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SUMMARY,

An extended shock—expansion theory epplicable to three-dimensional
wings with attached leading end trailing edge shock waves is presented in
this note. Although the extended method has been derived for high Mach
numbers only,’ preliminary comparisons of its predictions with those of
linearised theory and the one experiment available indicate that it can be
applied at quite low Mach mmbers, For any given leading edge sveepback
angle A there is a mummum free stream liach number ¥ for which the method is

valid, given apyroximately by the cordition tan A < 1 « Tip regions on
Jiea 3

lifting wings cannot be treated.
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NOTATION
local speed1of sound
= (-1}
characteristic or Mach lines (figure 1)
pressure coefficient (p~p.)/p,. V2
pregsure drag coefficient, Drag/ip, VE 8
Lift coefficient, Iift/fp V2 §
lower surface minus upper surface pressure coefficient
local static pressure
stagnation pressure
Mach number
= tandA/B
wing planform area
element of wing planform area
velocity components in the (x,y,z) directions

perturbation velocities on the wing surface, respectively parallel
and normal to the {ree stream direction

free stream velocity

rectangular coordinatc system (section 3.2)

local wing incidence, constant on & flat plate

ratio of specafie heats

flow darection, relative to the undisturbed free stream
inclinétlon of a facet to the free stream dairection
leading edge sweepback angle

free stream density

subscript denoting free stream conditions



1 Introduction

For wings at supersonic speeds, theoretical estimates of the aero-
dynamic properties are usually obtained using the linearised or small-
perturbation theory. Although this theory predicts the force coeflicients
with fair accuracy and the surface pressure distribution with somewhat less
accuracy, its predictions can be considerably in error. These errors arise
when the perturbation velocities are not small compared with either the free
stream velocity or the veclocity of sound, At high supersonic speeds the
perturbation velocities are not small compared with the velocity of sound.
Hence the lanearised theory is not adequate at high Mach numbers and there
is a need for another method. The three~dimensionsel method of character-
istics! is available; however, its application involves sucn a large amount
of computational effort that only very simple shapes have been investigated.
Fortunately, in two-dimensional supcrsondc flow a simple approximation to
the two-dimensional method of characteristics® can be made , namely the two-
dimensional shock-expansion theory, which yields results for the surface
pressure distribution that are accurate enough for engineering purposes
(see, for example, refercnces 3 and L)}. This approximation is applicable %o
infinite yg.wed wings and has been extended by the authors? and also Vincenti
and Fisher® to cover certain flow regrions on a class of swept, tapered wangs
with shock waves attached to the edges. In addition, provided that the Mach
number is sufficientjfr high, a shoclkecxpansion theory can be applicd to
bodies of revolution/.

In the present note, shock-expansion theory is extended to guve a
method for computing the surface pressure distribution on three-dimensional
wings with shock waves attached to the edges. The theoretical basig for
this extensazon, which is strictly appliceble only at hign Mach numbers, is
described in section 2, 8Sectlons 3, 4 and 5 present the method in detail
and discuss 1ts application to the entire wing surface, Two simple 1llus-
trative examples ocre given in section 6 where the influence zone of the apex
on & sweptback wedge and the tip region of a rectangulsar wing are examined.
The range of veladity of the present method is discussed in section 7 wheras
comparisons with experiment and linearised theory are made, Finally, in
section 8 the main conclusions of this note ars given.

2 Shock wave-=Mach wave interaction

Before describing the method in detail 1t is necessary to discuss the
influence of shock waves on the flow field at the surface of a body. Con-
sider first the flow &bout a two-dimensional body with attached shock waves
(figure 1). Disturbances from the body are transmitted into the flow field
along the family of characteristic or Mach lines €4, These disturbances
interact with the leadang edge shock wave, causing it to bend, and are
partially reflected along characteristic lines such as OCp, If the
reflected disturbance is only a small proportion of the transmaitted dustur-
bance, it has negligible effect on the surface flow, which can be computed
without considering flow conditions away from the surface. At a point an tae
flow field let the flow direction, relative to the undisturbed free streem,
be &, ZEggers, Syvertson and Kraugh have shown that the ratio of the
gradients of & an the €4 and Cp directions can be taken as & measure
of thc proportion of the disturbance reflected by the shock wave, i.e. the

!
reflected disturbances are negligible when either 26 or 25 /2%
8 Cy 30y acz
is small just downstream of the shock wave, The general case when 5%@- 0

1
(ana % # 0) has buen examined in refercnce +; by considering disturbances

incident on a plane oblique shock wave, Egpers, Syvertson and Kraust have
shovn theat

98 [ ab
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for all supersonic Mach numbers, provided that & does not approach the
maximum poasible flow deflection angle. This gives the justificataon for
the two-dimensional shock-expansion theory.

It will be noted that, although the body shape determines the magni-
tude of the disturbance transmitted to the shock wave, the proportion of
this disturbance reflected by the shock wave depends directly on the shock
wave, Since any shock wave pattern ¢an be considercd as built up from a
nuamber of plane oblique shock waves, 1t follows that the proportion of the
incrdent disturbance reflected just downstream of' the shock wave is very
amall, provided that the greatest flow deflection by the shock wave does not
aporoach the measdmum deflection angle. If these reflected disturbances do
not coalesce they will be small throughout the entire flow field and so can
be neglected, In the case of two-dimensional flow, tnis condition is satis-
fied and the Whoée flow Tield can be determined using a generalised shock-
expansion method®, For bodies of revolution at high Mach numbers, Eggers,
Savin and Syvertson/s8 have shown that tne reflecled disturbances from the
nose shock wave are still small at the surface, so that the generalised
shock-expansion trneory is applicable in this case also.

Now, for wangs with shock waves attached to vhe leading and trailing
edges, an anaslysis similar to that given by DEgeers and Savin{ for bodies of
revolution can be used to show that disturbances reflected by the shock wave
are uwmmportant at high Mech mumbers, Therefore, it 1s assumed in this note
that reflected disturbances do not coalesce to any appreciable extent at the
wang surface and can be neglected., As a consequence of this, the surface
Tlow ficld can be calculated without considering the shock wave pattern away
from the surface,

The flow field over a wang moving at very high speeds may be investi-
geoed without considering the shock wave system explicitly since the surface
flow can be determined using a strip method, in which each stresmwise section
15 trected two-dimensionally by shock-expansion theory. (This implies
wmmediately that reflected dasturbances are negligible.) However, this
method 18 not adequate at lower Macn numbers sincc each streamwisze section
vwill have a progressively increasing influence on adjacent sections as the
Mach rmunber is decreased, The extended shock-erpansion theory to be des—
cribed in section 3 considers the whole wing and does not treat each stream-
W.se gection two-dimensionally.

3 Method

Applications of the method are restricted to the stcady supersonic
flow of a perfect gas, viscosity and heat conductrion being aeglected, In
addation, entropy changes are neglected except across shock waves, as also
is auy vorticity which may occur. Thus the wing can be divided into regions
in which tixe fiow is both irrotational snd isentropic.

The metnod has been developed for the treatment of wings whose sur-
faces can be burlt up by straight gpnerators‘(figure 2), and all generators
are requircd to be "supersonrc", i.e, the local velocity component normal to
each generator must be supersonic, This wimplies that the leading and trail-
ing edge shock waves must be attached. Under these conditions the flow
divides i1nto four distinct regions; the zone of influence from the apex,
that frca the tip, a region where these tio zones interact, and a region
unaf'fected by either apex or tip.

The wang ig divaided into small facets bouanded by generators and the
aerofoil section is thus replaced by a polygon. The problem of determining
the surface flow over the wing now resolves into two basic problems; finding

u Thus the wing is a ruled surface, A simple examplc of such a surface
15 21lustrated in figure 2 where oll the generators pass through a point,
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how the flow changes in passang from one facet to the next and how it
changes within each facet. The treatment of any zone of influencc then
becomes an application of the basic methods with appropriate boundary
conditions.

3.1 ¥low across the junction of two facets

The flow across the junction is similar to that over an infainite yawcd
wedge and, althouph the velocity component parallel to the junction remains
constant over the ridge, the surface flow normal to the facet junction is
locally two-dimensional. Hence 1f two facets meet to give expanding flow,
the flow across the junction can be found by a Prandtl-Meyer expansion of
the normal component, with the parallel velocity component remaiming
unaltered, When shock waves occur, as along the leading edge, a sumtlar
procedure is used,

%.2 IFlow in facets

Here the flow over a plane facet wall be considered, The equetions of
motion are referred to a rectangular coordaznate system (x,y,z) in which the
facet is the plane z = 0, i.e¢. the 2z directaon is normal to the facet.
Velocity components in the x,y,2z d&irections will be denoted by u,v,w
respectively, Since w = 0 on the facet, the three-dimensional velocity
equation at the surface hecomes

y oL\aw  f, ove\ov  aw _wrfauw  av) |
22/ 0% a2/ 3y dz ge \ 0¥ 9%

where the local speed of sound a 15 given by the energy equation

2 2
2 + 22X ¥ = constant
(y = 1) 2

and the irrotational flow conditions® are expressed by

du . 3¥ = Qu QW .0, 44Y¥ 9% -,
dy ox 03 9% oz oy

It has been stressed in section 2 that disturbances reflected froam the
leading cdge shock wave are assumed to be negligible, Taig implies that the

flow near the facet surface remeains parallel to it, i.e, _a.YI. = 0, There-
Z
fore the system of equations given directly above reduces to a two-dimensional

gystem in the plane of the facet and can be solved by the usual method of
characteristics, together with the appropriate boundary conditions.

Hence 1f flow conditions are known along the upstream boundary of a
Tacet and the appropriate boundary conditions on the facet sides are known
also, the flow can be detcrmined by the method of characteristics® and
conditions can theref'ore be found on the downstream edge. The procedure
outlined in section 3.1 enables the flow on the upstream edge ol the next
facet to be found, and so by repeating this procedure the surface flow over
the whole wang can be determined,

¥ It is sufficient to have only tac one irrotational condition

-g——;—- = g_v__ i,e, the vorticity component normel to the surface venishes,
X

Thus zero vorticity components in the facet surface are not necessary for

'the application of the prescnt method.
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It now remains to examine the boundsry conditions for the different
zones of influence, This is done in section L.

L Treatment of zones of influence®

It was pointed out in section 3 that the flow pattern on a wing with
"supersonic! edges can be davided into four distinet regions:-

(a) The region away from the apex and tip influence zones.

(b) The region affected by the epex influence zone only.

(e¢) The region affected by the tip influcnce zone only,

(d) Tne region of interaction of the apex and tip influence zones,
These four regions will now be considered in twm.

1 Regron outside the iniluence zones

The region OAD in figure 2 lies outspde thne apex and tip ainfluence
zones and has been treated previously by the aughors” using the present
method, and analytically by Vancenti and Fisher®, Since conditions just
dovmstream of the leading edge shock wave {or expansion wave) are constant,
a characteristics mesh in the first facet will predact a constant flow
region, which implies constant flow conditions in the next facet and so on
over the whole regicn. The only flow chanpes are those occurring at facet
junetions and these can be treated by two-dimensional technigues, as des-
cribed 1n section 3.1. The accuracy of the method in this region is compar-
able with that of two-dimensional shock-expansion theory, which is suffi-
ciently exact whether the Mach number is high or not.

L.2 The region affected by the apex influcnce smone only

The apex influence zone ODFC (figure 2) differs from the zone OAD in
that the flow over each facet is not constant, and a characteristics mesh is
required. Sance 0C is a line of symmetry the flow locally must be parallel
to 11; this constitutes one of thoe boundary conditions for the mesh,

Consider the segment HIKL of a facet waithin the apex anfluence zone.
If the facet upstream has been exsmined the flow conditions just upstream of
HJ are knovm, end hence just downstream they cen be evaluated. The boundary
line L represents that portion of the apex influencc zone boundary 0D which
crosses the Tacet under consideration, For a sweptback wing vath leadang
edfe shock waves occurring on both upper and lower surfaces, the boundary 0D
is not a shock wave but represents the upstream edge -of an expansion®¥ Thus
the flow along 0D and therefore along HL 1s known from the flow in the
regpon OaD,

" The techniques descraibed i1n this section were developed by the authors
at the Aerodynamics Division, Weapons Research Esteblishment (formerly the
igh Speed Aerodynamics Leboratory), Salisbury, during 1953-195%,

¥ For a sweptback wang the leadaing edge shock wave will deflect the flow
sway from tne centre-line, and in the apex influcnce zZprie the streamlines
will change darection so that along the centre~line they are parallel to the
plane of symmetry. Suck a flow can exist only 1f an ecxpansion occurs within
the apex influence zone., It follows that the influcnce zone boundary is the
upstream lamt of an expansion centred on O,

When the wing incidence i1s such tnet an expansion wave is attached to
the leading edge on the surface beang examined, 1t can be shovn that the
boundacy OD of the apex influence zone is a shock wave,
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Near the leading edge of the wing the calculated flow downstream of
the expansion region centred on 0 is parallel to the centre-line, More-
over, when the boundary of the apex anfluence zone is a shock wave centred
on 0, the flow near the leading edge, but inside the apex xnfluence zone,
is parallel to the centre-line also, Thus, in this case, the initial shock
wave strength and position on the first wing facet can be found, The shock
wave strength and position on the next facet are determined just downstream
of the facet junction from the caloulated flow conditions on the twe sides
of the shock wave., This procedure applied to each facet in turn enables
the boundary OD of the apex influence zone to be détermined.

In the facet HJKL being considered the flow is now known along HJ and
1, while the stresm direction slong JK is known alsc, These conditions are
sufficient for a characteristics mesh to he drawn in the facet and thercfore
the whole apex influence zone can be treated,

L.3 The region affected by the tip anfluence zone only

Tip influence zones such as GADE (figure 2) can be examined by the
present method only when the wing incidence 1s zero and the aerofoil section
is symmetrical about the plane of the wing, Under these conditions the
stream sheet off the wing, dividing the upper and lower surface flows, 1s
contained within the plene of the wing. Although the region GAB is not on
the wing it will affect the flow over the wing and thereflore the characteri-
stics mesh in each facet must be extended to cover the region GAB. It is
assumed that each facet can he consardercd to lie in the planc of the wing,
50 that the characteristics mesh is continuous across the wing tip AB,

The boundaries AG and AD can be either shock waves or upstream limits
of expansion zones®, and their shape and strength can be found by matching
the flow downstream of AG wath that downstresm of AD, To do thas, a pro-
cedure is used whereby a number of shock wave strengths are examined for
compatibility with the equatzons governing flow variuations within a
characteristics mesh, It will be noted that, since the region GAB is a
plane surface, no expansions will occur across facet junctions in thas
region, slthough of course they will be required at junctions on the wing
itself,

L.t The region of interaction of thc apex and tip influence zones

Havang computed the flow ain the apex and tip influence zones, condi-
tions along the boundaries of the cross~over region DEF (figure 2) are known
end so the flow in each facet iz found by an application of the method of
characteristics,

5 Determination of the aerodynamic forces

5.1 The pressure coeff{icient

From & knowledge of the flow pattern over a wing the pressure distri-
bution and aerodynamic forces can be obtained, By dsfainition, the pressure
coefficient Cp i1s guven by

o - P=B,
P 1 2
2 poo so
* For a sweptback wing it is found that AG 18 a shock wave and AD is the

upstream limit of an expansion provided that the wing incidence is zero and
the acrofoil section is symmetrical a@bout the plane of the wing.



which can be rewritten as

Cp = ;-2?&2:(%:-1) = G*:.;:. -1)

vhere p, P, p, M and V are the static pressure, stagnation pressure,
density, Mach number and flow velocity respectavely, at a given point, the
subscript e« denotes free stream _conditions and +« 1a the ratio of speci-

Im
hid

g o

fic heats, The pressure ratios i}ﬂ— and % are functions of Mach number
only and are determined from isent?‘opic flow tables, while the stagnation
pressure ratio B is determined from plane oblique shock wave tebles.

This latter ratio will be determined by the shock waves upstream of the
point being considered.

5.2 The force coefficients

The pressure drag coefficient at zero incidence of a2 wing with a
section symmetriceal about the plane of the wing is given by \

Cp = %Ecp.tanz.ﬁs,

where I denotes summation over one swrface of half the wing,
48 is an element of the wing plan area,
S is the planform area

and € is the inclination (measured psrsllel to the plane of symmetry)
of the element AS to the free stream direction. The angle ¢
is positive near the leading edgs and negative near the trailing
edge.

When the wing is at incidence, the pressure drag coefficient 1s to be
found by separate summations over the upper and lower wing surfaces, The
1ift coefficient us glven by

O, = %zacp.cosa.AS

where o is the local wing incidencc, constant in the case of a flat plate,

denotes the lower surface pressure coefficient minus the upper
surface pressure coefficient

and L denotes summation over one half of the wing plan area.

The centrc of pressure, whach lies along the wing centre-line, may be
required also and can be found by epplying the condition that the pitching
moment sbout this point vanishes,

6 Exemples

In order to illustrate the application of the method to a general
wing, two exesmples arc discussed in sections 6,1 and 6.2 below, The plan-
forms considered are arranged to isolate, as far as possible, the various
zones of influcnce, Firstly, a delta wing 1s considered since the only
zones present are the apex influence zone and the region outside it.
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Secondly, the tip influence zone of a rectangular wing with circular-arc
biconvex section 1s examined.

6,17 The apex influence zone of a delta wing

Although the discussion of this section will be restracted to delta
wings with plane upper and lower surfaces, the general qualitative picture
presented is typical of the flow patterns associated with apex influence
zones, TFigure 3 illustrates the surface flow ingslide the apex influence zone
when there is a shock wave, or expansion wave, attached to the leading edge.
It was emphasised in section 2 that the present shock-expansion method should
be used only when the leading edge shock wave is not nesr detachment, This
condation 15 assumed to be fulfilled.

Consider firstly the case when there is a shock wave attached to the
leading edge, Then the flow downstream of the leading edge is deflected
outwards, away from the wing centre-line, Therefore an expansion wave
centred on the apex will be required to ensure that the flow near the centre-
line is parallel to it, i,e. insade and outside the apex influence zone
there exist constent flow regions, separated by an expansion wave, IFor
curved wing surfaces, the expansion region centred on the apex is made up
of curved, not straight, lines and the flow both inside and outside the
influence zone will not be constant,

The second cass illustrated in figure 3 ocours when an expansion wave
is attached to the lecading edge. In this case the boundary of the apex
influence zone is a shock wave, which separates two regions of constant flow,

As a special case of the prcceding example a flat plate delta wing at
incidence is exeamined here. The 1ift curve slope, at zero incidence, can be
found by treataing all shock and expansion waves with a amall perturbation
theory since their strength, in the limit, 1s infinitesimal, Such a pro-
cedure will be reflerred to as a first order shock-expansion theory and is
inferior to the linearised theory, whaich does not neglect disturbances
reflccted by compression waves,

Outside the apex influence zone it 1s well known? that, on the upper
surface of the wing,

u, & AR S
= s = -
Vw B 1-1’12 vea 1./ 1—n2
where V ig the free stream velocity,
B = \/ hﬁ-—'l s M, being the free stream Mach mmber,

u',v! are perturbation velocitles on the wang surface, respectively
parallel and normal to the free stream direction,

n = tenA/B where A is the anglc of sweepback of the leading
edge
and o is th;e e.ngle of wincidence of the wing.

Now, the flow 1ns:.af’e the apexu-lnfluence Zone ancl on the upper surface of
the wang 1s parallel.to the frée stream direction; thus the flow entering
the apex influence zone must undergo & compressmn through an angle v'/ .
It can be shown quite simply that the restlt of farst order shock-e@ansmn
theory insiade the apex influence zone is

..“i_ﬂ-./l.':!}. r
v. “ByTm’® YV =09

-]
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The pressurc coefficient is defined by GP = - 211'/'\%° . Thus, inside the
apex influence zone

C = - 26 {i=n
- B V1+n
and outside the apex influence zone
s - —20
B \/ {wn?

On the lower surface of the wing the pressure coefficients are opposite in
sign, so that the 1ift coefficient, given by the first order shock-expansion
theory, can be shown to be

G, = %EJ‘I-nz .

The 1ift curve slope, at zero incidence, predicted by shock-expansion theory

is therefore
.’i(ﬂ) = J1_n2 .
L \da =0

o =

This reault is shown in figure L where the exact theoretical result, which
in this case is given by the linearised theory, is shown also.

6.2 The tip influence zone of a rectangular wing

The tip influence zone of a rectangular wing at zero incidence, and
with a circular arc biconvex section, is considered in this section., Although
the present shock-expansion theory has been deduced for "hagh" Mach numbers
this rectangular wing will be examined at M = 1.62, where the experimental
results of Czarnecki and Mueller!© are available. In order to apply the
method presented in section 4,3 the circular arc forming the wing section was
replaced by a ten-sided polygon. Thus the upper wing swface, for example,
consisted of ten facets, The expericnce of the authors in this particular
celculation indicates that wing pressure distributions can be determined by
on¢ person in from forty to eighty hours.

The flow field in the tip region displayed the features described in
section 4.3, The shock wave attached to the leading edge of the wing is
discontinuous at the tip leading edge where a weaker, curved shock wave
extends downstream. On the wing surface, there is an .expansion region
centred on the tip leading edge., This region forms the boundary between the
internal flow of the tip influence zone and the two~dimensional flow over the
portion of the wing outside the tip zone.

The results for the pressure distribution along a particular stresmwise
section of the wing tip are given in figure 5. Since two~dimensional shock-
expansion theory is required outside the tap influence gone the results of
the extended shock~expansion theory are apparent inside the tip region only.
Also shown in figure 5 are the results of experiment and linearised theory
for the same streamwise section,

7 Range of wvalidity

The range of validity of the present shock-~expansion method, which has
been derived for "high" Mach numbers, cannot be examined in a satisfactory
manner uniess adequate experamental results exist, For bodies of revolution,
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Eggers, Savan and Syve:c"cson8 had exper:imen’cél results available and thus

were eble to obtain definite conclusions regarding the applicabilaty of
their generalised shock~expansion method, For the application of the
present method to wings however, adequate experimental results arc not
avealable and so only a tentative range of validity can be indicated. Since
two-dimensional shock-expansion theeory is applicable in most cases wnere the
shock waves are attached, thickness and incidence effects are not investi-
gated; hence the aim of this section is to investigate what wang planferm
conditions must be satisfied for the present shock-expansion thcory to be
applicable,

7.4 Comparison with experiment

The results of the present method have been compared with experiment
for the special case of a rectangular wing tip with circular src¢ biconvex
section, the incidence beang zero and the free stream Mach number 1.62, A
comparison between linearised theory, experiment'V and the present method 1is
presented in faigure 5. The remarkable agreement between the experimental
results and those of the shock-expansion theory is evident. This comparison
shows that the one condition derived in section 2, namely that the free
stream Mach munber be "high", is too restrictive, It appears likely that
the tip influence zone on non-lifting wings with streamwisc tips can be
treated by the present shock~expension theory when the Mach number is
comparatively low, However, there will be a condition restricting leading
edge sweepback and this is examined in section 7.2 below using comparisons
between the prescnt method and linecarised theory.

7.2 Comparison with linsarised theory

In order to examine thc effect of lecading edge swecpback on the valid-
ity of the shock-expansion theory the 1ift curve slope, at zero incidence,
of a flat plate delte wing 18 cxamined. Figure I presents the results of
lincarised theory, which is exact in this case, and shock-expansion theory.
It w1ll be observed that the result of the present method is within 5% of
the lincarised theory result for n = tanA/B < 0,31, Thus a tentative
range of val:.ch. 3{ for the shock-expansion thcory is provided by the conda-
tion tanA/B < . This may be expressed in an alternative mammer by
stating that the leading edge is requured to be'highly supersonmict.

Unfortunately, the delta wing contains no tap influonce zones. If a
tip influence zone on 2 non-lifting wing, with a strcamwise tip and o single
wedge section, is examined it is found that such tip influence zones can be
treated with acceptable accuracy in almost al.:i. ceses. Therefore the leading
edge sweepback condition that n = tan A /B < / provides a reasonable
guide for a wing having both apex and tip :.nfluence zones. It is suggested
that wings satisfywing the condition tan A/B < 3 can be investigated
using the prescnt shock-expansion theory, Of course, it is assumed that the
leading and trealing edge shock waves are attached., Finally, it should be
stressed that this sweepback condition is tentative and requires confirma-
tion by experimental data,

8 Conclusions

A shock-expansion theory has been developed for treating the entire
surface of a wing with attached leading and trailing edge shock waves. This
method is based upon the fact that disturbances transmitted to a shock wave
from a wing, or body, are not rcflected significantly, provided that the
frec strcam Mach mumber is high., Although the apex and tip zones of
influence can be treated strictly only at high Mach numbers the region out-
side these influsnce zones is subject to no such restriction.

The range of validaty of the shock-expansion theory has been investi-
gated by comparing its predictions with the results of linearised theory and
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one experiment,
ing, edge 28 "highly supersonic",

The essential requirement appears to be that the wing lead-

When this requirement i1s fulfilled the

spex and tip influence zones, as well as the region outside them, can be

examined,

This conclusion must be regerded as of limited quantitative value

until further experimental data become available,

W
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