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Summary. 
The results of a series of wind tunnel tests involving velocity, surface pressure and force measurements 

on six annular aerofoils are presented together with details of the design procedure which was based 
on that given by Kiichemann and Weber 1. It is shown that theoretical predictions agreed well with 
experimental results when the foils were in the design condition, i.e. uniform inflow at zero incidence. 

Pressure, lift and drag measurements were also made on the foils at incidence, and the results differed 
somewhat from predictions of lifting surface theory. Three foils were further tested with concentric 
centre-bodies and three others in an axisymmetric inflow; in both cases the theoretical predictions 
agreed well with experimental results. 
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1. Introduction. 
In order to further the progress of another investigation the need arose to design a variety of annular 

aerofoils which would meet given requirements as to velocity distribution within the foil and minimum 
pressure on the surface of the foil. A mathematical analysis has long been available, see e.g. Kiichemann 
and Weber 1, for an isolated annular foil placed at zero incidence to a uniform flow. However, at least 
over the range of annular foil geometry of interest in the present study, there existed no experimental " 
evidence as to the accuracy to which designs would meet their theoretical specification. 

It was found necessary therefore to test a number of annular aerofoil designs, in the first instance 
under the condition of zero incidence to a uniform flow. Since interest in the foils included their behaviour 
under different flow conditions performance was also measured when a foil was placed at non-zero 
incidence, when a foil surrounded a parallel-sided centre-body, and when placed at zero incidence to an 
axi-symmetric shear flow. 

2. Annular AerofoiIs at Zero Incidence in Uniform Inflow. 
The mathematical treatment of annular aerofoils developed by Ktichemann and Weber 1 and, among 

others, by Morgan 2 is an extension to the axi-symmetric case of linearized two-dimensional aerofoil 
theory, see for example Thwaites a. Since the problem is three-dimensional conformal transformation 
cannot be used, and the problem has to be linearized to make it tractable. The governing equation of 
incompressible potential flow (i.e. Laplace's equation) is linear, but the boundary condition on the 
surface of the aerofoil introduces non-linearities into the problem. This boundary condition, i.e. that 
the fluid velocity at the aerofoil surface must be parallel to the surface, may be expressed as 

(radial velocity)/(axial velocity) = (slope of aerofoil surface ) (1) 

If V 0 denotes the axial inflow velocity and vr and v x the radial and axial components respectively of 
the perturbation velocity field produced by the annular aerofoil, equation (1) may be written: 

+vj die ] Or/(Vo surface = d x  ( x ) +  s (x)  (2) 

for 0 ~< x ~< l, where l is the axial length of the foil, x = 0 is the leading edge of the foil and x = 1 the 
trailing edge (see Fig. 1 for co-ordinate notation), r = c(x) is the equation of the camber line of the foil, 
and s(x) is the half-thickness distribution of the foil section measured normal to the axis. The upper/ 
lower sign in equation (3) refers to the outer/inner face of the foil. 

The foil is assumed to be 'thin' by which is meant 

and 

c(x)-Ro, s(x)~l } 

c'(x), s' (x)41 
(3) 



where R0 is a mean value of c(x) over the range 0 -N< x ~ l. This latter condition cannot be satisfied near 
a rounded leading edge where s ' ( x ) ~  o% and hence 'thin aerofoil theory' is not realistic near the leading 
edge of the foil. 

The relations (2) and (3) together imply that 

v#(vo + v~) I ~ 1 
surface 

Hence, since vr and vx are of the same order, the assumption that the annular aerofoil section is 'thin' 
implies that v, v~ ~ V o. Rewriting (2) in the form: 

,r = [~'(x) ± s'(x)] Vo + [c'(x) ± s'(x)] v:, (2a) 

shows that the term involving the axial component of the perturbation velocity is of second order and 
can be neglected in a linear theory; that is to say the axial component of the perturbation velocity can 
be neglected in comparison with Vo, the inflow velocity, when applying the boundary condition (1). 

Further it is assumed that since the aerofoil section is 'thin' the error in evaluating the velocities on 
the mean cylinder r = R o of the foil, rather than on the surface of the foil itself, is also second order. 

Thus the final, fully linearized, boundary condition is 

or (x, Ro) /V o = c' (x) ± s' (x) (4) 

In order to solve Laplace's equation subject to the linear boundary condition (4) the annular foil is 
replaced by a distribution of source and vortex rings. Theoretically these rings could lie on any single- 
valued axisymmetric surface lying within the annular aerofoil between the leading and trailing edges, 
but for ease of calculation the rings are taken as lying on the foil's mean cylinder r = R0, 0 ~< x ~ I. 

The velocity induced on the mean cylinder at the point (x, Ro) by the distribution of source rings of 
strength density q(x'), O<~x'<~l, has axial and radial components vqx(x, Ro) and @(x,  Ro)+½q(x)  
respectively whilst the induced velocity due to the distribution of vortex rings of strength density 
7o(X'), 0-.~x ~<1, has axial and radial components v ~ox(X, Ro)-T-~7(x ) and V~or(X , Ro) respectively, where 
the upper/lower sign refers to points on the outer/inner face of the cylinder. The sign convention for the 
strength of the vortex rings adopted here is that used by Kiichemann and Weber 1 and Bagley 4, and is 
such that ~o > 0 if the vortex ring produces an accelerated flow through the ring itself (see Figure 1). 

The significance of the asterisk in the above notation is to emphasize that vqr and v~o ~ are only the 
regular part of the velocities induced on the mean cylinder of the foil, the radial component of the source- 
ring distribution having discountinuity of q(x) and the axial component of the vortex-ring distribution 
a discontinuity of - ~o(X) across the mean cylinder of the foil. 

Analytic expressions for these four velocity components are given in Appendix I in terms of Bessel 
functions, elliptic integrals and Legendre functions of the second kind and half order. 

Substituting for vr(x , Ro) in the linearized boundary condition (4): 

V*qr(X, Ro) +- 1 q (x) + V~o~(X , Ro) = Vo [c' (x) ± s' (x)] (5) 

where the upper/lower sign refers to the outer/inner face as before. Separating the two parts of equation 
(5): 

and 

q(x) = 2 V o s' (x) 

vq,(x, Ro) + V~o~(x , Ro) .= Vo e' (x). 

(6) 

(7) 



Thus the strength of the source-ring distribution and the thickness distribution are related by the 
simple expression (6) (which is the same expression found in two-dimensional aerofoil theory--Thwaites 3) 
and if either q(x) or s(x) is known the other is easily calculated. 

The relation between the camber gradient and the vortex distribution is more complicated. Two 
distinct problems are evident: 

(a) A design procedure in which ~o(x) is determined from some requirement on the velocity field of 
the annular foil; in the designs presented in this report the foil is desired to produce a specified mean 
velocity increment in its mid-plane. The thickness distribution s(x) and the chord-diameter 2 are also 
specified, and the problem is to calculate the camber line of the foil. This is readily done using equation 
(7); q(x) is known from (6) and vq, and V~o, can be evaluated using the expressions given in Appendix I, 
e.g. in terms of elliptic integrals : 

vq~(x, Ro) = q(x') [½ k 3 D(k)] dx' 
0 

1.28 

= ~o(X') D' k~ D (k)-  k ~(k)] dx' V,o,(X, Ro) ~ o 

4/'[(X@oX ')2 4] where k 2 = + and k '2 = 1 - k  2. 1.30 

1.29 

(b) Secondly, there is the inverse problem of calculating the source and vortex distributions and 
hence the velocity field of a given annular foil. The strength of the source distribution q(x) is readily 
calculated from (6) but, as can be seen from the expression 1.29 for V~or (x, Ro), equation (7) is now an 
integral equation for 7o(x). Hence this second problem is far more complicated than the straight-forward 
design procedure. This report is only concerned with the first type of problem; the inverse problem is 
dealt with by Morgan 2 and in a series of reports published by Therm Advanced Research. s'6'7,s 

It is of interest to note that the presence of the term @ in equation (7) is an additional complication 
due to the three-dimensional nature of the aerofoil and is not present in the corresponding two- 
dimensional theory. Thus for an uncambered annular aerofoil (i.e. c' (x) = 0), the vortex distribution 
is not identically zero and there is a net circulation around each section of the foil. 

As is described in the next Section two series of foils were designed and tested, the first series being 
designed in accordance with the linear theory so far presented, but in the design of the second series it 
was felt necessary to take some account of the axial component of the perturbation velocity in applying 
the boundary condition (2) since, for instance, for the foil B.1. vx/V o ~0-3 (see later for details of foils). 
The design method for the second series of foils thus incorporated a non-linear modification used by 
Ktichemann and Weber 1 and Bagley* which is described below. 

In the design problem q(x) and ~)0(x) are both known so that vqx and ~o~ can be calculated and hence 
these terms can be included in the axial velocity in equation (7) when evaluating c'(x), i.e. 

vq,(x, Ro) + V~o,(X, Ro) = [Vo + vq:,(x, * ' • R o ) +  v~o~(x, Ro)] c (x). (8) 

However two comments must be made regarding the application of (8) to an aerofoil with non-zero 
thickness: 

(a) The error in evaluating the velocities on the mean cylinder rather than on the foil surface is also 
a second order quantity, and so the above correction only goes half way towards a second order theory. 

(b) To be consistent the -T-½~)0(x) term should be included in the axial velocity in equation (5), and 
also the vqx, V*~o:, terms in equation (6). Equations (6) and (7) should now be replaced by 

* ," i (Vo + v~+ V,o~) s (x)-~o(X) c'(x) = ~ q(x) (9) 



and 

* r 1 S t * (Vo+Vqx+V~ox) c (x)--~o(X) ( x )  = v~r+V,o~. (lO) 

Eliminating c'(x) from these two equations we have a non-linear integral equation for q(x), necessitating 
a great deal of computation for only a small gain in accuracy. 

In view of these theoretical objections to the use of equation (8) in the design procedure its justification 
must rely upon experimental results. 

The foil having been designed for a given circulation distribution it is of interest to calculate the 
theoretical pressure distribution on its surface or, conversely, an empirical circulation distribution may 
be deduced from measurements of the pressure on the surface of the foil. 

The pressure coefficient C v is defined by 

Cp = (p-po)/½pVo 2 (11) 

where Po is the static pressure and Vo the velocity of the free stream. Using Bernoulli's Theorem for 
irrotational flow, C v can also be expressed as 

Cv = 1 - [(Vo +v~) 2 +v r  2 ] /Vo 2 (12) 

where vr, G are the radial and axial components of the perturbation velocity of the foil. 
In the linear theory both vr and v~ are assumed small in comparison with V0, and thus to a first order 

Cv = - 2  vdV o. (13) 

In the non-linear modification however v~ is not necessarily small compared with Vo, and so to a first 
order 

Cv = - '2  vdVo - (VJVo) z. (14) 

Cv can be evaluated on the aerofoil surface using e~ther (13) or (14), whichever is appropriate, since in 
either case 

vx (x, Ro) = vqx (x, Ro) + V~o~(X, Ro) T-~o(X) (15) 

where the upper/lower sign refers to the outer/inner face as usual. 
On the other hand usin~ equations (13) and (15) a simple expression can be obtained for the circulation 

distribution ?o(X), in terms of the pressure coefficients on the outer and inner faces. If (Cp)+, (Cv)- denote 
the pressure coefficients on the outer, inner faces respectively, then 

( cp)  +_ = - 2 [vqx + v,ox* -+ ~?o(X) 

and therefore (Cp) + - (Cv)- = + 2%(x)/Vo. (16) 



3. 7"he Design of the Annular Aerofoils. 
The procedure used in the design of the six foils tested in these experiments is outlined here, whilst 

the geometric details of the individual foils are given in the next Section. 
In each case the chord-diameter ratio (,~ = l/2Ro) was specified together with the section thickness 

distribution s(x), and q(x) calculated from (6). Further the vortex distribution 7o(X) was chosen to be 
constant along the length of the chord (c.f. NACA a -- 1 type camber lines for two-dimensional aerofoil 
sections~, i.e. 

70(x) = 2nVo b (17) 

where b is a constant. This vortex distribution is essentially the fourth term of the Birnbaum Series 
employed by Kiichemann and Weber l, and the itlduced velocities associated with such a vortex distri- 
bution are tabulated in the Appendix of Ref. 1 for various chord/diameter ratios. The analytic expressions 

• involved are given here in Appendix I. 
Each foil was designed to have a particular 'diffusion ratio' A defined as the ratio of the mean velocity 

inside the foil across the mid-chord plane of the foil to the uniform inflow velocity V o. 
This diffusion ratio is related to q(x) and Vo(x ) by the equation 

,5 Vo = Vo+~+~,o (18) 

where Oq and ~o are the mean velocities in the mid-chord plane produced by the source and vortex 
distributions respectively. Oq can be evaluated by numerical integration, and for the constant vortex 
distribution chosen for these designs ~o can be evaluated analytically as is shown in Appendix I since 
0~o = 8 k; D (/ca) V o b (I.26) 

V/ i  4 V~224+4 + l ~ - k ~  where k3 = + l/2/~) 2 + 4 - + , k; = (I.27) 

and D(k) is the complete elliptic integral of the third kind. 

A given diffusion ratio thus determines the value of b and the consequent circulation around a section 
of the foil. However in calculating the required camber line via equation (7) some allowance needs to 
be made for real fluid effects. It is known that for a two-dimensional aerfoil with an a = 1 type camber 
line the lift, and hence the total circulation, is only 74 per cent of that predicted by inviscid flow theory• 
This is due to the displacement thicknesses of the boundary layers on the two faces being different, owing 
to the different pressure distributions, which results in a change in the effective camber of the aerofoil. 
It is not known to what extent the curvature of flow in the three-dimensional case of the annular aerofoil 
will affect the boundary-layer development compared to that in the two-dimensional case and, in 
particular, it is not clear how the 'inviscid' chordwise distribution of circulation will be altered by the 
presence of viscosity. It has therefore been assumed for design purposes that real fluid effects reduce the 
vortex strength uniformly to 0-74 of that predicted from inviscid flow theory. Thus in calculating c'(x) 
from equation (7) the contribution from the vortex distribution term was scaled up by a factor 

1 
- 1"35. 

0'74 
Thus once b has been determined, V~o , and V~ox can be Calculated from the expressions given in Appendix I, 

or read off from Tables in the Appendix of Reference 1, at various stations along the mean cylinder of 
the foil. c'(x) is then calculated using equation (7) (or (8) if the non-linear theory is employed) and scaling 

1 
up the contribution from the vortex distribution term by the factor b - ~  = 1'35. (In the present designs 

6 



twenty equally spaced stations were used.) The camber line c(x) can then be evaluated by numerical 
integration, the constant of integration being chosen such that R o is some mean value of c(x) in 0 ~< x ~< I. 
(In the present designs the arithmetic mean was taken.) 

4. Particular Designs Tested. 

Two sets of annular foils were designed and tested in these experiments. The mean diameter was 
chosen to be 12 ins. and the section thickness distribution was chosen in all cases to be the NACA 0006 
section, slightly thickened at the trailing edge for structural reasons. 

The three foils of Set A, which were turned out of laminated wood, each had a chord/diameter ratio 
of unity, the design diffusion ratio (i.e. the mean velocity across the mid-plane relative to the free stream) 
being 0.63, 0.82 and 1.00 respectively. They were designed on the basis of the fully linearized theory 
using equations (6) and (7) to determine the camber line. 

An estimate was later made of the performance of these foils according to the non-linear theory, i.e. 
using equations (6) and (8). This involved solving the inverse problem of calculating the velocity field 
of a given annular foil. The iteration procedure developed at Therm 6 was used to solve the basic integral 
equation and a second interative procedure was adopted to deal with the non-linear term (vqx+ v 7ox) 
of equation (8). This calculation is not as precise as that using equations (6) and (8) in a design procedure 
as allowance has to be made for real fluid effects. Since the resulting circulation (inviscid theory) is no 
longer rectangular the appropriate viscous correction may well be different from that assumed (0.74, 
as for rectangular distribution). The resulting estimates of the diffusion ratios of the three foils were 
0.70, 0-84 and 1'00 respectively. 

The three foils of Set B each have a chord/diameter ratio of 0.75, their design diffusion ratios being 
0.73, 0"91 and 1.19 respectively. This set was designed on the basis of the non-linear theory using 
equations (6) and (8) to determine the camber line. These foils were cast and machined from Araldite 
incorporating pressure tubes with holes in both inner and outer faces, at positions 5, 10, 20, 30, 40, 50, 
70 and 85 per cent of the chord, measured from the leading edge. There were two sets of these holes, 
one set lying on a line parallel with the axis of the foil, the other on a line inclined at 30 deg to the axial 
direction. This enabled any interference between the pressure holes of the former set which lie on a 
streamline, to bedetermined by comparison with the latter. 

Photographs of one foil from each set are shown in Figures 3 and 4 respectively, and the design 
ordinates of the surfaces of all six foils are tabulated in Appendix II. 

5. Experimental Results for Annular Aerofoils under Design Flow Conditions. 

All the experiments described in this report were carried out in one of the N.P.L. low speed 9 ft x 7 ft 
wind tunnels with a working section of length 12 ft. 

All six foils were first tested in a uniform stream and at zero incidence. Photographs of one of the 
foils rigged in the wind tunnel are shown in Figures 5 and 6. Measurements were made at two free-stream 
velocities--100ft/sec and 180 ft/sec. Velocity traverses, using a five-hole probe, were made across the 
mid-chord plane and across the trailing edge plane of each foil and results for the lower speed are shown 
in Figures 12, 13 and 14. Theoretical velocity distributions are shown for the mid-chord plane based on 
the linear design method for Set A and the non-linear procedure for Set B. 

The mean velocities V/Vo across the mid plane of the foils are tabulated below: 



TABLE 1 

Annular Foil at Zero Incidence 
Ratio of Mean Mid-Plane Velocity Vto Inflow Velocity Vo 

(i.e. Diffusion Ratio) 

Theoretical f L i n e a r  
predictions L N o n  linear 

Experimental 

SetA 2 =  1.00 SetB 2 = 0 " 7 5  

1 2 3 1 2 3 

0"63 
0"70* 
0'68 

0'82 
0"84* 
0"81 

1"00 
1"00" 
1'00 

0"73 
0.74 

0.91 
0"91 

1.19 
1.24 

*N.B.--The non-linear predictions for Set A were estimated after the foils had been designed according 
to the linear analysis, as is explained in Section 4. 

Agreement between the non-linear predictions and the experimental values of the velocity distribution 
across the mid-chord plane and its mean value is good in all cases except for the only accelerating foil 
B.3. It will be noted in particular that the non-linear estimate of V/Vo for the foil A.1 is a marked improve- 
ment on the linearized design figure. The cause of the discrepancy between predicted and experimental 
values for B.3 is not clear. It is suggested that it may be due, in part at least, to the speeding up of the flow 
through the foil caused by the presence of the thick boundary layer on the suction face of the foil, which 
for an 'accelerating' foil is the inner face. 

The measured pressure distributions for the foils of Set B are shown in Figure 15 together with 
theoretical curves derived from equation (14) based on the non-lir~ear theory. Agreement is seen to be 
good except for the first 20 per cent of the pressure face where the theory is known to be invalid, and 
on the inner (suction) face of foil B.3 where the theory underestimates the suction. 

From the measured pressure distributions empirical circulation distributions can be deduced using 
equation (16) (which is based on the linear theory); these are shown in comparison with the uniform 
theoretical distribution in Figure 16. Improved values of the empirical circulation distribution are 
also shown in Figure 16; these were derived through the use of  equation (14) of the non-linear analysis. 
It is now no longer possible to eliminate vqx and V~o x from the equation for 70(x) and hence the theoretical 
values (suitably corrected for viscosity) were used in deriving this second approximation to the empirical 
circulation distribution. 

As expected, due to the inadequacies of thin aerofoil theory near the leading edge and to the effects 
of the boundary layers, the uniform circulation distribution is not obtained, although the total circulation 
for each of the two diffusing foils B.1 and F.2 agrees well with the predicted value. This endorses the 
conclusion deduced from the velocity measurements that 0.74 is an appropriate viscous correction 
factor for these two foils. The estimated total circulation for the third foil does not agree well with the 
predicted value but is in agreement with the experimental velocity measurements, showing that the 
pressure and velocity measurements for foil B.3 are consistent, as they are for the other foils of Set B. 

As stated above, both velocity traverses and pressure measurements were made at two speeds, 
100 ft/sec and 180 ft/sec, but no significant Reynolds' number effect was found in this range. These 
measurements were also made with trip wires attached on both the inner and outer faces of the foils at 
0-25 ins. from the leading edge, but no significant change was found in the readings. 

6. Theoretical Predictions for Annular Aerofoils at Incidence. 
A linearized, lifting surface theory for annular aerofoils at small incidences in a uniform inflow has 

been developed by Weissinger 9, Bagley et aP  and Morgan 2. 



The notation is shown in Figure 2, (r, 0, x) being right-handed cylinderical co-ordinates, with x axis 
coincident with the axis of the annular foil, and origin in the leading-edge plane of the foil. The reference 
radial line 0 -- 0 is chosen such that the inflow velocity Vo has components Vo cos c~ in the axial direction 
and Vo sin c~ cos 0 in the radial direction, c¢ being the angle of incidence of the foil. 

As in the case of an annular foil at zero incidence, the foil can be represented by a system of bound 
ring sources and vortices on the foil mean cylinder (r = R o, 0~x~<l) ,  where the strength of the 
vortices now depends on 0 as well as on x. But in addition since the strength of the bound ring vortices 
has an angular variation there exist bound and trailing axial vortices, their axes being assumed to lie 
on the semi-infinite cylinder r = R 0, x ~> 0. This assumption restricts the validity of the theory to small 
angles of incidence. 

The same two linearizing approximations made in the case of the foil at zero incidence are also made 
here. That is to say the axial component of the perturbation velocity produced by the foil is neglected 
in comparison with Vo cos c¢ the axial component of the inflow velocity, and in stating the boundary 
condition the velocity components are evaluated on the mean cylinder of the foil instead of on the 
aerofoil surface. Equation (5) will however be modified for the foil at incidence by the addition of two 
extra components of radial velocity: 

(a) Voc~ cos 0-- the radial component of the inflow velocity and 

(b) v~r (0, x)-- the radial component of the velocity induced by the axial vortex system, with strength 

x '  

J)2 = 7 2 ( 0 '  X ' )  = ~* ~ 7  , ,, O~X'~I 
- J o  S0 ax 

- 7 2 ( 0 )  = -  ~Oax l<~x' 

(19) 

where 7 = 7(0, x') is the strength of the bound vortex-ring system. 
The linearized boundary condition is 

Vo[c'(x)+s'(x)] * 1 = vqr(x) +_-i q(x) + vrr(O,x) + vr2r(O,x) + Vo a cos 0. (20) 

Thus q(x) = 2 Vo s'(x) (21) 

and Vo c'(x) = v*q,(x) + v~r(O, x) + vr2r(O, x) + Voo: cos 0. (22) 

The problem is to calculate the pressure and velocity fields of a given foil, c(x), s(x) being known, at 
a given incidence cc Equations (21) and (22) are to be regarded therefore as equations for q(x) and ?(0, x). 

As equation (21) is identical with equation (6) the source distribution q(x) is seen to be independent of 
incidence and of 0, depending only on the section thickness distribution. The vortex distribution given 
by the integral equation (22) depends however both on incidence c¢ and on 0. Consider 7 (0, x') to be 
the sum of two separate vortex distributions: 7o(X') the ring-vortex distribution at zero incidence given 
by equation (7), and 71(0, x') the additional bound-ring vorticity due to incidence. Then the strength of 
the axial vorticity is given by 

7do,~') = - Jo  ao -3o  ao 

fo,,, fo = -  o - ~ d x  = -  TO- 

O<~x' <~l } 
1 4 x '  

(23) 



and thus depends only on the additional ring vorticity ~1. 
Eliminating c'(x) from (7) and (22) the following equation is obtained for ~1(0, x') : 

v~i.(O, x) + v~(O, x) + Voa c o s  0 = 0. (24) 

Since this equation does not involve q(x'), 7o(x'), s'(x) or c'(x), the strength ~,(0,x') is independent of the 
section thickness distribution and camber and depends only on the chord/diameter ratio )~. 

The singular integral equation (24) can be solved by expanding yl(0, x') as a Fourier series in 0 and a 
Glauert series in ¢ (or equivalently a Birnbaum series in x') where ¢ is the conventional eccentric angle 
of thin aerofoil theory given by 

x' = ½ 1 (1 - c o s  ¢). (25) 

As can be seen from equation (24), the only dependence of ~1(0, x') on 0 is through cos 0, and hence the 
only non-zero coefficient in the Fourier expansion of 71(0, x') in 0 is that of cos 0; therefore 

71(0, x') = V0a cos Of(x'). (26) 

T h e n f ( x ' )  - f ( c b )  is expanded in a Glauert expansion: 

oo 

f(q~) = 2n (K o cot½ ¢ + ~  K. sin n ¢). (27) 
1 

The insertion of (26) and (27) into (24) leads to the determination of the coefficients Ko, K1, etc. (see, 
for example, Morgan 2) which depend only on the chord/diameter ratio; they are tabulated for various 
2 in Ref. 4 e. 

Using the Kutta-Joukowsky condition an expression for the lift on the annular foil in terms of the 
coefficients Ko, K1 etc., can readily be deduced. Thus the lift on the foil is given by 

L = - p V 0 y (0,x') cos0 R o dO dx'. 
i 

Substituting for ~(0, x') from (26) and (27) 

L pVg=2nfi=cosZORodOff o~ = - (Kocot½ ¢ + ~ K.  sin n qS) sinq~ (½ l d ¢). 
0 1 

Carrying out the integrations with reference to 0 and 4, 

L = -½pV2(2  Ro l )c~ n 3 (K o +½ K1). 

Defining the lift coefficient C L by 

L 
CL 

½p V2o (2 R o !) 

this gives CL = -- n 3 (Ko +½K1)~. (28) 

(Footnote :) Ko = A1/tan~.,--K1 = A J t a n e , - - K 2  = 2Aa/tanc~ . . . .  where A1, A2 etc. are the coeffici- 
ents in the Birnbaum expansion used in Ref. 4. 
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For  2 = 0-75, this expression gives a value of 0-063 for the lift slope OCL/O~ where e is in degrees. For 
a two-dimensional foil with an NACA 0006 section the experimental lift slope is very close to the 
theoretical value at small incidences, and so no corrections for thickness seemed necessary for the 
annular foils considered here. 

An expression for the induced drag coefficient of an annular foil is given by Weissinger 9 and Fletcher 1 o : 

CDi = Cz.2/2 zcA (29) 

where A = 2 Ro/l = 1/2 is the 'aspect ratio' of the foil This is equivalent to assuming that the induced 
drag of the foil is one half the induced drag of a rectilinear wing with the same aspect ratio and with 
elliptic loading. For  2 = 0.75, equation (29) gives CD, -- 0.119 CL 2 and, by using the value of OCL/&~ 
predicted from (28), it is predicted that CO, -- 0"00047e 2 where ~ is in degrees. 

7. Experimental Results with Annular Aerofoils at Incidence. 
The three foils of Set B were mounted on a short strut via a swivel coupling, for varying the incidence, 

onto the strut of an aerodynamic balance so that lift and drag measurements could be made. A photograph 
of one of the foils so mounted is shown in Figure 7. Pressure distributions were measured using the set 
of pressure holes lying in the half-plane 0 = 0 (see Figure 2 for notation). 

Tare corrections to the lift and drag measurements to allow for the support strut and the two inches 
of hyperdermic tubing trailing behind the foil were found by using a dummy strut and a dummy set of 
tubes. A correction was made to the drag to cancel out the drag of the trip wires where these were 
employed. This correction was found by measuring the drag of the foil with trip wires of five different 
diameters each being large enough to trip the laminar boundary layer. The drag against trip wire 
diameter curve was then extrapolated to zero wire diameter to find the true drag of the foil with fully 
turbulent boundary layers. 

The lift, drag and pressure distributions were taken at two speeds, 100 ft/sec and 180 ft/sec, and over 
a range of incidence from - 10 deg to + 10 deg at intervals of 2.5 deg. Repeat settings showed this 
incidence was set accurately to within _+ 0.1 deg. 

The lift coefficient against incidence curves are plotted in Figure 17. The values of the mean lift slopes 
between - 5  deg and + 5 deg are tabulated below. 

TABLE 2 

Annular Foils at Incidence 
Measured Values of Mean Lift Slopes 

Measured 
diffusion ratio 

aCL/Oe ~ 100 ft/sec 
] 180 ft/sec 

Foil B.1. 

0"74 

0"054_+ 0"001 

0"053 _+ 0"001 

Foil B.2. 

0"91 

0"059 _ 0.001 

0'059 _+ 0"001 

Foil B.3. 

1"24 

0.064 + 0"001 

0.064_+ 0.001 

These results show generally a deviation from the value predicted by inviscid flow theory, viz. 0"063, 
and a significant variation of the lift slope with camber. It is suggested that this difference from inviscid 
theory may be attributable to the adverse pressure gradients which are greater than in the two-dimensional 
case. The gradients differ between the foils which therefore develop different boundary layer character- 
istics and hence the 'real fluid' correction to the lift slope varies. 
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A further feature of the lift-incidence curves in Figure 17 is the S-shape, with the slope increasing 
with increasing incidence; this is most noticeable for the highly diffusing foil B.1. This type of curve is 
a well-known feature of solid axisymmetric bodies at incidence, where it is due to cross flows occurring 
in the boundary layer producing a larger lift than expected from predictions based on inviscid theories--  
see, for example, Allen 11. In the present case, however, it is thought more likely that this S-shape arises 
from the separation of the flow near the leading edge of the foil on one or other surface. For  instance 
in the case of the diffusing foil B.1 this separation occurs on the inner surface behind the point A in 
Figure 2 for large negative incidences. This was demonstrated directly by attaching woollen tufts near 
the leading edge. The sample pressure distributions in Figure 19 show a loss in lift near the leading edge 
on the suction face but a gain in lift over the remaining part of the section producing an overall gain in 
lift. The presence of separation is not surprising when it is appreciated that for the diffusion ratios achieved 
here the section lift coefficients are large ; it is 0.9 for the foil B.1 with measured A = 0.74. 

Tripping the boundary layer was found to have no significant effect on the values of CL. 
The results of the drag measurements are shown in Figure 18 in the form of lift-drag polars. The 

results shown are those obtained when both boundary layers were fully turbulent. 
The total drag coefficient C D is given by 

Co = Coo + Co, (30) 

where CDo is the profile drag and CO, the induced drag due to lift. Equation (29) was used to predict a 
value for Co,, but since it was found above that the measured lift coefficient differed appreciably from 
that predicted by lifting-surface theory, the measured rather than the theoretical value of CL was inserted 
into the expression for Co,. The predicted curves shown in Figure 18 were thus obtained taking the 
experimental value of the drag at zero lift and assuming that the profile drag does not vary with incidence. 

As can be seen from Figure 18, there is a wide discrepancy between measured and predicted values of 
Co which increases with CL, particularly for foil B.1. If it is assumed that Col is given adequately by 
equation (29), this discrepancy must be put down to the variation of profile drag with incidence; the 
values of profile drag obtained from Coo = C o -  CL2/27zA are tabulated in Table 3. 

TABLE 3 

Annular Foils at Incidence 

Variation of Profile Drag 

Design diffusion 
ratio 

Velocity (ft/sec) 100 

Incidence (deg) 

0 0'056 
5 0"065 

10 0-097 

Foil B.1 

0"74 

Foil B.2 

0.91 

180 100 180 

Profile drag coefficient 

0.050 0.045 0.041 
0.061 0.045 0.040 
0.091 0.069 0.057 

Foil B.3 

1'24 

100 180 

0'050 0.045 
0"049 0.045 
0"064 0"055 

12 



For a two-dimensional foil the profile drag remains constant over a limited range of incidence and 
then increases fairly sharply as the separation point moves up the suction face of the foil from the 
trailing edge. In the present case reference to Figure 18 and Table 3 shows that the profile drag remains 
constant over a range of incidence of +2.5 deg for foil B.1 and of _+5 deg for foils B.2 and B.3, but 
increases as the incidence increases outside these limited ranges. In addition, at the higher incidences 
separation occurred near the leading edge on the suction face as was mentioned in the discussion of 
the results of lift, this leading-edge separation having the effect of accentuating the increase in profile 
drag at the higher incidences. 

Apart from changing the value of the profile drag at zero incidence, the trip wire was found to have 
no significant effect on the drag. 

The pressure distributions on the foils at incidence are tabulated in Appendix 3. It was found that 
the only effect of the trip wire on the pressure readings was to give a spurious value at the first pressure 
point at x/ l  -- 0-05 immediately behind the trip wire. The results quoted are therefore those with no 
trip wire present. 

These readings again indicate that the boundary layer separates near the leading edge on the inner 
face near A (see Figure 2) at large negative incidences for decelerating foils B.1 and B.2 and on the outer 
face near A at large positive incidences for the accelerating foil B.3. The peak suction is found to drop 
suddenly as the incidence is increased beyond a certain critical angle, producing the decrease of lift in 
this region referred to earlier. 

From these pressure readings it is possible to deduce values for the circulation distribution using 
equation (16), which must also apply to an annular foil at incidence where the vortex distribution 7 
now depends on 0 as well as on x. Further, assuming h(0,  x) varies as cos 0 and is proportional to c4 
we can calculate empirical values for the function f(x')  using equation (26). Figure 20 shows points 
obtained by taking the average value off(x ' )  calculated from the loadings at + 5 deg and - 5  deg in 
comparison with the theoretical curve. The overall agreement is seen to be reasonably good. 

It is therefore concluded that the lifting surface theory predicts the behaviour of these annular foils 
at incidence fairly well. However, camber (and hence diffusion ratio) of the foils has a significant effect 
on the value of the lift coefficient, even at low incidence. The theory also breaks down at the higher 
incidences due to separation near the leading edge, accompanied by eddy shedding, reducing the value 
of the peak suction but increasing the lift and drag. 

8. Annular Foils with a Concentric Centre-Body. 
It was of interest to investigate the effect of a centre-body on the performance of an annular foil 

positioned at either the upstream end of the body where the flow is more or less uniform or towards its 
downstream end where a boundary-layer shear flow has been generated. In the latter case it is useful 
to separate the displacement effect of the centre-body itself and the effect of the shear flow of a large 
boundary layer. The first experiment to be described here is one with the foils mounted well forward on 
a centre-body while the second experiment to be described in the following Section had the foils mounted 
in the wake downstream of a large streamlined body Io minimize potential flow body-foil interaction. 

The exact solution of the potential flow past an annular aerofoil with centre-body is very complicated, 
and so a much simplified mathematical analysis was used to derive a theoretical estimate of the change 
in diffusion ratio caused by the presence of the centre-body. 

The annular foil was represented by a single vortex ring and the centre-body by a distribution of 
vortex rings of finite length lying on a cylinder of the same radius r c. This vortex distribution was regarded 
as being a linear sum of the first five terms of the Birnbaum series (see e.g. Ref. 1); by consideration of 
symmetry only the coefficients of the second and fourth terms are non-zero. The length of the vortex 
distribution was chosen so that the maximum/minimum values of the radial velocity induced on the 
cylinder r = rc by the vortex ring (representing the foil) coincide with the ends of the finite vortex-ring 
distribution and hence with the maximum/minimum values of the radial velocity induced by the vortex 
distribution. The coefficients of the two non-zero terms in the Birnbaum expansion were then deduced 
by applying the boundary condition, i.e. the total radial velocity is zero, at two axial stations on the 
cylinder r = r~. 
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The change in diffusion ratio was then calculated from the stream function of the vortex distribution 
on the cylinder r = rc for two diameter ratios. This additional increment is tabulated below: 

TABLE 4 

Estimate of Velocity Increment due to Centre-Body 

Foil 
Radius of 
centre-body 

(1/3) R0 
(1/2) R o 

A1 

- 0.01 
- 0-04 

A2 

-0.01 
-0 .02  

A3 

0"00 
0'00 

These increments are seen to be small so that no justification arose for a more complicated analysis of 
body/aerofoil interaction. 

The three foils of Set A were tested with two wooden centre-bodies, both 6 ft long, with parallel sided 
centre sections of diameter 4 in. and 6 in. respectively, having 2 : 1 elliptic noses and conical tails. Hence 
(body diameter)/(foil diameter) ratios were 1 : 3 and 1 : 2 respectively. A sketch of the geometry is shown 
in Figure 8 and a photograph of a foil and centre-body rigged in position in Figure 9. The foils were 
mounted with the leading edge one foil chord-length back from the beginning of the parallel section of 
the centre-body, as is shown in Figure 8, so that the thickness of the boundary layer on the centre-body 
is small in comparison with the foil diameter and can be neglected. 

Velocity measurements were made in the mid-chord plane and trailing edge plane of each foil, and 
these are shown in Figures 21, 22 and 23. The mean velocities in the mid-chord plane for the three foils 
are tabulated below together with those obtained with no centre-body (see Section 5). 

TABLE 5 

Annular Foil with Centre-Body 

Mean Velocity in Mid-Chord Plane V/Vo 

Foil 
Radius of 
centre-body 

0 
(1/3) Ro 
(1/2) R o 

A1 A2 

0.68 0-81 
0.66 0.80 
0.65 0-79 

A3 

1'00 
1 " 0 0  

1"00  

These measurements were made at two speeds 100 ft/sec and 180 ft/sec but no significant Reynolds 
Number effect was found. 
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It can be seen from the Tables above that the effect of the centre-body is to reduce even further the 
mean velocity through the mid-plane of the decelerating foils A1 and A2. The measured magnitude of 
the influence of a centre-body is in good agreement with the theoretical estimates. 

It is concluded that the centre-bodies of interest here have only a small effect on the mean velocity 
in the mid-chord plane of an annular aerofoil where the centre-body does not exceed half the diameter 
of the foil. An adequate estimate of the effect of the centre-body can be obtained from an approximate 
calculation and the large amount of extra computation necessary for an accurate solution is not 
justified. 

Surface pressure distributions were not measured in this series of tests but it is reasonable to assume 
that these would have been little affected by the presence of either centre-body. 

9. 7heoretical Predictions for Annular Aerofoils in an Axisymmetric Shear Flow. 

As was mentioned in the previous Section, it was of interest to study the behaviour of annular foils 
when the inflow is no longer uniform but has a radial variation as in an axisymmetric boundary layer 
or wake. 

The general solution to the problem of an annular aerofoil in an axisymmetric shear flow is very 
complicated and has not been attempted here. 

As a first approximation to calculating the mean velocity across the mid-chord plane of the foil the 
rotational nature of the inflow is ignored. The foil is then assumed to produce the same non-dimensional 
velocity increment (or decrement), i.e. (A-1) ,  as it does when in a uniform stream with velocity equal 
to V~(Ro), the velocity of the shear inflow at the foil's mean radius R 0. If Vw is the average velocity of 
the shear inflow over the disc r = Ro, then the mean velocity in the mid-plane of the foil will be 

V=  V~+(A -  1) V~(Ro). (31) 

Equation (31) was used to predict values of  Vfor the three foils of Set B using the experimental values 
of A for the uniform flow case and these are tabulated in Table 6. 

In addition to the simple, probably dominant, effect discussed above, three distinct secondary effects 
were considered. The corresponding increments to Vdue to these effects are also shown in Table 6 to- 
gether with the resultant estimate of V. 

(a) Firstly, due to the accelerating (or decelerating) action of the foil, the inflow velocity on the 
streamline which stagnates on the leading edge of the foil will not be V,~(Ro) for A ~ 1, but Vw(R~), say, 
where R s ~ R o for an accelerating/decelerating foil. Assuming the mean velocity in the mid-plane of the 
foil is ~as given by (31), R~ can be calculated by equating mass flows in the inflow and in the foil mid-plane, 
and hence V~(Rs) obtained. A modified value of V is now obtained from (31) substituting V,v(R~) for 
Vw(Ro). If necessary still more accurate values of Vcan be obtained by taking further steps in the iteration, 
though for the values of A concerned here only the first step changed Vsignificantly. 

(b) Secondly, since the inflow velocity depends on radius and therefore varies over the surface of the 
foil, Vo must be replaced by V~(r) for r = c(x) + s(x) in the statement of the boundary condition (2). This 
has the effect of inducing an additional bound-vortex distribution on the foil and hence changing the 
circulation around each section. Since this effect depends basically on the section-thickness distribution 
and the local velocity gradient of the inflo% the effect appears to be essentially a two-dimensional one. 
A good approximation to the axisymmetric case (at least for 2 ~ ~ )  should be obtained from the solution 
of the two-dimensional problem of an aerofoil in a shear flow. This has been dealt with by Tsien, 12 
Sowyrda 13 and Vidal et al, 2~ who shew that the shear flow induces a component of lift positive in the 
direction of increasing inflow velocity with magnitude given approximately by (see Ref. 21) 

CL = 2~ + o ' k  (32) 
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where z is the thickness/chord ratio, h is the maximum camber height, l the chord length and kL = 

i dVw dVw 
V~ dr "The velocity Vw and the velocity gradient ~ must be evaluated as in (a) on the streamline which 

stagnates on the leading edge of the foil rather than at the mean foil radius Ro. This difference is especially 
important in the particular experiments considered here, where, as will be described later, the foils were 

dV,~ 
situated on the edge of an axisymmetric wake so that the velocity gradient ~ - r  varied significantly in 

the region of the radius of the foil section (i.e. r ~ Ro). As a result k L varies for different foils in,the same in- 
flow• For  example, k L = 0 for the accelerating foil B.3, but k L = 0'5 for the decelerating foil B.1. 

Equation (32) gives a measure of the change in lift, and hence circulation round a section due to the 
shear nature of the inflow• The estimate of the corresponding change in the mean velocity Vis shown in 
Table 6. 

(c) Thirdly, in order to take account of the rotational nature of thz whole inflow, and not merely 
that which meets the foil section as discussed in (b) above, the free vorticity can be concentrated into 
one or more cylindrical vortex sheets, and hence the infow velocity field approximated by a series of 
step functions• The presence of the annular foil changes the strength of these vortex sheets, and hence 
alters the axial velocity in the mid-chord plane of the foil. The corresponding two-dimensional problem 
has been treated by Glauert TM 15, using the method of images. Unlike the effect discussed in (b) above, the 
two-dimensional theory cannot be considered to offer a good approximation in this case, and so a three- 
dimensional approach was necessary. For  a first calculation the single cylindrical vortex sheet representa- 
tion of the shear flow was chosen, with radius equal to the measured displacement radius of the undisturbed 
shear flow. The sheet was assumed to be of finite length l' >> 1, and the vortex distribution represented 
by a Birnbaum series, in exactly the same manner as for the annular foil with a centre-body (see Section 8) 
except that the boundary condition which determines the coefficients of the terms of the series now 
requires the pressure to be continuous across the vortex sheet• 

It was found as is shown in Table 6 that this effect is very small, reducing the acceleration (or decelera- 
tion) component of the velocity by only 2 per cent• It was thus considered unnecessary, in the present 
case, to consider a more complex representation of vortex sheets or to consider the further correction 
made by Glauert, TM 15 arising from the free vorticity of the flow interacting with and thereby modifying 
the bound vortex-distribution• 

(1) Predicted Values 

TABLE 6 

Annular Foils in Shear Flow; 

Mean Velocity in Mid-Chord Plane, V/Vo 

Freestream velocity ft/sec 

F/Vo--First estimate . . . .  

Increments to V/.Vo (a) 

due to 3 secondary (b) 

effects (c) 

Foil B2 Foil B1 

100 180 

0"57 0"58 

+0'01 +0-02 

-0"05 -0 ' 0 5  

+0'01 +0"01 

0"54 0'56 

Foil B3 

100 

1"06 

100 180 

0'73 0"75 

0"00 0'00 

-0"01 -0"01 

0'00 0"00 

0'72 0"74 

0'00 

0"00 

0"00 

180 

1-08 

0'00 

0"00 

0.00 

F/l/o--Final estimate . .  1.06 1.08 
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(2) Experimental Values (see Section 10) 

m 

V/Vo--Experimental values 0"53 0-56 0"73 0'75 1"06 1'07 

10. Experimental Results for Axisymmetric Shear Flow 

The axisymmetric shear inflow used in the experiments was the 'early wake' produced by a streamlined 
body of revolution. This was preferred to a boundary-layer type flow since the additional effect of a 
rigid boundary is eliminated; this effect had been studied separately as described in Section 8. 

The body had an overall length of 10 ft. 7½ in., a hemi-spherical nose of diameter 21 in., a parallel-sided 
cylindrical portion of diameter 21 in. and length 66 in., blending in to a conical tail 51 in. long with semi- 
angle 11½ deg. (see Figure 10). The size of the body, which was made of fibreglass with a rough surface, 
was chosen so that its wake had a'diameter equal to that of the foils. 

The body was mounted on wires in the wind tunnel as shown in Figure 11. Velocity traverses were taken 
across the wake of the body at the intended position of the mid-chord plane of the foils, measurements 
being made in three radial directions, vertically upwards and across the horizontal diameter, and the 
results averaged at each radius. The tunnel speed V o was measured in the same plane with a pitot-static 
tube placed midway between the axis and the tunnel wall to allow for the large blockage effect of the body. 
At 100 ft/sec the displacement radius of the wake was 0.17 Ro, the mean velocity over the disc of radius 
R o was V w = 0.82 Vo and the velocity at radius r = Ro, Vw(Ro) = 0-965 Vo. At 180 ft/sec the displacement 
radius was 0"16 Ro, the mean velocity Vw = 0.84 Vo and Vw(Ro) = 0.985 Vo. 

The annular foils of Set B were mounted in turn on a strut on the axis of the body, with mid-plane 2 ft 
behind the tail, centred by means of a detachable sting extending from the tail of the body. At this position 
the flow in the absence of the foils was axial, i.e. neither converging nor diverging. 

Interior velocity traverses in the mid-chord plane of the three foils are shown in l~igures 25, 26 and 27. 
Also given are some predicted curves, corresponding to the first-order theory discussed above, where the 
incremental velocity field produced by the foil is assumed to be the same as when the foil is in a uniform 
inflow with velocity V~(Ro). The mean values of the measured axial-velocity distribution over the mid- 
chord plane of the foil are shown in Table 6. 

The measured pressure distributions on the foils in the wake inflow are shown in Figures 28, 29 and 
30 for comparison with the uniform inflow case. 

It is concluded from the results shown in Table 6 that the approximate theory outlined above adequately 
predicts the behaviour of the foils when in an axisymmetric shear inflow, at least for the foil geometry 
and type of shear flow considered here. 

11. Conclusions 

The mathematical model employed here for annular aerofoils at zero incidence in iniform inflow was 
based on inviscid flow theory together with a 74 per cent viscous correction to the uniform circulation 
distribution. It is concluded from these experiments that this is certainly adequate to predict the velocity 
distribution in the mid-chord plane of the foil, for foils with chord/diameter ratios in the range 0.75 to 
1.00 and diffusion ratios in the range 0.65 to 1.00. This design procedure was not adequate, however, for 
the single accelerating foil tested. In this case a correction factor of 0.74 gave the design diffusion ratio 
as 1'19, while a correction factor of 1.00 (i.e. no correction at all) would be needed to give 1-24 the experi- 
mental value. 

The predicted pressure distributions agreed reasonably well with experiment except for the first 20 per 
cent of the pressure face on each of the three foils measured and except for the whole of the suction face 
of the accelerating foil. 

The experiments with the foils at incidence in a uniform flow indicate that there is a significant variation 
of lift slope with diffusion ratio. The difference from the invariant value predicted by inviscid theory may 
be attributed to the large cambers of the foils tested. This also accounts for leading edge separation 
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occurring at relatively small angles of incidence. This separation has the effect of slightly increasing the 
lift and appreciably increasing the profile drag at the higher incidences. 

The effect of a concentric centre-body on the performance of the foils was found to be very small for 
centre-bodies with diameters not greater than half the mean diameter of the foil. The slight increase in 
perturbation velocity across the mid-plane of the foils was adequately predicted by an approximate 
calculation, in which the centre-body was represented by a finite distribution of vortex rings. 

Three of the foils were tested when surrounding an axisymmetric shear flow (wake). As a first estimate 
to calculating the veloci tyin the mid-chord plane the perturbation velocity field produced by the foil 
was considered to be the same as is produced by the foil when lying-in a uniform inflow with velocity 
equal to the velocity of the shear flow at the mean radius of the foil. The agreement between the resulting 
first estimate and experiment was found to be very good for two out of the three foils. However excellent 
agreement was obtained when three secondary 'interaction effects' were considered. 

Acknowledgments 
The authors wish to thank M. Cottam for help with the mathematical work and B. J. L. Hall, L. Wilkins, 

D. A. Leaver and A. J. Brown for performing the experiments, and gratefully acknowledge the work of 
members of the Admiralty Research Laboratory Drawing Office and Workshop in the manufacture of 
the models. 

18 



A 

b 

c(x) 
Cp 

Cr. 

CD 

CDo 

CDi 

D 

h 

k, kl, kz, I% 

K. 

I 

L 

P 

Po 
q(x) 

q 

r 

rc 

ri(x) 
r0(x). 

Ro 

Re 

s(x) 
V 

Vo 
V 

v., 

Or 

Vx 

Vqx 

Uyor 
* 

VyoX 
vq 

LIST OF SYMBOLS 

Aspect ratio of the annular foil = (diameter)/(chord length) [ = 1/21 

Constant occurring in definition of constant vortex distribution Y0 

Radius of camber line of the annular foil section 

Pressure coefficient 

Lift coefficient 

Drag coefficient 

Profile drag coefficient 

Induced drag coefficient 

Drag 

Maximum camber height of a two-dimensional foil section 

Arguments of complete elliptic integrals 

Coefficients in Glauert expansion 

Chord length of foil in axial direction 

Lift 

Static pressure 

Free-stream static pressure 

Strength of source-ring distribution 

Strength of an isolated source ring 

Radial co-ordinate (cylindrical polars) 

Radius of parallel portion of the centre-body 

Radius of inner face of foil 

Radius of outer face of foil 

Mean radius of the annular aerofoil 

Reynolds number (= Vo I/v) 

Half-thickness distribution of foil section 

Total axial component of velocity 

Uniform inflow velocity 

Mean velocity across mid-chord plane of the foil 

Axial velocity in shear inflow 

Mean value of Vw in mid-chord plane of foil over the circle 0 ~< r ~< R0 

Radial component of perturbation velocity produced by foil 

Axial component of perturbation velocity produced by foil 

Regular part of radial component of velocity due to source-ring distribution 

Axial component of velocity due to source ring-distribution 

Radial component of velocity due to vortex-ring distribution 

Regular part of axial component of velocity due to vortex-ring distribution 

Mean axial velocity due to source-ring distribution in mid-chord plane of foil 

Mean axial velocity due to vortex-ring distribution in mid-chord plane or foil 
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LIST OF S Y M B O L S - - c o n t i n u e d  

Axial co-ordinate (cylindrical polars) 

Dummy axial co-ordinates (cylindrical polars) 

Angle of incidence of annular foil to uniform inflow 

Strength of vortex-ring distribution for foil in uniform inflow 

Strength of vortex-ring distribution on mean cylinder for foil at incidence 

Strength of vortex-ring distribution due to incidence 

Strength of axial vortex distribution 

Strength of an isolated vortex ring 

Diffusion ratio of foil ( = V/Vo) 

Polar angle co-ordinate (cylindrical polars) 

Chord/diameter ratio of foil = l / 2 R  o 

Argument of Legendre functions 

Kinematic viscosity 

Non-dimensional axial co-ordinate (cylindrical polars) = x / R  o 

Fluid density 

Aerofoil section thickness/chord ratio 

Eccentric angle of thin-aerofoil theory (also used as a dummy variable in definitions 
of elliptic integrals and Legendre functions in Appendix I) 

Axisymmetric stream function 
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APPENDIX I 

Mathematical Expressions for Induced Velocities 

The basic expressions needed in the design of the annular foils are those for the velocity fields of a 
source ring and of a vortex ring. These are variously expressed in terms of Bessel functions, complete 
elliptic integrals and Legendre functions of the second kind and half order. 

Bessel functions are the most convenient for constructing solutions to potential flow problems, as the 
powerful methods of orthogonal functions and integral transforms can be employed, but they are of 
little use when it comes to computing the numerical values of the expressions. For the application of 
Bessel functions to the theory of annular aerofoils see Meyerhoff and Finkelstein 16. 

The expressions in terms of complete elliptic integrals are those most widely used for numerical com- 
putation in annular aerofoil theory (see Refs. 1, 2 and 16), since they are extensively tabulated, e.g. Jahnke 
and Emde 17. The only drawback to the use of elliptic integrals, at least in desk machine calculations, is 
that the expressions tend to be rather long and unsymmetrical. 

The recent series of reports published by Therm 5'6'7'8 on the theory of annular aerofoils uses Legendre 
functions of the second kind and half order. The expressions for the velocity components of source and 
vortex rings in terms of Legendre functions, as can be seen from the expressions below, are simpler than 
the corresponding expressions using elliptic integrals. An extended tabulation of these Legendre functions 
has been carried out by Therm, 7 which supplements the National Bureau of Standards Tables, 18 to 
facilitate the use of these expressions with a desk machine. The Legendre function expressions are thus 
recommended as being those best suited to computations on a desk machine. 

Tables of the induced velocities of a source and vortex ring, and of certain distributions of vortex 
rings are given in the Appendix of Reference 1, and also in an extended tabulation by Ktichemann 19. 
However it was found for the computations in the design of the foils presented in this report that these 
tables were not sufficiently accurate, and the induced velocities had to be evaluated from the analytic 
expressions. 

These various expressions for the induced velocities are given below, together with definitions of the 
various functions involved. 

Definitions 

(a) Bessel functions can be defined in various ways, see for example Watson. 20 The most useful defini- 
tion for application to potential flow theory, however, is to regard the Bessel function of the first kind 
and order n, i.e. J,(x), as the non-singular solution of Bessel's Equation : 

dx 2 x ax x¢'.] 
A.1. 

(b) Complete elliptic integrals of the first, second and third kind are defined by 

f ~ / 2  

K(k) = Jo , / l - k  sin ¢ de, 

E(k) = x/1 - k  2 sin2~b de ,  

f~/2 sin2¢ 
D(k) = J o  x/1 -k-~ ~n2¢ de - 

K(k ) -E (k )  
k 2 

A.2. 

A.3. 

A.4. 
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(c) The Legendre function of second kind and half order Q._~ (#) can be defined by 

[+~h  cos  2n~b , d~b 
Q"-:~ (#) = J-~/2 [2(/2--iT+-~sin2qS] ~ " 

A.5. 

The expressions below give the velocity components at the general point (p,~) due to a source (or 
vortex) ring, centre at the origin and of radius Ro in the plane ~ = 0. The non-dimensional co-ordinates 

(p,~) are given by p = r/Ro, ~ = x/Ro. 

Source Ring--Radial Velocity Component. 
oo 

q f  
VS.R,r = ~ S Jo(s)Jl(sp)e -sl~[ ds A.6. 

0 

2nRo px/~ 2 + (P + 1) 2 4 2 + ( P -  1) 2 

2nRo k p3/2 pl/2 ..]" 

A.7. 

A.8. 

Source Ring--Axial Velocity Component 

~)S.R,x = 

co 

_+ 2Ro--~-q I o s  do(S)Yo(sp) e- s L¢ Ids as ~ -~ 0 

q 2~E(k) ÷ as 0 
-- 2nRo (4 2 + (P + 1)z)~(~ 2 + (P - 1) 2) 

= ~  
q ~.Q'-du) 

2nRo p312 as ~ 0  

Vortex Ring--Radial Velocity Component. 

VV.R. r = +_ S Jl(s)Jl(sp)e-Sl¢lds as ~ ~ 0 
0 

= + 2nR----o p x / ¢  2 + ( p +  1) 2 

_ r ~Q'_~(u) 
2nRo p31a 

Vortex Ring--Axial VelocitY Component. 

vv.R, x = S Jl(S)Jo(sp) e-sl¢lds 
0 

F 
2nRo 

i /K(k) 
/ 

i 

2p 
~2+(p-1)21E(k)  ) 

as 4<>0 

as ~<>0. 

I+ 2(p-1)  ] 
42 + (p_ 1)2j E(k)) 

F [Q'~(.) Q'-~(/~) 3 
= 2~)~o / / 2  p3/2 

A.9. 

A.10. 

A.11. 

A.12. 

A.13. 

A.14. 

A.15. 

A.16. 

A.17. 

24 



The argument of the elliptic integrals, k, is given by 

~/  4p 
k = + ( p + l ) 2 + ~  2 A.18. 

and that of the Legendre function, #, by 

P2+1+~2  A.19. 
# =  2p 

In computing the camber gradient c'(x), these velocities are evaluated on the mean cylinder r = Ro, 
o ~< x ~< l, and thus the non-dimensional p in the above equations takes the value unity, and the expressions 
are correspondingly simpler. 

Induced Velocities due to Constant Vortex Distribution on Cylinder. 

For the particularly simple case where the vortex strength is constant along the foil's mean cylinder 
r = R 0, o ~ x ~< l, analytic expressions for the induced velocities evaluated on the mean cylinder can be 
obtained. Such expressions in terms of elliptic integrals are given in the Appendix of Reference 1, and the 
velocity components are also tabulated for various value of 2, the chord/diameter ratio. If the strength 
density of the vortex ring distribution is 7o(x) = 27zVob, then in terms of complete elliptic integrals, 

v,or(x, Ro) = - Vob[k (K(k)-  2D(k))]~ 1.20. 

and 

v*ox(x, Ro) = Vob [ l~/-f~-k21K(kO+ ~ K(k2) 1 A.21 

where 

k~ = + , k~ = + + ( ~ -  ~)~. A.22. 

A particularly simple expression can be obtained for the radial component of the velocity in terms of 
Legendre functions: 

V,or(X ' Ro ) = Vob[Q~(#)]~ 1.23. 

where 

/~ = 1+½~ z and #2 = 1+½(22-3) 2. A.24. 

The significance of the asterisk in A.21 is, as is used in the text, to emphasise that v* is only the regular ] 2 0 x  

part of the axial velocity obtained by taking the Cauchy principal value of the integral. 
It is necessary in the design procedure to evaluate the mass flow through the foil, produced by the 

vortex distribution. An analytic expression can be obtained for the mean velocity v~o over the circle 
x = 0, r ~ R 0. In terms of the Stokes stream function the mean velocity for a vortex ring is given by 

7~Ro2~,o = 2~[~(0, Ro) ± ~(0, 0)]. 

The stream function of a vortex ring is given by 

FRo p-~k[K(k)-- 2D(k)] . 
~kv'R"- 2re 

A.25. 
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Hence putting p = l(r = Ro) and integrating over the length of the mean cylinder, the following 
expression is obtained for 

~o = 8 ~ / 1 -  k2D(k3)Vob A.26. 

where 

+j4 
k 3 = 22~_ 4 . A.27. 

General Source Ring and Vortex Ring Distributions. 

The induced velocities due to the source ring distribution whose strength is given by (6), and of a 
general vortex ring distribution cannot be evaluated analytically and the integrations must be carried 
out by numerical methods, using the expressions for the velocity field of source and vortex rings given in 
this Appendix. 

In particular the expressions for the radial components induced on the mean cylinder by the source 
and vortex ring distributions, needed to solve equation (5), can be obtained from equations A.7 and 
A.13, putting p = 1 (r = Ro) and substituting for k from A18, and integrating over the length of the 
foil. 

They are 

1 [~ 
v$~(x , R o )  - v*~(~, 1) = ~Jo q(¢')[½k3D(k)] de' A.28. 

and 

where 

i f  2~ [ ,  E(k)] V~o~(X, Ro)-V~o,(~,l)=~Jo~O(~')k~ kD(k)--y~ d~' 

/c 2 = 4/( (4 - ~,)2 + 4) and k '2 = 1 - k 2. 

A.29. 

A.30. 
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A P P E N D I X  II  

Design Ordinates of the Six Annular AerofoiIs 

The ordinates of the two sets of annular foils are tabulated below. These ordinates were given at twenty 
equally-spaced chordwise positions, plus two extra points near the leading edge where the thickness 
distribution varies rapidly, ri(x) denotes the inner face of the foil and ro(x ) the outer face. The ordinates 
are given in inches. 

Foils of Set A, 2 = 1.0 

A.1. A = 6-63 A.2. A = 0.82 A.3. A = 1.00 

x/l x ins ri(x) ro(x) 

0.00 
O-005 
0.025 
0-05 
0.10 
0.15 
0.20 
0.25 
0.30 
0-35 
0.40 
0-45 
0-50 
0-55 
0-60 
0.65 
0-70 
0-75 
0-80 
0-85 
0-90 
0-95 
1"00 

0 
0.06 
0.30 
0.60 
1.20 
1"80 
2.40 
3.00 
3.60 
4.20 
4.80 
5-40 
6.00 
6.60 
7.20 
7.80 
8'40 
9.00 
9.60 

10.20 
10.80 
11.40 
12.00 

r~(x) ro(x) 

5"55 5.55 
5.53 5.68 
5.55 5.86 
5'59 6-00 
5.67 6.22 
5.74 6-37 
5.80 6-48 
5.85 6-56 
5.89 6-61 
5.93 6-64 
5.95 6-65 
5.98 6.65 
5.99 6.63 
6.00 6.60 
6.01 6.55 
6"00 6.5O 
5.99 6.43 
5.97 6-34 
5.93 6.25 
5.88 6.13 
5.80 5.98 
5.66 5.82 
5.47 5.52 

r~(x) ro(x) 

5.69 5"69 
5.66 5"79 
5.62 5"93 
5.62 6-04 
5.64 6-19 
5.66 6.30 
5.69 6.37 
5.71 6.42 
5.72 6-45 
5.75 6-47 
5.77 6-47 
5.79 6-46 
5.80 6-44 
5.82 6.40 
5.83 6.37 
5.83 6.33 
5"83 6-27 
5.83 6.21 
5.82 6-13 
5.80 6.O5 
5.77 5-95 
5.69 5-85 
5.60 5-66 

5'93 
5'88 
5'79 
5'75 
5"71 
5"68 
5'68 
5"68 
5'68 
5'69 
5'70 
5'71 
5"72 
5"73 
5'75 
5'76 
5"78 
5'79 
5'81 
5'82 
5'82 
5'82 
5'84 

5-93 
5"99 
6"10 
6"18 
6"27 
6"33 
6'37 
6"39 
6.40 
6.40 
6"39 
6"38 
6"36 
6"33 
6-30 
6-26 
6-22 
6-17 
6"13 
6-08 
6"02 
5"98 
5-90 
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Foils of Set B 2 = 0"75 

x/l 

0"00 
0"005 
0"025 
0"05 
0"10 
0"15 
0"20 
0"25 
0"30 
0"35 
0"40 
0"45 
0"50 
0"55 
0"60 
0"65 
0"70 
0"75 
0"80 
0"85 
0"90 
0"95 
1 "00 

x ins 

B.I. A = 0.73 B.2. A = 0-91 B.3. A = 1-19 

ri(x) to(x) ri(x) ro(x) 

0.00 5.58 
0.045 5.57 
0.225 5.57 
0.45 5-60 
0.90 5-66 
1.35 5-71 
1.80 5-76 
2.25 5-80 
2.70 5-83 
3.15 5.86 
3.60 5.89 
4-05 5-91 
4.50 5.92 
4.95 5-93 
5.40 5.93 
5-85 5.93 
6.30 5.92 
6.75 5.90 
7.20 5-90 
7.65 5-84 
8.10 5-78 
8.55 5.69 
9.00 5.54 

5.58 
5.66 
5.80 
5.92 
6.08 
6.19 
6.27 
6.33 
6.37 
6.40 
6.41 
6.41 
6.40 
6"38 
6.35 
6-30 
6.25 
6.19 
6.11 
6.03 
5.92 
5.79 
5.58 

r,.(x) to(X/ 

5.84 5.84 
5.81 5.90 
5.76 6.00 
5-75 6.07 
5-74 6.16 
5.75 6.23 
5.75 6.27 
5.76 6.30 
5-77 6.31 
5.79 6.32 
5.80 6.32 
5.81 6.32 
5.82 6'30 
5.84 6.28 
5.85 6.26 
5.86 6.23 
5.87 6.20 
5.87 6.16 
5.87 6.11 
5.87 6.06 
5.87 6.00 
5-84 5.94 
5.80 6.12 

6"16 
6-10 
6-00 
5.93 
5.48 
5-78 
5-74 
5-72 
5-70 
5.70 
5-70 
5.70 
5-71 
5.72 
5.74 
5.77 
5-80 
5-83 
5-87 
5.91 
5.97 
6.03 
6-12 

6.16 
6.19 
6.24 
6.25 
6.26 
6.26 
6.26 
6.25 
6.24 
6.23 
6.22 
6.20 
6.19 
6.17 
6.16 
6.14 
6.13 
6.12 
6.11 
6.10 
6.10 
6.12 
6.16 
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A P P E N D I X  I I I  
Tabulated Pressure Distributions on Annular Aerofoils at Incidence 

The pressure  d i s t r ibu t ions  for the foils at incidence are  presented  here in the form of a pressure  coefficient 
defined by  equa t ion  (11) for all three foils of  Set B. All  results  presented  here were m a d e  with  the  tunnel  
speed of  100 ft/sec and  when the b o u n d a r y  layers  on  the foils were not  being t r ipped.  The  measurements  
were m a d e  at  incidences of  - 10 deg (2-5 deg) + 10 deg on bo th  the inner  and  outer  faces of  the  foils 
(see Fig. 2 for n o t a t i o n  and  defini t ion of  posi t ive and negat ive  incidence). 

0'05 

- 10-0 - 0 . 0 2  
- 7-5 - 0 . 0 7  
- 5.0 - 0 - 2 0  
- 2.5 +0 .19  

0-0 +0 .30  
+ 2-5 +0 .43  
+ 5"0 +0.51 
+ 7-5 +0 '59  
+10 .0  +0 .66  

0.10 

- 0 . 0 5  
- 0 - 0 8  
- 0.03 
+ 0-27 
+0-36 
+ 0.44 
+0 .48  
+0-53 
+0 .58  

Foil B.I., Inner Face Cp 

0.20 

- 0 - 0 8  
- 0-04 
+ 0.27 
+0 .37  
+ 0-43 
+ 0.47 
+O.50 
+0 .52  
+O-55 

0.30 

- 0.09 
+ O.09 
+0"38 
+ 0.42 
+ 0.47 
+ 0.50 
+ 0.50 
+ 0.52 
+ 0.52 

0"40 

- 0 " 0 4  
+0 '23  
+0 '41  
+0 '45  
+ 0"48 
+0 '51  
+0"5O 
+0 '51  
+ 0"49 

0"50* 0'70 

+0"19 
+0"40 
+ 0"46 
+0"50 
+0"51 
+0"53 
+0"52 
+0"51 
+ 0"49 

0"85 

+ 0-26, 
+ 0.40 
+0 '45  
+0"50 
+0"51 
+0"51 
+ 0-48 
+ 0-49 
+ 0"46 

- 1 0 . 0  

- 7 . 5  

- 5 . 0  

- 2.5 
0"0 

+ 2.5 
+ 5.0 
+ 7-5 
+ 10.0 

- 1 0 . 0  

- 7 . 5  

- 5 . 0  

- 2.5 
0.0 

+ 2.5 
+ 5.0 
+ 7.5 
+ 10.0 

0"05 

+0"33 
+0"21 
+0.11 
- 0 . 0 4  
- 0 - 2 3  
- 0 - 4 3  
- 0 - 6 0  
- 0.79 
- 0 - 9 8  

0.10 

+ 0.07 
- 0-05 
- 0 - 1 6  
- 0.27 
- 0 . 4 1  

- 0 . 5 5  
- 0.65 
- 0 . 7 5  
- 0.90 

Foil B. 1., Outer Face, Cp 

0-20 

- 0 " 1 2  
- 0 - 2 1  
- 0"28 
- 0 " 3 7  
- 0 - 4 5  
-0"53  
- 0 ' 5 8  
- 0 ' 6 5  
- 0"70 

0"30 

- 0.20 
- 0 . 2 7  
- 0 . 3 3  
- 0 . 3 9  
- 0.44 
- 0 . 4 9  
- 0 . 5 3  
- 0 . 5 6  
- 0 . 5 9  

0"40 

- 0 ' 2 4  
- 0.29 
- 0 . 3 4  
- 0 ' 3 8  
- 0 ' 4 1  
- 0 . 4 4  
- 0 . 4 8  
- 0 . 4 6  
- 0 - 4 9  

0'50* 0"70 

- 0 - 2 1  
- 0 - 2 6  
- 0 - 2 8  
- 0 - 3 0  
- 0 " 3 0  
- 0 " 3 0  
- 0 - 2 7  
- 0 - 2 3  
- 0"23 

0-85 

- 0 " 1 7  
- 0 . 1 9  
- 0-22 
- 0 . 2 4  
- 0 - 2 2  
- 0.20 
- 0 ' 1 7  
- 0 ' 1 4  
- 0 . 1 4  

xJ l 
- 1 0 . 0  
- 7.5 
- 5 - 0  

- 2.5 
0.0 

+ 2.5 
+ 5.0 
+ 7.5 
+10 .0  

*A b lockage  fo rmed  in the length of  hype rde rmic  tub ing  inside the foil, l eading  away  f rom this pressure  
po in t  dur ing  the manufac tu re  of  the  foil, and  hence no  pressure  measurement s  could  be made  at  this 

s tat ion.  
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- 1 0 ' 0  

- 7 ' 5  

- 5 " 0  

- 2"5 
0-0 

+ 2"5 
+ 5-0 
+ 7-5 
+ 10"0 

0"05 

- 0 . 9 7  
- 0 . 5 7  
- 0 . 4 3  
-0-23 '  
- 0.04 
+0 .12  
+0 .25  
+ 0.34 
+0 .45  

0.10 

- 0 . 5 6  
- 0 . 3 6  
- 0-24 
- 0 - 1 2  

+ 0.02 
+0 .12  
+ 0.22 
+0 .27  
+0.33  

Foil B.2., Inner Face, Cp 

0'20 

- 0 . 5 3  
- 0 . 1 7  
- 0 . 1 0  

i _ 0.03 

+0-06 
+0-12 
+0-19 
+0 .23  
+0 .27  

0"30 

- 0 ' 1 9  
- 0 ' 0 6  

0'00 
+ 0.07 
+0 .10  
+0 .15  
+0 .19  
+ 0.22 
+ 0.24 

0"40 

- 0"02 
- 0'02 
+ 0"06 
+0 '08  
+0"12 
+0 '15  
+ 0 ' 1 7  
+ 0 ' 1 9  
+ 0"20 

0"50 

+ 0.02 
+ 0-04 
+ 0"06 
+0 .10  
+0.13  
+0 .13  
+0.15  
+0 .17  
+0.18  

0'70 

+0.09  
+0.11 
+0.13  
+0 .15  
+0 .17  
+0-18 
+0-19 
+0-18 
+0.18  

0"85 

+0.11 
+0 .14  
+0.15  
+0 .16  
+0 .19  
+0 .19  
+0 .20  
+0 .19  
+0 .19  

- 1 0 - 0  

- 7 . 5  

- 5 . 0  

- 2.5 
0'0 

+ 2.5 
+ 5.0 
+ 7.5 
+ 10.0 

Foil B.2., Outer Face, Cp 

- l i fo  
- 7"5 
- 5 ' 0  

- 2.5 
0'0 

+ 2.5 
+ 5"0 
+ 7-5 
+ 10-0 

0"05 

+ 0 ' 3 6  
+0 '31  
+0"15 
-0"01  
--0"18 
--0"37 
--0"54 
- 0 " 7 4  
-0"81  

0"10 

+0"17 
+ 0 ' 1 0  
- 0 ' 0 1  
- 0 ' 1 4  
- 0 . 2 6  
-0"38  
- 0 " 5 0  
- 0 " 6 2  
-0"68  

0"20 

+ 0.02 
- 0 ' 0 3  
- 0 ' 1 0  
- 0 " 2 0  
- 0 ' 2 8  
- 0 " 3 4  
- 0 " 3 9  
- 0.45 
- 0 - 4 8  

0"30 

- 0"02 
- 0"07 
- 0 ' 1 3  
- 0 ' 1 7  
- 0 ' 2 3  
- 0 . 2 8  
-0"33  
- 0 . 3 5  
- 0 " 3 6  

0'40 

- 0 - 0 6  
- 0.09 
- 0 - 1 4  
- 0 - 1 7  
- 0 . 2 1  
- 0.24 
- 0 . 2 6  
- 0.29 
- 0 . 2 9  

0'50 

- 0 ' 0 6  
- 0.07 
- 0 - 1 3  
- 0 . 1 5  
- 0 . 1 8  
- 0 - 2 1  
- 0 - 2 2  
- 0 . 2 3  
- 0 . 2 3  

0"50 

- 0 " 0 6  
- 0 ' 0 8  
- 0 ' 1 0  
- 0 " 1 2  
- 0 ' 1 4  
- 0 " 1 4  
- 0 " 1 2  
- 0 " 1 2  
- 0 - 1 1  

0"85 

- 0 . 0 3  
- 0 - 0 3  
- 0.06 
- 0 . 0 6  
-0"08  
- 0 . 0 6  
- 0 . 0 6  
- 0 . 0 5  
- 0 . 0 3  

x< 
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FIG. 1. Annular aerofoil section in design condition.-notation. 
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FIG. 2. Annular aerofoil at incidence.-notation. 
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71 

FIG. 3. Foil A2 (chord diameter  ratio = 1, design diffusion rat io = 0.82). 

FIG. 4. Foil B1 (chord diameter  ratio = 0.75, design diffusion ratio = 0.73). 
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FIG. 5. Foil B.3 mounted in N.P.L. 9 ft x 7 ft wind tunnel. 

THE FIVE-HOLE PROBE ON THE 
AXIS OF THE FOIL, IS MOUNTED ON 
AN A.N.L. TRAVERSING GEAR. 
THE TUNNEL SPEED IS MEASURED 
BY THE PITOY STATIC TUBE 
MOUNTED ON A STREAMLINE STRUT 
ATTACHED TO THE TUNNEL FLOOA. 
(SEEN CLEARLY IN FIGURE 6) 
THE TRAILING FLEXIBLE TUBES, 
FOR SURFACE PRESSURE MEASLIRE- 
MENTS, ARE LEAD OUT OF THE 
TUNNEL VIA A STREAMLINE STRUT. 

FIG. 6. Foil B.3 mounted in N.P.L. 9 ft × 7 ft wind tunnel. 

34 



r 

FIG. 7. Foil  B.3. Mounted  on strut for incidence measurements.  
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FIG. 8. Annular foil with centre-body experimental arrangement. 

FIG. 9. Foil A3 mounted with 4 ins. diameter centre-body. 
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FIBREGLASS BODY SUPPORTED ON 
TWELVE C 

POSITION OF MID-CORD 
PLANE OF FOIL 

21 , I 

FIG. 10., Annu la r  foil in ax i symmet r i c  shear  flow exper imenta l  rig. 
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FIG. 11. Foil  B2 m o u n t e d  behind fibreglass body.  

37 



YO = 100 f t l s e c  Ro = 6"1 x 10 5 

® EXPERIMENTAL POINTS 

THEORETICAL CURVE (LINEAR THE()I~V) 

t RADIUS OF INNER FACE OF FOIL IN 
M I D -  CHORD PLANE 

VlV o 

1"1 

1"0  --¢~ 

0.9 

0"8 

0.7 ® 

0.6 

® ® 

® 

® 

' -  A. 3. 

t 

//, 

A. 2. 

A. I. 

0*2 0.4 0"6 0.S 1'0 r ~ o  

I I I I I I I 
0 1 2 3 4 5 6 r / n s  

FIG. 12, Axial velocity distributions in mid plane of foils in design condition - Set A. 
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FIG, 13. Axial velocity distributions in mid plane of foils in design condition- Set B. 
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FIG. 14. Axial velocity distributions in trailing-edge plane of foils in design condition. 
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PRESSURE READINGS TAKEN OF INNER 
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FIG. 19. Variation with incidence of the pressure coefficient at different chordwise stations- Foil B.1. 
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