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S u m m a r y .  

The results of some electric tank tests by Duquenne and Grandjean 8 on wings of 45 deg sweepback 
with trailing edge flaps have been analysed to provide the basis for a method of calculating the spanwise 
loading. The analysis yielded information about the effect of sweep on the equivalent incidence of a 
section with flap, on the downwash factor and on the spanwise loading distribution with an incidence 
discontinuity. Interpolation formulae are developed to extend the results to wings of any sweep and flap 
span, and thus a complete calculation method is presented for the spanwise loading with this type of 
control. 

The calculation method is tentatively extended to a wing with all-moving tip control, and the results 
compared with those of Thomas and MangleP 3. There is a marked discrepancy between the two calcula- 
tions. Further electric tank tests to fill this, and other gaps are suggested. 
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1. Introduction. 
Many investigations have been made into the load distribution on plane swept wings, but comparatively 

few have dealt with the case of deflected flaps or ailerons. Some important flight conditions are associated 
with this configuration and it is therefore desirable to have a simple and reliable method for calculating 
the loading on swept wings with flaps. The load distribution is also required to determine aero-elastic 
effects, such as aileron reversal. The boundary layer may have a big effect on flap efficiency but this cannot 
be determined from experiments unless the inviscid flap efficiency is known. 

Two main difficulties are apparent in a theoretical treatment of this problem. Firstly, a deflected 
hinged flap changes the chordwise loading and hence some of the sectional characteristics of the aerofoil. 
Secondly, there is, in effect, a discontinuous change of incidence at some spanwise position. In the case 
of an unswept wing of comparatively large aspect ratio the following procedure appears to be generally 
accepted as a sufficiently accurate solution of the spanwise loading due to flap deflection. The sectional 
characteristics are taken from Glauert's theory ~ (or, more accurately, Keune's treatment 2, 3) for a thin, 
kinked two-dimensional plate. Theoretical or empirical corrections to take account of aerofoil thickness, 
gap, etc., can be applied. Thus values for the 'equivalent incidence', Ac~ (which is equal in magnitude but 
opposite in sigr~ to the zero lift angle) due to flap deflection are obtained, as well as the pitching moment 
at zero lift. Within the assumptions of linearised theory the sectional lift slope is left unaltered, as is the 
slope of the pitching moment vs. lift curve. Using Prandtl's classical aerofoil equation, Ac~ is a twist term 
which has a non-zero value at sections with deflected flap, and is zero elsewhere. A sufficiently accurate 
solution of the aerofoil equation for such a discontinuous incidence distribution can be obtained by 
Multhopp's method 4, in which the discontinuity is split off and the loading calculated in two parts. 

Turning now to swept wings, one class of method typified by that of DeYoung ~ 6,17, applies the 'three- 
quarter chord theorem' (valid only for unswept two-dimensional wings without flaps) in conditions far 
beyond the limits of its validity: i.e., the loading is concentrated on the quarter-chord line and the 
boundary conditions, involving the velocities induced by the trailing vortices as well as the bound 
vortices, are satisfied on the three-quarter chord line. In Refs. 16 and 17 these boundary conditions for 
wings with flaps are artificially modified on the basis of the spanwise loading as the aspect ratio tends to 
zero. The boundary conditions do not take account of centre and tip effects on swept wings and are satis- 
fied at only four spanwise stations on a half-wing. This method offers little hope of understanding the 
flow processes on swept wings with flaps, and the adequacy of the results is questionable. 

Another class of method for calculating the spanwise loading of a three-dimensional wing treats the 
double downwash integral as a whole, over the wing surface and the wake, and fulfils the boundary 



condition (i.e., the correct slope of the given wing) at a number of chordwise and spanwise positions. 
For example, in Multhopp's recent method 5 two chordwise and fifteen spanwise points are normally 
used, i.e. a total of 30 pivotal points. The computing time required is roughly proportional to the square 
of the number of points and it is not practicable to choose more than about three chordwise points. To 
make the best possible use of this limited number an attempt is made to choose their positions so that 
the sectional properties are obtained most accurately. For example, with two chordwise points on a 
wing without flaps, two coefficients, say the lift and the pitching moment, can be used to find the optimum 
positions of the points. The flaw in this procedure is that two-dimensional theoretical chordwise load 
distributions are used as the basis for the calculation of the optimum positions, and this is certainly not 
valid for a general section on a swept wing. It can easily be shown that, using chord-wise loadings known 
to be more applicable to swept wings (e.g. from Ref. 6), quite different positions for the chordwise points 
are obtained. Thus it is really necessary to know the answers one is looking for before one can place 

t h e  chordwise pivotal points to best advantage. 
In the case of a swept wing with flaps the chordwise points are determined as above. The local 

incidences are obtained by using two-dimensional flap theory which again is certainly not valid for swept 
wings, and the same objections apply as in the case of the wing without flaps, only more strongly. 

If the method yielded information about the chordwise loading it might be possible to arrive at a valid 
estimate of this loading--and hence of the optimum points--by successive approximation. But two or 
three chordwise points cannot supply the basic information and this procedure is impossible. 

Another drawback of this kind of method is that the spanwise incidence discontinuity at the edge of 
the flap cannot be treated as such. Instead, an approximate fairing process must be employed. This means 
that a large number of spanwise pivotal points is desirable but the computing effort involved in 31 points 
(the next highest number after 15) is much greater. 

It therefore seems reasonable to conclude that methods like that of Ref. 5 depend for their accuracy 
on the appropriate choice of the very limited number of chordwise pivotal points, and that this choice 
cannot be made on any valid grounds for a three-dimensional wing without enough fore-knowledge to 
make the calculation superfluous anyway. The alternative is to allow a large number of chordwise points 
arbitrarily spaced over the chord. This is beyond the possibilities of numerical computation by such 
methods. 

It is not, however, beyond the capabilities of an analogue computer and the three-dimensional electro- 
lytic tank offers an excellent prospect of obtaining solutions of the spanwise and chordwise loadings of 
three-dimensional wings, including wings with flaps. Such tank results provide, in fact, a numerical 
solution of Laplace's equation, with the same boundary conditions as in linearized theory. Since the 
number of chordwise pivotal points can be significantly greater than is possible in practice with any 
of the so-called 'lifting-surface' methods, the accuracy obtainable is also considerably increased and the 
electrolytic tank appears to be the most powerful method available for the solution of such problems. 
It is not really suitable for routine calculations, however, owing to the need for constructing, in effect, 
a different model for each planform. We therefore consider a third class of calculation method as a basis 
for a routine procedure. 

This class of method for swept wings is exemplified by Ref. 6. The downwash integral over the wing is 
treated in two parts, and thus the concept of an induced incidence from the streamwise vortices is retained. 
Using Ref. 6 as a framework a simple method of calculating the spanwise loading of swept wings with 
flaps can be devised provided certain data are available. The main features of this approach are : 

(i) The assumptions and approximations of linearized theory are retained, including the principle 
of superposition of incidence, camber and flap contributions to the lift. 

(ii) At any spanwise position the effect of the induced incidence due to the streamwise vortices may 
be represented by a mean induced incidence over the chord, but the values appropriate to a plane or 
cambered wing are no longer valid. 

(iii) The sectional lift slope is independent of the section shape. 

(iv) The representation of the flap effect as an equivalent incidence, Ac~, is retained, but the two- 
dimensional values (e.g. Glauert 1, Keune 2' 3) are no longer valid in general. 



(v) The spanwise discontinuity of equivalent incidence at the edge of the flap can be treated by 
splitting off the discontinuity in the manner of Multhopp 4. 

(vi) Corrections, empirical or otherwise, can be simply applied to sectional properties such as A~ 
to allow for the effects of wing thickness, viscosity, etc. 

In item (ii) above it is not possible to calculate theoretical values of the mean induced incidence owing 
to. the complicated nature of the streamwise vortex patterns. Regarding item (iv), the application of the 
method of Ref. 6 to cambered sections 7 indicated that the sectional equivalent incidence and pitching 
moment on a swept wing varied with angle of sweep and spanwise position, and the same may be expected 
to be true of a kinked flap section. A theoretical investigation has confirmed this and will be published 
separately, but no theoretical explanation is attempted here. 

Instead, the results of some systematic tests in a three-dimensional electrolytic tank have been analysed 
on the basis of the method outlined above to provide numerical data on Ac~ and on the values of the mean 
induced incidence which is closely bound up with the spanwise loading functions associated with the 
incidence discontinuity. These tests were conducted by Duquerme and Grandjean s in the electrolytic 
tank of Professor Malavard 9, and the results were kindly put at our disposal. They consist of measure- 
ments of spanwise and chordwise loadings on a constant chord wing of 45 deg sweepback, with various 
flap configurations. The Ac~ distributions to produce such spanwise loadings have been calculated, and 
by expressing the results in terms of the parameter n (see Ref. 6) which combines sweep and spanwise 
effects it is possible to apply these results for Ac~ to wings of different sweepback. Also the spanwise loading 
functions can be interpolated to apply to wings with different flap sizes and sweep angles. This makes 
unnecessary the testing of many wing planforms in the electrolytic tank. 

Thus the accuracy attributed earlier to electrolytic tank solutions of wing loading problems has been 
used to provide data for a routine calculation method for sweptback wings with flaps. The main con- 
clusion of the present report is that this procedure is successful and that the accuracy is adequate for 
most purposes. There seems to be no need for any significant refinements in the framework of the analysis 
(i.e. th~ theory of Ref. 6): However, electrolytic tank tests of similar configuration employing 8 and 11 
chordwise points have shown noticeable differences in the measured spanwise loadings, and it may be 
that even 11 points is not enough, especially near the centre and tip sections where sectional properties 
are changing rapidly. This emphasises the unreliability of methods which are limited to only 2 or 3 
chordwise points. Further tank results to fill gaps in the data are desirable. 

The present theory will find a useful application in the problem of boundary-layer control over deflected 
flaps, either by injecting or sucking air at the hinge position. If the flow does not. separate at the flap the 
conditions of inviscid flow are approached. Injection and suction could be used to improve some un- 
desirable features of sweptback wings, for instance by making the spanwise distribution of lift or minimum 
pressure more uniform. In designing for such purposes experimental results for two-dimensional aerofoils 
cannot be directly applied to swept wings, as the results of the present note show. The flap-chord ratio, 
the flap span and deflection and the rate of injection or suction must depend on the angle of sweep and 
must be suitably graded over the span. The present theory may help in such design. If the spanwise 
loading is altered the induced drag will also be Changed, perhaps for the worse. For example, on swept- 
back wings a uniform spanwise CL distribution does not lead to minimum induced drag (see Ref. 18). 
The present theory covers the calculation of the induced drag in any particular case. 

Although the electrolytic tank is a form of analogue computer, results obtained on it will usually be 
described in the text as 'tests' in order to differentiate them from calculations bY the routine method. 
The investigations apply to inviscid, incompressible flow. An extension to compressible flow at sub- 
critical Mach numbers can be made by applying the Prandtl-Glauert anaiogy 6. 

In the following pages Sections 2 and 3 contain a qualitative theoretical discussion : Section 4 contains 
the details of the configurations tested and Section 5 the method of analysis. The results for the equivalent 
incidence and spanwise loading functions are discussed in Sections 6 and 7, and formulae for extending 
the results to other planforms are given in Section 8. The suggested calculation method is summarized 
in Section 9 (which may be read by itself). Section 10 deals with an allied problem involving all-moving 
tip controls, and the concluding discussion is given in Section 11. 



2. The Downwash Factor, co 
In linearized aerofoil theory the downwash at any spanwise position on a wing due to the trailing 

vortices may be expressed as co x half the downwash at the same spanwise position at infinity down- 
stream: i.e., cq = co x ei0. o) is called the downwash factor, and this section deals with its behaviour in 
the case of wings---especially swept wings--with flaps, so that the subsequent analysis of experimental 
data may have a sound basis, co varies with sweep and aspect ratio. For  a plane unswept wing, co --. 1 as 
A, the aspect ratio, ~ o% and co ~ 2 as A ~ 0. For  a plane swept wing, the same limits can be accepted, 
but the variation of co between the limits is different from the case of an unswept wing. Kiichemann 6 has 
developed formulae for co which give good agreement with experiment both for swept and unswept 
wings. To investigate the value of co on wings with flaps let us return to some elementary notions. 

2.1 Isolated Trailing. Vortices 

The results of this section were established many years ago in connection with Munk's stagger theorem. 
They are repeated here from the point of view of the downwash on swept wings. Consider a single line 
vortex in the free stream direction originating at a point on an unswept wing and extending to infinity 
downstream, the chordwise ordinate of the point of origin being x~ (x,y are non-dimensional with the 
chord : i.e. x = 0 at the leading edge and 1 at the trailing edge). In the terminology of Ref. 6 this vortex is 
a 'chordwise' or 'streamwise' vortex on the wing and a 'trailing' vortex in the wake. For  the sake of 
simplicity such vortices will here be referred to as trailing vortices even though they extend over part of 
the chord. Fig. 1 shows the wing and the vortex AB. 

In Appendix I an expression is derived for the mean downwash over the chord at stations on either 
side of the trailing vortex. This mean downwash is greater than eio if 0 ~< x~ < 0"5, i.e., the unswept down- 
wash factor co~ > 1. At xo = 0.5, co~ = 1 and for 0.5 < x~< 1.0, c01 < 1. As the distance from the vortex 
increases co 1--* 1 for all values of x~. The variation of co ~ with the distance from the vortex, y -y~ ,  is shown 
in Fig. 2 for values uf xo between 0 and 1. 

If we now consider a s!ngle trailing vortex originating at a chordwise position xv on a sweptback 
wing, the results of Appendix I show that the mean downwash over the chord at a section inboard of 
the vortex is less than it would be at the same section of the corresponding unswept wing (see Fig. 1). 
This ratio, 

(mean  downwash over chord~ (mean downwash over chord~ 

• of swept wing / + of unswept wing / 

is called co2, so that the complete downwash factor, co, for the single vortex on the swept wing is 
co = o) 1 x co2. Near the vortex on the inboard side co2 decreases as xv increases. For  all values of xo co2 
decreases monotonically as the distance of the section inboard of the vortex increases and tends to a 
limit as this distance tends to infinity. This limit, the same for all values of x~, is 1 - sin ~o where ~o is the 
angle of sweep. Outboard of the vortex the mean downwash over the chord is greater than on the corre- 
sponding unswept wing, and o92 > 1. co2 increases as xo increases and tends to a limit (but not so quickly 
as inboard and not necessarily monotonically) as the distance from the vortex tends to infinity. This 
limit is 1 + sin ~0. The spanwise variation of o92 inboard and outboard of the vortex is shown in Fig. 3 
for values of x, between 0 and 1.0)2 has its maximum value less than one chord from the vortex for 
0.5 < x ~ <  1.0. It may be noted that c o l ~ l  as y-~oo and coz~ l  as y ~ 0 .  

2.2. Wings Without flaps. 

In the light of the above results, consider the downwash induced by the trailing vortices on swept 
and unswept wings without flaps. The problem is extremely difficult quantitatively, since there are now 
chordwise and spanwise distributions of vorticity instead of isolated vortices. However, a qualitative 
discussion is possible on the basis that the trailing vortex strength is much greater at the tips than any- 
where else on the wing. It is also necessary to assume a value for x~ based on-the chordwise vortex distribu- 
tion. The local centre of pressure is a suitable approximation. This means that on all wings with sym- 
metrical or conventionally cambered sections 0~<xv~0"5. In the classical linearized theory of thin 



unswept aerofoils of high aspect ratio the downwash over the wing was assumed to be half that at infinity 
downstream, i.e., col = 1. Fig. 2 shows that this is justifiable for most parts of a high aspect-ratio wing, 
whatever the value ofxv, assuming that the trailing vortex from the tip is the chief contributor to the down- 
wash. As the aspect ratio decreases the factor col increases to a value appreciably greater than 1. In the 
theory of wings of low aspect ratio co~ is regarded as tending to 2 as A--*0. This is justifiable, since at A = 0 
the lift would be concentrated at the leading edge, and xv = 0. Thus the limit col = 2 is consistent with 
Fig. 2. As A increases above zero the centre of pressure moves back and xo increases, so that no single 
curve of Fig. 2 represents the variation of col with A. Ktichemann 6 introduced the following formula 

1 
co = 2 ~ 2 ~ (1) 

for co on unswept wings : - -  

where a0 is the two-dimensional lift slope. This is plotted in Fig. 2 and shows the effect of varying centre 
of pressure. 

Turning now to swept wings, the downwash factor due to sweep, a)2, must be taken into account, 
the complete factor for a single trailing vortex being co = 091 x 092. If we consider the main effect to be 
due to the strong tip vortex, then clearly co ~s less for a sweptback wing than an unswept wing of the 
same aspect ratio, since coz < 1. However, there are three effects of sweepback which tend to oppose 
this decrease in co : 

(i) The centre of pressure near the tip of a sweptback wing is further forward than at the tip of an 
unswept wing, hence xv is smaller and col and co2 are both increased. 

(ii) The characteristic spanwise loading of a sWeptback wing has a 'dip' in the middle and hence the 
trailing vortices near the centre of the wing induce a downwash outboard and an upwash inboard, the 
former covering m.ost of the wing. 

(iii) The downwash factor co~ associated with a trailing vortex from the opposite half-wing is greater 
than coz associated with the corresponding vortex on the first side. This can be seen from Fig. 1, A'B' 
being the vortex from the opposite half-wing. (Its effect is more easily calculated with respect to the 
infinite swept wing shown dotted.) Tl~e effect of vortices from the opposite half-wing is usually fairly 
small. 

These three factors therefore tend to counteract the sweep effect of the tip vortex and experimental 
evidence has shown that the downwash factor co is only slightly less for a sweptback wing than for an 
unswept wing. Kiichemann's formula for swept wingsf 

1 
co = 2 1 (2) 

1 + ~ - - ~ X - j  

takes account of this fact. As an example, for an unswept thin wing of aspect ratio 4, the Ktichemann 
formula gives co = 1.054: for a corresponding wing with 45 deg sweepback, co = 1.022. 

Similar considerations in the opposite sense apply to swept-forward wings, so that the resultant 
downwash factor is slightly greater than for the corresponding unswept wing. 

In the above cases of swept and unswept wings the value of co is regarded as constant over the whole 
span. This is clearly not so, but the error is only appreciable near the tips where the loading is approaching 
zero, and hence the final error in any loading calcuhition is not great. 

2.3. Unswept Wings with Deflected flaps. 
Section 2.2 dealt with cases where the centre of pressure is fairly far forward on the chord, such as a 

plane or conventionally cambered wing at incidence. We will now consider cases where the centre of 
pressure is further back, in particular wings with deflected trailing edge flaps. On such wings the local 



c.p. at a section with flap may be at x -- 0.5 or more, most of the local lift force being in the neighbourhood 
of the hinge. Thus the variation of co with A appropriate to a plane wing may not be applicable to a wing 
with flap. 

Consider first an unswept wing at zero incidence with full span trailing-edge flap deflected. Since 
there is no sweep 0)2 = 1 and the only relevant factor is o h .  The spanwise loading will be similar to that 
of a plane wing at incidence, since the lifting effect of the flap is, to a good approximation, the same at 
all points along the span. If we take xv of the tip vortex as the local centre of pressure, then co~ increases as 
A decreases for 0 ~< xv < 0.5 and co t decreases as A decreases for 0.5 < x~ ~< 1'0. Electrolytic tank tests have 
shown that for a trailing-edge flap of conventional chord ratio the c.p. is in fact at about  0.5 chord.* 
Thus there is likely to be little effect of aspect ratio on ¢o in such a case: i.e., co -- 1 always. ~n this con- 
nection it is interesting to consider the theory of R. T. Jones ~ 5 for wings of very small A, with the aim 
of obtaining a rough estimate,gf the mean value of the downwash factor o~ from these concepts. Although 
this theory is developed for pointed wings the sweep is of no significance in the limit A ~ 0 .  For  such a 
wing CL = n / 2 . A ,  c~. The incidence ~ is equal to that induced by the streamwise vortices, ~i, since c~e~0 
as A ~ 0 .  Also co~2 as A ~ 0  so that ai = 2Cho. If the wing is at zero incidence but has a full-span trailing- 
edge flap with x~ -- 0.5 and fl, the flap deflection, constant over the span, all the lift force is concentrated 
in the area of the flap which is 0"5 that of the whole wing. Thus the aspect ratio of the flap is Am = 2A 
and the lift coefficient based on the whole wing is 

1 7C 
CL = - - - . 2 A . f i  

2 2  

7~ 
= - . A . / ~  

2 

Since the flow in planes x = constant may be considered two-dimensional as A ~ 0  the equivalent 
incidence Ae = 0.5/~. Working out Cr~ on the basis of the whole wing at incidence Ac~, 

i.e., half the previous value. This indicates that in the second calculation co (which is based on the mean 
downwash) should be taken equal to 1, which is reasonable on the simple physical grounds of the length 
of the streamwise vortices (the lift being concentrated at the hinge). Thus for a half-chord flap, co = 1 over 
the whole aspect-ratio range. In the general case of a hinge at x = xn, the limit of co as A--*0 should be 
o)---2(1 -)x~), as in Fig. 2. 

If we now consider a similar unswept wing with part-span flap extending outwards from the centre 
section, there is a strong trailing vorticity from the position of discontinuity at the outer end of the flap 
and more from the tip. Outboard of the flap the c.p. is further forward than x = 0.5 and so e) 1 appropriate 
to the tip vortex ~> 1. At the discontinuity the loss of lift which gives rise to the trailing vortex occurs 
only in the neighbourhood of the hinge, as can be seen from the typical chordwise loadings, obtained in 
electric tank tests, shown in Fig. 4. Therefore the vortex from the discontinuity can be regarded as starting 
at the hinge, which will normally be between x -=  0.5 and x = 1.0, and therefore col appropriate to this 
vortex ~< 1. This vortex gives rise to a downwash inboard and an upwash outboard. Inboard the two 
values of 0) 1 appropriate to the tip and discontinuity vortices tend to vary with aspect ratio in opposite 
directions and the net result is likely to be that there is little or no aspect-ratio effect over the part  of 
the wing with deflected flap : i.e., o) = 1. Outboard  of the flap, the upwash from the discontinuity vortex 
and the downwash from the tip vortex counteract each other. In practice the upwash is greater than 

* This statement is based on the results for a 45 deg sweptback wing with full span flaps in Ref. 8, the 
centres of pressure at mid-semispan being regarded as typical of two-dimensional or unswept conditions. 
For 35 per cent and 15 per cent chord flaps, c.p. is at x = 0.44 and x = 0.52 respectively. 



the downwash and there is some lift over the outboard part even when the main wing is at zero incidence. 
091 associated with the upwash ~< 1 and col associated with the downwash ~< 1, and so outboard of the 
flap the net result is that col ~< 1. However, the lift outboard of the flap is much less than that over the 
inner part of the wing and no great error is involved if co is assumed to be the same for the whole wing as 
for the inner part, namely unity. For completeness the effect on one half-Wing of the trailing vortices 
from the other half-wing must be considered. In the present case it is easily seen that the above remarks 
on the downwash factor inboard of the discontinuity apply to the effect of the two vortices from the other 
half-wing, so that the latter need no special consideration. 

Similar arguments apply when the flap extends from the tip inwards to some point along the span. 
The vortex from the discontinuity now produces a downwash outboard over ' the part of the wing with 
flap and an upwash over the inner part which is at zero incidence. Again col ~< 1 for this vortex since the 
change in lift occurs near the hinge position. However, the tip vortex, which is much stronger in this case 
than for an inboard flap, now springs from a point approximately at x = 0.5 so that 091 for the tip vortex 
is about 1 for all aspect ratios. Thus the net result is that co may not change much with A. As inboard or 
outboard flaps increase in size towards the limit of a full-span flap, the tip vortex and the discontinuity 
vortex respectively become weaker and less important and the characteristics of o) tend to those of the 
full-span flap. For  both inboard and outboard flaps co will increase as the flap chord increases, i.e., as xv 
decreases, and this may determine the precise behaviour Of co, i.e., increase or decrease with A. It can be 
said, however, that the effect of aspect ratio should be small. 

There are a number of other possible configurations. For  instance the flap need not extend either to 
centre or tip but could be situated wholly within the half-wing. In this case there would be two discon- 
tinuity vortices on each half-wing. Again, the cases dealt with above have assumed symmetrical deflection 
of the flaps on the two half-wings. It is also possible to have antisymmetrical deflection, as with ailerons, 
or deflection on one wing only. Such variations can all be dealt with in the same way as the symmetrical 
deflections. One would guess however that, at least with outboard flaps, the downwash factors would be 
very similar for symmetrical, antisymmetrical and single deflections. Nowadays inboard ailerons are 
considered for certain aircraft and thus the case of inboard flaps with antisymmetrical deflection is of 
interest. 

To sum up, on an. unswept wing with lift produced by trailing-edge flaps the downwash factor cowill 
vary less with A than on a wing with lift due to incidence: co may even be independent of A. Thus in an- 
alysing the electrolytic tank results on the basis of Ref. 6 it is important to deduce the appropriate value 
of co as well as As. 

2.4. Swept VCTngs with Deflected flaps. 
Consider first a sweptback wing at zero incidence with full-span trailing-edge flaps. The centre of 

pressure is about x = 0.5 over most of the wing, and slightly further forward at the tips. Thus xv at the 
tip is greater than on the corresponding wing without flaps, o91 is smaller, and 09 2 is roughly the same 
since it does not vary much with xv. The total downwash factor co = (.o 1 ;K (/.i 2 is therefore less than on 
the corresponding plane wing, for which the Kiichemann formula gave co = 1.022. Compared with the 
unswept wing with full-span flap, col is only slightly greater than 1 (since xv is nearly at x = 0.5) and co2 
is appreciably less than 1, so that co is likely to be less than 1 for a sweptback wing with full-span flap. 
Moreover o)1 and 0) 2 both tend to increase as A decreases and there should be a noticeable aspect-ratio 
effect on co. 

Now consider the case of a sweptback wing with part-span flaps extending outwards from the centre 
section, col associated with the tip and discontinuity vortices behaves as for the unswept wing in Section 
2.3, being greater inboard where there is a flap than it is outboard. In the present case xv at the tip is slightly 
less than for an unswept wing so that col will be slightly greater than i inboard of the discontinuity and 
nearer to 1 outboard, co2 inboard does not depend very strongly on xv and so over the flap the values 
of co2 due to the tip and discontinuity vortices will be similar and the resultant value may not differ 
much from co2 for a wing with full-span flap. Outboard, the value of co2 associated with the discontinuity 
vortex is greater than 1 and the induced velocity here is an upwash. It will be shown in Section 3 that it 
is possible to take into account in a less direct manner the sweep effect on the downwash from the tip 
and discontinuity vortices. 



In the case of outboard flaps, 091 may be slightly less than for inboard flaps since x v at the tip moves 
back with the c.p. Over the part of the wing covered by the flap, on which most of the lift is concentrated, 09z 
associated with the strong tip vortex is less than 1 and 092 associated with the discontinuity vortex is 
greater than 1, so that a resultant value over this part of the wing may be in the neighbourhood of 1. As 
in the case of inboard flaps the effect of sweep on the downwash factor can be incorporated less directly 
(see Section 3). "- ~ 

Like the unswept wing there are other configurations which may be treated by the same approach, 
but which are not considered here. In particular the results for sweptback wings cannot be applied to 
swept-forward wings. 

To sum up, for a sweptback wing with full-span trailing-edge flap there is likely to be an appreciable 
variation of 09 with aspect ratio and this may also be true for the part-span flaps, but the variation is 
difficult to estimate without reference to tank data. However, the limit co--* 1 as A ~ 0  should be true as 
for unswept wings with half-chord flaps. The different values of o) on the parts of the wing with and 
without flaps and for inboard and outboard flaps raise doubts about the validity of the principle of 
superposition. This will be assumed true later on in the analysis of the electrolytic tank tests but an explicit 
check of the assumption is very desirable. 

2.5. Application of the Results of Section 2. 
It is emphasised that the results derived in Section 2 are merely qualitative estimates of the factors 

which affect the downwash on finite wings with flaps, based on very simplified models. Some of these 
results are used in this note to help in analysing the data from electric tank tests. Confirmation of all 
the qualitative features and the determination of quantitative relations must depend on such tests. The 
amount of data at present available is quite small. 

3. The Spanwise Loading of Wings with flaps. 
In calculating by linearized theory the spanwise loadings of wings with flaps it is customary to assume 

that at any spanwise position the deflection of the flap has added a certain 'equivalent incidence' to the 
geometric incidence at that section, tf this equivalent incidence is known at all spanwise positions the 
calculation of the spanwise loading can proceed as for a wing without flaps having that particular inci- 
dence distribution. The calculations in this Report are based on the methods derived by Multhopp for 
unswept wings 4. These equations can be applied to swept wings, as shown by Ktichemann 6. Since in 
linearized theory the loadings due to incidence, camber, flaps, etc., are additive, it is simplest to calculate 
a spanwise loading due to flaps only, the main part of the wing being at zero incidence. 

In the case of a wing with full-span flap, either swept or unswept, the calculation is of the same type 
as for a wing without flaps, since the distribution of equivalent incidence over the span is continuous. 
The appropriate value of co must be known. In Section 2.3 it was shown that there is likely to be little 
aspect-ratio effect on the downwash over an unswept wing with full-span flap, so that co = 1 for all such 
wings. In Section 214, on the other hand, it was shown that co is likely to be less for a sweptback wing with 
full-span flaps than for an unswept wing, at least at moderate aspect ratios, but that co is likely to increase 
as the aspect ratio of the sweptback wing decreases. 

On a wing with part-span flaps the equivalent incidence is discontinuous at one or both ends of the 
flap and this complicates the spanwise loading calculation. It is still possible, for both swept and unswept 
wings, to use the method applicable to continuous incidence distributiQns, but it is almost always neces- 
sary to increase the number .~f spanwise pivotal points Since the work involved increases roughly as 
the square of the number of points, it is obvious that such a calculation may become too long for a routine 
method. Moreover, the loading will probably not be accurate in the neighbourhood of the discontinuity, 
even with the larger number of points. 

Multhopp 4 developed a method for dealing with a discontinuity in incidence on unswept wings. 
(This has been extended by Weber 1° to cover any sort of spanwise discontinuity, e.g. chord.) The incidence 
distribution is split into two parts, one of which contains the discontinuity, the other being continuous 
The spanwise loading is then found as the sum of two components V1 and Yn, both of which are con- 
tinuous, yl is the loading which gives a constant downwash equal to the incidence discontinuity, ~r, over 
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the part of the wing with flap, and zero downwash elsewhere. ?~r can be calculated from the remaining 
incidence distribution. Multhopp gave a theoretical formula for ?r which was proportional to tr and 
otherwise depended on the symmetry of the discontinuity and its spanwise position. Some typical ?~ 
distributions are shown in Fig. 5. Thus in the basic equations 

2 b  
at = au + a~1 = c~t + 7I. - -  (3) 

c a  

2b 
o~ii = t~ill q- O~ell = O~ill "~- ~)II. " ~  (4) 

all the terms in (3) are known except a1 which can therefore be calculated. a I + ~n = Aa the equivalent 
incidence, which is given initially at all spanwise positions. Hence ez~ is known and continuous and ?tz 
can be calculated as in a normal spanwise loading calculation. Multhopp's work assumes co = 1 which 
can be justified for an unswept wing by the reasoning of Section 2.3, even when the aspect ratio is not 
large. Thus, provided the equivalent incidence is known, Multhopp's method yields adequate results 
for unswept wings with part-span flaps over a large range of aspect ratios and flap sizes. 

Fig. 6 shows a comparison between various calculated spanwise loadings and the electric tank results 
for an unswept wing of aspect ratio 4, with 20 per cent trailing-edge flaps extending outwards to 0.55 
semi-span. In the calculations, the Glauert value of Aa at the flap has been corrected slightly by an un- 
published theory to allow for the finite aspect ratio. The experimental results were obtained by Professor 
Malavard in tests 11 previous to the ones analysed in this Report. Fig. 6 shows the difference between the 
type of calculation using a large number of points and no discontinuity function, and the type of calcula- 
tion which takes the discontinuity into account. The effect of different values of co is also shown. The 
use of the 'plane wing' co = 1-054 makes little difference to the calculation based on co = 1. The results 
for 33 per cent flaps show precisely similar characteristics. A comparison in the case of a wing of smaller 
aspect ratio would be interesting, but no electric tank data is available at present. 

Fig. 7 shows results for outboard flaps, asymmetrically deflected, again from Ref. 11. The calculated 
spanwise loadings are based on co = 1 : this is appropriate for XH = 0"80 but a slight increase in co might 
be justified for xn = 0"67, thus confirming the estimate in Section 2-3 that co increases as xLr decreases. 

The treatment of the discontinuity in the case of sweptback wings is, unfortunately, less straightforward 
than for unswept wings. To start with, the spanwise distribution of ?~ is such that a strong trailing vortex 
arises from the discontinuity. Inboard of this vortex, therefore, o22 < 1 and outboard 092 > 1. This means 
that Multhopp's expressions for ?x, derived on the assumption of co = 1, are not valid for swept wings. 
Moreover the spanwise variation of co makes a theoretical derivation of a new ?~ impossible by Multhopp's 
method and no other theoretical distribution has yet been obtained. Happily the analysis of the electric 
tank tests has yielded some empirical information on this point, which will be discussed in Section 7. 
Some idea of the qualitative effect of sweepback on ?t can easily be gained, however. Over the part covered 
by an inboard flap the downwash from the discontinuity vortex is les; than on the unswept wing, and 
therefore if the downwash is to be constant and equal to a the discontinuity must be increased : i.e., ?z 
is increased inboard of r/F, the spanwise position of the discontinuity. Outboard of the flap the upwash 
from the discontinuity vortex will be greater than in the unswept case, and since the net induced vertical 
velocity in this region must be zero, the downwash from the trailing vortex must also be increased. 
Therefore over the outer part of the wing ?~ must again be increased, the factor being greater than inboard 
since it covers the sweep effect and the increase in vortex strength at the discontinuity. In the case of an 
outboard flap the sweep effect increases the downwash over the flap due to the discontinuity vortex and 
decreases that due to the tip vortex. As Fig. 3 shows, the net result close to the vortices will be a consider- 
ably greater downwash than on the unswept wing and so an overall reduction of? t  is required. Moreover, 
the upwash inboard of the flap is reduced by~weep to a greater extent than the downwash from the tip 
vortex. Thus a relatively stronger discontinuity vortex is required which further reduces ?~ inboard of 
the flap. 

The co factor for sweptback wings with part-span flaps may therefore be largely incorporated in the 
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new spanwise loading functions by using the old functions multiplied by a factor, which is > 1 for inboard 
flaps and < 1 for outboard flaps. The remainder of the spanwise loading, Yu, is associated with a con- 
tinuous incidence distribution and the tip vortex is again the strongest. Of course, no chordwise loadings 
are associated with the components 7t and Vn, so for the latter it is assumed that the value of co corre- 
sponding to a wing with full-span flap is applicable. 

Up to now the equivalent incidence has not been discussed in detail, but this too is more difficult to 
determine on a swept wing. Nearly 30 years ago Glauert 1 established the linearized theory of thin wings 
with flaps in two dimensions, which yielded values for the equivalent incidence of a trailing-edge flap of 
any chord. Subsequent research established exact values for the flat plane with flap 2,3 and various 
corrections were devised to take account of wing thickness, gap, etc. All this data referred to two-dimen- 
sional wings, and the relations so established can be applied fairly confidently to unswept wings provided 
the aspect ratio is not too small. Theoretical and experimental work v on cambered sweptback wings has 
shown that the zero lift angle of a cambered aerofoil section on a swept wing depends on the angle of 
sweep and the spanwise position. It thus seems likely that the equivalent incidence of a section with a 
deflected flap on a swept wing will also depend on the angle of sweep and the spanwise position. Recent 
theoretical investigations, as yet unpublished, have substantiated this and defined the relationship, but 
in the present note the experimental data has been analysed to find the equivalent incidence distribution 
on the wings tested. Some points from the theory crop up occasionally, however. 

It has been seen that the downwash factors involved in the spanwise-loading calculations of wings 
with flaps may differ from the values they have for plane wings of the same planform. However, it is one 
of the basic assumptions of linearized theory that sectional properties such as the lift slope, a, the chord- 
wise loading parameter, n, and the aerodynamic centre do not depend on the section shape but only on 
the angle of sweep and the spanwise position. (This implies that incidence, flap and camber terms can 
be superposed.) Therefore, in the calculations and analysis of this Report, these sectional properties have 
been calculated as for plane wings. 

The data from the electrolytic tank experiments have therefore been analysed to provide information 
on three points concerning the calculation of the loading on a sweptback wing with flaps : 

(i) The value of the downwash factor, co 
(ii) The spanwise variation of the equivalent incidence, A~ 

(iii) The form of the discontinuity function which determines 7z. 

4. The Arrangements Tested in the Electric Tank 
The electric tank, its uses and technique, have been described by Malavard ~/nd Duquenne 9' 11. The 

present results were obtained by Grandjean and Duquenne8 at the laboratories of O.N.E.R.A.in Paris 
and were generously made available to us. 

The planform tested was an unt~tpered 45 deg sweptback wing of aspect ratio 4. The wing was 
represented by a network of 121 electrodes, 11 chordwise at positions 

x = 0.025, 0-1, 0.2, 0.3, 0.4, 0-5, 0'6, 0.7, 0.8, 0"9, 1.0 and 11 spanwise at positions 

t / =  0, 0.1, 0.2, 0.3, 0.4, 0-5, 0"6, 0.7, 0.8, 0.9, 0.975. 
Only inboard flaps, deflected symmetrically about the centreline of the wing, were investigated. Since 

the apparatus solves Laplace's equation and thus represents the conditions of linearized theory the span- 
wise loading of wings with outboard flaps deflected symmetrically can be obtained by subtracting the 
inboard flap results from the full-span flap results provided we accept the principle of superposition. 
As mentioned earlier (Section 2.4) this ought to be verified for the present configurations. The flaps 
extended from the centreline to 

t/v = 0.25, 0.45, 0.65, 0-85, 1.00, 
the last being a full-span flap. The ratios of flap chord to wing chord were 

c! = 0"15, 0-25, 0'35 : 
C 

i.e. xn = 0.85, 0.75, 0.65, 
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where XH is the x co-ordinate of the hinge. Therefore 15 configurations altogether were investigated. The 
wings were at zero incidence and the flaps deflected by 1 radian. (In linearized theory the lifting effect 
of a flap is proportional to the flap deflection.) 

The results comprise measurements of the spanwise loadings of the 15 configurations and the chord- 
wise loading of each configuration at the 11 chordwise rows of electrodes from q -- 0 to t / - -  0-975. So 
far only the spanwise loadings have been fully analysed to help in the development of a calculation 
method. The chordwise loadings will be analysed later. Some typical spanwise loadings are shown in 
Fig. 8, and typical chordwise loadings in Fig. 4. 

5. Methods of Analysing the Results. 

The calculation method of Ref.. 6 is used as the basis for the analysis of the electrolytic tank data, since 
it is necessary to know some of the aerodynamic characteristics of the planform (e.g. the lift slope, a) 
and also to assist in the extension of the results of the analysis to wings of different sweep, planform and 
aspect ratio. 

The first step is to use the data on full-span flaps to obtain an estimate of the downwash factor co for 
these cases, since it is shown in Section 2-4 that it is not easy to make a good enough guess by considering 
the geometry of the strongest vortices. The spanwise loading data is presented in the form of curves of 
CL against q so that 7 = CL. c/2b can be found for the spanwise pivotal points of the Multhopp equations, 
and hence the Multhopp expression for half the downwash at infinity downstream, 

can be evaluated. The downwash at the sweptback wing is expressed as 

~i~ ~ co~iOv' 

Using the method of Ref. 6 to calculate the lift slope at the pivotal points, the effective incidence c~¢~. = 
C~.v/a v can also be determined at any pivotal point. Therefore if a value can be found for the equivalent 
incidence, Ae, co can be determined from the formula 

giv nO~v - -  O~ev 
C O  - -  _ _  _ _  

~iOv ~iOv 

In linearized theory the equivalent incidence of a flap on an infinite sheared wing is equal to the Glauert 
value. In Ref. 11 it is shown t-hat for a two-dimensional wing with flap the tank results agree with the 
Glauert theory to within 1 or 2 per cent, using 8 chordwise electrodes instead of 11 as in the present 
tests. Thus it is reasonable to expect that tank results for an infinite sheared wing would also agree with 
the Glauert theory. At mid-semispan on the wing of aspect ratio 4 conditions are approximately those 
of a 45 deg sheared wing* so that we can assume Aa to be equal to the Glauert value in that region. This 
leads to the following values for co : 

xu = 0.65, co = 0.86 

0.75, 0.88 

0.85, 0.80 

There is no consistent variation of co with XH and a mean value co = 0.85 has been used for all three 
flap chords and assumed to be constant over the whole span. This value for co confirms the qualitative 
estimate of Section 2.4. 

* In fact there was a small aspect-ratio effect noticeable: the unpublished theoretical calculations of 
Ac~ have been used to make the very slight modification necessary to the Glauert values. 
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The next step is to use this value of c0 to calculate the value of Aa at all the remaining pivotal points, 
rearranging the above formula : 

Ao~ v ~ O~ev.-I- (.oO~io v 

Finally we examine the data for the part-span flaps using the newly-found values of ¢o and Aa to help 
to determine the appropriate spanwise functions ~i and their relationship to the corresponding functions 
for unswept wings. The procedure is as follows : 

7~ is known at the pivotal, points and 

By the Multhopp equations, 

?xx~( b'~+ 2~bc~) = "~Ix~+Z'b~n~Uno9 

O~v - -  g e l v  - -  O~ilv 

fo l- Y.'bvn~)i1n 

O~ v - -  O ~ i l  v 

09 

2b 
- -  71v -1- Z '  b~,, TUn 
O) O~vC v 

therefore 

c% - cqi ~ 2b 

co COavCv 
- -  (Tv -Tu~)+Z 'b~n 'Y l ln  

-coa~cv ~ +Z'b~.yn..  

7ii may be found by iteration, since 

~ = Aa~ on the flap 

= 0 outside the flap 

and eu~ = - a  inboard of the discontinuity 

= 0 outboard 

a is the discontinuous jump in incidence and is equal to the value of Ae at the end of the flap 

b, cv, a~, are already known 

c0 is assumed to have the same value as for the wing with full-span flap in accordance with 
the estimate in Section 2.4. Hence Y1 may be found from 

Yl = 7 -  711 

We may write for a wing swept back by an angle q0. 

= x 
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assuming the same value for 0- on both swept and unswept wings, z(t/) depends on sweepback, flap span 
and flap chord, as well as on t/. At present z(~/) cannot be obtained theoretically. Thus for an unswept 
wing 

= + 

and for a sweptback wing 

[~(~/)]{o = ['~l(Y~)]~o "-I- [~/l(7/)]q~ 

= + 

The relation between ai and 7(~) for an unswept wing 

1 

• 

0 

has become for a swept wing 

1 
2 ~ d { ~ ( ~ ' )  . [71(/~')]o + [T/l(t]')]~o } dr/' 

ai = 2 ~ J  d~' "t /-  t/" 
0 

Since the tank tests give results corresponding to linearized theory the spanwise loading of outboard 
flaps can be obtained as the difference of the spanwise loadings of the complementary inboard flaps and 
the full-span flaps, with the proviso noted in Section 4. Therefore ~(t/) can also be found for swept wings 
with outboard flaps symmetrically deflected. The case of antisymmetrical deflection cannot be dealt 
with explicitly from existing data but Section 8 will show that the factors for symmetrical deflection give 
reasonable results for the other configuration. 

6. Results f o r  the Equivalent Incidence, Aa 

The values of Ac~ found by analysis of the electrolytic tank data for full-span flaps are plotted against 
t / in Fig. 9, for each of the flap-chord ratios. The results are plotted as Aa/fl since fl, the flap deflection, 
was unity (1 radian). Theoretical considerations indicate that Aa decreases near the centre of a sweptback 
wing and increases near the tip compared with the Glauert value for two-dimensional and sheared 
wings. 

There is a gooddeal of scatter in the analysed values of Ac~ for all three flap chords. It is not possible t o  
draw a smooth curve through any set of points: In Fig. 9 two curves are drawn through each set. The 
full lines are obtained by interpolating Aa between the sheared wing value and the values at ~ = 0 and 
~1 = 0.981 in accordance with the '2-curve' of Ref. 6 which governs some of the centre and tip variations 
on swept wings. For XH = 0"85 Ac~ increases towards the tip whereas for XH = 0"65 and 0"75 it decreases. 
The dotted lines are the theoretical values of Ac~ from the unpublished theory referred to earlier, and for 
all three values of XH, Ac~ increases towards the tip. The following conclusions may b e drawn from Fig. 9 : 

(i) At mid semi-span Aa is equal to the Glauert value, the downwash factor having been chosen to 
make this so. 

(ii) Aa decreases towards the centre of the wing. 

(iii) At the centre the analysed values of Ac~ are greater than the theoretical values. 
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(iv) If anything, the analysed values 
than to the 2-interpolation curve. 

(v) The analysed values of Ac~ near 

In previous electrolytic tank results 
a discrepancy between the centre and 

from r / =  0.195 to r / =  0-707 are closer to the theoretical curve 

the tip tend to decrease rather than increase. 

for sweptbac k cambered wings 12 it has been noted that there is 
tip effects on the spanwise loading as measured in the tank and 

that calculated by the method of Ref. 7. The same sort ~discrepancy is apparent here, the theoretical 
Ae being less at the centre section and greater near the tip. The discrepancies have not yet been explained. 
Ae is obtained from the tank data by determining c h and c~ e. el0 is small at the centre section and quite 
large changes in co have little effect on the sum c h + ee' therefore the choice of downwash factor is not 
responsible at the centre. Near the tip the gap between tank results and theoretical calculations is even 
more pronounced since Ae at r /--  0-832 and r / =  0"924 varies in the opposite direction to that expected. 
The three points for r / =  0.981 are not systematic but the odd point is the one which is greater than the 
Glauert value and which therefore behaves as theory would predict. In this case it is possible to argue 
that co should increase locally near the tip, since 0)2 increases close to its associated vortex (see Fig. 3). 
If co is allo~ved to increase in a suitable manner to 1.00 at the tip, Ac~ at r /--  0-981 is increased to a value 
more in agreement with theory. These points are shown flagged in Fig. 9. At r / =  0.832 and r / =  0-924, 
however, Ac~ is still well below the expected value. 

It is now clear that the analysed values of A~ are extremely sensitive to the accuracy of the data and 
to the assumptions of the theory used in the analysis, especially near the tips. It seems unlikely that 
more accurate values of Ae can be deduced from experiments without introducing most unwelcome 
complications in the simple basic theory. Fortunately it is conversely true that the spanwise loading is 
not very sensitive to the variation of Ac~ with r/, so that for practical purposes extreme accuracy in the 
equivalent incidence is not necessary. Fig. 10 shows a comparison between the measured spanwise 
loading of one of the wings and that calculated using the theoretical A~ values. In view of the big dis- 
crepancies in Ac~ at the centre and tips the differences in the spanwise loading are comparatively modest. 
Nevertheless more research to try to reconcile theory with experiment is desirable. 

7. Resul ts  fo r  the Spanwise Loading func t ions  with Discontinuity.  

The method of Section 5 to determine the spanwise loading function has been applied to all the present 
tank data on 45 deg sweptback wings with part-span flaps. The values of A~ were obtained from the full- 
span flap data as follows : 

For  each flap chord A~ was assumed to have the Glauert value at mid semi-span, and the analysed 
value at the centre, intermediate points lying on the 2- interpolation curve, the full lines of Fig. 9. For  
XH = 0'55, near the tip, A~ is assumed to have the analysed value at ~/-- 0-981 and intermediate points 
given by the 2-interpolation curve. For  XH = 0"75 and 0"85 the A~ variation near the tip has been system- 
atized to give the same proportional increase in A~ as for x H = 0.55. These curves are shown in Fig. 9. 
Hence, for example, at r/F = 0.85, A~/fi  = 0.736 for x H = 0.55, 0-646 for XH = 0"75 and 0"527 for x H = 0.85. 

The resulting values of z(~/), the sweep factor to the spanwise loading function ~ (assuming the same 
value of~  with and without sweep), are shown in Table I and in Figs. 12 to 14. As expected from Section 
3, z(r/) for the inboard flaps is greater than unity and is greater outboard of the flap than over the flap 
itself. The limit as r / r~  1.00 is,z(r/) = i/co, shown dotted for co = 0.85. For  a given flap chord, z(r/) increases 
as r/F decreases, and for a given r/F, Z(r/) increases as the flap chord decreases. This agrees with the con- 
clusion of Section 2.3 about inboard flaps on unswept wings, since z(r/) is inversely proportional to co. 
For  the outboard flaps z(r/) is less than unity and is less inboard of the flap than over the flap itself. As in 
the case of inboard flaps, z(r/) increases as r/v decreases for a given flap chord. For  a given r/F, z(r/) decreases 
as the flap chord decreases. This is contrary to the conclusion of Section 2.3 for outboard flaps on unswept 
wings. In the present case the behaviour is chiefly determined by co2 outboard of the discontinuity, which 
increases as the flap chord decreases : whereas cot decreases as the flap chord decreases. 

In view of all the possible sources of inaccuracy the curves of z(r/) against r/are well-defined and system- 
atic, and are presented as being suitable for use in spanwise loading calculations of 45 deg sweptback 
wings. An extension to other values of sweepback angle is suggested in the next Section. 
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8. Appli'cation of the Results to Other Configurations. 

The results obtained by analysis of the electrolytic tank tests refer to constant-chord wings of 45 deg 
sweepback, aspect ratio 4, with flaps of various sizes. The results of the analysis comprise: 

(i) A value of co for the wings with full-span flaps (also applicable to some calculations) with part- 
span flaps). 

(ii) A set of values of Aa on the wings with full-span flaps. 

(iii) A set of values of the spanwise loading factor z(t/), which depends on xn and t/F. 

We wish to extend these results to cover other wing configurations, e.g. different flap sizes, different 
sweep angles. The only other electrolytic tank data on swept wings with flaps is for Constant-chord wings 
of 30 deg and 45 deg sweepback, A = 41 ~. We will use these results to support some suggested interpola- 
tion formulae between q~ = 0 deg and 45 deg for co, z(q), etc. 

Consider first the extension of the present results for wings of 45 deg sweep to other wings of the same 
planform but with different flap sizes, co may be left unchanged, at least for 0.65 ~<xn ~<0"85. Within this 
range of flap chords Aa may be simply interpolated graphically, as also may T(t/) for 0.65 ~< x~ ~< 0-85 and 
0.25 ~< t/F ~< 1.00. 

Turning now to wings of different sweepback, we try to find the appropriate value of co. co is mainly 
dependent on co2 = 1 - sin ~o in the limit. We may therefore guess 

[co]~,,, oo-  [co]~oc sin qo 

= K sin ~o 

as an interpolation formula. We know that [co],0=oo = 1 (see Section 3) and 

1 - [co]4so = 0.15 = 0.707 x K, 

so that K -- 0-212. This gives 

[co]~,= 1 -  0-212 sin ~o (5) 

Another possible interpolation is 

1 -  [co]~0oc q~= K.  ~o 

We know that 0.15 = K .  ~ so that K = 0.191 and 

[co]o = 1 - 0 . 1 9 1 .  ~o 

q~ being measured in radians. Yet another possible interpolation is to assume 

(6) 

1-  D,,],} 

where COK is the Ktichemann factor for a plane wing given by equations (1) and (2). We know that 0.15 -- 
K x 0.032 so that K = 0.47 and 

[co]e = 1 - 0-47{[cot] e = 0o- [cot]e} (7) 
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For  a wing of 30 deg sweepback and aspect ratio 4 we get the following results : 

co = 0"89 byequat ion  (5) 

= 0.90 by equation (6) 

= 0.91 by equation (7) 

Unfortunately no data is available foe full span flaps other than those for the 45 deg wing and so no direct 
confirmation of any of these formulae is possible. We will take co = 0.90 as being applicable to 30 deg 

sweep. 

For  smaller sweep angles, the three equations (5) to (7) are in even closer agreement : for ~b = 15 deg 

each gives co = 0.95. 

To derive Ac~ for a wing of different sweep we use the parameter n (Ref. 6) which is a function both of 
sweep and spanwise position as is Ac~. For  a wing with sweepback angle equal to qS, the general equation 

for n is 

n = l  

1 + 2 f  a 
re/2 

1 

2 fl+(a°c°s 

where the symbols have the same meaning as elsewhere in this report. The Ktichemann value of the down- 
wash factor co for wings without flaps is equal to twice the value of n at the sheared part of the wing where 
2 = 0, as is clear from equation (2) in Section 2.2. Theoretical considerations indicate that the complete 
dependence of Ac~ on sweep and spanwise position can be expressed in terms of n. The Ac#/~ curves of 
Fig. 9 have therefore been replotted against n in Fig. 11. On the 45 deg swept wings n (allowing for small 
aspect-ratio effects) is equal~to 0-273 at the centre and 0.748 at the tip. Thus the range of n covered is 
applicable to wings of similar aspect ratio having angles of sweep between 0 deg and 45 deg, and Ae 
may be determined for any spanwise position on such wings. The curves for x~ = 0.75 and x~ = 0.85 
appear to be unreliable beyond n = 0.6 and the dotted curves may be more useful in that region. (These 

have been used in estimating z(q), as mentioned in Section 7). 

To make an estimate of ~(~/) for a wing of any sweep, we remember that z(r/) differs from unity because of 
the sweep effect on the downwash factor. We assume that the difference between ~(t/) and unity for t/F < 1 
is proportional to: that  difference for t/v = 1, i.e. a full-span flap, and ~(r/) for a full-span flap l/co. 

i 

Thus for two comparable wings Of sweep q~t and q)2, with inboard flaps: 

1 

1 

1.e, 

1 
1 

= i +  . I } .  
1 

(8) 
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If ~o I = 30 deg, ~o 2 = 45 deg, 

['c(r/)]3oo = 1 - - t - - -  

1 
- - - - 1  
0-90 

1 . {[T(q)]45o- 1} 
- - - 1  
0"85 

= 1 +0.61{[--c(t/)]45o- 1} . (9) 

To check equations (5) to (8) and Fig. 11 the spanwise loading has been calculated for the wings of 
Ref. 11 'having ~0 = 30 deg, inboard flaps, ~/F = 0'55, Xn = 0"67 and 0"80. The results of Ref. 11 were 
obtained by an earlier electrolytic tank procedure using 8 chordwise electrodes instead of 11 as in the 
present tests. As a datum, therefore, the spanwise loading was first calculated for the wings of 45 deg 
sweep with the above flap sizes using Ac~ and z(t/) from the present tests. The comparison with the tank 
data is shown in Fig. 15 and the calculation is seen to give a slightly higher loading than the tests. The 
comparison for the 30 deg wings is given in Fig. 16 which shows that the calculated and experimental 
loadings differ exactly as for ~o = 45 deg. It is concluded that the discrepancy in the results of Fig. 15 for 
~o -- 45 deg is due to the differences between the 8-point and 11-point tank data and that the interpolation 
formulae (5) to (8) give a satisfactory correspondence for ~0 = 30 deg in Fig. 16. The differences between 
the two sets of tank data for q~ = 45 deg underline the remark made in the Introduction that a fairly 
large number of chordwise points are required to represent the wing by a 'lattice'. 

For  a wing with outboard flaps, symmetrically deflected, the interpolation formula corresponding to 
equation (8) is 

1 
- - - - 1  
[coL, 

[T(t/)]go I = 1 . {1 - [~(t/)]e=} (10) 
1 

1 
[co] 2 

since z(t/) is now less than unity, in general. If ~o 1 = 30 deg, q)2 = 45 deg, 

= i -  o.61{1- (11) 

Apart from thoseused in the present analysis, no tank data are available on wings with outboard flaps 
symmetrically deflected, but Ref. 11 contains data on outboard flaps with anti-symmetrical deflection 
for ~0 = 0 deg, 30 deg and 45 deg. (The results for q) = 0 deg have already been shown in Fig. 7.) The 
spanwise loading of the wings of 30 deg and 45 deg sweepback has been calculated, using the ~(t/) curves 
for ~0 = 45 deg, outboard flaps symmetrically deflected, and equation (10). The results for q~ = 45 deg 
are given in Fig. 17 and for q~ -- 30 deg in Fig. 18. From Fig. 17 it is clear that the z(t/) factors for sym- 
metrical deflection are not strictly applicable to cases of anti-symmetrical deflection, and Fig. 18 shows 
that the interpolation equation (10) may not  be valid either. Figs. 17 and 18, like Fig. 7, show that a larger 
variation of co with x n might be appropriate. This would imply that, for a given t/e, the r(q) curves for 
anti-symmetrical deflection would vary more with xn than for symmetrical deflection. Nevertheless the 
calculation is in fair agreement with experiment and the method is certainly worth using until electrolytic 
tank tests furnish more explicit information. 

Anti-symmetrical deflection of inboard flaps has not been treated. The system of vortices will be 
different from any considered so far. Only a qualitative discussion on the lines of Section 2 is possible at 
present. 
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In general, small aspect-ratio effects are just beginning to appear with these wings of A = 4. The 
results of the present analysis should be applicable to wings of greater aspect ratio. The Ac~ curves, 
plotted against n, should also be valid for wings of smaller aspect ratio. The z(t/) factors will change as 
the aspect ratio is reduced, however, and further data are required before this variation can be found: 
and an interpolation formula developed. The qualitative discussion of Sections 2.3 and 2.4 suggest that 
there should be little aspect-ratio effect on unswept wings but an appreciable effect on swept wings. 
Thus the extension of the results of the present analysis to wings of different aspect ratio can, for the 
time being, only be justified for A > 4. 

No suitable tank tests are available for checking the effect of taper on the spanwise loading of swept 
wings with flaps. It is suggested that the angle of sweep of the mid-chord line be used in calculations. 
It should be noted that the flap chord ratio may change along the span and that quantities expressed 
in terms of the chord are now in terms of the local chord. Where the flap chord ratio varies, a composite 
z(t/) curve is required. It is suggested that at the spanwise pivotal points z(r/) should be based on the local 
flap chord, and that outside the flap z(t/) should be based on the flap chord at the discontinuity. 

9. Calculation procedure. 
As a result of the analysis of the electrolytic tank tests it is possible to suggest a method for calculating 

the spanwise loading on a swept wing with deflected hinged trailing edge flaps, and this section sum- 
marizes the procedure. The method, which is based on the linearized theory of incompressible flow, is 
regarded as an extension of earlier methods 6' 7 developed for plane and cambered wings, and the funda- 
mental ideas and assumptions are unchanged. The loading in compressible flow below the critical Mach 
number may be obtained by using the Prandtl-Glauert analogy in which the spanwise dimensions are 

reduced by the factor ~ and the loading of the modified configuration calculated in incompres- 
sible flow s . 

As in the case of a plane wing, the first step in the ealculation of the spanwise loading is to determine 
the local lift slope, a, at the spanwise pivotal points" from the formula of Ref. 6. Since we treat the incidence 
discontinuity by Multhopp's method, 15 pivotal points on the whole wing are sufficient, i.e. 8 on a half- 
wing. The spanwise variation of the parameter n is found in the course of the calculation of a and so 
Ac~ at the pivotal points and the discontinuities can be found from Fig. 11 for XH between 0"65 and 0.85. 
It is suggested that the dotted lines near the tip in Fig. 11 are more likely to be reliable than the full curves. 
The curves could be extrapolated to cover nearly all required values of n. 

The spanwise distribution of~ = CLc/2b is calculated as the sum of two component distributions, 7~ and 
])ii (see Section 5). ~i depends on the angle of sweep and on the magnitude and spanwise position of the 
incidence discontinuity at the end of the flap. Multhopp's formulae for ~ for inboard and outboard 
flaps on an unswept wing are given in Appendix II. On a wing swept back by an angle q), the spanwise 
loading function [yi(t/)]~o is given by 

= x 

so that ~u = a (the incidence discontinuity) over the flap and zero elsewhere and for q) = 45 deg, z(t/) 
is presented in Table I and Figs. 12 to 14, for various flap spans and chords, with symmetrical deflection. 
[z(t/)]45o for other flap sizes may be obtained by interpolation, and for a change in sweep angle [z(t/)]e 
is obtained from [z(t/)]4so by equations (8) or (10) in Section 8 : for inboard flaps, equation (8) is used : 

= t 

1 
- - - - 1  
[od, 

1}  

1 I 

and for outboard flaps equation (10) is used : 
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= I 

m - 1  
[co]  

{ I  - [~(r/)]45o } . 

- - - - i  

Until further data is available it is suggested that r(~) for outboard flaps symmetrically deflected may 
also be used in the case of anti-symmetrical deflection without serious error. Thus the function 7~ may be 
calculated for a wide range of configurations. 

It is preferable to calculate the spanwise loading due to flaps with the main part of the wing at zero 
incidence. The result can then be added to the spanwise loading due to incidence to give any desired 
combination of flap deflection and incidence angle. At the flap the local incidence is Aa, elsewhere it is 
zero, the incidence discontinuity a being the value of Aa at the end of the flap. Thus the geometric incidence 

is known everywhere. To calculate 7u we must know the associated incidence distribution cq~ = ~ -  at. 

The effective incidence aex associated with 7x is CLI 2b = - - .  7~ which is known: also the induced incidence 
a a c  

ai~ associated with ~i has been specified to be equal to a over the flap and zero elsewhere. Hence a~x = 
- (aer  + ~i~) and 7u can be calculated by the usual Multhopp-type equations 

7nv /b~,+  2b : '  au  . . . . .  
~ ) .  = co +2., or, 7u, 

which can be solved by iteration. In these equations and in the interpolation formulae for -fit/), co is 
obtained from equations (5), (6) or (7) of Section 8 : 

or 

or 

[co]~ = 1-0 '21  sin ~o 

[co]~ = 1 -0 ' 1 9  q~ 

[co] ~ = 1 - 0.47{[coK]o ° - [coK] ~} 

for the present range of xn. The sum of Vl and 7ii gives the spanwise loading, 7- 
The above calculation method does not depend on the values of co, fit/) and Aa given in this note, 

and if more accurate values are subsequently available they c a n b e  inserted. The r(q) curves of Figs. 12 
to 14 are unlikely to be valid for aspect ratios less than 4 and ~o may also change A is decreased. 

In the case of a tapered wing the angle of sweep of the mid-chord line should be used. Since xn may 
vary with spanwise position, v(t/) may have to be considered for each pivotal point separately (see 
Sedion 8). 

10. All-Moving Tip Controls 
A problem closely allied to that of the loading of swept wings with flaps is to find the loading of wings 

with all-moving tip controls. Such controls appear to give promising results especially in the transonic 
range and their effect has recently been discussed by Thomas and Mangler 13. This paper also contains 
a method for calculating the spanwise loading at subsonic speeds. No electric tank data on all-moving 
tips exist at present and so no direct check of the method of Ref. 13 can be made. It is of interest however, 
to compare the results of Ref. 13 with a calculation on the lines of the present Report, since the remarks 
in the Introduction about Multhopp's more recent paper s apply to the method of Thomas and Mangler, 
namely: 
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(i) The number of chordwise points is too limited and the method of their selection too uncertain to 
give reliable results. 

(ii) The spanwise discontinuity in incidence cannot be split off and 15 spanwise points with a con- 
tinuous incidence distribution does not give a good representation (see Fig. 6). In Ref. 13 two methods 
are quoted for fairing over the discontinuity region and the difference between the two is quite appreciable. 

In Ref. 13 the calculations are made for delta planforms and an example of this type with pointed tips, 
A = 1.848, leading-edge sweep of 65.2 deg, t / =  0.67 and 0.74 is used for a comparison of the methods. 

The three things which must be known to perform a calculation by t.he present method are Ae, co 
and ~(~). In this example Ac~ is known since it is equal to the control deflection ~ and Ae/~ = 1. (This 
can be regarded as the case xn = 0). No experimental data are available from which co and z(t/) can be 
obtained for,this value of xn and a plausible guess must be made. As both parts of the wing can be con- 
sidered as a wing at incidence we assume that co is given by equation (2) as for a plane wing at incidence, 

which means that m = 1.080. Thus ~(t/) = 1 = 0-925 is probably an upper limit to the spanwise loading 
co 

factor, and by analogy with Figs.-12 to 14 it will probably be reasonably correct for the outer part of the 
wing which carries most of the load. On these assumptions the spanwise loading has been calculated for 
unit control deflection, the main part of the wing being at zero incidence. The results are shown as curve (a) 
of Figs. 19 and 20. 

In view of the shape of the spanwise loading curve it can be argued that the tip control should be con- 
sidered as a wing of half the aspect ratio of the complete wing. Curve (b) in Fig. 19 shows the effect of cal- 
culating co on the basis of A = 0.924 with • = 1/co. There is an overall increase in loading, probably 
rather spurious inboard of the control since the new assumption about A is hardly valid there. Therefore, 
although the maximum uncertainty about the value of A has been considered, the results do not differ 
much in the two cases. 

Finally, for comparison purposes, the loading on the control has been calculated assuming a full 
reflection at the inboard end and this is shown dotted in Figs. 19 and 20. There is, of course, no load 
inboard of the control in this extreme treatment. 

Curves (c) and (d) in Figs. 19 and 20 have been reproduced from Ref. 13, and show the effect of the 
uncertainty about how to fair the incidence in between the spanwise pivotal points. Two methods 
have been suggested in Ref. 13 and the difference between the results (c) and (d) is greater than between 
curves (a) and (b), and for the two control sizes the difference is not consistent in sign. 

There is a considerable difference between the two sets of results which cannot be explained physically. 
To get closer agreement with (c) and (d)the calculatiofis by the present method would have to use a 
smaller value of co (i.e. an aspect ratio greater than that of the complete wing) : or would have to assume 
that • > 1/co which cannot be justified by the analysis of the electrolytic tank results. Thus the two methods 
cannot at present be reconciled. 

The discrepancy is more serious in the pitching and rolling moments. This makes an estimate of the 
control efficiency of all-moving tips at subsonic speeds uncertain. Fig. 21 gives the various results for 
the spanwise variation of the aerodynamic centre. Not all the difference is due to the tip deflection : there 
is a large discrepancy in the values for the plane wing at incidence. Similar differences have been noted 
before in Ref. 6 where it has been suggested that Multhopp's more recent method 5 is liable to over- 
estimate the centre effect on sweptback wings. Among other things this tends to place the aerodynamic 
centre too far back. 

From the calculated spanwise loadings the overall values for the lift and the rolling moment have been 
evaluated. They are given in Table 2. The difference between the various sets of results are quite large. 

The above results by both methods are for inviscid, incompressible flow with the trailing vortices 
lying in a plane sheet. There are several effects which might modify these results. For instance the gap 
between the main wing and the tip might give rise to a vertical sheet of trailing vortices. This would 
change the downwash due to the trailing vortices and might cause a partial reflection effect near the 
discontinuity similar to that found with Wing fences 14. The partial reflection might not only affect the 
lift distribution but also cause a rearward shift of the aero-dynamic centre on the control, as indicated 
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by the curve for full reflection in Fig. 21. Again, the gap is almost certain to interfere with the develop- 
ment of the part-span vortex sheet in the same way as a chord extension or a notch, and ordinary boundary- 
layer effects Will also influence the loading to a large extent. 

If these viscosity effects are to be found they must come from experimental results and they cannot 
be estimated with an3) certainty unless the inviscid solution is known. It is therefore of importance that 
reliable calculation methods be devised for flaps and all-moving tip controls. 

11. Conclusions and Further Work. 

At the outset of the present investigation it was hoped that a limited number of configurations tested 
in an electrolytic tank would yield results which could be generalised to cover any system of trailing- 
edge flaps on wings of any sweepback. The main object was to see whether A~ varied in a spanwise 
direction on a swept wing, and if so to obtain curves of Ac~ between centre and tip and relate these to 
the flap chord and the parameter n of Ref. 6. In the course of the analysis it became clear that there were 
other effects of sweep which could be inferred by qualitative reasoning but whose magnitude could not 
be predicted. In particular, both the downwash factor co and the Multhopp spanwise loading function 
Vs for wings with a discontinuity of incidence exhibited variations with sweep which had to be estimated 
by a study of the electrolytic tank results. The relation between ~ss and ~n remained as before. 

The main conclusions to be drawn from the analysis are: 

(i) The downwash factor, co, on swept wings may differ from unitY even on wings of high aspect ratio: 
and on both swept and unswept wings the variation of co with aspect ratio may depend on the chordwise 
loading. 

(ii) Using the theory of Ref. 6 as a framework it is possible to deduce values of Ae over the span of 
a swept wing with full-span flaps, but these values are very sensitive to the accuracy of the tank data 
and the initial assumptions such as the value of co. Since the co relations are even more complicated in 
the case of part-span flaps, tests on these configurations are not useful for determining Ae. 

(iii) If Ae is known from full-span flap data, then for swept wings with part-span flaps the co values 
can be obtained from the test results in the form of a spanwise loading factor, z(t/), to the Multhopp 
spanwise loading function ~s. 

(iv) A method for calculating the spanwise loading due to flap deflection is presented in which the 
above results can be inserted. Subsequent corrections or modifications to A~, co and z(q) can be applied 
without difficulty. In particular when corrections to A~ are available to allow for profile thickness, 
boundary layer, etc., they may be easily incorporated. 

The spanwise loading of a delta wing with all-moving tip control has been calculated by this method 
and the results do not agree with those of Ref. 13. The discrepancies have yet to be explained. 

An analysis of the chordwise loading results of the present series of tank tests has started and this 
should lead to a calculation method for the chordwise loading on swept wings with flaps, and will serve 
as a check on some theoretical ideas. 

A theoretical derivation of the variation of A~ with sweep has been tackled, and it is just possible that 
z0/) may also be derived from theory. Practical values of co however must always be obtained from 
analogue computer data, owing to the very complex vorticity distributions on the wings. It is therefore 
suggested that further work to provide such data is needed along the following lines : 

(i) Theoretical derivation of spanwise loading factor z(r/), if possible. 

(ii) Electrolytic tank tests on unswept wings of various small aspect ratios with full-span and part- 
span (inboard and outboard) flaps, to check any variation of col with A for these chordwise loadings. 

(iii) Tank tests on wings of the same sweep but different aspect ratios, with full-span and part-span 
flaps, to check the variation of co with A. 

(iv) Tank tests on wings of the same aspect ratio but different sweep angles, to check the interpolation 
formulae for ~(q) and 09 given in the present Report. 

(v) Tank tests on wings with outboard flaps to check the additive property of spanwise loadings in 
linearized theory. 
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(vi), Tank tests on inboard and outboard flaps with antisymmetric loadings to ascertain the appro- 
priate spanwise variation of z(r/). 

(vii) Tank tests on tapered wings and delta wings with various flap configurations to ascertain the 
appropriate sweep angle to use in such calculations. 

(viii) Tank tests on wings with all-moving tips, particularly swept wings. 

(ix) Tank tests on wings with nose flaps. 
Of these items, Nos. (ii), (iii), (v) and (viii) are considered to be the most important. 
The present work in inviscid flow must be supplemented by comprehensive wind tunnel experiments 

to establish the nature and magnitude of viscous effects on swept wings with flaps and tip controls. 
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LIST OF SYMBOLS 

Rectangular co-ordinates: x in the stream direction, x = 0 at the leading edge: y in the 
spanwise direction, positive to starboard: z positive downwards, x,y,z are non-dimen- 
sional in terms of the chord 

Co-ordinates of the point of origin of a trailing vortex 
x-co-ordinate of flap hinge 

Spanwise co-ordinate } 
yc 0 = cos - tr/ 

Spanwise co-ordinate = b-~ 

Spanwise co-ordinate of end of flap: Or = cos - l~/e 

Induced velocity in vertical direction 
Mean value of v~ over the chord 

Value of v= at infinity downstream 

Downwash factor 

Downwash factor on an unswept wing 
Downwash factor due to sweep 

Geometric incidence 

Half induced incidence at infinity downstream 
Induced incidence = a~i0 
Effective incidence = ~ - ~ i  

Non-dimensional vorticity 

Vorticity associated with a discontinuous incidence distribution 

7-71 

Local lift slope = CL 
~e 

Two-dimensional lift slope 
Wing span 

Chord (the unit of linear measurement) 
Flap chord 

Chordwise loading parameter 
Aspect ratio 

Multhopp coefficients 

Local lift coefficient 

Overall lift coefficient 

Overall rolling moment coefficient 

Free stream Mach number 
Equivalent incidence due to flap deflection 
Angle of deflection of flap 
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Discontinuity in incidence at end of flap 
Fading-out function for centre and tip effects 

Spanwise loading factor 
Angle of sweep, positive for sweepback 
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APPENDIX I 

The Downwash Factors, 091 and co 2 

Consider the constant-ch0rd swept wing of Fig. 1. Let O be the origin of the co-ordinates (X, Y): 
X = x + y tan ~0, Y = y, and so x = 0 at the leading edge of the wing. All co-ordinates are non-dimen- 
sional in terms of the chord. Let AB be an isolated line vortex of strength ~ in the free stream direction, 
extending from A (x,, y~) to infinity downstream. Then the downwash induced at P(x,y) by this vortex is 

? 
G = 4zc(y- yv)(1 + cos ~) 

_ ? (1 x~+y~tanq~-x  ) 
4re(y- y~) ~/(x~ + y~ tan rp - x) 2 + ( y -  yo)2 

The mean value of Vz over the chord through P is therefore 

ytan ~ +  1 

4~(y-  y~) 
y tan cp 

xv+ yvtanq~- x 

x/(x. + y. tan ~o - x) z + (y - yv) 2 
dX 

, (  . 
- 4 g ( / - -  y~) 1 + ¢ [ x o -  1 - (y--  yv) tan q~]2 + ( y _  y~)2 

- ~ / [ x o -  (y - y.) tan ~0] 2 + (y _ y~)2)) 

When q~ = 0 °, 

[Gm]oo _ ? ( l + x / ( x _ l ) 2 + ( y _ y ~ )  2 
4~(y-  y~) \ 

- + (y-  yo)2) 
Half the downwash at infinity downstream is 

Vzoo ~) 
q 

2 4g(y -Yv) 

and the downwash factor for unswept wings, co 1 is 

Vzm] 0 o 
(D I - -  l V z  ~ 

2 = 1 + x / (x , , - -  1) 2 + (y- -  yo)2 _ .x/x,, + ( y _  y~)2 

co 1 is plotted against [Y-Yv[ in Fig. 2 for various values ofxv. 
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As ]y-y.l~oo we can write 

1 / (x"-l)2 -(y-yo)~/(y_y,,)2+l 021 = +(Y-  Y,) ~/(y_ y~)2 + 1 x~ 

= l + ( y - y , ) { 1  +½ • (x"- 1)2(y_y.)2 t - . . .}  

{ 2 } 
-(y-y.) 1+½. x. ~- 

(y_y.)2 "" 

~1 as [y-y.[~oo 

The downwash factor due to sweep, 022 is 

!.) zm] ¢p 
0)2 = [Vzm]0 ° 

_ 1 +x/[-x.-  1-(y-y~)  tan ~o] 2 +(y_y~)2 _ x/[x_(y_y.)tan ~o]2+(y-y.) z 

1 + , / ( ~ -  1) ~ +(y -yo)~  - . , / ~ + O , - y , )  ~ 

0) 2 is plotted against y -y .  in Fig. 3 for various values of x.. 

o22>1 for y-y.>O ~ ' (p >0 j :or 
y -y .  <0 

~o<0J  

o)2<lf°rY--Yv<O } q 9  >0 : °ry-y°X~}  

As y-y~-+ + co we can write 

022 = 1 +~/(y-y~)Z(1 + tan 2 (p)+ (xo- 1) z -2 (xv -  1)(y- yo) tan ~o 
- w / ( y -  y~)Z(1 + tan 2 q~) + x~ 2 - 2x~(y - y~) tan q~ 

¢ ( x ~ -  1) 2 2 ( x ~ -  1) tan ~o 
= l+ (y -y~)x / l+  tan2~o 14 (y_y~)2(l+ tan2q~ ) (y-y~)(l+ tan2q~) 

2xv tan q~ 
+ tan2q~) (y-y~)(l+ tan2rp) J 

Xv 
-- 1 ~ ( )(l'y--y'2"- 

{ I-i 2(xo-1)tan , -1 
= l + ( y - y v ) x / i +  tan2~o 1+½ L(y_y02(1 + tan2~o ) (y -y . ) ( l+  tan2q))_] 

+ . . . . . .  

iy-y~)2(1--+ tan 2 c#) (y-y~)(l+ tan2q~)_] . . . . . .  " 
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tan ~o 
- + l + x / l +  tan2 q~" 1+  tan2 q~ 

= 1 + sin q~ as y - y v ~  + co 

Similarly cozy1 - sin q~ as Y-Yv-'* - oo. 

APPENDIX II 

Multhopp's Spanwise Loading Function, yx, for Unswept Wings 

Let a be the discontinuous change of incidence at the end of the flap, 

0 = C o s - l r /  

O F = c o s - l t / F  

(i) Outboard flaps : symmetricallydeflected : 

sin 0 + OF 

2a I 2 ~i(0) = --~ (cos 0 - cos OF) lnsin - - I 0  - oF[ ~- 

O+Oe 
COS - -  

2 
+ (cos O -  cos Op)ln- 

O- Ov 
COS 

2 

t- 20F sin 0 1 

(ii) Outboard flaps; antisymmetrically deflected : 

2a sin O + 0F 

~i(0) = n c o s 0 -  cos OF)ln- I~' ~'lla--arJ 
sin 

2 

O+ O r 
COS - - - ~  

- (cos 0 + cos 0p) In 
cos 0 20____£ 
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(iii) I n b o a r d  flaps : symmetr ica l ly  deflected : 

2~ r~(O)=~- 
sin 0 + Or 

2 
(re - 20p) sin O -  (cos 0 - cos Or) ln- I VIa- ~'~aFI 

sin 
2 

O+Op 
COS-~- 

--(COS O+ COS OF)IFlCos~O_ ~ 
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TABLE I 

Spanwise Loading Factor, "c(r/) : q~ -- 45 deg Symmetrical Deflection 

0 
0.195 
0-383 
0.556 
0.707 
0.832 
0.924 
0.981 

0 
0'195 
0.383 
0"556 
0.707 
0.832 
0.924 
0.981 

0 
0.195 
0.383 
0.556 
0.707 
0.832 
0.924 
0.981 

0-25 

1"394 
1"440 
1-646 
1"742 
1-776 
1"766 
1"752 
1"785 

1"461 
1"512 
1"738 
1"829 
1"860 
1"870 
1"851 
1"869 

1"551 
1"617 
1"822 
1"932 
1"990 
2"002 
2"017 
2"061 

Inboard  Flaps 

0.45 0.65 

xn = 0.65 
1.298 1-225 
1.311 1.231 
1"355 1.248 
1.508 1.282 
1.563 1.373 
1.596 1.410 
1.601 1"408 
1.591 1.423 

x n = 0"75 
1"330 1"244 
1"341 1"251 
1"395 1"263 
1"547 1"303 
1"611 1'395 
1"644 1"440 
1"673 1"429 
1-671 1"453 

x n = 0"85 
1"353 1"276 
1"366 1-280 
1"427 1"298 
1.576 1-358 
1"633 1-483 
1'669 1-511 
1'710 1-516 
1'698 1"522 

0-85 

1.169 
1.168 
1-172 
1-185 
1-193 
1.212 
1.263 
1.286 

1.190 
1.191 
1.195 
1"204 
1.218 
1.242 
1.297 
1.309 

1.205 
1"205 
1.210 
1"220 
1.231 
1.265 
1.303 
1-316 

0.25 

0.937 
0.937 
0.960 
0.991 
1-009 
1-006 
0-987 
0-985 

0"861 
0-873 
0.918 
0.960 
0.984 
0.980 
0.964 
0.959 

0.805 
0.816 
0.887 
0.931 
0.945 
0.948 
0.936 
0.936 

Outboard  Flaps 

0.45 0.65 

xn = 0.65 
0.825 0.751 
0.814 0.720 
0.838 0"728 
0.879 0.747 
0.913 0.814 
0.918 0.839 
0.913 0.839 
0"920 0.848 

xn = 0-75 
0.741 0.617 
0.751 0"611 
0"770 0.633 
0"851 0.677 
0.892 0.792 
0-903 0.809 
0-895 0.819 
0.884 0.800 

xn = 0.85 
0.722 0-558 
0.728 0.545 
0.731 0-550 
0.833 0.575 
0.871 0-726 
0.881 0-779 
0.876 0-796 
0.864 0.778 

0'85 

0.619 
0"604 
0.580 
0.570 
0.586 
0"637 
0"729 
0.729 

0-300 
0.293 
0-292 
0.338 
0-440 
0-567 
0"686 
0.702 

0.184 
0.179 
0"191 
0.225 
0.273 
0.411 
0.671 
0.688 
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TABLE 2 

Overall lift and rolling moment of delta wing with all-moving tips 

< 

qv 

0-67 

0.74 

0"67 

0"74 

C,.//~ 

Ref. 13 

(c) (d) 
Multhopp Unfaired 

Fairing 

0.3661 0.4126 

0"2391 0-1799 

Present 
method 

(a) 
A = 1"848 

0"41 

0"28 

C,113 

Ref. 13 

(c) 
Multhopp 

Fairing 

0"0967 

0.0680 

(d) 
Unfaired 

0-1077 

0.0542 

Present 
method 

(a) 
A = 1"848 

0'111 

0.080 
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