. Calculation Results. 

For  the slender-wing aircraft of this example the non-dimensional transfer functions for each degree- 
of-freedom are shown in Fig. 7 and the dimensional transient responses to a step gust in Fig. 8. The 
responses plotted are the accelerations in pitch, in the four elastic modes at points on the structure for 
each mode at which f,~ = 1.0, and at a point on the structure that coincides with the centre of gravity 
when the aircraft is in steady flight. This latter parameter is not used as a basic degree-of-freedom but is 
a linear combination of the six used. It is plotted as having more physical significance than the acceleration 
in the heave mode alone. These responses together with information on the mode shapes allow the 
transfer function and transient response at any point on the aircraft to be calculated. As examples Fig. 9 
shows the transient responses of the structure at the centre of gravity, at the wing apex and at the wing 
tip. To show the effect of flexibility and pitch the transient acceleration response at a point on the structure 
near the centre of gravity for the aircraft with one (heave) and two rigid degrees-of-freedom are compared 
with that of the flexible aircraft in Fig. 10. 

Calculation of the transient response to a step gust from the transfer function is a purely mathematical 
process, so that the accuracy of this step is set solely by the programs used. Three examples of what can 
be achieved are given. The first is to compare the response for pitching acceleration obtained from the 
real and imaginary parts of the transform separately. These should be the same, and the average error is 
only 5-7 per cent of the peak value of the response. This is shown in Fig. 11. 

A second test is to use the same program to calculate the transform of this response. This should, after 
the insertion of a factor 2/n, be the same as the original transform. These are compared in Fig. 12. This 
is a severe test of the transformation program as both the response and its transform are very erratic 
functions. The average error is 9.5 per cent of the peak value which is roughly double the error of the 
single transformation shown in Fig. 11. An example of a double transform of a smooth function is given 
in Fig. 13 and it will be seen that the accuracy for this is very much improved. 

The third check is to compare the response of the aircraft to that obtained from a step-by-step solution. 
This latter was done by the British Aircraft Corporation 12 and differs from the transform solution in 
that the response aerodynamic forces are considered to depend only on the instantaneous response 
rather than the whole response history. On a low aspect ratio wing this is not an unreasonable assumption. 
It is of course possible to simulate this calculation exactly by the transform method by taking the response 
oscillatory aerodynamic generalised forces to be independent of frequency. In view of the actual small 
variation of these with frequency at the lower frequencies (Fig. 5) the author did not consider it worth- 
while repeating the calculation simply to obtain exact equivalence in the comparison. The results of the 
two calculations are shown in Fig. 14. 
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4. Aircraft Loading. 
Although the transient response of an aircraft to a gust is important and interesting, of even greater 

importance is the transient stress distribution during the gust encounter. This requires the calculation 
of the loading on the aircraft, and this can readily be obtained by the transform method. 

A computer  program RAE 263 A, exists 5 that calculates the pressure at chosen points on a lifting 
surface due to oscillatory motion in defined modes. These pressures are defined by 

n 

p~ = pV2 e ',,)t ~ (l;j+il;})qJo 
j 1 

(42) 

where Pr is the oscillatory pressure at point r and l'rj+i l'r'j is the non-dimensional oscillatory pressure 
at point r due to mode j. The transform of the pressure at point r due to a step gust and the subsequent 
response of the aircraft is then 

n 

Pr =- p V w  + + p V2 (l;j+i l;'j) Oj 

j - -  1 

(43) 

where l'~+il'r' is the non-dimensional oscillatory pressure at point r due to flight through harmonic 
gusts. To the loading due to pressure associated with point r can be added that due to inertia, and the 
whole transformed back into the time domain. 

5. Discussion. 

So far as the author is aware the calculations presented in this paper are the first for a flexible aircraft 
to allow rigorously for unsteady aerodynamic effects. Calculations by the British Aircraft Corporation 
(Operating) Ltd., Filton Division, for the same slender-wing aircraft have shown that these effects do 
modify the response considerably, if they are included in the forcing terms only. Their inclusion in the 
response aerodynamics has less effect. The modification is greatest in the elastic response terms and 
thus is most apparent at the extremities of the aircraft. Since a low aspect-ratio aircraft will be least 
affected by unsteady aerodynamic effects it can be concluded that these are, in general, worth including. 
Their effect on the loading as opposed to the response of the aircraft is not yet known. 

The most dubious assumptions in the example calculation are both specific to the aircraft considered 
and are not associated with the method of analysis. These assumptions are that the aerodynamics are 
linear and that the flexibility of the structure can be represented by only four normal modes. The airflow 
over the wing does in fact separate to form leading edge vortices in the incidence range of this example, 
and this will produce aerodynamic non-linearities. However, because the response of the aircraft is a 
perturbation from a steady case it can be argued that the perturbation aerodynamics will be approxi- 
mately linear. The whole system must, of course, be linear for the method described here to work. 

The structural assumption that four modes adequately represent the flexibility of the aircraft is justified 
by the calculations of both the author and the British Aircraft Corporation. These have included up to 
five symmetric normal modes and it appears that provided the first to third modes are included the 
flexibility of the aircraft is indeed represented accurately, and that adding further modes does not modify 
the response significantly. To obtain the loading accurately may require the use of more modes, and this 
result only applies to the integrated shape of aeroplane used in this example. On a more conventional 
design Ref. 4 reports that it was necessary to use 18 modes to obtain adequate results for loading. 

The calculated transient response of the slender-wing aircraft shows several marked differences to 
that of a more conventional design. The first is that because of the long root chord the aircraft initially 
tends to pitch nose up on entering an up-gust. The second is that, because there is relatively little lag in 
the build up of lift after the incidence is changed, the peak acceleration occurs early in the response 
history. At the time of the peak acceleration there is little heaving response and the details of the response 
aerodynamic forces due to heave have little effect on the peak acceleration. Thirdly, there is a large 
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interaction between the elastic deformation of the wing and the overall pitching of the aircraft. This 
may be due to the elastic response modifying the wing camber, in which case it will only be a feature of 
the response of large, low aspect ratio, aircraft. The first and last of these results has been noted by 
Huntley 18. 

The first two effects combine to give a much larger gust alleviation factor than is predicted by any of 
the empirical methods in general use. The factors predicted by Refs. 15, 16 and 17 are respectively 0.84, 
0.72 and 0.73. The full dynamic calculation for the response to a gust with a ramp length of 100 feet gives 
an alleviation factor at the centre of gravity of the rigid aircraft of 0"99, with an elastic overshoot of the 
structure in this area to a factor of 1.12. 

However, the effect of elasticity is such when the incremental acceleration at the centre of gravity due 
to a step gust is a maximum at 1"579, that at the wing tip is -8"49 and at the wing apex 1.8g. These 
accelerations are reduced by increasing the gust ramp length. For a length of 100 feet the maximum 
acceleration at the wing tip comes down from 10"59 to 4"99 and occurs at a different point in the response 
history. On the structure near the centre of gravity, however, the peak acceleration is only reduced from 
1"579 to 1"529. The variation of acceleration over the aircraft does show the degree to which the uniform 
acceleration concept of the conventional discrete gust approach is in error. 

One point of interest is that the pitch angle of the aircraft does not return to zero, nor the heave velocity 
tend to the gust velocity, when the short period motion following gust entry has ceased. In general the 
aircraft weathercocks into the gust, but the final condition can vary from a nose down pitch attitude of 

w with no heave velocity through a horizontal attitude with a heave velocity w to a nose up attitude 
V 
with a heave velocity > w. These conditions occur as the manoeuvre margin is progressively decreased 
towards zero. This long term behaviour of the aircraft is determined very readily by the transformation 
method but would be difficult to calculate by any step-by-step method. In particular, the response an 
infinite time after gust entry can be found directly from the response transform without leaving the 
frequency domain. For pitch angle, as an example 

o0 
t *  

q2(00) = |02(t) dt = ~ 2(0). 
t /  
0 

The relation between the transient and harmonic responses emphasizes the fact that the aircraft is a 
single dynamic system, and that once the equation of motion of this system is written down any aspect 
of the dynamic characteristics can be calculated. As an example of this the transfer function has been 
used to calculate the flutter speed and sub-critical response of the slender-wing aircraft. 

This is done by recalculating the transfer function at a number of values of the kinetic pressure, this 
corresponding to increasing the equivalent air speed at constant Mach number. The transfer function 
is divided by the ratio of kinetic pressures (to eliminate changes due solely to changing the ratio of the 
aerodynamic exciting forces to the structural inertia) and the result drawn as a vector plot. Fig. 15a 
shows the transfer function for the third elastic mode. This plots as a circle which at 360 kt is traced in 
a clockwise direction as frequency is increased. Increases of kinetic pressure change the circle radius 
until at the critical speed the radius becomes infinite. Beyond this speed the transfer function plots as a 
more complicated form with values tending to infinity at two frequencies. Between these frequencies it 
has finite values but is traversed in an anticlockwise direction with increasing frequency. 

From the vector plots the damping in mode 3 is assessed at the various kinetic pressures and plotted 
against equivalent air speed in Fig. 15b. The critical flutter speed is 625 kt E.A.S. and the flutter frequency 
4.25 cs. These compare well with a prediction by the British Aircraft Corporation of a flutter speed of 
640 kt E.A.S. and a frequency of 4"4 cs at a Mach number of 0.85. This latter calculation included 10 
normal modes and the agreement with the author's one using four modes only suggests that the higher 
frequency modes have very little effect on the lower frequency dynamic characteristics of the aircraft. 
It should also be noted that the predicted flutter speeds are well outside the flight envelope of a typical 
supersonic transport aircraft. 
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6. Conclusions. 

(i) The transient response of an aircraft to discrete transient excitation can be obtained from the 
transfer function by means of a relationship involving the Fourier transform. By this means the bulk of 
the response calculation is carried out in the frequency domain and the aerodynamic data required can 
be obtained from existing lifting surface oscillatory aerodynamic programs. These aerodynamic terms 
will include unsteady effects, whether these appear as variation with frequency of oscillatory aerodynamic 
derivatives or as variation with time of indicial aerodynamic functions. 

(ii) Calculations for both the transfer function and the response to a step gust, this latter by the Fourier 
transform method, have been made for a slender-wing aircraft the dynamics of which were represented 
by two rigid-body and four elastic degrees-of-freedom. These agree well with calculations for the gust 
response by a conventional step-by-step integration method when, in the latter, the forcing terms due to 
the gust are derived from an oscillatory lifting-surface theory and include unsteady aerodynamic effects. 

(iii) Comparison with calculations of the gust response for the slender-wing aircraft based on the 
assumption that the local pressure on the wing is related only to the instantaneous local incidence shows 
that it is necessary to include unsteady aerodynamic effects in the exciting forces, even on a relatively 
slender aircraft, as these modify the elastic response of the aircraft significantly. It is not so necessary to 
include unsteady effects in the response aerodynamic terms on this aircraft. 

(iv) Full dynamic calculations for the slender-wing aircraft show that the accelerations obtained from 
the empirical methods laid down by British and American airworthiness authorities are unconservative 
by factors of between 25 per cent and 35 per cent for this aircraft. 
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TABLE 1 

Principal Characteristics of the Slender-wing Aircraft 

Span 78 ft 
Length (omitting nose boom) 153.5 ft 
Root chord 110.8 ft 
Mean chord ~ 49"2 ft 
Wing area 3840 ft 2 
Reference area S 3042 ft 2 
Reference length I 78 ft 
Centre of gravity (aft of wing apex) 70"8 ft 
Static margin 3"04 per cent 
Weight 219 600 lb 
Air density at 20 000 ft 0.00127 slug/ft 3 
Flight speed at M = 0.80 830 ft/sec 

19 



A P P E N D I X  

The Fourier Transformation Program 

A Mercury Autocode program has been written to evaluate the transformation 

1; 
f(t) = ~ F(O)) e '°~' do). 

- - ¢ o  

(A1) 

In this workf ( t )  is a real function which is zero for t < 0  and F(e)) = FR(O))4-i Fl(o) ) where FR(O)) is even 
in o) and Ft(o)) is odd. f(t) is the sum of even and odd functions of t. These are equal in magnitude at 
a given t, add for t > 0  and cancel when t<0 .  Thus for t>Of( t )  can be evaluated separately from the 
real and imaginary parts of F(o)). 

oO 

f (t) = 2_ I F R(O) ) COS o)t do) 
nO 

0 

(A2) 

2iFz(o)) sin o)t do). 

0 

(A3) 

This transformation requires the existence of the function F(o)) in an integrable form. If f (t) is one of 
several classes of function F(o)) will contain one or more singularities. For  example, unless f ( t )~O as 
t ~  oe, F(o)) will contain improper functions, such as 6(o)). Also, iff(t) = sin e)ot then F(o)) = n (6(o) - o)o) - 
6(o)+ o)0)). For a marginally damped structure near its flutter condition F(m) will have a tall, narrow, 
peak at the appropriate frequency. 

These difficulties can be overcome in a number of ways. For  the case o f f (oc )  :p 0 the transform 
evaluated can be that of the function f(t)-f(o~v). Similarly, if F(o))~ oo as o )~0  a higher derivative 
(obtained by multiplying F(~o) by o) to the appropriate power) can be transformed, and the solution for 
the required derivative obtained by integration in the time domain. In this case it is necessary to check 
that F(oo) still tends to zero ; this is usually true for real systems. 

When F(o)) has a narrow peak at o)o (corresponding to a lightly damped mode of the system with a 
circular frequency o)0) it is necessary to use closely spaced points to define F(o)) near o)o. As the peak 
gets narrower a stage is reached at which the integration step length in the existing program is too 
short to define the peak correctly. This will lead to distortion of the function f(t) at small values of t, 
because the step length is proportional to l/t. With the present program and a peak at v = o)I/V = 2, 
the first cycle of the oscillation (0 < t < 3l/V) will be distorted if the damping is 2 per cent critical, and the 
first two cycles will be affected if the damping is only 1 per cent critical. This distortion can, of course, be 
overcome by the adoption of a shorter step length for the integration program. The present step length 
has been chosen to give moderate accuracy for normal systems while keeping the computing time small. 
It is in no way an opt imum step length, and could be changed without affecting the principle of the 
program described here. 

In detail, the task of the program is to store a function of frequency F(o)); to read a value of a time 
parameter  t; to form the function F(o)) cos o)t or F(o)) sin o)t, and to integrate this function over the 
frequency range zero to infinity. 
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Since it is not possible actually to integrate numerically to infinity some finite limit must be introduced. 
If the function F(co) shown in Fig. 16a is multiplied by sin cot and integrated between the limits zero to 
f~ the variation of the value of the integral I(f~) with the limit f~ is as shown in Fig. 16b. It will be noticed 
that I(f~) oscillates about the value I ( ~ )  with a period of ~/t, and that the function crosses the final value 
near f~t = (2n+ 1)re/2, where n is an integer. If F(co) decreases monotonically with increasing co for 
large values of co then for consecutive values of n l(f~) is alternate sides of the final value. 

Thus the procedure adopted is to integrate to a value of n of 3 and store the value of I(7z~/2); continue 
the integration to an n of 4 and note I(97z/2); take the final value as the average of these two. In some 
cases it is necessary to integrate to beyond co = 9~/2t. The reason for this is that at large values of t the 
value of co to give cot = 9~/2 is small and could be below values of co at which the function F(co) is still 
varying significantly. 

The representation of the function F(co) has been a problem. This was originally stored as a polynomial 
expression in co that was calculated to give a least-squares fit to the curve of F(co) read by the computer 
as a number of points (co, F(co)). This was extended to a two portion piecewise polynomial curve fitting 
which could be made to work for smooth functions but which was quite incapable of handling the rather 
erratic functions that occur in the case of the flexible aircraft. 

The final program reads the values of F(co) at a large number of values of co and evaluates the function 
at intermediate points by linear interpolation. This, though crude, works remarkably well in practice. 

A flow diagram for the program is given in Fig. 17. Points to note are that the integration limit and 
integration interval change at a preset value of t, this allowing for both the limit problems mentioned 
earlier and for the fact that at small values of t the interval is set by variation of F(co), while for large 
values of t it is set by variation of the sin cot term. 

It is of interest to note that the change in the frequency limit of integration is very large, from 9r~/2t to 
577z/2t, yet for points at which the transform has been evaluated using both limits the final results are 
very similar. 

The integration limit is also subject to a cut-off at the highest frequency for which F(co) is defined. 
The program for the real part of the transform is similar except that the integral is near its final value 

at values of cot = nrc. 
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