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An extended shock-expansion theory applioable to three-drunenslonsl 
wings with attached leading end trailing edge shock waves is presented in 
this note. Althou& the extended method has been derived for high Maoh 
nwlbers only,'prelx.minary comps~~sons of its predictions with those of 
linearised theory and the one experunent available indicate that it can be 
applied at qute low Mach numbers. For any given leading edge weepback 
angle A there is a nnnzmum free stresm hiach number iS for which the method is 
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characteristic or Mach lines (figure 1) 

pressure coeffiolent (p&)/&p, Vz 

pressure drag coeffxient, Drag&- VE S 

lift coefficient, Lift/&p,V~ S 

lower surface minus upper surface pressure coeffldent 

locsl statx pressure 

stagnation pressure 

E&h number 

= ta&B 

wing planfonn area 

element of wing planform srca 

velocity components in the (x,y,z) direcizons 

perturbation velocities on the wing surface, respectively parsILe1 
snd normsl to the free stream direction 

free stream velocity 

rectsn&ar coorduatc systan (section 3.2) 

locsl wing incidence, constant on a flat plate 

ratio of speclfrc heats 

flow direction, relative to the undisturbed free stream 

inclinattlon of a facet to the free stream tirectlon 

leadmg ed@ sweePback angle 

free stresm density 

subscript denoting free stream condxtions 
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1 Introduction 

For wings at supersonic speeds, theoretic&l. estimates of the aero- 
dynamic properties are usually obtained usin the linearised or z%iLl- 
perturbation theory. Although tlvs theory predicts the force CoefrloLents 
with fair accuracy snd the surface pressure distribution with somewhat less 
accuracy, its predictions can be consdersbly in error. These errors -se 
when the perturbation velocities are not snsll ccmpsred with either the free 
stream velocity or the velocity of sound. At hi& supersonic speeds the 
perturbation velocities are not small compared with the velocity of sound. 
Hence the linearised theory is not adequate at h& Mach numbers and there 
is a need for another method. The three-dimensionsl method of character- 
istics is avsdablc; however, its application involves sucn a large amount 
of computationsl effort that only vary simple shapes have been investigated. 
Fortunately, in two-dimensional supersonic flow a simple approximation to 
the two-dimensional method of characteristics2 can be made, namely the two- 
aimensionsl shock-expansion theory, which yields results for the surface 
pressure distribution that are accut‘ate enough for engineering purposes 
( see, for exainple, references 3 and4). This approximation is applzcsble to 
infinite y 
and Fisher 2 

wed wzngs and. has been extended by the authors5 and also Vlncent.1 
to cover certs3n flow re@ons on a class of swept, tspered wmgs 

with shock waves attached to the edges. In ,additlon, provided that the Mach 
nwiber is suffioientl hi&, a shock-elcpanslon theory oan be qpliad to 
bodies of revolution 7 . 

In the present note, shock-expansion theory is extended to gLve a 
method for computing the surface pressure distmbution on three-tiynenslond. 
wings with shock wsves attached to the edges. The theoretzcal basis for 
tills extension, which is strictly applicable only at hign Mach numbers, is 
described in sectlon 2. Sections 3, 4 and 5 present the method m detsil 
and discuss Its application to the entire wing surface. Tffo sample dlus- 
trative emples we given in section 6 where the influence zone of the apex 
on a meptback wedge and the tip regron of a rectangular wing are examined. 
The range of vsldity of the present method is discussed in section 7 where 
wmpar~sons with experiment and linearised theory are made. Finally, in 
section 8 the main conclusions of this note ws given. 

2 Shock wave-Mach wave interaction 

Before describing the method in detsil it is necessary to discuss the 
influence of shook waves on the flow field at the surface of a body. Con- 
sider first the flow about a two-dimensional body with attached shock waves 
(figure 1). Disturbances from the body are transmitted Into the flow field 
along the family of characteristic or Maoh lines Cl. These disturbances 
interact with the leading edge shock wave, causing it to bend, and at-e 
partially reflected along characteristic lines such as C2. If the 
reflected disturbance is only a small proportion of the trsnsnutted &stur- 
bsnce, it has negli&i.ble effect on the surface flow, which ten be computed8 
vnthout considering flow contitlons away from the surface. At a point 2.n trie 
flow field let the flow &rection, relative to the un&istu?bed free stream, 
be 6. Eggers, Syvertson and ICrau& have sha that the ratio of the 
.gra&ents of 6 In the Cl and C, directIon s can be t&en ss a measure 
Of the proportion Of the disturbance reflected by the &lock wave, i.e. the 

reflected disturbances are negligible rrhen either as=,or- - as ' a6 

/ 
is Snldl Just dOWnStreDm of the shock wave. The ge~~&l. caaewh",? $0 

(ana a -%i 
1 

$ 0) has buen exzmnned in reference 4; by considering disturbances 

incident on a plane oblique shock wave, Eggers, &yvertson s& Qauyk have 
shown that 

& a6 

I 
- c< 1 

act ac, 
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for all supersonic Mach nmbers, provided that 6 does not approach the 
tmd.mum possible flow deflection angle. This gives the justificatxon for 
ti;.e ixo-dunensionsl shock-expansion theory. 

It null be noted that, althou& the body shape determines the magru- 
tude of the disturbance transrmtted to the shock wave, the proportion of 
this disturbance reflected by tl?e shock wavs depends directly on the shook 
wave, Since m shock wave pattern CZJ~ be consldercd as built up from a 
ndmoer of plane obllquc shock waves, It follows that the proportion of the 
lncdent disturbance reflected just dwnstresm of the shock wave is very 
z.maJ.1, provided that the greatest flow deflection by the shock wave does not 
approach the mEudmum deflection angle. If these reflected disturbances do 
not coalesce they w.ll be smsll throu&out the entwe flow field and so can 
be ne&octed. In the case of two-dimensional flow, tnis condition is satis- 
fied anii the who 

h 
e flop field can be determined using a generalised shock- 

expsnnmon method . For bodies of revolution at hi& Mach numbers, Eggers, 
Gavin J.& Syvortson7,8 have shown that tne reflec?ed disturbances from the 
nose shock wve are still small at the surface, so that the generslised 
shock-eqansion tixory is applicable in this case also. 

NO%:, for ~~.ngs with shock waves attached to &a leadin and trailing 
edb3s, an analysts stilar to that .@ven by B&@-s and. Satin 7 for bo&es of 
revolution can be used to show that disturbances reflected by the shock wave 
are unxxportant at h?.gh Mach nrwbers. Therefore, it 1s. assumed in this note 
that reflected disturbances do not coalesce to nny appreciable extent at the 
mng surface and osn be neglected. As a consequence of thus, the surface 
flo:r field can be cdculatea without consider+ng the shock wave pattern away 
from the surface. 

The flon field over a wzng moving at ver.y high speeds may be investi- 
goicd xithout considering the shock >iave system explicitly since the surface 
flow can be determined using a strrp method, in ahxh each stresmwise section 
1,s treated two-&mensionally by shook-exparsxon theory. (This replies 
mzxertiately that reflected disturbances are nagllgible.) IiowWer, this 
m&ho-l 1s not adequate at lower iv&on numbers sxncc each strearnvnse seotlon 
xi.:!1 haIre a progressively increasing influence on adjacent sections as the 
&oh number is decreased. The extended shook-expns~on theory to be des- 
crlbeil in sectlon 3 considers the whole wing, at-d does not treat each stresm- 
lid0 section two-dimensionally. 

3 Nethod 

Applications of the method are restrlctea to the steady supersonic 
flow of a petiect gas, viscosity anti heat cotiuctlon being neglected. In 
addition, entropy chan&os are negleoted except aoross shook wves, as also 
is any vorticity which may occur. Thus the wwg csn be divided into regions 
in which t:lo fiox is both irrotatronsl and isontropic. 

!Che metnod has been doveloped for the treatment of vilngs whose SUP 
faces can be buxlt ap by straight generators*(figure 2), and sll generators 
are required to be "supersonrc", i.e. the local velocity component normal to 
each generator must be supersonic. This lmplies that the leading and trx& 
ing edge shock waves must be attached. Under these conditions the flow 
dLvides unto four tistlnot reaons; the zone of Influence from the apex, 
that frw the tip, a reylon where these tifo zones Interact, end. a reEpon 
crW'fected by either qex or tzp. 

The vnng 1s divxdod into sndl facets bocuxled. by generators and the 
aerofod section 1s thus replaced by a polygon. The problem of deternnning 
the surface flow over the i-ring now resolves into two basso problems; finding 

9 Tnus the vnngis a ruled surface. A simple example of such a surface 
1s d.lustr.ated in figure 2 where dl the generators pass through a poznt. 
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how the flow changes in passing from one facet to the next and how it 
ohsnges within each facet. The treatment of w zone of influence then 
becomes an a@lioation of the basic methods with sppropriate boundary 
conditions. 

3.1 Flw caorOSS the Junction of two facets 

The fl0r-i across the Junction is similar to that over an infinite yawed 
wedge ana, &thou& the velocity ccmponent parallel to the junction remans 
constant over the edge, the surface flow non&t to the facet junction 1s 
locslly two-dimensional. Xence 1f two facets meet to give expanding flow, 
the flow across the junctzon can be found by s. Pmndtl-Meyer expansion of 
the n0rms.l component, with the psrsllel velocity component ranainzng 
ulldlterca. Flhen shock waves occur, as along the leading edge, a SLZLLU- 
procedure is used. 

3.2 Flow In facets 

Here the flw over a plane facet vnll be consderad. The cquetions of 
motion are referred to a rcctagulsr ooortinate system (x,y,z) In which the 
facet is the plane e = 0, i.e. the z directloll is normal to the facet. 
Veloolty components in the x,y,z directions v&l be denoted by u,v,w 
respectively. Slnoe w = 0 on the facet, the three-dimensional velocxty 
equation at the surface becomes 

where the local speed of sound a 1s aven by the energy equation 

a2 + u2 + K 
(y-1) 2 

constant 

and the irrotational flow conditions* are expressed by 

au -= av SL, aw = 0, 
ax’ a~ ax 

aV=&L=O. 
ay az ay 

It has been stressed III section 2 that dlsturbanoes reflected from the 
leading cd,ge shock wa-<e are asswned to be negligible. This implies that the 
flow near the facet surface remans parallel to it, i.e. k = 0. There- 

az 
fore the system of equations given tirectly above reduoes to a two-dimensional 
system 1.11 the plane of the facet and can be solved by the usual method of 
characteristics, together with the appropriate boundary oonditlons. 

Hence lf flow conditions are known along the upstresm boundary of a 
facet and the appropmate boundary conditions on the facet sides sre known 
also, the flow can be determined by the method of ohsractcristlcs2 and 
oondltlons can thcrei'ore be ford. on the downstresm edge. The procedure 
outlined in section 3.1 enables the flow on the upstream edge OP the next 
facet to be found, and so bjj repeating this procedure the surface flon over 
the whole wzn& can be deterrmned. 

* It is suffiolent to have only tnc one irrotational condition 
au av - = - i.e. the vortlcity component norms3 to the surface vanishes. 
ay ax 
Thus zero vortioity components In the facet surface are not necessary for 

'the application of the present method. 



It now remains to examine the boundary conditions for the different 
zone3 of influence. This is done in section 4. 

4 Treatment of zones of influence* 

It was pointed out in section 3 that the flow pattern on a wing with 
"supersonic" edges can be divided into four distinct regions:- 

(a) The region away from the apex and tip influence zones. 

(b) The region affected by the apex influence zone only. 

(c) The ree;Lon affected by the tip influence sane only. 

(a) Tne reyon of interaction of the apex and tip influence cones. 

These four regions will now be considered in turn. 

4.1 ReELon outside the influence zones 

The region OAD in figure 2 lies outside tne a ex and tip influence 
zones and has been treated previously by the au nor3 using the present 
method, and analytically by Vincenti and Fisher i! 3 . Smce conditions just 
tlownstrean of the leading edge shock wave (or expansion wave) are constant, 
a characteristics mesh in the first facet will predict a constent flow 
region, Mach implies constant flow conditions in tne next facet and so on 
over the whole reDon. The only flow chan&es are those occurring at faoet 
junctions and these can be treated by two-dimensional techniques, as des- 
cnbed in section 3.1. The accuracy of tno method in this region is compar- 
able with that of two-dimensional shock-expansion theory, which is suffi- 
cicntly exact whether the Mach nmber is high or not. 

4.2 The retion affected by the apex influence none only 

The apex influence zone ODFC (figure 2) differs from the zone OAD in 
that the flow over each facet is not constant, and a characteristics mesh IS 
required. Smce OC is a line of symmetry the flow locally must be parallel 
to It; this constitutes one of the boun?iary conditions for the mesh. 

Consider the segment HJK!A of a facet within the apex influence zone. 
If the facet upstream has been examined the flow conditions just upstream of 
RJ we known, and hence just downstream they can be evaluated. The boundary 
line IIL represents that portion of the apex influence zone boundwy OD which 
crosses the facet under consideration. For a sweptback wing mith leading 
ed[,e shock waves occurring on both upper and lower surfaces, the boundary OD 
is not a shock wave but represents the upstream edge.of an expansion*.* Thus 
the flow along OD and therefore along KL IS known from the flow in the 
regon OfiD. 

0 The techniques described in this section mere developed by the authors 
at the Aerodynamics Division, Weapons Research Establishment (formerly the 
High Speed Aerodynatics Laboratory), Salisbury, during 1953-1954. 

+* For a sweptback vnng the leading edge shock wave will deflect the flow 
away from tee centre-line, and in the apex influence zone the streamlines 
will change brection so that slang the centre-line they are parallel to the 
plane of symmetry. Suck a flow can exist Only if an cxpsnsion occurs within 
the apex influence zone. It follows that the influence zone boundary is the 
upstream linnt of an expansion centred on 0. 

rrncn the wing incidence is such tnat an eqmnxon wave is attached to 
the le&i,ng edge on the surface being examined, it can be shown that the 
boundary OD of the apex influence zone is a shock wave. 
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Near the leading edge of the wing the calculated flow downstream of 
the expansion region centred on 0 is psrsllel to the centre-line. More- 
over, when the boundary of the apex Influence zone is a shook wave centred 
on 0, the flow near the lea&lng edge, but inside the apex influence zone, 
is parallel to the centre-line also. Thus, in this case, the initial shook 
wave strength and position on the first wing facet can bc found. The shook 
wave strength and position on the next facet are determined just dormstream 
of the facet junction from the calculated flow conditions on the %~o sides 
of the shook wave. Thrs procedure applied to each facet in turn enables 
the boundary OD of the apex influence zone to be determined.. 

In the facet WKL beln? consldered the flaw is now known &long HJ and 
Iii, while the stream direction slang JK is known also. These conditions are 
sufficient for a characteristics mesh to be drawn in theticet and therefore 
the vihole apex influence zone can be treated. 

4.3 The redon affected by the tip influence zone only 

Tip influence sones such as GADE (figure 2) can be exsmined by the 
present method only when the vring incdence IS zero and the aerofoll section 
is symmetrical about the plane of the wing. Under these conditions tne 
stream sheet off the wing, dividing the upper and lower surface flows, 1s 
contained within the plane of the wing. Although the region GAB is not on 
the wing it will affect the flow over the wing and therefore the characten- 
stlcs mesh in each facet must be extended to cover the region GAB. It is 
assumed that each facet oiin be consldercd to lie in the plsnc of the wing, 
so that the characteristics mesh is continuous across the wing tip AB. 

The boundaries AG and AD can be either shock waves or upstream ltits 
of expansion zones*, and their shape and strength can be found by matching 
the flcvr dovnstream of AG vnth that downstream of AD. To do ths, a pro- 
cedure is used whereby a number of shock wave strengths are exsm~ned for 
compatibility with the equations pverning flow vsrldtlons within a 
characteristics mesh. It till be noted that, since the region GAE; is a 
plane surface, no expansrons will occur across facet junctions in ths 
region, althou& of course they will be required at Junctzons on the vu-q, 
itself. 

4.4 The retion of interaction of the apex and tip idluence cones 

I-Iavzng computed the flow In the apex and tip influence zones, condi- 
tions along the boundaries of the cross-over region DEF (figure 2) are known 
end so the flow in each facet is found by an application of the method of 
characteristics. 

5 Determination of the aeroclvnsmic forces 

5.1 The 1)ressure coefficient 

From a knowledge of the flow pattern over a wing the pressure bstri- 
bution and aemQnamlc forces can be obtsined. By definition, the pressure 
coefficient Cp is @.ven by 

cp = 
P - P, 

GC PJjf 

D For a sweptback wing it is found that AG IS a shock wave and. AD is the 
upstream lirmt of an expansion provided that the wing incidence 1s zero and 
the aerofoil section is symmetric&L about the plane of the wing. 
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which can be rewritten as 

where p, P, p, M and V are the static pressure, stagnation pressure, 
density, Maoh number and flow velocity respectively, at a given point, the 
subscript 
fit heats. 

o denotes free streampcon&tions and y is the ratio of speoi-0 
Tine pressure ratios ; and E are functions of Mach number P 

only and are determined from isent&pio flow tables, while the stagnation 
pressure ratio L is determined from plane oblique shock wave tables. 
This latter rati:% be determined by the shock waves upstresm of the 
point being considered. 

5.2 The force coefficients , 

The pressure drag coefficient at zero incidence of a wing with a 
section wnetricsl about the plane of the wing is given by 

0, q 
+/ule.AS, 

where E denotes swnmatlon over one surface of half the wing, 

AS is sn element of the ningplsn sren, 

S is the planform area 

and 8 is the inclination (measured parallel to the plane of symmetry) 
of the element AS to the free streril direction. The angle E 
is positive near the leading e&e and negative near the trailing 
edge. 

When the wing is at incidence, the pressure drag coefficient 1s to be 
found by separate summations over the upper and lower ming surfaces. The 
lift coefficient IS given by 

9, = 5 C ACp . 00s a . AS 

where a is the local wing incidence, constant in the case of a flat plate, 

ACp denotes the lower surface pressure coefficient minus the upper 
surface pressure coefficient 

and E denotes summation over one half of the wing plan area. 

The centre of pressure, whloh lies along the wing centre-line, may be 
required also and can be found by applying the condition that the pitching 
mcment about this point vanishes. 

6 Exam-ales 

In order to illustrate the applioation of the method to a general 
wing, two emples sre ascussed in sections 6.1 and 6.2 below. The plan- 
forus considered are arranged to isolate, as far as possible, the various 
zones of influence. Firstly, a delta wing 1s consdered since the only 
zones present are the apex influence zone and Cne region outside it. 
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Secondly, the tq influence sane of a rectangular wing with o~rcular-arc 
bioonvex section IS examined. 

6.1 The apex influence zone of a delta ~mng 

Although the discussion of this section will be restricted to dslta 
wings with plane upper and lower surfaces, the general qualitative picture 
presented is typical of the flow patterns associated with apex influence 
zones. Pi.gz-e 3 illustrates the surface flow inside the apex influence zone 
when there is a shock wave, or expansion wave, attached to the leading edge. 
It was emphasised in section 2 that the present shock-expansion method should 
be used only when the leading edge shock wave is not near detachment. ThiS 
condition as assumed to be fulfilled. 

Consider firstly the case when there is a shock wave attached to the 
leading et&e, Then the flow downstream of the leading edge is deflected 
outwards, sway from the wing centre-line. Therefore an expansion wave 
centred on the spex wzll be required to ensure that the flow near the centre- 
line is parallel to it, i.e. inside snd outside the apex influence zone 
there exist constant flow regions, separated by an expansion wave. For 
curved wing surfaces, the expansion region centred on the apex is made up 
of curved, not strsight, lines and the flow both inside and outside the 
influence cone will not be constant. 

The second case illustrated in figure 3 occurs when an expansion wave 
is attached to the ieading edge. In this case the boundary of the apex 
influence zone is a shock wave, which separates two regions of constant flow. 

As a ,vecisl case of the preceding example a flat plate delta wing at 
incidence is exemined here. The lift curve slope, at eero inadence, can be 
found by treating all shock and expansion waves with a snsll perturbation 
theory since their strength, in the limit, IS infinitesimal. Such a pro- 
cedure will be referred to as a first order shock-expansion theory and is 
inferior to the linearised theory, which does not neglect tisturbsnces 
refiected by compression waves. 

Outside the apex influence zone it is well known9 that, on the upper 
surface of the wing, 

where V- is the free stream velocity, 

B = lP& being the free stream Mach number, 

u' ,v' are perturbation velocities on the rnng surface, respectively 
pat-tile1 and norm2 to the free stream direction, 

n 5 tanA/B where A is the angle of swuepbaok of the leading 
edge 

and a IS the angle of-incidence of the wing. 
. 

Now, the flow insiW$the apex+i$lluerice zone and on the upper surface of 
the wing is pat-&Le>ltb t'he free-streem d+sction; thus the flow entering 
the apex influence~sone must.undergo a compression through an angle VI/V, . 
It can be shown quite-simply'that the result of first order shock-expansion 
theory inside the apex influence zone is 



The pressman coefficient is defined by Cp = - 2u'/V- . Thus, inside the 
apex influence zone 

and outside the apex influence zone 

On the loirer surface of the wing the pressure coefficients are opposite in 
sign, so that the lift coefficient, given by the first order shock-eqsnsion 
theory, can be shown to be 

The lift cxx-.re slope, at zero incidence, predicted by shock-expansion theory 
is therefore 

This result is shown in figure 4 where the exact theoretical result, which 
in this case is @ven by the linearised theory, is shown also. 

6.2 The tip influence zone of a rectanmar wing 

The lap influence zone of a rectangular wing at zero incidence, and 
with a circular arc biconvex section, is considered intlus seatlon. Plthough 
the present shock-expansion theory has been deduced for "high" Mach numbers 
this rectangular tingdll be examined. at M = 1.62, where the experimentsl 
results of Czarnecki and &eller'O are avsil~ble. In order to apply the 
method presented in section 4.3 the circular sro forrmng the wing section was 
replacd by a ten-sided polygon. Thus the upper wing surface, for exmnple, 
consisted of ten facets. The experxnce of the authors in this particular 
c&xlatzon indicates that wing pressure tistrxbutions can be determlned by 
one person in from forty to eighty hours. 

The flow field In the tip region &splayed the features described in 
section 4.3. The shock mare attached to the leading edge of the pnngis 
discontinuous at the tip leading edge where a weaker, curved shock wave 
extends downstream. On the wing surface, there is sn.ewsnsion region 
centred on the tip leading edge. This region forms the boundary between the 
internal flow of the tip influence zone sd the two-&.mensionsl flow over the 
portion of the dng outside the tip zone. 

The results for the pressure distribution along a particular streamwise 
section of the wing tip are given in figure 5. Since two-dimensionsl shock- 
expansion theory is required outside the tip influence zone the results of 
the extended shock-expsnslon theory sre apparent inside t!le tip region or;Ly. 
Also shown in figure 5 are the results of experiment end linearised theory 
for the sane streamwise section. 

7 Range of validity 

The range of vsJ.Lllty of the present shock-expanslonmethod., which has 
been derived. for "high" Mach nmbers, csnnot be examined in a satisfactory 
manner unless adequate experlmentsl results exist. For bodies of revolution, 
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Eggers, Savln and Syvertscn8 had experimental results available and thus 
were able to obtain definite conclusions regarding the applicability of 
their generalised shock-expansion method. For the application of the 
present method to wings however, adequate experimental results arc not 
available and so only a tentative range of vsJ.idity can be indicated. Since 
two-dimensional shock-eqansicn theory is applicable in most cases wnere the 
shock waves are attached, thickness and incidence effects are not investi- 
gated; hence the aim of this section is to investigate what wan& planfcrm 
conditions must be satisfied for the present shock-eqansicn theory to be 
applicable. 

7.1 Comparison with experiment 

The results of the present method have been ccmuared with experiment 
for the special case of a rectangular vrin& tip with circular arc biccnvcx 
section, the incidence being zero and the free streem Mach number 1.62. A 
comparison betlieen linearised theory, experimentlo and the present method is 
presented in figure 5. The remarkable agreement between the experimental 
results and those of the shock-expansion theory is evident. This ccmpor3.scn 
shows that the one condition derived in section 2, namely that the free 
stream Mach nunber be "high", is too restrictive. It sppears likely that 
the tip influence zcne on non-laftingwings with streamwisc tips can be 
treated by the present shock-expansion theory when the Nach number is 
comparatively lcw. However, there will be a condition restricting leading 
edge srreepback and this is examined. in section 7.2 below using ccmparlscns 
between the present method and linearised theory. 

7.2 Comparison rnth linearised thecq 

In order to exsmine the effect of leading edge sweepback on the valid- 
ity of tho shock-expansion theory the lift curve slope, at zcrc incidence, 
of a flat plate delta wing is examined. Figure 4 presents the results of 
lincariscd theory, which is exact in this case, and shock-expansion theory. 
It will bc observed that the result of the present method is within 9% of 
the lincsrised theory result for n = tanh/B < 0.31. Thus a tentative 
range of vali&t 
ticn tanA/B < f 

for the shock-expansion thccry is provided by the ccndi- 
/3 . This msy be cx.ressed in an alternative manner by 

stating that the leading edge is required to be%i&il.y superscruc". 

Unfortunately, the delta wing contains no tip influence zones. If a 
tip influence zcne on a non-liftingwing, with a stromnwine tip and a single 
wedge section, is examined it is found that such tip influence zones can be 
treated nith acceptable accuracy in almost al cases. 
edge s;?eepback condition that n=tanh/B< /3 + 

Therefore the leading 
provides a reasonable 

guide for a wing having both apex and tip influence zones. It is su&gcsted 
that wings satisfying the condition tanA/B < '/3 can be investagated 
using the present shock-expansion theory. Of course, it is assumed that the 
leading and trealing edge shock waves are attached. Finally, it #XX&~ be 
stressed that this s;reepback condition IS tentative and requires ccnfirma- 
ticn by experimental data. 

8 Ccnclusmns 

A shock-expanslcn theory has been developed for treating the entire 
surface of a sting with attached leading and trailing edge shock waves. This 
method is based upon the fact that disturbances transmitted to a shock wave 
from a vdng,, or body, are not reflected significantly, provided that the 
free stream Mach nwnber is high. Although the apex and tip zones of 
inf'luencc can be treated strictly only at hi& Nach numbers the region cut- 
side these influence zones is subject to 110 such restriction. 

The range of validzty of the shock-expansion theory has been investi- 
gated by ccmparingits predictlcns with the results of linearised theory and 
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one eqeriment. The essentMt requirement appears to be that the ~~-~glead- 
in& edge 1s %i&ly supersonic". When this requirement 1s fulfilled the 
apex and tip influence zones, as well as the retion outside them, can be 
exmined. This conclusionmust be regarded as of limited quantitative value 
until further experimental data become available. 
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SHOCK WAVE 

FIG. I TRANSMITTED & REFLECTED DISTURBANCES 
IN FLOW FIELD ABOUT TWO-DIMENSIONAL 

BODY. 
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FIG.2 TYPE OF WING TREATED BY METHOD. 
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CONSTANT FLOW CONSTANT FLOW 

EXPANSION WAVE 

(a) SHOCK WAVE ATTACHED TO (8) EXPANSION WAVE ATTACHED 
LEADING EDGE TO LEADING EDGE. 

FIG.3 FLOW PATTERN ON THE PLANE 

SURFACE OF A DELTA WING. 
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FIG.5 COMPARISON BETWEEN THEORY AND 
EXPERIMENT OF PRESSURE DISTRIBUTION IN 
THE TIP REGION OF A RECTANGULAR WING WITH 
9% CIRCULAR ARC BICONVEX SECTION. Mm= l-62 

PRESSURE DISTRIB~ION MEASURED ALONG A -A. 
x/c= 0 LEADING EDGE, X/c = I TRAILING EDGE. 
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