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Possmss Subsonic Derivative Theory and its Application
to Flexural-Torsional Wing Flutter

Reports and Memoranda No. 2553
June, 1942

PART I
Possio’s Derivative Theory for an Infinite Aerofoil
Moving at Subsonic Speeds
By
R. A. Frazrr, B.A., D.S5c,,
of the Aerodynamics Division, N.P.L.

Summary.—Range of Investigation.—The derivative theory due to C. Possio for an infinite aerofoil moving at subsonic
speeds is reviewed, and certain modifications are proposed. Derivative values are calculated for a Mach number of

0-7, and for values of the frequency parameter 4 ranging from 0 to 5-0. .

Conclusions and Further Developments—TFor 4 <1 the derivative values based on a three-point collocation method
are in fair agreement with those given by Possio. For the range 1-0<< 1 << 2-0 five-point collocation is necessary, while
for A = 5-0 even seven-point collocation may prove unsatisfactory.

The numerical results obtained are applied in Part IT to estimate the influence of compressibility and flying height
on the critical speed for flutter of a tapered cantilever wing. . -

1. Introductory Remarks—A method of calculating the aerodynamical derivatives for an
aerofoil of infinite aspect ratio moving at subsonic speeds has been proposed by C. Possio® (1937).
The present paper gives a review of the theory and proposes certain modifications which are
referred to in sections (vi) and (vii) of the Appendix. The modified theory is used to calculate
the derivatives appropriate to a Mach number of 0-7 and to a frequency parameter range of
0 to 5-0.

The essential features of Possio’s theory are a linearisation of the equations of flow of a com-
pressible fluid (on the assumption that the disturbances are small) and the use of the acceleration
potential ¢. An acceleration potential exists when the pressure is a function of the density
(as is assumed), and it is then defined in the usual hydrodynamical notation by

Du op Dv o¢

D — x> DI —dy° .. . . .. .. .. v (1)
The corresponding equations defining the velocity potential @ are, of course
- 0D 0P
u:%—;v:@. . .. .. .. .. . .. .. (2)
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The exact theory of a compressible fluid does not lead to any simple differential equation for .
However, when the equations are linearized according to Possio’s assumptions, ¢ is found to
satisfy a relatively simple partial differential equation of the second order, and elementary
solutions of the source and doublet types can be constructed and superposed. For the solution
of the problem of the oscillating aerofoil Possio adopts a distribution of special doublets over the
chord. The variation of intensity is represented by a series, and the free coefficients in the series
are determined by making the induced normal velocity agree with the actual velocity of the
aerofoil at an appropriate number of points of the chord. When the intensity distribution
for ¢ is known, the pressures along the chord can be calculated, and the derivatives can then be
deduced. The conception of free or bound vortices is not introduced into the theory.

The principal formulae to be used are summarized in section 2, and the omitted details are
supplied in the Appendix. The account differs in some respects from that given by Possio.
For instance, some of the formulae, which are merely stated in the original paper, are proved
and generalized. Moreover, the notation has been modified to accord with standard usage in
this country.

Cro

C/a

F1c. 1. Diagram of Oscillating Wing.

2. Summary of the Theory.—The axis OX is directed downstream, and it coincides with the
chord when the aerofoil is in its mean position: the origin O lies at mid-chord (see Fig. 1). At
great distances upstream of the aerofoil the constant airspeed is V" and the local speed of sound
1s V. The Mach number V/V,, is denoted by #, and 4 denotes the frequency parameter wc/V,
where o/2rn 1s the frequency of oscillation and ¢ the chord.* :

Equations (1), when linearized according to Possio’s assumptions, become

ou . ouw 9 OV cv  od

V=5 T V=5

and these, in conjunction with {2) give a relation connecting ¢ and @, namely

oD oD
¢=a—z—l—Vﬁ—V2. .. - . .. o .. . (3)
This accords with the condition, arbitrarily assigned, that ¢ =0 at ¥ = — oo,

*Possio denotes the Mach number by 1, the chord by /, and the reduced frequency (one-half of the frequency parameter
by £ in his text and by  in his diagrams. He also denotes the actual frequency by w/2x.

2



AR

Integration of (8) yields
1 = x— &
o=Vity[ (61— ),

whence
oD 1 = 0 x — &
R A L G ) L

By means of (4) the normal velocity v can be calculated, when ¢ is known.

The differential equation satisfied by ¢ is obtained by the use of (3) and differentiation of the
equation of continuity. Itis* ,

0% 0%  2u® 2% ,Lf_ 0%

=) 5+ ap = 7 i — 758 N ()

A typical source solution, appropriate to subsonic speeds, is
(Ve — p? (v — V) — u®y?)'e, .. . .. . .. . (6)

and a doublet can be deduced in the usual way by differentiation. For an incompressible fluid
u =0, and (5) then becomes independent of ¢ and reduces to Laplace’s equation V¢ = 0.

By superposing sources Possio builds up a more complex solution representing a doublet of
special type at the origin, with its axis along OY. His formulae can be generalized, and at the
same time simplified by the use of the complex notation. Write

ORI (O ROl

Also let
Blw) = N(w) + iJ(w),
: 4B e e
By(w) = Nyw) + {fi(w) = — 7, } (8)
where N and [ are the usual cylinder (Neumann and Bessel) functions of zero order, Ny, J, are

the corresponding functions of order unity, and ¢ denotes 4/ — 1. Then Possio’s real doublet
is represented by the coefficient of 4/ — 1 in the complex potential

¢ = — apto®yB; (w') e @) [ 4w (1 — u?)?2, .. .. .. .. 9)
where a is a real constant denoting the strength of the doublet.

The normal velocity induced at the point x of the chord, as calculated by substitution of (9)
in (4), can be expressed as | : :

v = aoeh(z) = ave{f(z) + 1g(2)}, .. .. .. .. .. (10)
where
1h(5) /(1 — 1) = ={uByt) + iB(w)}
+ (1 — 2% e"'zfi/ﬂ e™B(uwu) du . . . . o o {1

*See Section (i) of the Appendix.
“#The functions f(z), g(z) correspond to Possio’s v/aw and Vgjaw. ~Explicit expressions for Fand g are given in section
(iv) of the Appendix. '
3
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To calculate the total pressure effect due to ¢ at points of the chord, the relation

D — po= — p¢ .. .. . .. oo (12)
1s applied. This formula follows from the hydrodynamical equations
4 19p 2 18p
= T pax Moy T hoy

and the condition that the pressure disturbances are infinitesimally small. The calculations.
are simplified by the fact that the value of ¢ given by (9) is zero at all points of the chord except
those in the immediate vicinity of the origin, where ¢ changes discontinuously on passage from
the upper to the lower surface of the profile. When allowance is made for.this discontinuity,
the total (upward) force exerted on an element of chord dx due to a doublet of intensity al(x)dx
situated. at a general point x of the chord, is found to reduce to ‘

AP = pV?a(x) e“'dx . .. .. .. . .o (13)

A complete system of such doublets is next assumed to be distributed along the chord. The
intensity at position x can be represented most conveniently by the familiar form of series*

S = .
(u)x:Aocot<§>—I—-%‘,Ansmn%, T 7
where ¥ = — %cos 9, and A4,, A4,, etc. are complex constants left free for choice.

From (13) and (14) it follows that the normal force coefficient per unit span (Z reckoned
positively downwards) is given by

. 1 (= . :
Ze=fmpel* = — 5 joa(x) sin 9 d9 = — 1 (Ao 1 %Al) . a5
Similarly, the pitching-moment coefficient per unit span about the quarter-chord point (M
reckoned positively when it depresses the trailing edge) is given by
. 1 = .
Me_“”"/npc2V2: In ), a(x) (cos & — 1) sin & d%

=—Fd—4). .. . L ... s

Expressioné for the aerodynamical derivatives can now be deduced. Suppose the displace-
ments of the aerofoil (see Fig. 1) to be specified in terms of complex amplitudes z, 0, by

zlc = 2, ; 0 = g’ . .- .. . . .. .. (17
Then
2% = ¢z, (Z, — 0*Z; + i) + 6 (Z, — 0°Z; - i0Z;),
and a similar formula applies for M. Hence

— ZeTmpcV? =20 (Zy 4+ 9Z0) + 00 (Zo +0Z) =} (Ao + 340, .. .. .. (18

— Me ™ mpc®V? = z, (M, + M) + 6, (M, + iM,) = & (4, — A,), .. . (19)

* Possio adopts an alternative series. His formulae require some correction (se¢ Appendix section (vi).
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where

Zy = — Z [mpV? 4 A2Z;[npc? M, = — M rnpcV? + 2*M;/npc®
Zy = — M JmpcV M, = — iM [rpctV

Zy = — ZolapcV? -+ 22Z;[mpc? My = — Myfapc®V? + 22M;[mpct
Zy = — AZyjmpc®V M, = — AMjmpc®V .

The derivatives Z,, Zo[2, Zs, Z,]4 correspond respectivély to Possio’s

Lo, T, 1og  Vidg,
- C w ¥y’ wmdw’ wl oaq’

T o
while M,, M,/A, M, M,ja correspond to
! dc, V, oc

W

)

1 acm VO acm
Twdy’ @ 9’ m o’ wl 0d°

Lastly, -the unknown coefficients 4, in (14) must be determined by the usual method of
assigning the velocity » at an appropriate number of points of the chord. If the first m coefficients
are retained, and if the s stations for collocation are #, %, . . . %, then from (10) and (14) it
readily follows that the equations for the coefficients are

fnoz({}) sin & 4(z, — 2) 4% = — 24z, + (—%—}—’L-COS'S‘,L 8o, .. .. o (20)
1]

5 , .
where = — gcosdandn =1,2, ...m. The graphical evaluation of the integral on the left.

of (20) is complicated by the presence of a singularity in the integrand at z = z,. A modification
of the equation, which removes this singularity, is proposed in section (vii) of-the Appendix.

3. Derivative Results.—Possio includes in his paper a tabulation of the function h(z) to three
significant figures as well as graphs of the aerodynamic derivatives, appropriate to values of A
ranging from 0 to 0-7. He uses the series (28) referred to in section (vi) of the Appendix,
retaining only the first three coefficients and choosing the mid-point and two ends of the chord
as the collocating positions. He remarks that check calculations with only the first two co-
efficients retained showed maximum differences of about 5 per cent. for i = 1-2

The derivatives appropriate to a Mach number 0-7 and to values of the frequency parameter
ranging from 0 to 5-0 were calculated independently at the N.P.L.. For these calculations use.
~ was made of the series (14), and the function %(z) was replaced by the regular function
Mz) = h(z) — h(2) as proposed in section (vii) of the Appendix. The results are summarised
in the tables and diagrams at the end of Part I. In all cases the mid-chord point is adopted
as the reference centre for the definition of normal displacement and normal force, but in’
Tables 1 (a) and 1 (b) and in Fig. 2 the pitching moment is evaluated (as by Possio) about the
quarter-chord point, whereas in Table 2 it is evaluated about the mid-chord point, in accordance
with standard derivative practice in this country. It will be seen that for 2 < 1 the N.P.L.
derivative results are in fair agreement with Possio’s, and that three-point collocation is adequate
for this range of . However, five-point collocation is required for the range 1-0 < 4 < 2-0,

while results given in Table 1 (a) suggest that for 2 = 5-0 even seven-point collocation may prove
unsatisfactory.

The results are applied in Part II to estimate the influence of compressibility and flying height
on the critical speed for flutter of a tapered cantilever wing. '

Acknowledgment.—The writer wishes to acknowledge the help given by Miss S. W. Skan,
who carried out all the computational work. -
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APPENDIX
Supplementary Notes on the Theory

(i) Preliminary Statement of the Exact Equations.—If P = [dp/p and if V, = +/(dp/dp) denotes
the local velocity of sound, the usual differential equations of flow of a compressible fluid are

Du oP Dy oP
DE= T DiT gy e (2D)

1 DP 2w ov
Let ¢ denote the acceleration potential and @ the velocity potential, these functions being defined
by

Du 24 Dy 94

Di ~ax  Di oy’ .. .. .. . .. .. o (23)
oD oD

By direct integration of equations (21)

oD
77 T 3@+ v) + P = const,, © .. .. .. .. .. .. (25)
and by comparison of (21) and (24)

¢ + P =const. .. .. . .. .. .. .. .. .. (26)

The arbitrary functions of time #, which should in general appear on the right-hand sides of
(25) and (26), are here replaced by absolute constants, since the flow is assumed to be uniform

at great distances upstream of the aerofoil. If the axes are chosen as in Fig. 1, then by (25)
and (26) ‘

0P
¢=a—t—|—%(u2—{—v2)——%V2, .. .. .. .. .. .. (27
where the constants are chosen such that ¢ =0 at x = — 0.
Next, by equations (21) and (26),

DP P 9P oP 9%  Du  Dv
Di =% T %% TV = "% “Du "Di-
6




On substitution of this expression for DP/D¢ in (22) and use of (27) the following equation is
obtained for the velocity potential

~ 72 e

| u? 82(154_‘1 92\ 0%P  2uv 0D 2u 0°@
< ( T VR oyt VEoxoy Voxdt

_V—:@a—t—w—zﬁz—z . . .. .o . S . (28)

A simple differential equation for ¢ does not exist.

(ii) Possio’s Linearized Form of the Equations.—Possio linearizes (28) by replacing the values

of u, v, V,, in the coefficients of the derivatives by their values V, 0, V,at x = — o0. Thisleads to
22D oD 2u? 0D u® 0% .
2y -
(l_ﬂ)axz ayz Vaxat Vg atz—o, .. - o . .. (29)

where ¢ = V[V,
Similarly, the linearized form of (27) is

oD oD o@

in agreement with equation (3). In view of this relation it is clear that (29) is also satisfied by
the acceleration potential ¢ (see equation (5)). Possio remarks that when a solution of (29) is
adopted as the acceleration potential, it is necessary to ensure that equation (29) itself, and not
merely a differentiated form of the equation of continuity, is satisfied at a certain instant at all
points of a surface which cuts all the lines of flow. This condition, however, is evidently satisfied
at x = — co.

(iil) Construction of Possio’s Doublet Solution.—The equation for the acceleration potential is
reducible to the familiar Laplacian form by a change of the independent variables. Thus, if new
variables X, T are introduced defined by the substitution X = x — V¢, T ={, the equation
reduces to

% %% 1 2%
axe T T Vel
A typical simple source solution, appropriate to subsonic speeds and referred to an arbitrary
origin of time, is
1 . 1 .
${> = [Vsﬂz (T _ T)2 _ X2 _y2:|1/2 - I:VSOZ (t __ T)z - {x . V (t _ T)}2 ___y2]1/2

A more general solution is

. “Vﬂzvsﬁ € ei“”dr
¢ = — 2n J-_OO [Vsoz (t — 1)2 — {x Vv (Zf — T)}z __yz]l/z

where a is a real constant and g denotes the lesser of the values of = which annul the denominator.

(30)

Now change the variables of integration in (30) from < to % where
w({t—1)=wnr—pw, "
and w, w” are as defined by (7). Then (30) is found to reduce to-
B al’* e
b T T V=T
= aV?B (w') e /44/(1 — p®) .
7

(=]
) f du,
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Differentiation of this solution with respect to y yields the complex potential (9).

Possio simplifies the above analysis in his paper by assuming y = 0 (w = w’), but the generalized
solution (y # 0) is actually required. = .

An alternative procedure is to assume for equation (5) a trial solution of the type
¢ = F(w’) et +u),
On substitution of this expression in (5), the equation for F is readily found to be

ar 1 dr

7w qw T =0,

so that F is a cylinder function of order zero. The solution so obtained represents a source,
and the doublet (9) actually required can be deduced by differentiation.

(iv) Explicit Expressions for F%ndz’ons f{#), g(2).—The explicit expressions for the components
of the normal induced velocity given by equation (11) are as follows

(1 — ) f(2) = cos pw {ulNy(w) — J(w)} — sin pw {u]3(w) + N(w)}

wfp

+ (1 — u?) cos z f_ {cos ulN (ua) — sin u] (uu)} du

4+ (1 - u?)sinz fi/” {cos uJ(pu) + sin uN (un)} du . . .. (31)
4/ (1 — u®) g(2) = cos pw {u],(w) -+ N(w)} + sin pw {zN,(w) — J(w)}

+ (1 — ,uz)-cos z fim {cos u] (uu) 4 sin wN(uu)} du
+ (1= ) sinz [ {cosulV (uu) — sin wf (i} du. .. .. (3

The integrals in (31) and (32) must be calculated numerically, but the limits 0 and w/s can be
used in view of the known relations

[ feosul(uw) —sinufuayan =0, .. .. .. .. .. (33)

| °_w {cos u] (uu) +- sin ul (ue)} dus = - v(12_ 77 log, (1 — %1 — #2)> . (34)

Since @ may be either positive or negative, it should be noted that J(— % = J(»% and
N(— %) = N(y) ‘

When 2 is small the following approximations are valid,

1—p 1 :

1 1 y 2
€0 =gty i (VAL o V=5 B o )

where log y denotes Euler’s constant 0-5772.




(v) Limiting Forms of f(2), g(z) for I ncompressible Fluid.—To obtain the limiting forms of (31)
and (32) when g >0 (with @ - puz > 0) use should be made of (33) and (34) and of the

approximations
2. yw 2
Jw) > 1; uJ(w) >0; N(w)+;10g<?>; Nl(w)_>_j;@.

Note also that

Jz sin # log o du = Jz log u d(1 — cos u) = (1 — cos 2) log z + Ci(z) — log vz,
0 0

0

zcos%log%du: Zlog%dsin% = sin z log 2 — Si(2),
40 R g

: sin o d
where Si(z) = [ sz: %;
. 40
Ci(z) = — J~°° cos;z du — logy7 — J‘z (1 — c;s ) du
k1 s Jo

In the limit, the functions f(z), g(z) take the familiar forms

c0S 2 1 sin z Ci(2) , cosz Su(2)
—fl2) = 4 + oz 27 +. 27 ’
: in 2 i) cits) (37)
sinz | sinzS#(z) |, cosz Ci(z
gle) = 4 2 - 2n )

(vi) The Series for Intensity Distribution.— Possio adopts a series of the Birnbaum type for the
intensity distribution. His series is '

wn

but accented coefficients are here introduced in place of his unaccented ones, to avoid confusion

with the series (14) of the present paper. He denotes the chord as I, and defines £ in terms of

x by the relation & = Ix/2, stating that the ends of the profile correspond to & = — 1 and + 1.
Two misprints have evidently occurred in his paper. The series should be corrected to

ki

a(é)=A0’N/G——;—§>+\/(1—}52)?141"’5”“1, 38

and & should be defined by x = 1&/2. Thus Possio’s & is equivalent to — cos & of the present
paper.

The advantage of the trigonometrical series (14) is that the exact expressions for the force
and moment coefficients involve merely the first three coefficients 4., A,, A,. The corresponding

expressions when (38) is nsed involve all the coefficients A4,’, A,’, etc.; this disadvantage does
not emerge from Possio’s analysis, because he happens to restrict his approximation to three

terms only.

(vii) Removal of the Singularity from the Collocation Equations.—The solution of the collocation
equations (20) involves a graphical evaluation of the integral

I= fa(s-) sin 9 h(z, — 2) d9.
0
9



From equations (35) and (36) it is seen that in the vicinity of # = z, the function h(z, — 2) is
represented approximately by

A
ho(2, — 2) = _Z+Blog|zn—z]+ C,

where 4, B, C are known (real or complex) constants dependent on x only. Hence the integrand

in I has a singularity at z = z,. To overcome this difficulty, it may prove convenient to express
the integral in the form ‘

7 — A
T = [ a(9)sin 9z, — 2) ds}_Z—ﬁ_ro.Jr BI, +(Blog2—i— c) I,
0

where

Dz —2) =Rz — 2) — ho(z, — 2) =z, — 2) + 48 (2, —2), .. .. .. (39)
and I, I,, I, are integrals defined by

;_[Fa®)sin9ay
":jocos&b—cos%}’

I,

f”a({}) sin & log |(cos &, — cos 9) [d9;
0

I

[ a@) sin 9 a9,
0

The first integrand in I now remains finite throughout the range ¥ = 0 to # and vanishes at
% = 8,. The remaining integrals I,, I, I, can be evaluated independently as follows :—

Integrals I and I,—1t is known that -

# cos s 7 sin s,
j,,cos{}n —cos®¥ 7 sin§, -

Also
m—=1
a(®) sin® = A, (1 + cos &) + 3 2 4,{cos (s — 1) § — cos (s + 1) 9}.
s=1
It readily follows that |
Iy=—ad, += mfll A, cos 59, ,
s=1
A
L==(4,+73).
Integral I,.—The method of reduction will be indicated without entry into details,

I =" a(9) sin 9 log (cos 9 — cos 8,) a9

]

+ j n a(9) sin & log (cos &, — cos 9) 49 .
10



Hence
oy _

55 [a(9) sin & log (cos & — cos 8;)]s—s,—

— [a(9) sin & log (cos &, — cos ¥)]s_s +e

e (D) sin $sin 8, d% = a(d) sin ¥sin Y, 4
fo " cos Y — cos &, L‘nﬂ cos O, —cos &

= — Iysin Y, when ¢ >0,

m—1

=ad,sin, —5 X A, {sin (s + 1) 9, — sin (s — 1) 8,}.
s=1

pol S

Accordingly
I, = K —=nA,cos ¥, + %Al cos 29,

P COS(S+1) 'S'n COS(S—l)'B;L-_

where K is a constant, independent of 3.

To determine K, substitute 8, = #/2. The integral I; then reduces to
[ a(9) sin 9 log| cos 9|3,
[1]

and this can be evaluated on application of the known results

Jnlz cos 2sd log cos B dY = Z— (— 1)1,
0 S

4

Jmlog cos 3 dy = —glog 2.
0

It is found that
K=—a(4,+ 34, log2.

11




TABLE 1 (a)

N.P.L. Calculated Two-dimensional Derivatives Referved to Possio’s Axes

Three-point collocation except where indicated : Mach number 0-7 |

Zl ZZ Z3 Z4 Ml M2 M3 M4

0 0 0 1-400 0 0 0 0 0
0-2 0-05883 0-19445 0-9922 —0-2470 —0-00531 0-00135 0-00633 | 0-04445
0-4 009456 0-3188 0-8390 | —0-1628 —0-01862 0-00573 0-01356 | 0-08330
0-6 009923 0-4326 0-7842 —0-07154 —{(-03900 0-01334 0-02192 | 0-1214
0-8 0-08302 0-5502 0-7730 0-00656 | —0-06603 0-02521 0-03300 | 0-1591
1-0 0-05319 0-6766 0-7856 0-06978 | —0-09885 0-04274 0-04780 | 0-1954
1-0§ 0-05359 0-6818 0-7962 0-07183 | —0-1011 004480 0-05072 | 0-2010
2-0 —0-1539 1-434 0-9431 0-19565 | —0-2865 0-2275 0-1552 0-3128
2-0§ —0-10225 1-4395 0-9709 0-1472 —0-2890 0-2571 0-18625 | 0-3289
2-0% —0-08949 1-450 0-9837 0-1359 —0-28155 0-2697 01999 0-32385
3-0 —0-39295 2-311 1-059 0-1956 —0-4400 0-48986 0-2183 0-3415
4-0 —0-6521 3-306 1-187 0-1722 —0-5740 0-77185 02243 0-3499
5-0 —0-9534 4-433 1-171 0-1640 —0-6998 1-065 0-1877 0-3548
5-08§ —0-5606 4-613 1-252 0-07630 | —0-2587 1-207 0-3782 0-26785
5-0% —0-6083 4-241 1-172 —0-02899 —0-4547 1-218 0-3147 0-3260
§ Five-point collocation. * Seven-point collocation.

Incompressible Fluid** (Possio’s Axes)

0 0 0 1-0 0 0 0 0 0
0-2 0-02446 0-1664 0-8405 —0-08071 —0-00251 0 —0-00032 | 0-02500
0-4 0-03545 0-2910 0-7464 —0-01587 —0-01000 0 —0-00125 | 0-05000
0-6 0-01759 0-3990 0-6919 0-07043 —0-02250 0 —0-00281 0-07500
0-8 —0-02801 0-5000 0-6580 0-1600 —0-04000 0 —0-00500 | 0-1000
1-0 —0-09929 0-5979 0-6356 0-2488 —0-06250 0 —0-00782 | 0-1250
2-0 —0-79945 1-079 0-5896 0-6694 —{0-2500 0 —0-03125 | 0-2500
3-0 —2-029 1-563 0-5762 1-067 —0-5625 0 —0-07031 0-3750
4-0 —3-769 2-062 0-57065 1-455 —1-000 0 —0-1250 0-5000
5-0 —6-0135 2-544 0-5679 1-839 —1-5625 0 —0-1953 0-6250

**Standard derivatives from Table 5 of R. & M. 19582, converted to Possio’s axes.
TABLE 1 (b)
Possio’s Results for Mach Number 0-7
Three-point collocation

0 0 0 1-360 — 0 0 0 0
0-12 0-035 0-142 1-200 — — 0-0001 0-0005 —
0-2 0-065 0-220 1-125 — —0-0062 0-0003 0-0015 0-046
0-4 0-106 0-360 0-953 —0-148 —0-0217 0-0026 0-0060 0-085
0-6 0-108 0-470 0-840 —0-072 —0-0450 0-0086 0-0135 0-120
0-8 0-090 0-568 0-772 0-010 —0-0692 0-0205 0-0240 0-152
1-0 0-052 0-660 0-730 0-080 —0-0982 0-0400 0-0375 0-182
1-2 0-005 0-739 0-698 0-146 — 0-0691 0-0540 0-211




TABLE 2
N.P.L. Calculated Two-dimensional Derivatives Referved to Standard Mid-Chord Axes
(Pitching moment here evaluated about mid-chord point. Values of Z,, Z,, Z;, Z,, asin Table 1(a)) -

Compressible Fluid : Mach number 0-7. : :
three-point collocation except where indicated. Incompressible Fluid.
A
M, M, M, M, M, M, M, M,

0 0 0 —0-3501 0 0 0 —0-25 0
0-2 —0-02002 —0-04726 | —0-2417 0-1062 —0-00862 | —0-04160 | —0-21045 | 0-04518
0-4 —0 04226 | —0 07396 | —0-1962 0 1240 —0 01886 | —0-07276 | —0-1879 0-05397
06 —0-06381 —0-09482 | —0-1741 0-1393 —0-02690 | —0-09975 | —0-1758 0-05739
0-8 —0-08679 | —0-11235 | —0-16025 | 0-1574 —0-03300 | —0-1250 | —0-1695 | 0-06000
1:0 —0-11215 —0-1264 | —0 1486 0 17795 —0-03768 | —0-1495 | —0-1667 0-06281
1-0§ | —0-1145 —0-1257 | —0-1483 0-1830 — — — —
2:0 —0-2481 —0-1316 | —0-08057 | 0-26385 —0-05014 | —0-2697 | —0-1786 0-08264
2:0§ | —0-2634 —0-1028 | —0-05649 | 0-29215 — — — —
2-0% | —0-2592 —0:09270 | —0-04599 | 0-2899 — — — —
3:0 —0-3415 —0-08824 | —0-04652 | 0-2926 —0-05517 —0-3908 | —0-2144 0-1082
4.0 —0-4108 —0-05466 | —0-06005 | 0-3068 —0-05769 | —0-5130 | —0-2677 0-1362
5-0 —0-4615 —0-04319 | —0-1051 0-3138 —0-05912 —0-6359 | —0-3373 0-1653
5-0§ | —0-1185 0-05355 0-06531 | 0-2488 — — - —
5.-0% —0-3026 0-1576 0-02159 | 0-3332 — — — —

§Five-point collocation. *Seven-point collocation.

TABLE 3 .
Values of Function h(ixjc) = f + 1g foru = 0-7
Axfe f g Axfe f g .
5-10000 0-16270 —0-90056 | —5-10000 0-33369 —0-440905
5-02714 0-19674 —0-91036 | —5-02714 0-33350 —0-43707
4-95429 0-231625 | —0-91761 | —4-95429 0-33317 —0-433165
4-88143 0-26714 —0-92225 | —4-88143 0-332685 | —0-42922
4-80857 0-30313 —0-92425 | —4-80857 0-33205 —0-42524
4-73571 0-33937 —0-92358 | —4-73571 0-33126 —0-42126
. 4-66286 0-37570 —0-92022 | —4-66286 0-33033 —0-41730
4-59000 0-41189 —0-91418 | —4-59000 0-32926 —0-413365
4-51714 0-44778 —0-90547 | —4-51714 0-32807 —0-40949
4-44429 0-48316 —0-894125 | —4-44429 0-32677 —0-40568
4-37143 0-51786 —0-88018 | —4-37143 0-32539 —0-401945
-4-29857 0-551675 | —0-86370 | —4-20857 0-32395 —0-398305 -
4-22571 0-58445 —0-84475 | —4-22571 0-32248 —0-39476
4-15286 0-615985 | —0-82342 | —4-15286 0-32099 —0-391315
4-08000 0-65026 —0-80391 | —4-08000 0-31952 —0-38796
4-00714 0-67473 —0-77398 | —4-00714 0-31810 —0-38469
3-93429 0-70163 —0-74610 | —3-93429 0-31676 —0-38150
3-86143 0-72667 —0-71629 | —3-86143 0-31552 —0-37836
3-78857 0-74975 —0-68468 | —3-78857 0-31440 —0-37525
371571 0-77073 —0-85142 | —3-71571 0-31343 —0-37215
3-642855 0-789495 | —0-61666 | —3-642855 | 0-31263 —0-36902
3-57000 0-80596 —0-58058 | —3-57000 0-31200 —0-36583
3-49714 0-82003 —0-54333 | —3-49714 031157 —0-36253
3-42429 0-83164 —0-50511 —3-42429 0-31132 —0-35910
3-35143 0-840725 | —0-46607 | —3-35143 0-311265 | —0-35548
3-27857 0-847245 | —0-42643 | —3-27857 0-31139 —0-35164
3-20571 0-85116 —0-38635 | —3-20571 0-311675 | —0-34752
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TABLE 3 (conid.)

A xfc f g A xfc f g
3:13286 0-85246 | —0-34603 | —3-13286 0-31210 —0-34310
3-06000 0-851183 | —0-30566 | —3-06000 0-31264 —0-33832
2-98714 0-84719 | —0-26544 | —2-98714 0-31325 —0-33316
2-91428 0-840665 | —0-22554 - | —2-91428 0-31389 —0-32757
2-84143 0-83159 | —0-18616 | —2-84143 0-31452 —0-32155
276857 0-82001 | —0-14747 | —2-76857 0-31509 —0-31505
2-69571 0-80601 | —0-10966 | —2-69571 0-31554 —0-30808
262286 0-780645 | —0-07290 | —2-62286 0-31581 —0-30062
255000 0-77103 | —0-03736 | —2-55000 0-815835 | —0-29267
2-47714 0-74989 | —0-003195 | —2-47714 0-315565 | —0-28425
2-40429 0-72743 0-02044 | —2-40429 0-31493 —0-27537
2-33143 0-70270 0-06041 | —2-33143 0-31388 —0-266055
2-25857 0-67620 0-08958 | —2-25857" | 0-31234 —0-256345
2-18571 0-648065 0-11682 | —2-18571 0-31028 —0-24628
2-11286 0-61847 0-14208 | —2-11286 0-30764 —0-23501
2-04000 0-58756 0-16510 | —2-04000 0-30438 —0-22529
1-96714 0-555535 0-18596 | —1-96714 0-30047 —0-21448
1-89429 0-52255 0-20452 | —1-89429 0-205875 | —0-20356
1-82143 0-48881 0-22072 | —1-82143 0-29058 —0-19258
1-74857 0-45450 0-23454 | —1-74857 0-28459 —0-18163
1-67571 0-41982 0-24591 | —1-67371 0-27791 —0-17077
1-60286 0-38495 0-25485 | —1-60286 0-27050 —0-16007
1-53000 0-35012 0-26134 | —1-53000 0-26244 —0-14961
1-45714 0-31551 0-26540 | —1-45714 0-25375 —0-13946
1-384285 0-28134 0-26706 | —1-384285 | 0-24446 —0-129665
1-31143 0-24780 0-26636 | —1-31143 0-23462 —0-12028
1-23857 0-21510 0-26335 | —1-23857 0-22429 —0-11136
1-16571 0-18345 0-25813 | —1-16571 0-21354 —0-10293
100286 0-15304 0-25079 | —1-09286 0-20242 —0-09500

. 1-02000 0-12406 0-24140 | —1-02000 0-19100 —0-08762
"+ 094714 0-09671 0-23018 | —0-94714 0-17937 —0-08072
0-874285 0-07121 0-21709 | —0-874285 | 0-16756 —0-07433
0-80143 0-04772 0-20245 | —0-80143 0-15567 —0-06839
0-72857 0-02643 0-18570 | —0-72857 014375 —0-06349
0-69214 0-01668 0-17784 | —0-69214 0-13832 —0-06085
0-65571 0-00757 0-16903 | —0-65571 0-13181 —0-05762
0-619285 | —0-00092 0-15995 | —0-619285 | 0-12635 —0-05574
058286 —0-00872 0-15064 | —0-58286 0-11990 —0-05261
0-54643 —0-01583 0-14113 | —0-54643 0-11440 —0-05087
0-51000 —0-02218 0-13142 | —0-51000 0-10800 —0-04771
0-47357 —0-02780 0-12161 | —0-47357 0-10244 —0-04600
0-43714 —0-03262 0-11165 | —0-43714 0-09607 —0-04276
0-40071 —0-03663 0-10165 | —0-40071 0-09057 —0-04138
0-364285 | —0-03974 0-09157 | —0-364285 | 0-08461 —0-03917
0-32796 —0-04198 0-08152 | —0-32786 0-07844 —0-03646
0-29143 —0-04325 0-07149 | —0-20143 0-07213 —0-03363
025500 —0-04351 0-06166 | —0-25500 0-06567 —0-03050
0-21857 —0-04265 0-05177 | —0-21857 0-05897 —0-02735
0-18214 —0-04062 0-04217 | —0-18214 0-05197 —0-02387
0-14571 —0-03723 0-03284 | —0-14571 0-04451 —0-02007
0-10929 —0-03230 0-02383 | —0-10929 0-03540 —0-01587
0-07286 —0-02542 0-01526 | —0-07286 0-02724 —0-01123
0-08557 —0-02377 0-01359 | —0-06557 0-02524 —0-01025
0-05829 —0-02200 0-01197 | —0-05829 0-02317 —0-00923
0-05100 —0-02011 0-01036 | —0-05100 0-02100 —0-00815
0-04371 —0-01809 0-00877 | —0-04371 0:01875 —0-00713
0-03643 —0-01588 0-00723 | —0-03643 0-01633 —0-00601
0-02914 —0-01351 0-00569 | —0-02914 0-01380 —0-00491
0-02186 —0-01088 0-00422 | —0-02188 0-01105 —0-00373
0-01457 —0-00795 0-00276 | —0-01457 0-00803 —0-00253
0-00729 —0-00468 0-00135 | —0-00719 0-00470 —0-00130
0 0 0 0 0 0
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PART II

Influence of Compressibility on the Flexural-Torsional Flutter of a Tapered
Cantilever Wing Moving at Subsonic Speed
By |
VR. A. Frazer, B.A., D.Sc.,, anp SyrLvia W. Skan
of the Aerodynamics Division, IN.P.L.

Summary—Calculations based on Possio’s subsonic derivative theory and on vortex strip theory were made to
obtain preliminary information on the influence of compressibility and flying height on the critical speed for flexural-
torsional flutter. The results are summarised by curves corresponding to constant altitude H, which show the variation
of N with wing stiffness ratio », where IV denotes the ratio of the critical speed for flutter of the wing in compressible
air at a Mach number of 0+7 to the critical speed for flutter of the same wing in incompressible air. The results indicate
that for 1< »<(3 the compressibility correction is insignificant at sea level, and that N is of the order 0-95 to 0-92 at
H = 30,000 ft. More extensive test calculdtions are very desirable.

1. Introduction and Swummary.—The purpose of the calculations was to obtain preliminary
information on the influence of compressibility and altitude on the critical speed for flexural-
torsional flutter of a tapered cantilever wing moving at subsonic speeds. The derivatives
appropriate to the wing were estimated by vortex strip theory, the basic two-dimensional values
being chosen to accord with the curves of Fig. 2 of Part I corresponding to five-point collocation.
As these curves only apply for a Mach number x of 0-7, the calculations are necessarily very
restricted in scope.

The results are shown in Flg 1 of Part 1T, where the ordinate N denotes the ratio of the critical
speed V', for flutter of the wing in compresmble air at p = 0-7 to the critical speed V; for flutter
of the same wing in incompressible air. The results indicate that with normal stiffness ratios
(1 < 7 < 3) the compressibility correction is insignificant at sea level, and that N is of the order
0-95 to 0-92 at altitude A = 30,000 ft. The corresponding divergence speed ratio is given by
VilVa = (1 — p®*, which accords with a simple formula applied by Theodorsen and Garrick*
(19 ) for critical flutter speeds.

A noteworthy feature of the results is the fact that, despite the pronounced differences between
the derivatives appropriate to the compressible and incompressible fluids, the corresponding
changes of critical speeds are so small—provided, of course, the sets of derivatives used are
themselves self-consistent and accurate. More extensive test calculations are very desirable.
A valuable advance in the theory would be the development of a direct formal solution of the
fundamental integral equation (equation (20) of Part I) in terms of known functions, by a
generalisation of the methods which have been applied successfully for the incompressible fluid.

2. Method of Calculation.—The formulee used for the calculation of the derivatives and critical
speeds are taken with slight modifications from R. & M. 19482

(@) Notation.—The essential notation is as follows:—

s span (root to tip)

¢, Co root and tip chords, respectively

B (= (co — c)/co) taper ratio

/A distance of reference section from root
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& (= y/s) spanwise co-ordinate
f1(8), Fa(é) flexural and torsional distortion modes
Ao (= weo/V) frequency parameter at root
mc* wing mass per unit span at section &
je asbcissa of centre of mass at section £
d{= 0-9s) distance from root to “* equivalent tip section ”
Kc radius of gyration at section &
p air density at height H
po (= 0-002378) standard air density at sea level
Oy wing density (slugs/ft®)
o = plpo
Ay =clco=1— B&
V. | critical speed
Vi{= VA/p[/ (msfdc,?)} critical speed coefficient
— (1) mofdc,).

(b) Derivatives—The integrals for the air-load coefficients are

deLs  idLg s

L +1iL, = V2l3 + plicy? — Ve, = =7 (Z1 + iZ )fl ag,
. Lg ZoaL(j iAOLG 7£S
L+ 1L, = — o Ve, + ol%c,? _‘pVZZC T (Z3 -+ zZ4 ( )le a¢,
) . M, 1M 5 1doM 7S\ o . c
Ml + ’LMz - pV2Z260 _{_ pl2603 - pVZZC.)z - <—l—> jo (M1 + 7/M2) (C(,)lesz s

] M, AoMy 1AM, /7N Yo — .. /C\?
M, + M, = — DR + P - oViegd <l_> fo (M, + Mh) (E)) Fldg, .

In these formulae the barred terms in the integrands denote the two- dimensional air-load co-
efficients appropriate to the wing reference axis. The values for these coefficients were chosen
to accord with the curves of Fig. 2 of Part I corresponding to five-point collocation.

(¢) Inertial Coeﬁicients.—These are given by

A= (O L.
= (O A
 ROORIORY



For the particular type of wing under consideration

30,4 — 48 +
mETE\S T8 T

If a0, po, g0 denote the inertial coefficients appropriate to p = p,, and if ¢ = p/p,, then
a]_:alo/o—; P :po/g; g3:g3ﬂ/g'

(@) Critical Speeds.—The critical conditions for the wing are determined by solution of the two
real equations contained in

rY’ Aroho” . Podo® -+ Ly 4 2L,
015122 — ppp o Thitile =T . 0
Polo’ . ;o Gako : -
—'—(;_——i—Ml'—*—hMg, Y—T+M3+zM4
where ' -
Vo= Vov/oly/mie?) = 0-567 2 — f)}VY'. .. . .. (@

In the case of the compressible fluid the simplest procedure in calculation is to assign (i) the
Mach number g, (i) the values of p, ¢ and V,, (velocity of sound) appropriate to a chosen altitude
H, and (iii) the critical frequency parameter 4,. Then the critical speed, say V., (= uV,) is also
assigned. The two unknowns in (1) are accordingly regarded as » and Y’, and if the calculations
lead to real and positive values for both of these, the corresponding elastic stiffnesses /;, #, can
be derived. Thus in brief, the method is to calculate the stiffnesses which will lead to flutter with
a given frequency at a given altitude and Mach number. The critical speed V,; and critical
frequency appropriate to the incompressible fluid and to the same altitude and stiffnesses can then
be calculated in the usual way.

The ratio of the divergence speeds appropriate to the compressible and incompressible fluids
- 1s readily seen to be given by :

VdC/Vdi=\/<:%:Eizzg:Zzf‘)g):(l——;ﬁ)l/‘*. TR €

This accords with Theodorsen and Garrick’s proposed correction for critical speeds for flutter.

() Numerical Application.—The values adopted for the wing constants were
p=1/2-1; 1 =07s; 0,=0-02485; 7=0-1; K=0-296.

The flexural axis was assumed to lie at distance 0- 3¢ behind the leading edge, and the distortion
modes were taken for simplicity to be

(&) = (s/h)2&?;  Fy(&) = (sfl)& .
- These data yield .
' Gy = 4-488; P, = 0-2623; g = 0-1670 .

For the variation of p and V,, with altitude reference was made to the tables given by Pankhurst
and Conn® The following figures are representative.
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Altitude e Ve Ve
(ft) (slugs/ft?) ¢ (ft/sec) | (u=10-7)

0 0-002378 | 1-000 1117 781-9

10,000 0-001756 | 0-7385 1078 754-6

20,000 | 0-001267 | 0-5328 1037 725-9

30,000 | 0-0008896 | 0-3741 995 6965

40,000 0-0005857 | 02463 968 6776

The calculated air-load coefficients for the wing appropriate to 4 = 0-7 and p = 0 are given
in Table 1, and the results of the flutter calculations are summarized in Table 2 and Fig. 1.
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TABLE 1
N.P.L. Calculated Derivatives for Tapered Wing

(Derivatives referred to flexural axis at 0-3c behind leading edge. Flexural distortion mode
parabolic and torsional mode linear. Mach number 0-7.)

) L, L, L, L, M, M, M, M,

0 0 0 2-8355 0 - 0 0 —0-09015 0
0-6 0-3335 1-1005 1-762 |—0-2223 —0-04357 | —0-01989 | —0-04305 0-1148
1-0 0-3662 1-630 1-636 0-05849 | —0-09709 | —0-01492 | —0-03068 0-1751
1-2 0-3353 1-904 1-616 0-1913 —0-13045 | —0-00693 | —0-02400 0-20755
1-6 0-2189 2-462 ©1-638 0-4179 —0-2108 0-02630 | —0-00614 0-2741
1-8 0-1480 2-789 1-665 0-51095 | —0-2546 0-05168 0-00513 0-3053
2-0 0-07589 3-111 1-695 0-5791 —0-2983 0-08204 0-01804 0-3345

Incompressible Flud

0 0 0 2-025 0 0 0 —0-06438 0
0-6 0-1269 0-9968 1-549 0-06449 | —0-02160 | —0-02815 | —0-05307 0-06194
1-0 0-05333 1-486 1-398 0-3329 —0-05209 | —0-04176 | —0-05586 0-09550
1-2 —0-03999 1-716 1-342 0-4710 —0-07133 | —0-04820 | —0-05928 0-1124
1-6 —0-3325 2-165 1-244 0-74535 | —0-12055 | —0-08077 | —0-07002 0-1467
1-8 —0-5477 2-381 1-196 0-8755 —0-1515 —0-06694 | —0-07662 0-1640
2-0 —0-7978 2-599 1-150 1-010 | —0-18585 | —0-07301 | —0-08466 0-1812
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TABLE 2

Influence of Compressibility and Altitudeion the Critical Speed Coefficients of a Family of Tapered
Wangs

Explanation.—For the compressible fluid the critical speed V,, at each altitude H is assigned
to correspond to a constant Mach number x = 0-7. The corresponding critical speed coefficient
Vilw = 0-7) =V, v/p/A/(m4ldc,?) effectively determines the torsional stiffness m, associated
with each value of H and 7. The influence of the compressibility on the critical speeds of the
different wings is shown by the ratio N = V[V,

Compressible Incompressible .
Floid Fhuid [ | Divergence
H , N L atio
(ft) — _ V., Va
Vcc Vcc m@/ de2 Ifci ch Vdi
0 0 781-9 1-995 365-3 1-948 763-6 1-024 0-845
1 781-9 1-756 471-5 1-751 7796 1-003
2 781-9 1-591 574-3 1-572 772-6 1-012 (constant
3 781-9 1-457 684-8 1-426 765-1 1-022 for all
4 781-9 1-349 798-9 1-296 751-1 1-041 H and #)
5 781-9 1-263 911-4 1-182 732-1 1-068
6 7819 1-194 1020 1-087 712-1 1-098
7 781-9 1-162 1077 1-008 678-1 1-153.
10,000 1 754-6 1-680 479-8 1-707 766-9 0-984
2 754-6 1-488 611-6 1-532 -777-1 0-971
3 754-6 1-360 732-1 1-373 761-5 0-991
4 7546 1-255 859-7 1-250 751-6 1-004
5 754-6 1-172 985-8 1-143 736-2 1-025
6 754-6 1-115 1089 1-051 711-2 1-061
7 754-6 1-065 1194 0-970 6R7-2 1-098
20,000 1 7259 1-611 482-8 1-667 7514 0-966
2 725-9 1-432 6111 1-496 758-5 0-957
3 725-9 1-286 7577 1-342 757-7 0-958
4 725:9 1-175 9076 1-211 748-4 0-970
5 725-9 1-093 1049 1-104 733-2 0-990
6 7259 1-041 1156 1-017 708-9 1:024
7 7259 1-020 1204 0-948 674-6 1076
30,000 2 6965 1-357 626-5 1-460 749-7 0-929
’ 3 6965 1-212 785-3 1-314 757-1 |- 0:920
4 6965 1-106 943-1 1-185 746-5 0-933
5 696-5 1-026 1096 1-076 730-1 0-954
6 696-5 0-978 1206 0-993 707-1 0-985
40,000 3 6776 1-149 827-0 1:271 749-6 0-904
4 6776 1-047 996-0 1-156 747-9 0-906
5 6776 0-963 1177 1-057 743-8 - 0-911
6 6776 0-920 1290 0:973 716-3 0-946
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F1e. 1. Influence of Compressibility on Critical Speed.
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