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SUMMARY

The paper presenis a theoretical study of the thrust, 1ift and
moment on an aerofecil due to a two~dimensional Jjet of air ejected from
the trailing edge at an angle T +to the main stream. It 1s rigorously
proved that in subsonic compressible flow the ideal thrust of the jet
(assumed not to mix with the main stream) 18 independent of the exat
angle T. The theory for the 1ift and moment is developed for
incompressible flow only., It 28 not rigorous, being based on the
assumption that jets of equal momenium and at equal values of T have
esgentially the same influence on the main stream, The theory 1s 1in
satisfactory agreement wath the fow experimental values available.

Two appendices have been added to the paper; the first written
in April, 1955, was added to clarafy the paper and to answer some
criticisms of its contents, while the second, dated November, 1956, was
added to show the relation between the author's theory and that given
later by Sponce.

1.  Intreduction

Some recent reports1’2 have drawn attention to the fact that
the circulation about an aerofoil can be controlled by ejecting air
from the trailing cdge at an angle to the main stream. Becauase of the
asymmetry of the resulting flow the jet induces a circulation about the
aerofoil, and hence therc is an induced 1i1ft which 1s additional to the
component arising from the momentum flux of the jet 1tself. To this
extent the jJet 1s similar to a flap, although the term "jot-flap" whach
has been applied to 2t1 1s porhaps too restricted, sinco otlher types of
control, ¢.g., a splat flap, or a spoiler, may, in certain carcumstances,
be the morce approprizte analogyB.

While 1t 1t not surprasing that the jet induces a laft -~ in
general any asymmetric disturbance of the flow wall do this - 1t 1s
remarkable that, provided the jet does not cause flow scparation from
the aerofoil, and does not mix with the main stream, the thrust on the
aerofoll 1s independent of 7T, the angle of egect10n1. Thus, 1deally,
the 11ft 1s obtained without loss in forward thrusit. The procf of this
result given in Ref. 1 1s bascd on D'Alembert's paradox, which 1s not
appropriate to the open contour of the aerofoil plus jet, to which 1t
is there applicd. A rigorous proof of the independonce of the thrust
and ejection anglc for compressible flow is givon in the next section.

In contrast to the paradoxical rosult on thrust, the
1nduced 1lift, while casily predicted gualatatively, 18 much more
diffacult to determine quantitatively. The theory presented in this
paper 1s not rigorous but involves one or two assumptions which appear
rcasonable. Also the agrecment obtained with experiment provides
further justification of these assumptions. /
The
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The jet 18 assumed to be a distinct stream of fluird separated
from the main stroam by two vortex sheets., The theory for the 1ift and
moment is based on an equation for the flow about an aerofoil behind
which extends a voritex shoct, given in Ref, L, where it was developed
for application to unsteady aerofoil theory. In the present application
the two vortex sheets produced by the jet are replaced by a single vortex
sheet, the strength of which 1s shown to be proportional to CJ/R, where
Cy is the jet momentum coefficient defined by equation (13) below, and
R 1s the radius of curvature of the jet. Unfortunately the curvature
cannot be determined until the vortex strength i1s known., This situation
leads to an integral equation for the vortex strength, which, »f Oy 1s
small enough, can be solved by ateration. In the particular case when
the velocaty of the ejected fluid 18 the same as the main stream velocaiy,
80 that no vortex shcets arise, the theory 1s exact. Such flow 1s termed
"source-type" flow to distinguish it from the "jet-type" flow which occurs
at higher ejection velocities., A fundamental assumption of the theory is
that a jet of given momentum and cjectron angle has essentially the same
effect on the main stroam as a source-type flow having the same momentum
and ejoction angle.

The main conclusions are that (1) the 1lift coefficient Cp 18
proportional to 7VCy and (11) that the 1ift due to the jet acts
approximately at the mid-chord point. The conclusion that at constant
T, C1, 1s proportional to Vv(r, 218 in agreement with the few
experimontal results so far available (see Figs. 7, 8 and 9), but the
dependence of €, on T has not yot been investigated experimentally.
Tho author's theory is in good agreement with experiment for values of
€7 lese than 0.5 with T = 31.4° (the lowest valuec of T yet
1nvest1gated). Howover as Cy and T are increased there is an
incrgasing discrepancy between theory and experiment, probably mainly
due to turbulent mixing in the wake (at high C€J) and loss of circulation
due to somc flow separation near the trailing edge (at high 7).

The law Cp, « vCy was also derived by an unconvincing argument
in Ref. 1, based on an analogy with a mechanical flap. The reasoning is
essontially as follows. The characteristics of a mechanical flap are
functions of two independent variables, namely Ec, thc flap chord, and
To the flap deflectron angle, while 1t 18 reasonable to suppose that
the jet-flap characteristice are likewise dependent on the two variables,
C; and 7. Hence any two relations of the form F(Be, 75) = £(Cy, 7)
may be taken as establishing "gamilarity" betweon Jet and mechanical
flaps. One of those relations 18 taken to be that tho "1ift" on the jet,
Cy sin T, 18 equal to the laft on the flap, which 18 a known function
F(Zc, TOS. Thus

C, = == F(Be, 7,) . «eu (1)

The other relation is that the ratio of the total 1aft to the 1a1ft on
the flap i1n the mechanical systom, 13 equal io the ratio of the total
11ft to the "1aft" i1n the jel on the jet-flap system, i.,e., that

J{F(EC, To) = -MJ(CJs ) , -“(2)

in which ZF 18 a function xnown from classical aerofoil theory, while
the form of JmJ 18 unknown. Eliminating Ec from (1) and {2), we obtain

J@J = Mo,y 7 7)) shoro) oo (3)
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wherc )L 15 a known fwiction. Equation (3) 1s morely another form of
the definition of "similarity" given by (1) and (2), and 15 valucless
unless combined with some theory or plausible hypothesis giving T, ag a
function ef Cy and 7, Such theory or hypothesis must take into account
the basis of cquation (3), namely the definition of samilarity. In Ref. 1
To 18 tacitly assumed to depend on T oalyj 1t 18 then stated that the
ratio T/TO "at this stage can only bo gucssed at", which of course begs
tho question completely. To given values of Ec and 7, correspond
Tixed values of F and TTF, »nd hence from (1) and (2), fixed valucs
of CysxnT and Jﬁj. If the jot-flap theory were known 1t would

then be possible to find fixed values of €7y and 7. However without
this thcory we can still say that given valucs of Ec and 7, determine
fixed valucs of C7 and 7. It 1s not possible to impose a thaird
relationship between T and Toe The argument given in Ref. 1 1s not a
theory, despite the Tact that the final result is in fair agreement with
exporimont. (Thls criticism wag subsequently modifieds =sce 82.1 or
Appendaix I.)

In view of the criticisms given above 1t is only fair to stale
ithat in the writer's opinion the authers responsible for Refs. t,and 2
and other rcports from the N.G.T.E., Pyestock, on the same topic have
done most valuable work an attracting attention to and elucidating the
physical mrinciples of this neglected method of carculation control.

7. last of Symbols

Xy ¥ the physzcal planc
Z = X + iy
n, 8 distances measured normal to and along a streamline
respectively
(a, 9) veloeity vector an polar co-ordinatos
p denarty
o as a suffix to denote undisturbed stream valucs
u = Q, n the main stream
M local Mach numbor
(¢ v) plane of equipotentials (¢ = constant ) and strecamlines
(¥ = constant), for zcro circulation
w = ¢+ 1y
N, Y clliptic co-ordinates defined by equations (18) and (21)
P pressure
Vv velocity in jet at anfinaty

h width of jet at infinity

H width of stream of accelorated fluid upstream at infinity
chord distance
CT’ CJ, CQ thrust, moment and mass coefficicnts defined by equations
(12), (13) and (14)
CLg CD 1:ft and drag cosfficients
Cm momenb cocfficiont about mid-chord point
Crio value of Cy at Cp = O
T anglc botwoen main stream and jet flew at the trailing odge

a;/
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a4y Gg ineidence and no-tift angle respectively
& dofined by eguation (51)
o defined by cquation (27)
K defined by cquation (30).

3+ The Tdeal Thrust of a Two-Dimensional Jet

We now calculate the thrust on an aerofoil due to a two-~
dimensional jet leaving the trailing edge at some angle to the main
stroam. Two principal assumptions are made, namely (1) that the jet
causes no flow separation and consequent form drag, and (2) ihat the jot
18 an irrotational strcam soparated from the main stream by two vortox
sheets. The flow pattern is shown in Fig. 1. The fluid vhich is
ejocted from the trailing odge CC' 18 assumed to cnter the acrofoil
at the leading edge BB'. (The case when there 1s a source within the
aerofoil 1s deduced from the present case below.) The fluid which passes
chrough the aerofoil can thus be regarded as flowing in an infinite
channel., The mass flow in this channel a8 constant but tho momontum flux
18, 1n generai, subject to a rapid increase somewhere within the aerofoil.
The velocity magnitude 1s continuous across AB and AlB', but in
general discontinuous across (D, and O'D! y the pressure 18 continuous
across each of these linecs.

The forces acting on the acrofoil are obtained by integrating
the pressurcs acting on bolh the external and intcrnal surfaces of tho
profile. In particular af T 2183 the thrust force oa the aerofoil
{acting parallel to the undizturbed flow), 1t follows from Fig. 1 that,

¢
T = i [ —f + f _‘/ P S:Ln.G dS’ aon(;-}-)
‘Epe Y prpe BI'EIC! BEC

whero & 18 the flow dircction on the profile mcasured from the
undigturbed flow direction, =8 15 distance measurcd on the acrofoil
surface, and p ais the pressure.

From Fuler's momentum theorem applied to the channel in Fig. 1,

J[ p 5ind ds - Jf p sing ds + H(p_+ p U?) - uip_+ psz) = 0,
A EFCD A'BYRCIDY
05 oo 0 . eee(5)

whore H, b are the widths of the jet at A A! and DD}, rospcctively,
U, V are the Jet velocatics at A AL, and D_ Dl respectively, and
Poos Poo are the fluid pressure and density in the undisturbed flow,

It 15 now nccessary to obtain a result corresponding to (5) for
tho "channels" of anfinite wiith which lie on each side of the jet. Consider
the flow an the channcl shown in Fig. 2. The wall G_ ¥, 1s straight, so
that the momentum thcorom yiclds '

- / p 5108 ds + Ho(po + pol®) - Ho ~ b)(p, + p,U?) = 0, .o (6)

qu-;\éo

where/
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where the suffices o and 1 denote conditions at G G}, and F_F!
respectively, and Hy, HEo = b arc the corresponding channel widths,
From continuity of mass

Policle = p; (g - b)U, . o (T7)

Tt 1s easily deduccd from Bernculli's theorcm {cf. any account of linear
perturbation theory) that

p, = fo {1 - M3} + 0(8%) ,

Py = Po - Pouoza + 0(8%)

and

whero & 1s defaned by

Us(1 + 8)

,.F'
i

and My a8 the Mach number at G G' . Substitution of these expansions
1n (6) and (7) leads to

psin ©ds = bp, + 0(8) .
JG!FI
oo oo

If we now let H, tend to infinity, & tenas to zoro, and

[ p 8in G dS = bpo [} ll|(8)
JG'F’
[eole ]

which gives the drag on a wall causced by the flow of an infanifo stream
past 1t. {Two cbvious applications of this result yields D'Alembert'!s
Paradox for a closed body.)

Applying (8) to the two regions outside the jet showm in Fag. 1,
we have by subtraction that

psmOds—f psmeds:=p4h-H). uJ%

* 4 PECD_ ALB'BIC'DY

Sublracting equations (5) from (9), and making usc of the continuity of
the prossure across A B, A;p’, qu and C'D;}, we faind

f | Vo e o s

PFl’Ct ‘B!EI‘CT-S

and/



and hence from (L)
T = poo(bV?® ~ HU?) , oo (10)

The thrust is thus independent of the angle of ejection, 7. From
continurty of mass HU = hV, so that equation (10} can be wratten in
the form

T . Q’ oo (11)

where Cp, C; and Cp are thrust, momentum and mass coefficients
defined by

Cn = =——————, o (12)

p_kV? 2hv?
) - _02—_—— B m——— 001(13)
J 2P cU 3 cy? ’

¢ o L0 or (1)

¢ being the asrofeil chord.
Two spocial cases of {11) are of some intercsti-
1. Jet derived from a source within the acrofoil.

In this case H = 0 in (10), and (11) reduces to

.- Os, eel(15)

a result farst gaven in Ref, 1,
2. Jet jowming main stream smoothly so that no vortex sheets occur.

In this case the velocity of the jet i1s the samc as that of the
malh streamjy n particular V = U, s0 that from (13) and (14)
Cr = QCQ. Bquation (11) then yields Op = 0, whereas if the fiuid
comes from a source on or within the asrofoil, from (15)

Cp = 20y e (16)

This last eguation grves the thrust coefficient due te a source on an
aercfoil, Similarly a sink on an acrofoil gives rise to a "saink-drag" of
amount 20%, a result that at least for incompressible flow i1s quite
well-known>,

It/
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It 1g important to distinguish between the character of the
flows giving rise to (15) and (16). In both cases the fluid comes from
a source within the aorofoil, oput in the caso of tho jet 1t dees not
turn the corners at the end of the jet channcl exit. This casc 1s shown
in Fig. 3(a). The jJet scparates at points B and T and in general
emerges at a different speed to the local flow, so that BE, and DG,
are vortex sheets, When the thrust zs given by (16), the flow wall
appear as in Faig. 3(b), in which the streamlincs IE, and EG,,
bounding the emitted fluid are not vortex sheets. Incidentally 1t has
been assumed 1n Fig. 3(b) that the circulation i1s such to make the
trailing edge E a stagnation point, but of course this affects the
laft only. The position of the stagnaticn point H will be a function
of C..

Q

As far as thrust is concerned the rosult for the "jet-type" of
flow {Fig. 3(a)*) can be dorived from the result (16) for the "source—
type" of flow (Fig. 3(b)*) saumply by replacing 2Cn by Cy. ILater in
the paper plausible rcasonsg arc gaven for adopting the same proccdure
vhen calculating the 1if+t.

L. The Basic Transformations

In the remainder of this paper we confine our attention fo
incompressible flow, although the results obtained can be cxtended to
subcritical subsonic flow by a fairly obvious application of linoar
perturbation theory. Before calculating the laft acting on the proflile
duc to a Jet-type of flow, wc consider a particular case of source-type
flow. The solJution for Jet-type flow i1s then deduced from this case by
replacing 2Cp by CF, and adding a further teru which araises from
the veloeity distraibution induced on the prefile by the vortex sheets
boundang the jet. This addational term does not, of course, arisc in
the source-type of flow, and must be calculated separately. This 1s
discusscd 1n more detarl in Section 7.

The particular casc of source~-type flow wo consider arises
when points H and E coincide with points B and E respectively
in Fag., 3(b). The complete z-planc (z = x + 1y) 1s shown in
Fag. u(a s 1n which the acrofoil is shown at the zero-i1ift position.
The problem will be solved 1f the relation between the no-lift angle,
€0y and Cg can be determinod, for 1f the aeroforl is placed at an
incidence a, from thin aerofoal theory the 11ft coefficient wall be
given by

.. {17)

G, = 2r{a - ag) -

This method assumes that both « and Cq are small enough to permit
the linear superposition of their offccis.

et ¢ and ¢ be the equapotential and strcam functions
respectively, then the w-planc (w = ¢+ iy) for the no-lift case
1s shown in Fag, L(b), The fluid 1ssuing from the aecrofoil 1s confined
betwoen the streasmlines ¢ = Q¢ and ¢ = @, and the acrofoil is
assumed to be thin so that 1ts length in tho w-plane can be taken to be

Uc. Tho origin of the w-planc has becn selected to make ¢ = - e
at the front stagnation point and ¢ = 3Uc at thc point where tho

emitted flurd leaves the aorofoil.
The /

+The terms "oource-typo! flow and "jet-type" flow are uscd throughout this
report to indicate the absence or prcsence respectively of vortex sheets
geparating the cjected fluid from the main strcam. Both types of flow
can be rogarded as originating from a source within the acrofoll.
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The w-plane is mapped into the upper half of the i-plane
(Fag. b{c)) by

tg

SIC)
dt t

where A 1s a constant and t5 15 a recal coastant. Thus

w o= E‘Atg - Atgo log t + B + 1( 9 110(18)
whore B and € arc real constants, Sance v = @ when t >0, and
¢ = 0 whon 1t <0 on the real axas in the t-plane, 1t follows from
(18) that ¢ = Q, and A4 = = /mt3. If tho origin of the t-planc 1s
now solected so that ¢ = - 3Uc when t = +1, and ¢ = 3Uc when

t = 4%y, the constantis in (18) can be calculated, It 1s found that

1 - t3

( ? Q
W = =———— [ Uc - - log t0> + = log t + 1Q - 3Uc , oo (19)
1~ t3 \ i 7
vhere @ and %, arce rclated by
1 Q
__<__\ = 3 (1 - 12 + t3 log t3) ™. ... {20)
2K NUe/

The t-planc 1s mapped into.the Z-plane shown in Fig. 4(d) by

t = ~ cooh ;5;2_’,, é = M +ly. oo.(21)
The acrofoil surface 1s given by 1 = 0, so that 1f y = =+ 6 atb
t = ty 1t follows from (21) that
to = S1in % 6 . . (22)

It should be noticed that in the Z-~planc the central strcam-—
line of the fluid emorgang from the acrofoil lies along y = =, vhile
the streamlincs ¢ = O and ¢y = @ 1lic on each side of y = =m. 4An
cquation giving the valucs of log U/q + 16, whore (g,0) 128 the
vclocity vector in polar—co-ordinates, at any point in the Z-planc, 1n
torms of the boundary conditions, © givenon g = O (the acrofoil),
and the jJump in  log U/q (1f any) given on y = m, has beon derived
for application to unsteady acrofoil thecory in a previous rcporth. Its
application to the prescent problem 1s given in the next section. In
this application 1t 1s nceossary to know the value of n at ¢ = %Uc
on the strecamline ¥ = w, that 18 at a point midway botween D and
D' of Fig. 4(a). If the valuc of 7 1n question is o, thon
¢ = e at & = o + im, and (19) and (20) yield

Ue/



1 + sunlf 3o % Q Q o
UC = mreeemslosSidsiese \ UC -~ log 1-10 + - lOg (‘ ulnh. - >- " (23)
1-13 | x ﬂ °
9 2
Tt 15 shown below that sink?(3o) = 0(42)s also from (19) —— = 0(t5).
Ue

Honeco 1gnoring tormos O(tglog LO), wo deduce from (19) and (23) that

ginh % o ,sinh ¥ o 3
1+ (---------—) + log ( ——————— > = 0,
\ to

the solution of which 18
Slnh ;‘1;'0_ = - 00528 to . con(E)—l.)

Now by dofinition Q 18 the mass flow from the source, so that
(ef. cquation {14))

C. = == . .o e (25)

Tinally, by ignoring sccond-order terws,; we havo {rom (20), (22), (24) and

{25) that
I
& = - X 20 el 12
(7% )

and

(3R
N
.
wn

(;3 8 . o (27)

5. The Theory of Acrofuils Bohand whach Fxtcnd Vortex Sheets

At this point 1t 1s convenient to mtorrupt the caloulation
commonced above to guve an outline of the thoory of acrofoils which have
vortex sheets lying along their trailing-~cdg: streamlines, It includes
ordinary acrofoil theuory as the special case whon the strongth of the
vortoex sheet vanishos.

The first step 1s to transform the w-plane nto the Z~plane
as 1n the provious soction. In the usual applications to aerofoil theory
there 18 1o seurce or saink within the aerofoil, and (19) and (21) reduce
to

-

Uc cosh & ... (28)

W o= -

Howover/
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However, regardless of the form of the transformation by which the
Z-plane 1s achieved, in this plane the boundary conditions are comparatively
simple, the aerofeil lying on n = 0, 0O gy g 2w and the vortex sheot

on y = W —oog N & 0. It has beon shown that in thas planch
U 1 on 1 sinhZ (0 K(n) dn
f=1og -+ 10 = — a(y*)cot F(y* + 1Z)dy* + /‘ R
q 2% Jo 2%  J_oocos8h n+ cosh Z
... (29)
where K is the jump in log (U/Q) across the vortex sheet, i.e.,
B -t y=n-0 =T A0
U [ q
X = log - = | log - . ... (30)
4 ! U
T y=m+0 - = y=n-0

With slight modifications and approximations ihise equation can
be applicd to the jot-type of flow being considorsed in this paper. Theose
aras-

1.  If the jot 1s rclatively thin, i.e., Cn 1is small, then as
far as 1ts aerodynamic effucts on the serofoil arc concerned 1t can be
regarded as a vortex sheet lying on the sireamline ¥ = % 1in
-~ NEO, n = O hbeing the poant on ¥ = =® wherc the jet leaves
the aerofoirl and becomes free to assume a curved shapo.

2. The strength of the sheet (which to first order 1s dircctly
proportional to K) 13 the algebraic sum of the strengths of the two
vortcx sheets which separate the Jjot from the maan flow. 4 foruula for
K 18 deduced in the noxt section. For the source-type of flow discussed
in the provioas section, X =~ O.

Bince limq = U, and lam 8 = 0O, 1t follows from (29)
z=0 z2=0
that 1lim f(z) = 0. Now 2z =>co implies that w => o and hence from

%=0
cauations (19) and (21), that ¥ — —oop therefore

1am £(&) = 0. e (31)

i =]

For the problem considered in this paper (29) becomes

1 2m i sinh Z ;o K(n) dn
f = - [ o{y*) cot & (y* + 1Z) dy* + / ,{32)
2R 4y 2n - cosh nn + cosh &
where from (31), © and K must satisfy
2n o
[ fdy = /‘ Kdn = 0. e e (33)
JO -0

Near/
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Fear 7 = —- ooy cguation (32) can bo cxpanded

1 I el 1 27
f = - oo ([ g™1ly edy + jl K cosh 7 dn ) + —62(:' ([ c™e1y &dy
- = Jo

©

v o]

-
- jk K cosh 27 dn\\ + 0(e38) cee (3
- oo /
while from (19) and (21)
Ue 1
e = - — /1 +k+0 (:"- )\ ~0a(35)
Lw \ we // ’

where k 15 a term of order 13 log tg. From the definition of f given
in cquation (29)

Uel® dz
f = log =———— = log (U - >. .ea (36)
q dw
Thercfore if
1 jem (-1 o
ay = = | c7InY 9dy —~ ——mm /‘ K cosh npd7n , eea(37)
?EJO T

1t follows from (%), (35) and (36) that

2

dw f Uc Ue 1 ? 1
-— = U 1+1(-—-)a1(1+k)—1<——->(‘t+k)9<a3-—ai> +o<—->.
dz } L / Lw 2 ‘j w®

We have derived this coxpansion in order to calculate the forces and
moment acting on the profile frow Blasius' theorem, but before doing this we
must discuss thoe poseibilaity of a jump in pressure across the vortex sheet.
There are two ways of approximating to the jet, which 18 a region bounded by
two vortex sheots, across which the pressure is continuous. Eithor tho jeid
can be replaccd by a thin shcot across which both the pressure and velocity
are discontinuous, (by removing the fluid within the jet), or by a single
vortex sheet, being ithe algobraic sum of the two separatc sheols, across
whach the veloecity alone is discontinuous, Either method cnan be adopted,
and they lead esscntially to the same result, but the sccond method is
adopted 1n this paper since 1t alonc gives the correct result when the
velocity in the Jet 1s reduced to the point whon source~type flow occura,

18/
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If the 11ft, drag and moment {about the orrigin in the z-plane)
are donoted by L, D and M respectively, Blasius' theorem states that

i dw -
D-1L = —p[ (—-)M, vee(39)
2 C dz

and

dw ?
M+ 1y = % f z(-— )dz, eeo (40)
c

dz

where N 18 a dummy symbol, and C 1s any contour cnclosing both the
aercfoil and vortex shect, the prcssure being continuous across tho
latter. Now since L must vanish, the acrofoil being an the no-laft

posaition, 1t follows from (37), (38) and (39) that a = 0, i.o.,
oL o
Ceog ¥ Ay + [ Kecoshndp = 0, eea (1)
5 Lo
and !
25
b = —-%'chQ/ 6 sain ydy .
@]
Hence
2m \
CD = - [ GSJILYdY, -...(h.?)

Cp being the drag coefficient. From (37), (38), (40) and (41) 2%t is found
from the theorem on rcsiducs that

B

M 2n o
— e o Cmo = ([ 8 cos 2ydy—-./ X cosh E’ndn) ’ eee(l3)

o} —o0

where a second-order tcrm depending on Cgp has been neglected. Oy, is the
moment coofficiont at zero 1aft and 1s therefore andependent of the origin
of the z-plane. From thin gerofoil theory the mcment cocfficient about the
mid-chord point is

Co = z0p + Cayy o eos (i)

It/



_‘;3_

It 18 convenient in the application of the theory to combine equations (33)
and (41) 1n the form

2R ro
/' 0{comy - 1) dy + / X (cosh n+ 1) dn = 0, cee (09

) Y e oo

and sdwalarly

g vy
,I' 8 {cos 2y - 1) dy-—j K (cosh 27 - 1) dp = Cngy coee (B5)
dey o
Two gpecial cases of the theory are:—
1. Gource=type of flow, i1n shich case K = 0O, DIgquationo (45)
and {L6) becone
Fen
0 = | @fcosy-1)dy e BT)
%
Z7
Cno = :‘_!‘f e(CUG (n’:y - 1) dy 9 les(ll—l»-a)
o
shile (42) 1o wachanged.
2. TFlow about a closed acrofoil, vhen Cn = G, In tias cuse tho

hY
drag must vanah, 1e.o., [rom (42)

o
O0siny dy = 0,
Jo

the oth2r equations remaining unchanged.

6. The Lift and Moment Duc to a Source-Type of Flow

Ve now return 1o the particular probloem digcucced in Dectzon k4
the ecquatzons appropriate to vhich arc (47, and (48). The dastrilution
of & as a function of y 18 shown an Fig. 5, which slhould be compared
wilh Pipe. L(a) and 4(d), In arraving at Fig. 5 we have asscmed the
acrnfoil Yo be essentially a flat plate at an angle of incidcnce ¢4, wilh
a parallel wall duct malkang an angle =7 with the acrofoil chord tacing
the fluid from vaithin the aercfoil to the trailing cdge. Of course exat
ducts w1ill not 1n praciice be as simple 1k shape ag the one we have

gsuned, but the principal featurc of a dact as far as the exscernal flow
13 conceorned will be the direction of the flow abt its exit, and provided
the final sceticn 192 slraight and scoveral tiuaes Jonger thar 1t 18 wide 1t
1z dafficult to 1magaine thatb our model will intreducc sigaif.cant er_orc,

Trom ,/
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From equation (47) and the distribution of © shown an Iig, 5
wo find that, ignoring torms O(&),

2rd
4y, = ==
ﬂ
Hence from (47) and (26) we have that
C, = 2%q + 4T \}—:@ (19)
L = Z L) v e '}
B

Similerly from (33) (in whach K = 0) and (46) 1t follows ihat

120
™~

and hence from (44) and (L9)

Cp = ~a . v s (50)

Hence OCp 1is independent of Cg, and the force duc to the source-iype
strean leaving the aerofoil must act at the mid-—chord point,

Thig now completos the ftheory of the source-type flowt, The
theory was developed for two reasons. PFirst and foremost 1t 1s a special
case of the more gencral jet=type flow, so theo sclution for thia lalter
caso nust degeneratc to the one found above wvhen V. = U, or Iroum (13)
and (%), when C3 = 2Cg. Second, 1t 18 an exact solution as far as
first—order torms are concerned - thig 18 not necessartly lrue of the
solution given below for the jet-type flow -~ and thercfore has aa intrinsic
valuo.

T. The Basic Assumptions 1n the Theory for Jei~Type Flow

As an Scction 3 at will be assumed that the jet does not wax
with the main flow, and that Bernoulli's theorom applies in the jet. Then,
since the avorage pregsure taken acrosn the Jot will not vary tc any degree
with distance along the jet {oxecept possibly ncar the Jot ex1it), 1t follows
that the velocity V, and heonee the coeflicieat CF, will romain
cssentially conslant along the Jet. In any case 3t will be assuncd that
Cr 1s ccnstant Trom tkhe jeb cxat to the peint at infinaty.

Supposo now wo have a nuaber of thin jels entering uniform
strecamg at the game angle 7. It 28 not unreasorable to say that thear
offeects on tho main siream vill depend essentaally on thelr momentum

coofflclents/

+Sco Ref. 10 (writton two years afbter the account givon above) for an cxact
treatment of source~type flow.
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coefficients, Cj, and that 2f two thin jots have the same momentum
coofficients they will have approximately the same overall effect on the
flow patterm. Now for source-type flow the momentum coefficient i1s egqual
to 20, oo that a Jet waith a momenium coafficiont of CJ can be said
to be cquivalent in 1ts influence on the mzan strecam to a scurco-type of
Jet the mass coefficient of which satisfices

Thus from the simple rnle cmboedied in this equation and eguation (26) 2t
follows that the number & appropriate te the jet-type of {low 1s zivon

by

5 - \/(C;f) . (51)

The equation, 20y = OCy, 18 the basic assumpticn in the
present method of dealing with jet—-type flows, The author has been
unable to find a theorctical argument for it, but the physical argument
given above seems quite plausible. It 1s strengthenod by the fact that
1f the rule 18 used to deduce the thrust of a Jet-type of flow from that
of a source-type flow the exact answer 1s obtained.

The theory given in Scction 6 for source~type flow simply takes
into account the dircet effeect of the asrofoil skape on tho 1:ff and
moment. No vortex sheets occur and therofore the socond integrals in
(45) and (46) vanish. With jet-type flow not only docs the aecrofoil shape
"directly" affect the lift and moment but 1t also has an "indirect" effect
through the two voriex sheets extonding bohind the acrofoil. The ainduced
velocities on the aerofoil surface due to these vortex sheects largely
cancel out since the elgebraic sum of the strengths of the sheets is quite
small., However the resultant velocaty distribution 1s still large enough
to contribute substantially to the 1ift and moment forces. This problom
18 considered in the noxt Scction.

8. The Intecgral Equation for the Vorticity in the Jot

In order to calculate o @nd C1, 1in the case of jet-type
flow 1t follows from cquations (h%? and (45) that we must first calculate
the function X(7n) - a function which from its definition (30) is clearly
proportional to the strength of the vortex sheet representing the jet.
The first stop 13 to obtain a rolation between the curvature of the Jot,
1t momentum, and the sum of the strengths of the two vortex shoois
separating 1t from tho main flow.

Consider conditions at a section EF of the jet bounded by the
vortex sheets AB and CD shown in Fig. 6. Jct strecam values will be
digtinguished by a suffix J. Continuity of prossure across tho vortex
shect AB yirelds

den? o 1.3
A+ 3Py Ayt 2Py o

whero A, A, are constants, and qm, gmy arc the velocities at E
just outside and inside the jot respectively. Similarly at F

As/
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Ay + Fpag = A, + dpady
and honce by subiraction
(ag + ag) (ag - ap) = (a5 + a5p) (opg ~ agp) -«
we make a slight approximaticn in thas equation to find
Ulag = ap) = Vg~ 95p) > .e e (52)

where V is the mean jot velocity at the section EF.

If n and = are distances measured normal to and along a
gtreamline of the jet respectively, the absence of vorticity within the
Jet yiclds

dq q

on R

H

where R 18 the radius of curvature of the streamline. Applying this

equation to the mid-streamline of the jet we have approximately
"

. .o (53)

where H 18 the width of the jet at EF.

Now the sum of the strengths of the vortsx sheets AB and CD
18

I = (qE = qJE) + (qJF -~ q'F)
= (Q.E - qF) - (qJE = qJF) §

and hence from (52) and (53)

T = --("’“1) . 0'0(5‘!{-)
R U
q
The sum of the jumps in log — across the vortex shects, namely K (see (30))
U

follows immediately from (54). To first order an K we find that

T hv ,V c
Koo - = (1)
U el \U R Hence/
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Hence from (13} and (44)

c
K = (¢ - E’CQ) et e (55)

which we note satisfies the condition that K must vanish for scurce-
type flow. To calculate K we thus need io know the shape of the jJet.
This can be calculated Trom equation (32).

The middle streamline of the jet is defined by & = n + 1w
in the Z-plane introduced an Section k. On this streamline ¢ = Us,

and 1gnoring a sccond-order term due to the source strongth wo use (28)
to find

- = Fcosh7 ., . (56}
AMsoon Z = 71+ 1% equation (32) ylelds+

eer (57)

= — e i e

sank 7 [21: B(y*) dy* fd K(n*) dn* ?
. .

2% cos y¥ + cogh 7 cosh n* = cosh n !

O

From (56) and (57) and an integration by parts 1t 1s found that

- —— - s g s . syt s A

c ar 1 2% sin y* 16 (y*) s cosh 7 cosh n* - 1
f [ 1

2 s o% sinh 7 (cosh 1 = cosh n*)?

dn;(.
o ©o08 Yy*+ cosh 7 J

wl

Tho integral oquation for X now follows from (55). It is

—-.---....-.—-_—_

an®* ’
(cosh 7 = cosh n*)* \f
2(58)

- 2C ) g‘ 27 sin y* d8(yx) o cosh n cosh n* = 1 ?
f - f K(n*

2 m sanh N cos ¥Y* + cosh 7

This integral cquation 18 not one of the standard types, but 1f
(cy - 2cC ) 1s small compared with {(Cy - 2C ) 1t can be solved by
1terat10n. On this assumption the first approxlmatlon 18

, .o (59)

(c; - 20y) [27: sin y# 48 (y*)

2 ® sinh 7 cos y* + cosh 71

whick 1f substituted in the last intogral in (58) should yield a more
accurate value of ¥ and so on. However in view of the other approximations
made in this paper we shall be content with the approximation (59). To use

equatlon/

Tal1 impropor integrals occurring in this report are to be given their
"principal values"8,
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equation (59) 1s essentially to assume that the jet lies along the
position that would bo adonted by a source-type flow, for which (since
we will usc equation (51) in evaluating {59) the momentum coefficient
equals CJ. This approximation 1s then, in a sense, consistent with the
argunent given in Section 7.

Evaluating the Stieltjes integral in (59) by substituting in
the discontinuitivs in O (y*) shown in Fag., 5, we arrive at

(c. -~ 20.) % S1n v, 2 T sin &
K = J Q ° + -“‘S ] 011(60)

2 ®sinh | cos Y, + cosh n  cos & ~ cosh 7

in which & 1s given by equation (50).

9. The Lift and Moment Due to a Jet-Type of Flow

From Fig. 5, cquations {(45) and (60) we deduce that

(c; - 20y) f 5 cosh o = cos &
2mO + 478 b ———me 2 {2 T cOt - log ( )
2% L 2 coshg - 1

cosh ¢ = 1 1
+ﬂtm%yoxlog( ) - O. oon(61)
cosh O + cos yb J

From E27g and (51) we find that 8 and o are small first-order numbers.
From (33) 1t 1s found that the same 1s true of yy. Thus retaining only
the highest order torms in {61):—

2(c; ~ ch) o2 + &
2‘11:(10 + 47d + ————————e T log (—--—-—-—) = 0.

Henee from (17), (27) and (50)

er (C; - 2C,) br
C, = 2ma 4 === o Tog (4.58) + == VT .
A VR
Therefore
Ly 20
Cp, = 2o+ ——=VC; 41+ 0.76 (1__9,>1 . ... (62)
Y _ ¢, ,{

In atlempting to dotermine the moment cocfficient from
equations (46) and (60) we have a difficulty which arises in a samiler
manner in the theory of an aerofoil in harmonic motion, It 1s that the
integral along the vortex shect, namely

1im
R:OO/
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.
lim j= K(cosh 2n - 1) dn , cve(63)
R-—"‘-’OO ‘-R

1s divergent, becoming logarithmical infinite in the limit. As in unsteady
aercfoil thoory this infinity arises from the mathematical simplafications
wntroduced at various points in the theory, and does not Lave any rcal
physical significance. In an cxact theory the logarithmic infinaties would
cancel out since the sum of the cocflficientzs of the logarithmic terms
arising in the inicgration arc i1dentically oqual to zero. Woe assume this
is the casc hore, and consider only the finite part of the integral (63).
We then find that this fanzte part 1o a term of second order, which can

be 1gnored in comparison with the term arising from the first integral

of cquation (44). This latter integral has already been evaluated in
Scetion 6., It was found that Cng = - 87, and hence from equation (50)

’ ¢
Cmo = -T\/"‘J" * ---(&F)
1

From (44), (62) and (64)

fa 0.76 2
Cm = —— o mmnmeme— T ( 1 - "“'g >o s (65)
2V Cy
Finally, in the case a = 0, wo deduce from (65) and (62) that the

centre of prossurc must be a distance

(1~ 2CQ/CJ)
H
14+ 0.76 (1 = 2CQ/CJ)

= 0.19 .e s (66)

a | MWl

forward of the mid-chord poant.
One final comment on the theory remains to bo made here. It 1s

that cquations (15), (62) and (64 ) include as special cases the cxact
solutions for source—type flow given by (16), (L9) and (50) respectively.

10. Comparigson with Experiment

As mentioned an the Introdiclion there 1s at the moment a lack
of cxperimental data on the phonomenag however a littlc work on the
subjcet 18 reported an Refs. 1 and 2,

In Figs. T, 8 and 9 theorotical and experimental values of
C, arc plotted against Cy. From (13) and (14) 1t is found that

h
CQ = J;; "FCJ ee e (67)
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In the experiments reported an Ref. 1, 7 = 55%°, h = 0.0095" and
c = 5.5" hence 20g = 0.059VTj. Equation (62) yiclds for this case

C;, = 3.85¥T; - 0.10 ,

which is the curve drawn in Fig. 7. The agreemont 1s gquato satisfactory
considering the approximations made in the theory and the acknowledged
crudity of the experiments.

For the exporiments of Ref. 2, T = 90°, H = 0,018 and
¢ = 8". Hencc from (62) and (67)

C, = 6'23‘/_0_.-1 - 0,18 ,

which 18 compared in Fig. 8 with the cxperimental values. Tho agroeomont
is not =0 good in this case, but this could hardly bo cxpected with such
a large cjoction angle. It is difficult o belicve that there 18 not
some loss in circulation due to separation of the flow at the trailing
edge., A further possible cause of the daiscrepancy betwoen oxperiment and
theory 1s that the angle T was not actually measured in the cxperiments,
but deduccd to be 90° from a specious argument bascd on the theory of

Ref. 1. Even 1f tho argument given 1s correct, on the accuracy of tho
Tigures given (one docimal place)} it is only posgible to deduce that

76° & T L1040,

In Ref. 2 1t 18 found oxperimentally that Opy = = 0.4 X 2r/Cre
2n

From (64) we find for this case that Cp, = - ——'fﬁ}/ﬂ =~ 0.141 % 205
L

so there 18 good agreement for this coefficient.

Finally an Pig. 9 we have compared thoory with some further
N.G.T.E. cxporamental results (as yot unpublished). The agreement in
0 < Cr < 0.25 could hardly be improved. There arc probably four reasons
for this succoss, namely (1) 1t appcars these last experiments have boen
carried out much more carefully than the earlier oncs, (11) the value of
T (31.4°) was rcasonably low, and the 1deal flow - which 1s the basis of
the theory ~ is more closely achieved, (111) at hagh values of Cyg
turbulent mixing will be an important factor, and (1v) an any case the

theory is only developed to first order in JE} .

11. Final Coumconts

The "thrust hypothesas" of Ref. {1 has beon rigorously
established for compressible flow. 4 first-order thoory for the 1ift
1n 1ncompressible flow has becn developed, which 18 in fair agrcoment
with the fow experimental results available., The 1lift theory is
deduced from the cxact theory for source-type flow by o plausible
argument, although more consideration is desirable here, Thoe theory
for pitching momonts is unfortunately vitiated by an 1nadequate
explanation of a logarithmic singularity arising in tho nathematics,
and the author hopes to be able to investigate this furthor at a later
dato.

It 1s perhaps worth reporting that closor agreemont with
experiment cen be achicved by zllowing Cy ~ 2Cp 1o vary with distence
(s) along the jot. The velocity of the jet is gradually reduced by
viscosity and turbulenco so that as S => ooy V => U, and from (13), (14}

and/
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and (55), K =» 0. Now for a jet discharged into st1ll fluid the maximum
velocity of the jet 1s knownl to be inversely proportional to V8 whore
8 13 measured from some suitable origin. If we assume bthat this law is
applicable to the velocaty V - U of the present problem, then we find
that

(CJO - 2C
C, = 2C, o =vemir
J Q P

o , +0 (68)

whore CJ, 18 the value of Cy at the jet exit. (Cg 1s constant along
the jet by continuity.) The use of (68) in equation ?55) leads to a
modification of cquation (60) and honce to o change in the coefficient of
(1 - 2CQ/CJ) 1in cquation (62). It was found that this coefficient was
roduced, and that the amount of reduction depended on the origin selected
for s. As this origin was varied from being some distance from the jet
ex1t to very close to the oxit the coefficient in question varied from
0.76 to zero., Howover the mclhod 15 rather doubtful theoretically, as
the use of (68) implies that Bernoulli's equation 1s not satisfred in the
Jet, which 1s incompatible with the derivation of (55).

The pressure digtribution over the acrcfoil hag not been
discussed in the roport, but 1f 1t 18 required 1t can be readily deduced
from cquation (29). We find that putting m = O and integrating by
parts

2 fem sin vy ro K(y) dp
log (1 -~ Cp} = - log sin & (y* =~ y) a8(y*) + ~—au . (69)
o % J_ cosh m + cos y

whore Cp 1s tho pressure coefficient, 1 - (q/U)a. The Staieltjes
integral can be ovaluatced immedirately from Fig. 5 and equation (51), while
the second integral can bo calculated from equations (60), (27) and (51).
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APPEDIX I

16th Aprail, 1955

The following Appendix clarifies some of the physical assumptions
made above, about which some misunderstandings have arisen. The distinction
botweon source-type flow and jet-iype flow 18 clarified, and the model of
the latter type of flow used above is discussed in some detail.

Some comments are also made on other theories of the jot flap.

1. Basic Assumptions made in Paper

1.1 Source-Type Flow

Source-type flow can be defined as flow in which a source on or
within an aerofoil produces fluid at the same total head as the main strcanm
fluid,

Consider the flow shown in Fag., 10, A source at 2 omits fluid
which flows down the duct EFC and then into the main stream. Stagmation
points will occur at points D and D!, and strcamlines DGyy D'Gl
will separate the source fluid from the main stream. Contanuity of pressure
across D'Gl, DG, implics continuity of velocity across these sireamlines
provided we have sourco-type flow. If the total head of the source fluid
18 not tho same as that of the main strecam Tluic, only the pressure will
be continuous across DGy D'Gl, and these streamlines wall now be vortex
sheets,

Returning to the casce of source-type flow we notice that the
positions of throe staghation points have to be determined to define a
unigue flow., The third stagnation point 1s at B, ncar the leading edge.
If wo first assume that D coinecides with the trailing edge P
(Joukowskits condition), then tho positions of the other two stagnation
points follow from (1) the value of the circulation, and (2) the source
strength. At a given valuc of tho circulation there 1s just ong source
strength that makes D' coincide with € at tho duct exat, and this
produces the flow pattern shovn in Fag. 11,

The flow pattern of Fig. 10 1s clearly physically unrealistic =~
scparation would occur at points C and F -~ but that of Fig. 11 could
be achieved in practice. For tho flow shown ain Fig. 11 any change in
incidence would require a chango in source strength to maintain the
atagnation point D' at €3 but this can bo shown'~ to be a scecond order
effect, which for small values of tho source mass coefficient, Cqy and
the incidence a can be ignored.

Now it is p0351b1e10 to dovelop an exact thoory of sourco-type
flows which allows for the duct shapo and is independent of the
magnitudes of C and a. However as this exact theory takes many pages
to develop rigorously the theory given in 86 was an approximato one, valid
only to first order in Cq and a. (Thas restriction 18 made clear after

equation (17) of Bb6.)

To this order of accuracy 1t 1= shown in 86 that for the type
of flow shown in Fig. 2,

ZCQ
CL = 27 + 4y [-—%, cea (1)
x

where/
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where T 18 the angle a varallel walled duct makes with the chord line.
The mass cocfficient in (1) 18 the usual one defined by

, . (2)

whore Q 18 the maos output of the source per sccond, U 18 the
tndicturbed main strewr velocity, and ¢ is the acrofoal chord. It 1o
alco shown in 86 that af Cn 5 tho momeni cocfficient about the midchord
point,

Ch = -a. vee (3)

Equations (1) and (3) 1gnorc acrofoil thickness cffocits.

These couations were deraved by an application of Blasaus!
thoorcu, a procoedurc which has rocently becn claamed Winvalid"9,  There
15 no doubt at all that Blasius' thcorem can be applied to problens in
which sources or cinks occur on or near gerofoils (sce, for cxample,

p. 213 of Ref. 11). The method used 1n B6 ray not be adequately
exploined, It 13 as Tollows,

First the function (dw/ﬁz), whore w18 the conplex stream
functicn, 1s (correctly) cxpanded in the neaghbourhcod of zafinity. The
expansion 18 cxpresscd in terms of the variable &, wherc Z 1o defined
by cquations (19) to (21). Then the correscponding expansion of tke
rclation between the £ and w-planes 15 writton down, cssentially
1gmoring the terme in Cp, and likewase for the relation betweoen the
w=- and z-pianos. This permits {dw/dz) to bo cxpanded ncar infinaty
1n the z-plance (not given 1n B6), and Dlacius! thoorom applied, Thus
the tiethod 18 cquavalent to ignoring the vffeet of the source on the
relation between the £ and z-plancs, but tokang 1t anfo account in 1ts
cfloet on  (dw/iz).

Thas 18 o cormon type of anproximation in acrodynamics. For
instance 1in the theory of flaps the effecct of the flap on the wvelocity
distribution is corrccily calculated, but 1ts effect on the mapping of
the w-plance on to the z—-planc 1s i1gnored, and this 18 known to result
in orror torms of only sccond order in flap deflcction angle.

In any caso the mothod used in 86 1 fully gustified by the
fuller and much longer analysis given in Rof. 10, wherc 2t 1s shown
that tho relation between z and & near infinity i1s exactly of the
form

alP
b = - — {1+0(1/2)], e (1)
Uz
Q
where in the notation of §6, P = ( 1 = = log t4 ),/(1 - %2} .
Lra S

With the aid of (4) instcad of {35) of @6, Blasius?! thooron can be applied
to 1he problem without the approximations nenticned above.

1.2/



1.2 Jot-Type Flew

In Jet-type flow the fluid produced by the source 18 at a
differont total head from that of the wmain stream flow - usually a much
higher total hoad. In this type of flow, although the pressure rmust still
be continuous acrocs the surfaces FH,, CHY (soce Fag. 11), this is no
longer true for the velocity, and se ¥FH,, CH!, are now vortoex shoets.

The principal differencce between the source~type flow and Jet-type flow
lice 1n tho presence of these vortex shects in the latter casa.

There is ancther differcnee botwoon ihe two flows which occurs
right at the jot cxat, and 18 worth noting., In source-type flow the
tangonts to the dividing streanlincs TFH,, CHY, at the separation points
biscet the angles of the jet eoxit, as shown in Faig. 12. On the otlher
hand in Jot-type flow the different stagnation prossurce in the two
gtrcams implies that thore cannot be stagnation poants an both streams at
C and F, and hence the flow nust separate tangontially vo that surface
on which the total head 1s greatest. In Fig. 12 it is assumed that the
Jet 18 at a greator total head than tho main stream, and so the jJet flow
is ftangential to EF and EC  In gencral the streamline curvature at
thoe separation points will be infinito.

The author 1s of the opinion that the effeets of this
discontinuaity an bchaviour betwecn the two types of flow at the jet oxit
cre very localizod, and play an insignificant part in determining the
rain characteristics of the flow. It 18 cortainly difficult to beliove
that tho 1ift and moment coofficients for jet-type flow do not tend
contrnuously to their values given in (1) and (3) for source-type flow,
as tho total hoad of the jet tends to that of the main sirean. Thas
belief is tacitly acsumed in B8.

Now the really significant difference between the two types of
flow laics in the vortex shcets. These sheets exist samply becausc the
total hoed of the Jet differs from that of tho main strcam. In fact 1t
1s shown in B8 that at any point aloag tho jot the algebraic sun of the
gtrongths of tho two shoets is given by

c
I‘ = U (C "20 ) Y | "'(5)
in which CJ 18 the moment coefficient
2oV v ()
C. =2 =—— = 2=2C. , oo (6
J UQ U Q

V is tho velocaty in the jet at infinmity, and R 1s the mean radius of
curvature of the Jet. In vhe derivation of (5) 1t 1s assumed that Cr
18 congtant along the jgot, and thal the jJot waidih 1o cwall cowparcd with
R. For sourcce-type flow, V = U,

C; = 208y, ... (7)

and hence from (3), I' = O.

Now/
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Fow to represcnt fully the offcets of the vertex shoets we
neod to consider not only their algebraic sum but also thoir possible
doublet contribution. This point is cmphasizod an Ref. 12, and apparcently
overlooked 1n B8, Howover even 1f tho doublot contribution significantly
affects the velocity distribution, thisg contributzon will be very necarly
syruetlrical about the cliwrd lino, cspecrally for small values of 7, and
bhence the offect on the 1ift and moment forces will largoly cancel out.

The author's molhod of deducing the 1lift force in jet-type flou
1% basod on one further assumption, namely that CJ and not Cg is the
sipnificant parameter for such flows, and this socms to be gonorally
accopted an Refs. 9 and 12, This means that, considoring source-type
flow ng a spocial case of jot-type flow, wo should wrato (1) an the form

'é}
C, = 2ra+ MT'J -, Lo (8)
™

on nakang use of (7).

Wo gtart with this rcsult for source-type flow. Suppoasc now
tho total head of the jot 18 wcrcased above that of the main streamnm,
Cy beang kept constant, thon jot-iype flow rosults. By (5) vortex
shouts new appear giving rise to an addiiional contribution to Oy
Hence 1nstead of (8) we have

C
Cp = 21ta+l;r\j-f+f (cJ—ch), eee (9)

where L is a funcilion which romains to ho determined. In 59 it was
calculatod to first order an (Cy ~ 2Cg) on the assumption that tho jot
shape remained unchanged during the increasc of the total head of the
Jot. Tho result as

-

' c. ! 2C
Cp, = 2ma + 4T ji ’i1+o.76 (1-——51)1J . ve.(10)

oL Cx

Tho nothod of doriving {(10) shows that it can only be valid for small valucs
of (Cg - 2OQ), the actusl range of validity boing bost deternined by
compsrison with oxporiment. Certainly (10) 18 exact in tho limit Cr = 2Cq.

2. Other Theories of tho Jot-Flap

2.1 The Mochanical Flap fnalopy

The author eriticined the carlior presontation of tho flap~
analogy thoory in 81, and now fools that this criticism althoush
philosophieally corroct, docs not do Jurtice lo the theory.

It will be rceealled thal tho method is based on Msimailaraty!
being defined bhotween the jot-flap and a mechanical flap in such a way
that the lifts on the aerofcil and jeot are nade cqual to the lifts on
the fixed part of the flapped aerofoil and flap roapectivoly. On this
basis 1t 13 established that CL can bo written in the form

o/
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n
CL = "'F (OJ, T) ] IOO(11)
T

where F o o1s a known function, and n  1s that value of the defleection of
the mechanical flap nccessary to produce the amposcd similarity. As
powmnted out in §1, (11) merely shifts the problem from that of detcrnining
C;, as a fumction of Cy and 7 to that of detemaining 7/7 a3 a
function of Cy and 7.

;Howevcr, from physical considerations, 1t seems rcosonable to
supposc that n/T 18 only a slowly varying functaon of Cy and T, and
30 (11) does gimplaify the problom in practzce. The significant featurc of
the flap-analogy 1s to transform the problem from that of detormining a
rapidly varying function to that of determining a slowly varying one, If
nFT can be approxamated to by a constant over a reasonablc range of valuocs
of Oy and 7, then the nethod depends only on o single cxporiment to
determine the valuo of n/?, and =o can be tormed a "somi-ompirical®
theory.

2.2 The Theory of Reference 12

A rouzh draft of Ref., 12 was receatly made avarlable to the
cuthor. The methed 1s to ccllapsc the jot into a thin sheot by tokaing
thoe limit h -> 0, V => e, such that Cy romains finzte. Then, on
the agsumpiion that T 185 small, the probicem 1o lincarased by makaing
the usual thin aerofoil approximaticns, This leads to an integral
cquation for the downwash on the jet, whach appears to bo related to
that found in B8 for the strength of the vorticity in the jet. The method
18 ruch morce dirccet than that givon by thoe author, and when tho basic
mtegral equation has been solved, should gaive rcsulis valad for quito
large values of Cjt.

Two remarks on the limatations of thic theory arc worth makang.
firstly the lamat h -> 0 used in the theory invealidates 1t for small
values of (CJ -2 CQ). Scecondly the author found that in his approach
to the problom this limii crecated nathematical dafficultics at the jot
cxit that he was unable to surmount. The limat h -> 0 nzy be ,
satisfactory well away from the trailing cdge, but 1t scoms to bo an over—
sinplification in the neighbourhood of the traziling cdge - cspecially as
the answor dopends so cratically on the character of the flow at the
trailing edge. It 18 to be hoped that this viow is wrongx.

2+3 The Theory of Refercnce 9

Thaiz theory closely follows that gaven by the author, oxcoept
that the 1aft induced by the vertex sheets — %he term £{Cy ~ 2Cq) of
cquation (9} =~ 1s caleulated by an altornative mothod. This alternative
method 1s to usce tho well-imown theorcm that the 1ift on an acrofoil
bchind whach cxtends a vorter choct as cqual to pUl'y where I as tho
total circulation around both the acrofoil and the sheot. Thon waith
tho aid of the author's rosult for tho strongth of the vortex sheot
(oquntlon (5)) 1t is deduced that the darcet contraibution to Oy
from the circulation about the sheot alono s (CJ - 20q)T. Although
tho author of Ref. 9 apparcntly appreciateos that the vortex sheet also
has an aindiroct contribution to meoko to CI, = by uwedifying tho

01rcu1at10n/

tI{ subscquently proved that Spencel's integral cquation (when transformed )
wos 1n ossence 1dentical to that given in g8 (sce Appendax II), and
" conscquently this last romark is not truc.

This hope was apprently justified.
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circulation about the acrofoil — this 1s ignored and (Cy - QCQ)T 18
takon to be the total contraibution from the shoot, that is, 1t 1s
1dentificd as the function £ in (9). The function £, of course,
represents the cffcet of the sheot on tho total circulation about both
acrofoi1l and sheet. The method of calculating 1t gaven in 88, whatevor
1ts deficrencies 18 sound on this point.

A further curious anomaly to be found in Ref. 9 1s the acceptancs
of the term L€ /r from B9 despitc tho eriticism made in the same paper
of its derivation from Blasius' thoorem. No other dorivation of this term
has beon gaiven.

Another criticiem mado in §2 of Rof. 9 of the author's theoory
iz on the gqucation of whether to take the pressurce continuous or
discontinuous across the vortex gheot. Both melhods arc acceptable, but
witll the particular wodcl adopted in B8 1% was definitely proferable to
tako the pressure as boing continuous - the author wished to avoid Lho
awiovard limat h -> Q (soc the sccond paragraph of go.2 above).

APPENDIX T1/
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APPRNDIX IT

19th November, 1956

In a recent pa,pcr13 Spence derived an antegro-differential
equation for the slope of a hagh speed sheet of air cmergang from the
trailing odge of an aerofoil, In this Appendix 1t 1s shown that this
equation is identical in form with one given by the author in 98, a
voint which was ovorlooked by Spence. The author's derivation i1s more
dircet, becing based from the start on a well-imown soluiion possessing
the appropriate typc of mixed boundary conditions.

1. Spence's Method

Sponce lincarizos the probleom from the start by applying the
boundary conditions on y = 0, wath tho acrofwil in O ¢ x < 1, and
the wake 1n 1 < x <o, The strength of the vortacity in the wake, T,
1s (sec 88)

ro. ) (1 <x) (1)
= bl C -’20 < X ] e 1
or Y o

where U 18 the undisturbed main stream velocity, c 18 the acrofoil
chord {unity in the present case), R 1s the radius of curvature of the
Jet, Cq 1s tho mass coefficient, Cq =z mass flow in the Jet/Uc, and
Cy 1s the momentum coefficient, CJ = woumcntum an the Jot/%cha, where
p 1o the density. In order to avoid the difficulties of the non-
komegencous flow Spence allows the Jet width to tend to zero in such a
way that C romains finite, but Cq +cnds to zero., This gives

a0
I‘ = _;'UCJ. ""—'1".‘ ] (1 <X <oo) E 001(2)

dx

whore 8, is the slopc of the Jet.

Lot the vorticity sirength on the acrofoil be Uf(x), then the
dormwash equation is

[ dE - m——— e dg * o (3)

u ot r(r) uc; 0086, /AE
[) £~ x hﬂ-[ E-x

If 0, is the (known) average slope of the asrofoil surface, then
W(X)EB -U8; 1m 0 <x <1, and w(x)‘ﬁ -U% an 1 <X <o Thus
we arrive at the pair of simultancous intcgro-difforential equations

1 e £(8) Cy o020,/ = =~28; (0<x <1)
- -[ e QE, = -f e dg .
dy E-x 2rd, E- = = =28 (1<x <o

Dr.i. B. Bllllngton/
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Dr. A. B. Billington of the Acronautical Rescarch Laboratoriocs,
Fishorman's Bond, Melbourne, Australia, rcduced this pair of cquations in
two pages of algobra (too lengthy to give herc: scc Spence's paperil
to the singlc integro-differential cguation

1

1 ,x - 13 g Fey®) Cy ooy & 0O, /08 ]
e .
N A U N e A T

eor ()

in which we have made somo trifling changes in notation. Spence then
solves this cquation by an approximate Fourier series nethod. From thas
solution the 1:ft, moment and pressurce dastribution arc readialy deduccd,

2. Woods' Moethod

A moro darcet derivation of {4) can bo obtained once 1t is
rcalized that the mixed boundary condations = 8, given in 0 <x <1,
' given 1n 1 < X < oo+~ arc Just those occurring in the well-established
theory for unsteady aerofoil motion,

Let the acrefeil and wake bo transformed into a (U;Y)*plane
such that the acrofoirl lics on 77 = 0, 0 <y < 2% aud the vortex
sheet representing the jot lacs on ¥ = 7, =0 <7 <0, then 1t 18
casily shown that (sec Ref. L)

U 1 2n
-+ - -—-j 9(y*) cot } (y» + in~ y) dys
Q 2 Jg
1 sanh (7 + 1Y) o T (n*) ane
. f : i (5)
2Un coshn®* + cosh (n 4 1\/)

where (q,9) 15 the velocity vector in polar co-ordinates at (m,¥).

The conformal mappang which takes y = =0, 1 $x 2 O3
y = +0, 0¢<xgty, onto n = 0, 0 £ ¥<2% and
¥y = 0y 1 X oy onto ¥ = % 02N 2=0c 18
2 = X 41y = %(1—cosh (U+ iY)), ...(6)

although this transformation was not made 1n the deravation by the author,
as 1t was more convenient to work in the (n,y)—plane.

On tho jet, y = =, (5) yields

sinhy {-[27: 6a(y*) dy* + -1- _/o S er e {T)
o) U =oe

]
cosy®* + coshn coshn¥ ~ coshn J

which combined with (1) immediatoly yiclds an integro-differential
equation for 0Oi., Unable to find an exact colution of this ocquation, the
author golved it approximatcly, only as far as the first step of the

L10uv1110-Neumann/
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Inouville~Neumann itorative process - a solution valid only for small
valuea of Cy - 2Cg. In addition the thecry was slightly complicated by
the requiroment imposed by the author that the solution remain valid in
the limat Cy ~» 20g, When Cj = 203 we have a homogeneous source-
type of flow for which the solution 18 known exactlyTO. While Spence's
method of putting Cg = O obviates the difficulty of the non~

homogeneous flow, it cannot provide a correct soclution for small values
Of CJ’.

3. The Equivalence of the Two Integro-Differential Equations

The equivalonce of (4) and (7) is easily shown. First from (5)

the assumption that O vanishes at infinity, 1.¢., at 17 = = co, gives
2% 1 ro
f 8,(y*) dy* - —f I'(n*) dp* = O, vee(8)
0 U

If (8) is now multiplied by sinhp/f{2x(coshn + 1)}, =and added to (7)
there recsults

sinh 7 dfeq: 8(y*) (1 - cosy*)dy*

Gi P —
o7 ., (1 + cosh 7} {cos y*+ coshn)
1 ¢© I'(n*) (1 + cosh n*)an* ?
+.../ . -..(9)
U (1 + cosh n) {cosh n* - cosh 1) J
-00
On the aerofoil (n = 0) and jot (y = =) equation (6) gives

=

(1 + cosh 1), by which (9) 1s transformed

- LRI O (e

x = (1 -cosy), x =
into

Q
C. oo 38, fox* ™ \F z

+ —1[ : ( ) dx* ) ICI(TO)
L 4 x*-x Xx* -1 .J

on elimnating T by (2). 4s 3{9(y*) + 6(2n - ¥*)1 is the avorage of
the slopes on the uppor and lower surfaces of the aerofoil it is
immediately obvious that equations (4) and (10) are identical.

This means that equation (4) 18 simply an alternative form of
equation (7). Although the author derived egquation (8) in §5, he did not
combine 1t with (7) to produce the form (9), which exactly corresponds
with (4). Equation (9) is clumsier than (75, and in the (7,y)-plane
at least has no advantages over (7).

o/
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L. Conclusions

The method of dealing with the jet-flap given by Spence13
leads to exactly the same integro-differential equation for the jJet
slope (excepting a trifl.ng itransformation of variables) as that
derived earlier by the author using hodograph metheds. Tho goneral
sxpression given for the 1ift by Spence %hls gquation {105)) 18 also
exactly the same as that derived by the author, but this is not
acknowledged.

However Spence has carricd the numerical work of solving the
integral cguation, and derivang values for the lift and moment to a
stage which renders obsolete this part of the author's work.
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