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C.P. No. 388 

Some Contributions to Jet-Flap Theory and to 
the Theory of Source-Flow from Aerofoils 

- By - 
Sq. Mr. L. C. Woods+, M.A.s D.Phil., A.Z.R.Ae.S., 

(New Zealand Scientlflc Delence Corps, 
seconded to the Aerodynamics Division of the N.P.L.) 

The paper presents a theoretical study of the thrust, lift and 
moment on an aerofoil due to a two-dimensional jet of air ejected from 
the trailing edge at an angle T to the main stream. It 1s rigorously 
proved that in subsonic compressible flow the ideal thrust of the Jet 
(assumed not to mix with the main stream) is independent of the exit 
angle T. The theory for the lift and moment is developed for 
incompressible flow only. It is not rigorous, being based on the 
assumption that Jets of equal momentum and at equal values of T have 
essentially the same influence on the main stream. The theory is in 
satisfactory agreement with the few experimental values available. 

Two appendices have been added to the papor; the flrSt wrltten 
I* April, lV55, was added to clarify the paper end to answer some 
criticisms of its contents, while the second, dated November, 1956, was 
added to show the relation between the author's theory and that given 
later by Spcnce. 

1. Introduction 

Some recent reportslY have drawn attention to the fact that 
the clrculatlon about an aerofoil can be controlled by eJecting air 
from the trailing cdgc at an angle to the main stream. Because of the 
asymmetry of the resulting flow the Jet induces a circulation about the 
aerofoil, and hence there is en induced lift which is additional to the 
component arising from the momentum flux of the jet itself. To this 
oxtcnt the Jot 1s similar to a flap, although tho term "jot-flap" which 
has been applied to itI is perhaps too restricted, since other typos of 
control, o.g., a split flap, or a spoiler, 
bg) the more appropriate enalogy3. 

may, in certain circumstances, 

While it it not surprising that the jet induces a lift - in 
gcncral any asymmetric disturbance of the flow ~11 do this - it is 
remarkable that, provided the Jet does not cause flow separation from 
the aerofoil, and does not mix with the main stream, the thrust on the 
aarofoil is independent of T, the angle of eJection'. Thus, ideally, 
tho lift is obtained without loss in forward thrust. The proof of this 
result given in Ref. 1 is based on D'Alembert's paradox, which is not 
appropriate to the ppen contour of the aerofoil plus jet, to which it 
is there applied. A rigorous proof of the indcpcndonoe of the thrust 
and eJeotion angle for compre sslblo flow is given in tho next section. 

In contrast to the paradoxical result on thrust, the 
induced lift, while easily predicted qualitatively, is much more 
difficult to determmo quantitatively. The theory presented in this 
paper is not rigorous but involves one or two assumptions which appear 
reasonable. Also the agreement obtarned with exwrlmcnt provides 
further Justification of these assumptions. 
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The jet 1s assumed to be a dlstlnct stream of flurd separated 
from the marn strosm by two vortex sheets, The theory for the lift and 
moment is based on an aquatlon for the flow about an aerofoil behlnd 
which extends a vortex shoot, glvon In Ref. 4, where it was developed 
for appllcatlon to unsteady aerofoll theory. In the pressnt applrcatron 
the two vortex sheets produced by the Jet are replaced by a single vortex 
sheet, tho strength of whrch 1s shown to be proportional to CJ/R, where 
CJ is the Jet momentum coefficient defined by equatron (13) below, and 
R 1s the radius of curvature of the jet. Unfortunately the curvature 
cannot be determined until the vortex strength 1s known. This sltuatron 
leads to an integral equation for the vortex strength, which, If CJ 18 
small enough, can be solved by itoratron. In the particular case when 
the vcloclty of the eJected flujd 1s the same as the marn stream velocrty, 
so that no vortex sheets arrsc, the theory 1s exact. Such flow 1s termed 
"source-type ' flow to drstlngursh it from the "Jet-type" flow whloh occurs 
at hlghor eJectron velocltles. A fundamental assumptron of the theory 18 
that a jet of grven momentum end cJectron angle has essentially the same 
effect on the main stream as a source-type flow having the same momentum 
and eJectIon angle. 

The marn conclusrons are that (I) the lift coefficient CL 18 
proportional to rflCj and (11) that the lift due to the Jet acts 
approximately at the mrd-chord pornt. The conclusron that at constant 
T, CL 1s proportional to a~, 1s rn agreement wrth the few 
experimental results so far avarlable (see Frgs. 7, 8 end 9), but the 
dependence of CL on T has not yet been lnvestrgated experimentally. 
The author's theory is In good agreement vvlth experiment for values of 
CJ loss than 0.5 wrth T P 31.4O (the lowest value of T yet 
lnvestrgatcd). However as CJ end T arc increased there is an 
mcrcasmg discrepancy between theory end cxperlment, probably mainly 
due to turbulent mixing In the wake (at hrgh CJ) and loss of crrculatlon 
due to som" flow separation near the trallrng edge (at hrgh 7). 

The law CL= fij was also derived by an unconvlnclng argument 
In Ref. 1, based on an analogy with a mechenlcal flap. The reasoning 18 
essontrally as follows. The characteristics of a mechanrcal flap are 
functions of two independent vsrrables, namely EC, the flap chord, and 
Tg thS flap deflection angle, while It 1s reasonable to suppose that 
the Jet-flap characterlstlcs are likewzse dependent on the two variables, 
CJ and T. Hence any two relations of the form F(Ec, To) = f(CJ, 7) 
may be taken as establlshmg "sunllarity" between Jet and moohsn~cal 
flaps. On" of those relations 1s taken to be that tho "lift" on the jet, 
CJ Sin T 

Ft'Jc, To 1. 
1s equal to the lrft on the flap, which 18 a known function 
Thus 

1 
CJ = ----- F(Ec, 7") . 

sin 7 
. ..(I) 

The other relation is that the ratlo of the total lift to the lift on 
the flap In the mechanical systom, IS equal to the ratio of the total 
lift to the "lrft" In the Jet on the Jot-flap system, i.e., that 

%@c, To) = AJ(cJe 7) , . ..(2) 

in which I& 1s a function known from classical aerofoil theory, while 
the f"7.7" Of sz, 15 UnhOW,. Ellminatlng EC from (1) and (Z), we obtain 

.aJ = -%,, 79 To) , 
where/ 

. ..(3) 



where SI 1s a known fuact1on. Equdtion (3) 1s mcroly snothcr form of 
the definition of “similarity” given by (1) and (Z), and is valuoloss 
unless combined with somo theory or plausible hypothesis giving To as 
function of CJ and 7. Such theory or hypoihonis must take into account 
the basis of cquatlon (3), namely the definition of similarity. In Ref. 1 
TO is tacitly assumed to depend on 
ratio T/T~ 

T only? it is then stated that the 
“at this stage can only bc guessed at”, which of course bogs 

tho question complctcly. To given vslu~s of EC and To correspond 
fixed values of F an,d fi,, end hence from (1) and (2), fixed values 
Of CJ sln T and J. If the Jot-flap theory were knows it would 
then be possible to find fixed values of CJ and 7'. However without 
this theory w can still say that given values of EC and To d&ermine 
fixed values of CJ and T. It is not possible to impose a third 
rclationsh~p bctwoen T end To. The argument given in liof. 1 is not a 
theory, dospite the fdot that the final result is in fair agreomont with 
exporimont. (This criticism rlras subsequently modified; see B2.1 of 

Appendix I. ) 

In view of the criticisms grvon above it is only fair to stat0 
that in the writer’s opinion the authors responsible for Refs. l,and 2 
and other reports from the N.G.T.E., Iyestock, on the same topic have 
done moot valuable work in attracting attention to and elucidating the 
pl~ysical. nrinciplcs of this ncgleoted method of circulation control. 

2. List of Symbols --- 

x7 Y 
z 

n9 s 

vi 
n1 Y 

P 
V 
21 

H 
c 

CT’ CJS CQ 

‘L’ ‘D 
% 

cm0 

1 

tho physical plant 
= x + 1y 
distances measured normal to and along a strcsmlmo 

respectively 
velocity vector in polar co-ordinates 
dens-ity 
as a. suffix to dcnoto undisturbed stream values 
= L m the main streeiin 
local Z6ach numbor 
plane of equipotentials (6 = constant) and strcamlincs 

(* = constant), for zero circulation 
= $+I* 
cllrptic co-ordinates defined by equations (18) and (21) 

pressure 
vcloclty m jet at mfmlty 
width of Jet at inf:nity 

width of stream of accelerated fluid upstroem at infinity 
chord distance 
thrust, moment and mass cocfficicnts defined by equations 
(Q), (13) and (II+) 

1:ft and drag coefficients 

moment cocfficicnt about mid-chord point 
value of Cm at CL = 0 
an&lo bctwon main stream and Jot flow at the trallmg edge 
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a9 a0 1nc1dcncc and no--11ft anglo rcspcct1vcly 
6 dofmed by equation (51) 
u deflnod by 0quatl0n (27) 
K defined by cquatlon (3O)e 

3. The Ideal Thrustof a Two-Dunenslonal Jet I_- 

kc now calculate the thrust rx an aerofoll due to a two- 
dunenslonal jet leaving the tralllng edge at some angle to the main 
strosm. TSO prlnclpal assdmptlons are made, namely (1) that thr Jet 
CauSos no flow separation and consequent form drag, end (2) that the jet 
19 an lrrotational strosm separated from the maln atreaT by two vortex 
sheets. The flow pattern is shoun in Fig. 1. The flud which 1s 
ejected from the tralllng odgo CC' 1s assumed to enter the acrofoll 
at the leading edgo BB'. (The case when there 1s a source ulthm the 
aerofoll 1s deduced from the present case below.) The fluld which passes 
through the acrofoil can thus be regarded as flosnng xn an lnflnlte 
channel. The mass flow in this chael 1s constant but tho momcntm flux 
139 ln general, subJect to a rapld lncreasc somowhero vslthln the aerofoil. 
Tho vcloclty magnitude 1s contuuous across A,B and As', but in 
general discontinuous across CD, and <'Dkg the pressure 1s continuous 
across each of those lmcs. 

The forces acting on the acrofoll are obtained by integrating 
tho prcssurcs acting on both the external and lntcrnal surfaces of tho 
profile. In particular If T 1s the thrust force on the aerofoll 
(actmg parallel to the undloturbed flow), it follows from Fig. 1 that, 

T = ii,, - /B,F,,, + lB,,,,, - 1,,3 p slno ds9 a*-(4) 
whcro Q 1s the flow dlrcction on the proflln mcaxzred from the 
unduturbcd flow dlrectlon, s 1s dlstsnoe measurud on the aorofoll 
surface, and p 1s the pressure. 

From Euler's momentum theorem applxd to the channel m Fig. 1, 

I p sine ds - 
'AW3FCD lA~Bf,l,~,f 

p sine ds + H(p,,+ p,u") - h(p,,+ p,v") = 0, 

m c-3 c-2 q..(5) 

whore H, h are the wvldths of the Jet at A&& and DmDfW rcspcctivoly, 
U, V arc the Jet velocltiuo at A,Ab, and D,Db, respectively, and 
Pm* Pea are the fluid pressure and donslty m the undisturbed flow. 

It 1s now necessary to obtain a result corrcspondrng to (5) for 
tho "channels" of lnflnlte wLth which lie on each sldo of the Jot. Consider 
the flow in the channel shown In Fig. 2. The wall G,F, is straight, so 
that the momentum thcorom yields ' 

-I P su-8 ds + HO(PO + ~0%) -:% - b)(p, + p,U,") = G I . ..(6) 
" Gs& 

where, I 
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where tho suffices o and i denote condltlons at G,G& and F2; 
rospoctlvoly, and H", Ho - b dl‘" the corrcsponduq channel wldtk. 
From contuuty of mass 

, PoHoUo = 1’1 ho - b)Ui . . ..(7) 

It 1s oaslly deduced from Bornoulll's theorem (cf. any account of linear 
pcrturbatlon theory) that 

and 
Pi = p" [ 1 - @S) + 0(6a) , 

Pl = PO - PO@ + o(62) 9 

wher" 6 1s deflnad by 

u, = %(I + 6) 

and MO 16 the Mach number at G,Gk. 
m (6) and (7) leads to 

Substltutlon of thcsc expansions 

psznOds = bp"+0(6'), 
JG'F' mm 

If w" now let Ho tend to mflnlty, 6 tenas to z"ro9 and 

I 
J 

p "In @ ds = bp, 7 . ..(8) 
G'F' coo? 

vhxch glvcs the drag on a wall caused by the flow of an lnfuxto stream 
past It. (Two obvious appllcatlons of this result yields D'Alcmbcrt's 
Paradox for a closed body.) 

Applyxng (8) to th" two re@"ns outsldo the Jet shovn m Fig. I, 
WC have by subtractlon that 

psm') ds- 
i 

p sin 8 ds = pdh-H). . ..(v) 
' AmpECD, A'B'E'C'D' 03 co 

Subtracting cquatlons (5) from (9), and making use of the contlnuty of 
the pressure across A,Bs AAB', CD and CID;, we find 
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and hence from (I+) 

T = p,(hVa - HUa) . . ..(lO) 

The thrust IS thus lndopendent of the angle of ejectlon, r. From 
contu-ulty of mass HU = hV, so that equatlcn (10) can be written m 
the form 

CT = CJ - 2cg , 

where CT, CJ and CQ are thrust, momentum and mass coeffuzients 
doflned by 

T 
'T = --- t 

+mcu = 

P,hv = 2hV" 
'J = ---- = --- , 

&$I" cua . 

c belng the aerofoll chord. 

Two special cases of (11) are of some intcrcstz- 

1. Jet derived from a source mthm the aorofcll. 

In this case H = 0 in (IO), and (11) reduces to 

cT = CJ' 

. ..(li) 

. ..(I21 

. ..(13) 

. ..(14) 

. . ..(15) 

a result first *lven In Ref. 1. 

2. Jet Jculng main stream smoothly so that no vortex sheets occur. 

In this case the voloclty of the jet 1s the semc as that of the 
ma3.n stream3 zn particular V = U, so that from (13) and (14) 
CJ - 2cQ. Equation (11) then yields @I = 0, whereas if the fluid 
ccmcs from a source on or within the acrofcil, from (15) 

cT - 2c 
Q' 

. ..(16) 

This last equation @vcs the thrust coefficient dze to a source on an 
acrofoll. Similarly a sink on an acrofcil gives r33e to a "smnk-drag" of 
amount 2c 

Y 
a result that at least for incompressible flow 18 qulto 

well-lonom , 
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It 1s important to dlstmgush between the character of the 
flows avmg 1,190 to (15) and (16). In both oaeos the fluId oomes from 
a source wlthln the aorofoll, out in the cast of tho Jet It does not 
turn the corners at the end of the Jet channel oxlt. This oasc 1s shown 
2.n Fig. 3(a). The Jot separates at pouts B and D and In general 
emerges at a different speed to the local flow, so that BF, and DG, 
are vortex sheets. When the thrust 1s given by (16), the flow will 
appear as in Fig. j(b), xn which tho stroamllnos I!&, and EG, 
bounding the emitted flud are not vortex sheets. IncIdentally It has 
been assumed In Fig. 3(b) that the clrculatlon 1s such to make the 
tralllng edge E a stagnatlon point, but of course thrs affects tho 
lift only. The posltlon of the stagnatIon pout H ml1 be a factIon 
of c 

Q' 
As far as thrust 1s concerned the result for the "lot-type" of 

flow (Fig. 3(a)+) can be dorlved from the result (16) for the "so&e- 
type" of flow (Fig. 3(b)+) sun_oly by -acing 2Ca by. Later 111 -. -.- 
the paper plauslblo reasons arc glvon for adopting the same procedure 
when calcuiatlng tho lift. - 

4. The Basic Transformations 

In the remalndcr of this paper we conflnc our attcntlon to 
mcompressible flow, although the results obtained can be extended to 
subcrltlcal subsonic flow by a farly obvious nppllcatlon of 1lncc.r 
perturbation theory. Before calculating the lift acting on the profllo 
due to a Jet-typo of flow, WC consider a particular case of source-type 
flow. Tho solution for jet-type flow 1s then deduced from this case by 
rcplaclng 2Cg by CJ, and addug a further toru! which arlscs from 
the voloclty dlstrlbutlon Induced on tho profllc by the vortex sheets 
bounding the Jet. This addltional term does not, of course, arlsc m 
the source-type of flow, and must be calculated separ.~tcly. Ths I.S 
dlscusscd In more d&all in Section 7. 

The particular cast of source-type flow wo consldcr arlses 
when pouts H and E coincldo with points B and E rcspcctlvely 
In Fig. (b). The complete e-plane (z = x + ly) 1s shown In 
Fuzz. 4(a y 3 in which the acrofoll is shown at the zero-lift posltlon. 
The problem ~11 be solved If the rclatlon bctwcen the no-lift angle, 
a09 end CQ can be detcrmlnod, for If the aerofoll 1s placed at zul 
lncldcnce a, from thin aerofoll theory the lift cooffloicnt will bo 
given by 

CL = 27t(a - ao) . . ..(17) 

This method assumes that both a and CQ are small enough to pormlt 
the llnoar suporpooltion of their cffccts. 

Let $ and I bo the equpotontlal and stream fun&Ions 
respcctlvely, then the w-plant (w = # + ie) for the no-lift case 
1s shown m Fig. 4(b). The fluld ussung from the acrofoll 1s conflned 
between the strcamlmes w = n and P = Q, and the acrofoll 1s 
assumed to be thin so that Its length In the w-plane can be taken to be 
UC. The orlgu of the w-plane has becn selected to maka 4 = - @c 
at the front sta@atlon pout and # = &UC at tho point whore tho 
emlttod fluld leaves the aorofoll. 

The/ 
-- 

+ 
The terms "souroc-typo" flow and "jot-type I' flow are used throughout this 

report to lndlcatc the absence or prcscncc rospcctlvoly of vortex sheets 
separating the oJcctcd fluId from tho man strcsm. Buth types of flo{J 
can be regarded as orlginatmg from a source Mnthin tho acrofoil. 
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The w-&xxz is mapped into the upper half of the t-plane 
b-g. J+(c)) bY 

dw t ,” -- = * t --- 
( ) 

, 
at t 

where A 1s a const,ant and t" 1s a real constant. Thus 

w = lAta - At; log t + B + IC , . ..(~a) 

whore B and C are real constants. SlllO" # = Q vhcn t > 0, and 
B = 0 when t < 0 on the real ax~.s In the t-plane, It follows from 
(18) that C = Q, and A i - Q/&$ If th" "rlgln of the t-plan" 18 
now selected so that $ = - &UC when t = +I, and # = 1%~ when 
t = ito, the constants m (18) CEI ho calculated. It 1s found that 

1 
- ta f - : log to Q w = ---- ( IJrj + - log t + 1Q - -@c , . ..(19) 

-i-t,:\ 7[ 7c 

whihcro Q and to arc related by 

t"o (1 - tg + tg log tg) 5 . . . * (20) 

The t-plane 1s ma?ped mto,the g-plane show in Fig. k(d) by 

t = -ooohJz, z = 11 + 1y. . ..(21) 

The acrofoll surface 1s gxvon by q = 0, so that If y = K + 6 at 
t = to It follows from (21) that 

t 0 = sm$6 . . ..(22) 

It should be noticed that In the Z-plan" the central stroam- 
llnc of the fluid cmcrgmg from the acrofcll 1~~s along y = 7c, whhllc 
the stresmllncs @ = 0 and ti = Q 110 on snch sldc of y = 7~. An 
equation glnng the valuoo of leg U/q + ie, whore (q&3) 1s tho 
vcloclty vector m polar-co-ordinates, at any point m the t;-plane, ~1 
tens of the bou&.ry ccndltwne, 0 glvon on 11 = 0 (the aorcfo-~l), 
and the hump m log U/q (If any) glvon on y = 'IZ, has boon dezxved 
for npplioatlon to unsteatiJ acrofoll theory In a prcv~ous roportb. Its 
appllcatlon to the prcscnt problem 1s glvon In the next sectvcn. In 
this appllcatlcn It 1s nccossary to kcovr the value of rl at $ = $C 
on the strcomllne y = x9 that 1s at a point mldtiay between D and 
D' of Fig. 4(a). If the value of 77 In qucstlon is 6, than 
6 - $c at Z = a+ix, and (19) and (20) yield 

UC/ 
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“c 1 + smh2 ic \ = --_- ._-- -- 
1 - to” 

l”“-ql”gt”\ +:l”g ph;). . ..(23) 

\ 

It 1st shown below that smh'(&r) = O(t;)g also from (19) -!i = O(t;). 
UC 

Hmc" lgnormg torinn O(t,!J"g lo), WC dducc from (19) and (23) that 

the solution of which IS 

smh Jo- =. - 0.528 t, . . . . (24) 

Now by dcfmltlon Q 1s tli" mms flow from the source, so that 
(cf. cqwtmn (14)) 

Q 
cQ = ;c * . ..(25) 

l~mally, by 1gn"rmg sccund-order tarns, we have from (ZO), (22), (24) and 
(25) that 

and 

. ..(26) 

. ..(27) 

5. The Theory of Acrofo~ls Bchmd v,~hlch Extend Vortex Sheets 

At this pomt It is convonumt tomtomupt tho calculation 
commsncod above to elvo a~1 mtlme of ths theory of acrofclls which have 
vortex shocts lying along theu trsllmg-cdg- stromllnos. It mcludes 
ordmary aorofoll theory as tho spcclal cast when the strength of th" 
vortz shwt v,m~shcs. 

Tho first step 1s to trmsfcm the w-plane Into th" r,-plane 
as m the provlous soctlon. In the usual rtpplicatlons to aerofoll theory 
thorc 1s 11" s"ur"" "I? smk mthm the acrofoll, and (19) and (21) ~C~UCS 

to 

w = - 3jUc coshi: . . ..(28) 

H"W"W/ 
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However, regardless of the form of the transformation by which tho 
g-plane 1s achieved, in this plane the boundary condltlons are comparatively 
sunplo, the aerofoll lying on q = 0, O,cY4221(, and the vortex sheet 
on y = 7t,-m,<q,(o. It has boon shown that m this plan04 

U 1 2n 1 Slnh~ 
f = log - + 18 = - 8(y*)cot -3(y* + lZ)dy” + --- 

9 i 2% 0 2% i 

0 K(v) drl 
--------- , 

-oo cash r~ + oosh t; 

. . . (29) 

whcro K is the hump In log (U/q) across the vortex sheet, i.e., 

r -1y=xto 
K = 

1 

- y=?r-0 
U 

log - = 

9? ys+o L -‘y=x-0 

With slight modiflcatlons and apgroxunatl~ns tlxs oquakon cnn 
be appllod to the Jot-typo of flow bolng consldorod m this pepor. Those 
arc:- 

1. 
far as Its 

If the Jot 1s rolatlvely thin, i.e., Cg is small, then as 
aerodynamic affects on the aerofoll arc concerned It can be 

rogardod as a vortex sheet lying on the strcamllno y = ‘II m 
-m.$lln,<b9 7) = u being the point on y = x where the Jet leaves 
the aorofo~l end becomes free to assume a curved shapo. 

2. The strength of the shoot (whvhlch to fust order 1s dlroctly 
proportional to K) 1s tho algcbralc sum of the strengths of the two 
vortex shoots which separate the jot from the mnln flow. A formulafor 
K 1s deduced m the next se&Ion. For the source-typo of flow dlsoussod 
m the provloze soctlon, K - 0. 

Smco lxx q = U, exd llm 0 = 0, It follows from (29) 
e=O 2-O 

that lim f(z) = 0. Now e -> 00 uupllas that w -> W, and honco from 
e=O 

cqn?tlons (19) and (Zl), that ;: -> -.x$ therefore 

llrn f(Z) = 0 . 
?@cx, 

. ..(31) 

For the problem considered in this paper (29) becomes 

1 

I 

2x islnhc o 
f = -- e(y* ) cot $ (y* + or;) dY* f- ----- 

i 
---??!IL~1--- ,(32) 

2x do 2x -00 cash r) + cash z 

whore from (31), 0 end K muot satisfy 

27T 
/ uKdq=O. 0dy - . ..(33) 

JO i -G3 
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Near t: = - “, equation (32) can bc orpanded 

- I” 
i m 

K cash 271 dq + o(aX) 9 
/ 

while from (19) and (21) 

. ..(?A) 

whore k 1s a. tern of order ti: log to. From the defmltlon of f g;lvcn 
in cqLatlOn (29) 

f = log ---- = log . 
9 

. ..(36) 

Thcroforc If 

1 ?27[ C-1)” u 
%I = 

,i 
,-IIlY (gay - --.-- K oosh nndv , . ..(37) 

0 Ti J -. 00 

It follows from (s)? (35) and (j6) that 

We have dcrlvod thus expansion m order to calculate the forces old 
mommt actmg on the profllo from Blaslus' theorem, but bcforc doing this WC 
must dlncuss tho posslblllty of a JLXIQ in pressure across the vortex sheet. 
There are two ways of approrlmatmg to the Jet, which 1s a rcglon bounded by 
two vortex sheets, across which the prossure 16 contunxus. Either the Jet 
cm bo replaced by a thin shcot acx~ss vrhrch both the pras:;ure and vcloclty 
are dlscontmuous, (by rom~vlng the Pluld wthln tho Jot), ok by a sugle 
vortex sheet, bclng the algcbrac sum of the two separate shoots, across 
which the veloolty alone is dlaconxlnuous. Either method won be adopted, 
and they load esscntlally to the same result, but the second method IS 
adopted In this paper slncc It alone gives the correct result when the 
velocity m the Jet 1s reduced to tllo point when source-typo flow occurs. 

If/ 
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If the lift, drag mnd moment (about the orlgln In the e-plane) 
are denoted by L, D and M reapcct~vcly, Blaslus' theorem states that 

and 

where N 1s a dummy symbol, end C 1s any contour oncloslng both the 
aerofoil and vortex shevt, the pressure bowg contu-uous across the 
latter. Now slncc L must vanish, the aorofoll being m the no-lift 
posltlon, It follows from (37), (38) and (39) that a, = 0, i.e., 

and 

7c ccos y dY + i” K cash iq dr/ = 0 , . ..(41) 
b -co 

/ 

1 27c 
D = - -~pcU2 8smydy . 

0 

Hence 

27T 
CD = - esmYdY, 

\ 
. . ..(42) 

CD being the drag coeffxlent. From (37), (38), (40) and (&I) rt is found 
from the theorem on rcslducs that 

!d 
---- 5 
;pcaUa 

cm0 = + 
(1 

2x u 
0 cos 2y dy- 

1 
K cash 2~ dq 

> 
, . ..(43) 

0 -0 

where a second-order term depending on 
moment cocfficlont at zero lift an3 1s 

CQ has been noglccted. ho is the 
therefore Independent of the orlgln 

of the z-plane. From thin aerofoil theory the moment cocfflclent about the 
mid-chord pornt 1s 

c, = ;cc, + C,” . ..* (44) 
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It us convenreqt 111 tho n@lcatmn of the theory tc combine oquat.tlons (33) 
and (4 1) XI the form 

o(cos y - 1) dye 
r” 

K(coshq+l)dq = 0, , * . CL!> 

-co 

i 
27. 

@(cos 2y - 1) dY - 

Jo i 

u 
K(cushzv-1)dn = ho. . . . . (46) 

-WJ 

., 2x 
0 = ! 

I 
@(cosy- 1) dy . ..(1.7) 

i 

2.pi 
c". .= 3 e( co3 2y - 1) dY , 

0 
. r  . ($3)  
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From cquatlon (47) end tllc dlatributmn of 0 shown in Fig. 5 
WC find that, ignorln& terms 0(@3)? 

2r6 
a, = - --- . 

7. 

Hence from (17) and (2’6) YE have that 

__- 2:: 5 = 2na + 47 4 - -a l 

71 

* . . (119) 

Sm~larly from (33) (in whvhlch K = 0) and (1~6) It 10110~s that 

‘?T 
cm0 = - 7 J 

Q 
--.._ , 
7r 

and hence from (.!$+) and (49) 

7c 
c m = -a. * 0 0 (50) 

2 

Hence C, is independent of CQ, and the force due to the source-type 
strem leavmg the aerofoll must act at the mid-chord pomt. 

This now completes the theory of tho source-typo flow++. The 
theory was dcvclopod for two reasons. FJrst and foremost It 1s a spucznl 
cnso of the more general Jet-type flow, so tho soktlon for this latter 
case riust &goner&o to the one found above when V = U, or 50~ (13) 
and (;i: ), %vhen CJ = 2CQ. Second, It 1s an exact solution as far as 
first-order terms are concornod - this 1s not neccssarlly true of tho 
oolutlcn glvcn below for the Jet-type flow - and theroforc hss o~ lntrlnslc 
vsluo . 

7. - The I?,-.slc Asswotwns in the Theorar Jet-Typ c Flow A..----- - - 

As u Soctlon 3 it ~~11 be assumed that the Jet hoc3 not mu 
with the maul flow, and tha-c Rornoull~fs thcoro:l applies 2-n tho Jot. ThCXl, 
smco the avor,~gc pressure tokcccn acres:: the act ~111 not vary to any dccrce 
wth dlstaco along the Jet (oxccpt possibly near the Jot cxlt), It follows 
that tho vcloclty V, and hcnco the coofrlcleLlt CJ, ~~11 romaln 
cssontlally constent along the Jet. In any case 3T Will bc sssuncd that 
CJ 1s cczstant from the Jet cxlt to tho point at laflnlty. 

Suppose now wo have a nwbcr of thin jets cntcrlng uniform 
streams at tho oamo angle 7. It la not unresoonzblc to sq~ that thclr 
OffcGto on tho main stream ~111 depend csscntlally on thclr momentum 

cooffw1cnts/ 
---_.-_-._.____--- I--.--I-_.- ______ -_._-_-_.._-I_- .- - .- _____.-- -.- _-_e...----- 
+sco Xcf. IO (wltton two years after the account glvon above) for nn exact 

troatmcnt of source-typo flow. 



CCefflCients, CJ, end that if two thin Jots have the same momentum 
ccofficients they will have approximately the same cvcrall effect on the 
flow pattern. Now for source-typo flow the mcmcntum coefflclcnt 1s equal 
tC 2cQ, SC that a Jet with a momentum ccofficicnt of CJ can be said 
to be equivalent in its influence on the main stream to a scurcc-type of 
Jet the mass coefficient cf which satisfies 

2c = 
Q 'J ' 

Thus from the simple rule embodied in this equation and equation (26) 1's 
follows that the number 6 appropriate to the Jet-type of flow is given 
by 

cJ 6s --, J( > x 

The equation, 2cQ = CJ, is the basic assumption in the 
present method of dealing with Jet-type flows. The author has been 
unable to find a theoretical argument for it, but the physical argument 
glvon above seeme quite plausible. It is strongthenod by the fact that 
If tho rule 1.5 used to deduce the thrust of a Jet-type of flow from that 
of a source-type flow the exact answer is obtained. 

The theory given in Section 6 for source-type flow simply takes 
into account the direct effect of the aorcfoil shape on the lift and 
moment. NC vortex sheets occur end thcroforo the second integrals in 
(45) and (46) vanish. With Jet-type flow not only does the aerofcil shape 
"directly" affect the lift end moment but it also has en "indirect" effect 
through the two vortox sheets extending behind the acrcfoil. The induced 
velocities on the aerofcil surface due to these vortex sheets largely 
cmccl cut smce the elgcbraralc sum of the strengths of the sheets is quite 
small. However the resultant velocity distribution is still large enough 
to contribute substantially to the lift and moment forces. This problom 
is considered in the next Section. 

8. The Integral Equation for the VcrticitEntho Jet -.-1 

In order to calculate 
flow it follows from cquaticns (43 "p" 

end CD in the case of Jet-type 
and (45) that wo must first calculate 

the function K(n) - a functicn which from its definition (30) is clearly 
proportional to the strength of the vortex sheet reprosonting the jet. 
The first stop is to obtain a rolaticn between the curvature of the JCt, 
its momentum, and the sum of the strengths of the two vortex shoots 
separating it from tho main flow. 

Consider conditions at a section EF cf the jet bounded by the 
vortex shoe% AD and CD shovm in Fig. 6. Jet stream values will be 
distinguished by a suffix J. Continuity of prcssure across the vortex 
shoot AD yields 

whew &, Ae are constants, and qS, ~EJ ao the vclocitics at E 
Just outside end insldc the Jot rcspectivoly. Slmllarly at F 



- 16 - 

A, + +ps; = A,++pq&, 

and hence by subtraction 

we make a slight approximaticn in this equatwn to find 

. ..(52) 

where V 1s the moan jot velocity at the section ES'. 

If n end s are dlstanoos measured normal to and along a 
streamline of the jet rospectlvely, the absence of vortloity within the 
Jet ylclds 

4 9 
-- c -, 
an R 

where R 1s the r&us of curvature of the streamlmo. Applying this 
equation to the nnd-streemlme of the Jet we have approximately 

'I 

hV 

qJE - qJF = -ii- ' 
. ..(53) 

where H 1s the width of the jet at EF. 

Now the sum of the strengths of the vortex sheets AD end CD 

r = (SE - qJE) + (qJy - q?$) 

and hence from (52) and (53) 

9 
The sum of the jumps in log - across the vortex sheets, namely K (see (30)) 

follows lmmedlatcly from (54)." To fust order In K we find that 

Hence/ 
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Hence from (13) and (14) 

K - (CJ - 2CQ) -"_ , 
2R 

which we note satisfies the condition that K must vanish for sourcc- 
type flow. To calculate K we thus need to know the shape of the Jet. 
This can be calculated from equation (32). 

The middle streamline of the Jet is definelt by t; = n + ix 
in the Z-plane introduced in Section 4. On this streamline $3 *US, 
‘and ~gnormg a second-order term duo to the source strength wc use (28) 
to find 

9 

- a -2 cash ri . 
C 

Also on r; P TJ + 1% equation (32) yields+ 

Slnh lj 27x e(P) drp K(r1*) W 
n = - ------ _-l_-____l_ + --_--e-m- . 

2% co8 p + cash 7 cash 11' - cash ?J 

. ..(56) 

..*(57) 

From (56) and (57) and an integration by parts it is found that 

0 c an 1 

i 
i 

2nsin y* ;18 (ye) 

i 

d cash n cash n* - 1 
7 -- = ^ -- = ------ --M--m- - K(@) ---'----------^dp . 

2R 2 as 2xsslnhs o 00s y*+ oosh n - (cash ?J - cash o*)~ 
, J 

The integral equation for K now follows from (55). It 1s 

@J - q-J f 
2x sm y* de(y*) 

I 

cr cash 17 cash n* - 1 
K = ---------- 

t 

-_----m---m- - K(q") _-_...__------___---- ,Q$ 
2xsinhs cos v9 + cash r) -Qo (oosh II - cash s*)a 

This integral equation is not one of the standard types, but if 
(CJ - 2CQ)a 
iteration. 

1s small compared with (CJ - 2CQ)a It can be solved by 
Gn this assumption the first approximation is 

2% sin y* de (y*) 
K = c------- ---------- 9 . ..(59) 

cos p + cash q 

which if substituted in the last integral in (58) should 'yield a more 
accurate value of K and so on. However in view of the other approximations 
made in this paper we shall be content w.th the approximation (59). To use 

equation/ 
-___--_---____------_______11_______1_1_--------- -m---v- 
'All impropor integrals occurring in this report are to be given their 

"principal values"8. 
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equation (59) is essentially to assume that the Jet lies along the 
position that would bo adorJted by a source-type flow, for w?nich (since 
we will use equation (51) m evaluating (59) the momentum coefficient 
equals CJ. This approximation is then, in a sense, consistent with the 
arguncnt given in Section 7. 

Evaluating the StleltJOS integral in (59) by substituting in 
the discontinuitizs In e(Y*) shown in Fig. 5, we arrive at 

(C - 2C ) 
K = -Le!J~ 

i 

x 8x3 y. 2 r sm 6 
-_-_----__- + __--------- , . ..(60) 

2 71 sinh n cos y. + cash n cos 6 - cash Q 

in which 6 is given by equation (50). 

9. The Lift and Moment DUE to a Jet-Type of Flow 

From Fig. 5, equations (45) and (60) we deduce that 

(5 - 2c ) 
2mo + 476 + -----A 

2% 

'Osh O- - ' + ntan&y x1og __---__------- 
> 

1 
I 

= o . 
0 

. ..(61) 
cash u + co9 Y. 

and (51) we find that 6 and (r are small first-order numbers. 
it is found that the same is true of yo. Thus retaining only 

the highest order terms in (61):- 

Hence from (17), (27) end (50) 

27 (c - 2c ) 4r 

cL 
a 2xa + --- --:-m-L log (4.58) + --- flJ . 

G-i VC-; Gi 

Therefore 

cL = ,,.-.k& j,+o.76 (a)] . . ..(62) 

In attempting to determine the moment coefficient from 
equations (46) and (60) we have a dlfflculty which arxes m a similar 
manner in the theory of an aerofoil in harmonic motion. It is that the 
Integral along the vortex sheet, nemely 
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i 

u 
llm K(cooh 2q - 1) ClrJ ) 
B=.v -R 

. ..(63) 

1s dlvcrgcnt, becoming logarlthmlcal uflnlte in the IunIt. As in unsteady 
aerofoll theory this lnflnlty arlsos from the mathematical smpllflcatlons 
introduced at various pouts m the theory, and doas not have any real 
pl2~slcal slgnnlficance. In an oxact theory the logarithmic lnflnltics would 
cancel out sxnce the sum of the cocPflclont3 of the logarithmic terms 
arlslng U-I thu lntcgratlon arc ldcntlcally equal to zero. We assume this 
is the cast horc, and consider only the flnlto part of the lntegrnl (63). 
We then find that this fullto part x a term of second order, which can 
be lmorod XI comparison wth tho term arIsIng from tho first Integral 
of cquatlon (44). 'Phls latter Integral has already been evaluated in 
Scctlon 6. It was found that Cm0 = - 6T) and hence from cquatlon (50) 

. ..(64) 

From (44), (62) and (64) 

‘x3. 
% = -+~y,-z9). . ..(65) 

2 

FInally, in the case a = 0, WC dcducc from (65) <and (62) that the 
ctntre of prossurc must bo a distance 

x (I-2c/c) 
- = ().,g ~~~~~~~~aL~~ , 
c 1 + 0.76 (1 - 2CQ/CJ) 

. ..(66) 

forward of tho mid-chord pomt. 

Gno flnnl comment on th@ theory remains to be made here. It IS 
that cquatlons (15)~ (62) and (64) mclude as spcclal cases the exact 
solutions for source-type flow g~vcn by (16)~ (49) and (50) rcspoctlvcly. 

10. Comparison with Exporlmcnt 

As mcntloncd m the Introdxtlon there 1s at the moment a lack 
of cxperlmontal data on the phenomenal however a llttlc work on tho 
subject 1s reported U-I Rcfs. 1 and 2. 

In Figs. 7, 8 and 9 thcorctlcal and expcrinental values of 
CL arc plotted against CJ. From (13) and (14) It is found that 

% = 
d 

2 {CJ 
zc 

. ..(67) 
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In the experiments reported in Ref. I, r = 55’-“? h - 0.0095" and 
c = 5.5”~ hcncc 2cQ = 0.059fi. Equation 162) ylclds for this case 

cL = 3.85mJ - 0.10 , 

which is the curve dravm in Fig. 7. The agreement is quite satisfactory 
considering the approximations made in the theory and the acknowledged 
crudity of the oxperimonts. 

For the expcrimcnts of Ref. 2, T = 90°, H = 0.018 end 
c = 8". Hence from (62) and (67) 

cL = 6.23CJ - 0.18 , 

which is compared in Fig. 8 with the oxpcrimcntal values. Tho agrcomcnt 
is not SC good in this case, but this could hardly be cxpected with such 
a large eJection angle. It is difficult to belleva that there is not 
nom0 loss in circulation due to soperation of the flow at the trailing 
edgo. A further possible cal'1so of tho discrepancy bctwcen oxperinent end 
theory is that the angle r was not actually measured in the experiments, 
but dcduccd to be 90° from a specious argument based on the theory of 
Ref. 1. Even if the argument given is correct, on the accuracy of the 
figures given (one decimal place) it is only possible to deduce that 
76Otc r .slOi+". 

In Ref. 2 it is found oxpcrimontally that Cm0 'a - 0.14 X 2&C:. 
2% 

From (64) we find for this case that Cm0 = - -- ac,/x = - 0.141 X 2q , 
4 

so there is gcod agreement for this coefficient. 

Finally in Fig. 9 wc have compared thoory with some further 
N.G.T.E. cxpcrimcntsl results (as yet unpublished). The agreement in 
0 < CJ < 0.25 could hardly be improved. There erc prcbnbly four reasons 
for this success, namely (1) it spponrs thoso last exporimonts have been 
carried cut much more carefully then the earlier onos, (ii) the value of 
r (31.4”) was reasonably low, and the ideal flow - which is the basis of 
the theory - is more closely achiovcd, (iii) at high values of CJ 
turbulent mixing will be en important factor, and (IV) in any case the 
theory is only devolopcd to first order in nJ . 

11. Final Comments 

The "thrust hypothesis" of Ref. 1 has been rigorously 
established for compressible flow. A first-order thoory for the lift 
in incompressible flow has becn doveloped, which is in fair agnooment 
with the few experimental results available. The lift theory is 
deduced from the exact theory for source-type flov: by a plausible 
argument, although mere consideration is desirable hero. Tho thoory 
for prtchlng mcmonts is unfortunately vitiated by en inadequate 
oxplenation of a logarithmic singularity arising in the mathematics, 
and the author hopos to be able to invostigatc this furthor at a later 
dntc. 

It is perhaps wcrth reporting that closer agroomcnt with 
experiment con bo achicvod by allowing CJ - 2CQ to vary with distance 
(S) along the Jet. The velocity of the Jet is gradually reduced by 
viscosity and turbulcnco so that as s -> co, v 3 u, and from (13), (14) 

and/ 
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end (55), K -> 0. Now for a Jet discharged into still fluid the maximum 
volcclty of the Jet is known7 to be inversely proportional to 4% whore 
s is measured from scmc suitable origm. If wc assume that this law is 
applicable to the velocity V - U of the present problem, then we find 
that 

CJ - 2c 
(CJ, - 2CQ) 

Q 
05 ---- , 

4% 
. ..(68) 

where CJ~ 1s the valueof CJ at the Jet exit. (C 
the jet by continuity.) The use of (68) in equation & 

1s constant along 
55) leads to a 

modification of cquaticn (60) and hence to a change in the coefficient of 
(1 - 2CQ,CJ) in ‘%JUatlOn (62). It was found that this coefficient was 
reduced, and that the emcunt of rcducticn depended on the origin selected 
for 9. As this origin was varied. from being some distance from the Jet 
exit to very close to the exit the coefficient in question veried from 
0.76 to zero. 

(68) 
Hcwover the method is rather doubtful theoretically, as 

the use of implies that Bernoulli's equation is not satisfied in the 
Jet, which is incompatible with the derivation of (55). 

The prcssurc distribution ever the acrofoil has not been 
discussed in the ropcrt, but If It is required it can be readily deduced 
from equation (29). WC find that putting n = 0 end. integrating by 
parts 

log (1 - cp) = - log sm + (p - y) d0(yS) + -- 
K(n) dv 

------, (69) 
-pir ccsh n + cc8 y 

whore Cp is the pressure coefficient, 1 - (q/U)". The Stleltjes 
integral can be ovaluatcd immediately from Fig. 5 and equation (51), whllo 
the second integral can bo calculated from equations (60), (27) and (51). 
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APPZHDIX I 

16th April, 1955 

The following Appendix clarifies some of the physical assumptions 
made above, about which some misunderstandings have arisen. The distinction 
between source-type flow and Jot-typo flow is clarified, and the model of 
the latter type of flow used above is discussed in some detail. 

Some comments are also made on other theorias of the Jot flap. 

1. Basic kssumptlons made in Pap02 

1.1 Sowxx-Ty e Flow 

within 311 
fluid. 

Source-type flow can bc defined as flow in which a source on or 
aorofoil produces fluid at the seme total head as the main &roam 

Consider the flow shown in Fig. 10. A source at i3 omits fluid 
xhich flows down the duct EFC end then into the main stream. Stagnation 
points will occur at points D and D', and stroamlinos DG, D'Gb, 
will separate the souroc fluid from the main stroem. Continuity of prcssure 
across DIG& DG, implies oontmulty of velocity across these streamlines 
provided we have source-typo flow. If the total head of the source fluid 
18 not tho same as that of the main stream ?%~a, only the pressure ~~11 
ba continuous across DG, DIG& and these streemlinos wall now be vortex 
sheets, 

Returning to the oaso of source-type flow we notice that the 
positions of three staaation points have to be determined to define a 
unique flow. The third stagnation point is at B, near the leading edge. 
If WC first assume that D coincides with the trailing edge F 
(Joukowski's condition), then the positions of the other t-eo stagnation 
points follow from (1) the value of the circulation, end (2) the source 
strength. At a given value of the circulation there is Just one source 
strength that makes I)' coincide with C at tho duct exit, z this 
produces tho fiow pattern shovjn in Fig. Il. 

The flow pattern of Fig. IO is clearly physically unrealistic - 
separation would occur at points C and F - but that of Fig. 11 could 
be achicvcd in practice. For tho flow shovm In Fig. 11 any change in 
incidonoo would require a chango in 
stagnation point D' 

source strcngt+Oto maintain the 
at Ct but this osn bo shown to bo a second order 

effect, which for small values of tho source mass coefficient, CQ, end 
the lncidenoe a can be ignored. 

Now it is possiblelo to dovelop an exact theory of source-type 
flows which allows for the duct shapo end is independent of the 
magnitudes of CQ and a. However as this exact theory takes many pages 
to develop rigorously the theory given in 86 was an approrimato ono, valid 
only to first order in CQ and a. 
equation~o~.) 

(This restriction 1s medo clear after 

To this order of accuracy it is shovm in 36 that for the type 
of flow shown in Fig. 2, 

where/ 
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whore T 1s tho angle a parallel walled duct makes vath the chord l~no. 
The mace oocff;clont m (1) 1s the ucual one dcflncd by 

cQ 
= 

Q 
-9 . ..(2) 
UC 

whore 0, 1s the mzx output of the eowco per oocond, u 1s t11o 
lindlrturbo~ mal.n strom voloclty, and c IS the acrofoll chord. It 13 
alto slzovvm in E6 that If Cm 1s the moment coofflclcnt about the mldchord 
pomt, 

7c 
Cm = - a . . ..(3) 

2 

Eqlxtl ens (1) <and (3) xgnnorc ncrofoll thloknosn cffoote. 

Thceo cquatlons wore dcrlvod by La.n application of Dlasuc’ 
thoorcm, a proccdurc whihlch hae rcccntly bocn cliumod "mvzhd"9. Thcro 
1s no doubt at all that l?lnslus thoorcm cnn bc agpllcd to problono in 
>.h& sourcoo cc 01nks occur on or near ccrofo1ls (soe9 for oxnnplo, 
p. 213 0f Ref. II). The motbod used m Et; nay not be adoquntoly 
ex>lclncd. It 16 as folloius. . 

First the function (dw/dz), whore w 1s the corlplox stream 
function, 1s (correctly) cxpandod 1,~ the no&bourhcod of lnflnlty. ThO 
oxpansmn is cxprcseod m tcme of tho vxrlablo t;, vhoro z 1:: dofuwd ,% ,\ 
by cquntlons (19) to (21). Then the corrccpondlng expansion of ti:o 
relntlon between the c and w-plnnes IS wrltton down, osacntlally 
qpxmg the terns in CQ end llkovilee for the rolatlon betwofi the 
W- ZXl Z-pi,mOO. This pcrmlts (dw/dz) to bti expanded near lnflnlty 
111 the e-plnnc (not @vcn 1x1 &), and Dlncluo thcorcn applied. ThLlS 
t!lo ruthod 1s oquvalcnt to lgwvlng tho uffoct of the source on tlw 
rclstlon bctmoon the 5 and e-plencs, but tnklng It Into account xn Its 
ofi‘(7ct on (dw/Jz). 

Tkm 1s a co’n~on ;typu of agproxuxttlon in aorodynemlcs. For 
uxtancc in the tkoory of flaps the effect of the flap on the voloclty 
dlstrlbutlon is correctly calculated, but Its effect cfl the mapping of 
the w-?lcno on to tkc z--ple.no 1s Ipored, and this 1s know? to result 
in error tcrmo of only second order ~.n fla;, deflcctlon en&c. 

In any caoc the uothod used in Ii6 13 fully JuctlfloL by tho 
fuller end much longer o.nslys~n glvon m Ref. 10, xherc It 1s shown 
that the rclatlon botwccn z and c near lnfinlty 1s exactly of the 
fxm 

cc = - 5 1 + O(lP)] , 
UZ 

whcro XJ the nototlon of ?6, P = ( Q 
1 - --- log t, 

47Q >I 
(1 - t”o) * , 

WITGX the aId of (4) uwtoad of (35) of 86, Blaoux~I ttooroa cnil ‘00 np?llcd 
to the problem without the approximations rlontloncd above. 

1.2/ 



1.2 Jet -Type Flow 

In Jet-type flow the fluid produced by the source is at a 
different total head from that of the main stroem flow - usually a much 
higher total hoad. In this typo of flow, although the prossure tlust sti 
be contmuous across the surfaces FH,, CR& (soe Fig. II), this is no 
longer tzuo for the volooity, and so FH,, CH& are now vortex shocto. 
The principal difforsnoo between tho source-type flow ,md J&-typo flow 
11~s m tho prosonco of these vortex shoots in the latter oaso, 

There is another diffcrcncc botweon the two flows Aich occurs 
right at the Jot oxit, and is worth noting. In source-type flow the 
tangents to tho dividing stroaz~lincs FI&, CR&, at tho sepozation points 
bisect the angles of the Jet exit) es shown in Fig. 12. OX the other 
hand in Jot-type flow the different stagnation prcssuros in tho two 
strems implies that there cannot be stagnation points in both streams at 
C and F, snd hcncc tho fio:v nust separate tangentially to that surface 
on which tho total hoad is greatest. In Fig. 12 it is assumed that the 
Jet is at a grontor total head than tho main &rem, end so the Jet flow 
ie tarigcntial to RF and EC In general tho streamline curvature at 
the separation points will bo mfmito, 

The author 1s of the opinion that the effects of this 
discontmuity in bohmiour botvocn tho two typos of flow at tho jet oxit 
orso very localised, and play au msigmficmt part in dotemining the 
33333 charaotcristicn of the flow. It is ccrtamly difficult to bcliove 
that tho lift and mcmnt cocffrcients for Jet-type flow do not tend 
contznuously to their voiues given in (1) and (3) for source-type flow, 
as the total hoed of the Jet tends to that of tho main strea?. This 
bcliof is tacitly aosumd in k3. 

Now the ronlly sigzifioent difforonoo between the two types of 
flow 110s in the vortex shoots. Thcsc shocts exist smply booauso the 
total hsad of the Jot differs from that of the i11am stream. In fact it 
IS shown in E6 that at any point along the Jot tho algebraic SW of the 
otrongths of tho two shoots is given by 

r = u (CJ - 254 ” , 
2R 

XI vrhich C J is the moment coefficient 

2QV V 
CJ 5 --; = 2; C& , . ..(6) 

V is tho velocity in the Jot at infinity, end R is the moan radlus of 
curvature of the Jot. In the derivation of (5) it is assumed that CJ 
IS constant along the Jot, and that the Jot width is small oonlpnrod with 
R. For source-type flow, V = U, 

cJ = 2CQ, . ..(7) 

and honcc fron (j), r = 0. 

Now/ 
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Wow to reprcscnt fully the cffocts of tho vcrtox shocts we 
nod to consldor not only thclr algebraic Bum but aIs0 tholr possible 
doublet oontrlbutlon. 
overlooked 1x.1 60. 

This point I.S cmph~ieod m Ref. 12, rind appozontly 
However even If tho doublet contrrbutlon sqnlflcantly 

affects the velocity dx%rlbutlon, this contrlbutxon will be vory nearly 
~ylmetrlcnl about tho chord lmo, ospeclally for snail voluco of 7, ‘and 
honoo the offcct on tho lift end moment forces ~31 lnrgoly cancel out. 

Tlx author’s m&hod of doduclng tho 1nCt force m Jet-typo flo!i 
13 based on one further assumption, nzmnoly that CJ and r,ot CQ is the 
ol@lfxztnt psraxetcr for such flows, rind this GOC~S to bo flcnarally 
accepted m Refs. 9 and 12. Thx mcano that, oon:;ld<:rlng source-typo 
floiv nc a spoclal cm3 of Jet-typo flow, WC should wrlto (1) In the form 

cL 
= 27ta + 4T - , P T. 

. ..(a) 

on nnk1ng u3c of (7). 

VC start with this result for source-typo flom. %xppo30 now 
the total head of the Jot 1s ulcrczsod above) that of tho mz>n strcnm, 
CJ bcm,” kept const,ant, than J+c-type flow ronults. Y&y (5) vortex 
shci:ls now sppoar gxvln;: rxc to nn ;tcldltlon,\l ccntribution to CL. 
IIcnoc Inntoad of (8) we have 

_-- 

d 

c 
CL = 2na + 47 2 + f (CJ - 2C ) , 

x Q 

whore f is a funoilon which romauxs to bo dctcrmincd. In 59 it WL? 
calculated to first order 1~ (CJ - 2CQ) on the aosumptlon that tho jot 
nhnpo romaln& unchanged during the lncroase of the total head of the 
Jot. Tho result 1s 

- -  

i 

c :’ 

cL = 2xa + l+r J ?+0.76(1-;;)I. - -  

* T. 

. ..(lO) 

The nothod of dorlvlng (10) shoas that it c~1 only bo v&id for amsll values 
of (CJ - 2CQ)9 tho actual rango of validity bclng host dotorminod by 
compsxnon with cxporlmont. Ccrtamly (IO) IS exact in tho llmlt CJ -> 2Cq 

2. Other Theories of the Jot-I”lae --_--- --. 

2.1 The Mooh,?nical Flap= 

The author oritlclsed the oarlicr prenontatzon of tho flap- 
analogy t11oory m 81, and now fools that this criticism slthouxh 
philosophically correct, doos not do Jurtioc to the theory. 

It will bo riccallod that ih3 method in bxxd on “slnllarlty” 
being dcflnod bnixcon the Jet-flap and a mochonlcal flap in such a way 
that the lifts on the aerofoll and Jot are nado qua1 to the lifts on 
tho fixed pnrt of the flapped acrofoll ,ud flap ronpootlvcly. Lh thx 
basis it is cstcblishcd that CL can bo written In the form 

Cd 
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rl 
CL = - F (CJ, 7) t . ..(I11 

T 

where F 1s a known fun&Ion, ad rl 1s that value of the dofloctlon of 
the mechaacal flap nccossa.ry to produce the lmposcd slnllnrlty. As 
polntca out in 81, (11) merely shifts the problem from that of dotcrranmg 
CL a~ a furrctlon of CJ and 7 to that of dctcnanmg O/T as a 
f"IlCtlOn Of CJ Cd. T. 

'However, from physical conslderatlons, lt mems rc.monablo to 
suppose that r~/r 1s only a slowly varying fknct1on of CJ and 7) and 
so (11) does olmpllfy the problem XI prectlcc. The slgnlflcant feature of 
the flapmalogy 1s to trancform the problem from that of detomlnmg a, 
ro id17 vsrylng function to that of dctermlnmg a slowly varying one. 
v 

If 
can be npproxlnstcd to by a constant over a rcasonablc r,ulgo of values 

Of CJ E--d 7, then the method depends only on a single oxpcrlnont to 
dctcrmlno the value of 17/r, and so can bo torwd a "acme-cmp~rrcal" 
theory. 

2,2 The Theory of Rcferencc 12 

A rough draft of Ref. 12 was rcccntly made avvallsblc to the 
athor. The method 1s to ccliapsc the Jot lntc n thin sheet by trlkmg 
the lmlt 11 -> 0, V -> m, such that CJ rcaans l'rnlts. Then, on 
the ossunption that 7 1s small, the problem 13 lincarlzcd by maklng 
tho usual thin aerofoll epproxlmatlons. This lwds to an mtcgral 
cquatlon for the downwash on tha Jet, wbch appcers to bo rcl'atod to 
that found m @ for the strength of the vortlcity m the Jot. The method 
LLS much more dlrcct than that g-ivon by the author, rind when tho basic 
Integral equation has boon solved, should glvc results valid for quito 
lasgc values of cJ+. 

T-ro remarks on the lmltat;tlons of thlc theory r~o worth makmg. 
firstly the lwlt h --> 0 used 111 the theory mvalldatos It for small 
values of (CJ - 2 CQ). Secondly the author found that 121 his approach 
to the problem this lunlt created rlathematxal dlfflcultws at the Jot 
oxlt that he ws unable to surmount. The limit h -> 0 nzy bo 
satisfactory ncll away from the trallinc edge, but It GCCFIS to bo an dvcr- 
aiwllfication In the nclghbourhood of the traIlme cdgc - cspcc~-Jly as 
the answer dspcnds so crItIcally on the character of t!:o flow at the 
trslling edge. It 1s to bc ho?cd that this v~ow IS wrongx. 

2.3 The Theory of Rcfcrcncc 9 

Thlz theory closely follows that glvcn by tho author, oxccpt 
that the llf? mduccd by the vcrtcx sheets - 3~ ten? f(Cj - 213) of 
cqustlon (9) - 1s czlculatod by an altcrnat~vc method. This altcrnntlvc 
m&hod 1s to USC the well->~own theorcn that the lift on an acrofoll 
bohmd &lch extends n vortex shoct 1s equal to pUI', whore I? 18 the 
total circulation asound both the aorofoll and th< she&. Then with 
the ad of the author's result for the 
(cquntlon (5)) it is 

strength of tho vortex shoot 
dcduccd that tho dlrcct contrlbutlon to CL 

from the clrculatlon about the s&ect alone 1s (CJ - XQ)T. Althouc,h 0 
tho author of Ref. 9 nppascntly approcw.tcn that the vortex shoct Js~ 
hw an IndIrect contrlbutlon to m&o to CL - by Llodifylng the 

clrculatlon/ 
_____________-_I_-____1_11_________1____--~------------------------- 
+It subsoqucntly proved th& Sponcc's mtcmal cquatlon (when tmnsformcd) 

wm m cssencc ldcnticsl to that glvon m iii8 (SC0 App?ndIz II), and 

x consequently this last remark is not true. 
This hope was spprcntly justified. 
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cuculztitlon about the aorofoll - t111s 1s 1gnorod ala (CJ - 2CQ)T IS 
t&on to be tho total contrlbutlon from tho shoot, that is, It 1s 
ldontlflod as the fun&Ion f in (9). The function f, of course, 
represents the cffoot of the shcot on tho total oxculatlon about both 
aorofoll and shoet. The method of calculating It Avon m 38, whatever 
Its dcflclonclos 1s sound on this pomt. 

A furthcr curious anomaly to be found in Ref. 9 1s the acccpt-*nco 
of the term 47-&/x from E9 dospltc tho crltlcism made 111 the Sam0 paper 
of its dorlvat.tlon from Blns~us~ thcorcm. No other dorlvatlon of this term 
has bcsn even. 

Another crltlclsr! mado in 32 of Rof. 9 of tho author’s theory 
is on tho qucstlon uf ~+hcther to t&co the prcsourc oontuuous or 
duxontxnuous across tha vortex shoot. Botlt moth&s arc ncccptablo, but 
w.th tho pnrtlcular modtl ndoptcd 111 @8 It wn:: dofmltoly prcfurable to 
trike tllo prcssuro w bowg contuuous - the author wlshcd to svoGl the 
asrlclinrd h-at h --z 0 (SCE the nocond pxxgraph of 62.2 sbovo). 

APPENDLY II/ 
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19th Novombcr, 1956 

In a recent papa 13 Spcncc dcrivcd en intogro-differential 
equation for the slope of a high spcccl sheet of air cnorging from the 
tra11lng odge of an aerofo11. In this Appendix it is shown that this 
equation is identical in form with ono given by the author in 88, a 
pomt which was ovcrlookcd by Spcnco. The author's derivation is more 
direct, being based from the stnrt on a well-knoum solution possessing 
the appropriate type of mixed boundary conditions. 

1. Spcncc's Method 

Spcnce linxrizcs the problcn from trio start by applying the 
bound;try conditions on y = 0, with the acrofoil in 0 4 x < 1, and 
the w&o 1x-I 1 < x < 03. 
1s (se0 S8) 

The strength of tho vorticity in the wake, I, 

r = ; (CJ - 2c(-$ (1 <x) , 

wncrc U is the undisturbed main strem velocity, c is the aorofoil 
chord (unity in the present case), R 1s tho radius of curvature of the 
JCt, CQ 15 the3 3aSS COSfflClSnt, 
cJ 

CQ 5 mass flow in the Jet/UC, and 
is the moncntun coefficient, CJ a. moscntum m the JcthpcUa, where 

p x the density. In order to avoid the difficulties of the non- 
honogcneous flow Spcnce allows the Jot width to tend to ecro in such a 
way that CJ remains Pmito, but CQ tends to zero. This gives 

Cl0 
r = $JCJ -2 , (1 <x <Do ) , 

ax 

whcrc 8, is the slop0 of the Jot. 

Let tho vorticity strength on the acrofoil be Vi'(x), then the 
dormwash equation is 

U 
w(x) = - - J ---- dc - "cJ -- 1 . . ..(3) 

2x o g-x 4n 1 E-x 

If 0, 1s the (knowfl) avowgo slope of tho nerofoil surface, then 
w(x)- - UC, in 0 < x < 1, and w(x)3 -U@ in 1 <x xar Thus 
We arrive at the pair of simultaneous intogro-differential equations 

1 1 f(C) cJ mopei / a5 = - 28, (O<X < 1) 
-- J --do-- --- d& 

xO C-X i 2% i &-" z-28 (I<x cc4 

Dr.A. E. Billing-ton/ 
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Dr. A. E. BIllington of tho Acronautlcal Rcsonrch Laboratorios, 
Flshcrman's Bond, Molbourno, Austrslla, rcduocd this pnu of equations in 
two pages of algebra (too lengthy to g~vc hero: sot Spcncc's papcrl3) 
to the slnglc mtcgro-dlffercntlal oquatlon 

m which we hwo nwide somc~ trlfllng changes in not&Ion. Spcncc then 
solves this cquatlon by an approxlmatc Fourier scr=cs nethod. From thw, 
solution tho lift, moment and prossurc dlstrlbutlon arc rcadlly deduced. 

2. Woods' Method 

A more duoct dorlvat;tlon of (4) caz~ bc obtained once It 1s 
rcallaed that tho rnlxcd boundary condltlono - ea. given in 0 <x < 1, 
r glvcn m 1 < x < m - arc Just those occurring In the well-established 
theory for unstencly aerofoll motion. 

Let the acrofoil and v&c bo transfonxcd into a ('19Y)-plane 
such that the aorofoll 110s on ?J P 0, 0 < y <2n, and the vortex 
sheet rcprcscntmg the Jot 11~s on Y=% -cocrl<o, thun It 1s 
caslly shown that (sco Ref. 4) 

U 1 2x 
In -+le = - e,(p) cot 2 (p + ir; - y) dp 

9 2% I 0 

1 slnh (11 + 1~) 

J 

0 r (VP) dn* 
+ -------- ---- ----_ I--- , .*.(5) 

2u7l Tx3 cash+ + oosh (TJ + xy) 

where (q,9) 13 tho vcloclty vector in polar co-ordmatos at (17,Y). 

The conformal napping whhlch takes y = - 0, 1 & x >/ 0; 
y = +0,0,(x,(1, on to R = 0, 0 < y423 and 
y = O,l,ix$cq onto Y = ~O>,llZ-a,x3 

0 = x+1y = 3(1 - cash (II+ iv)) , . ..(G) 

although this transform&Ion was not m&de m the derivation by the author, 
as lt was more convcnxnt to work I.II the (11, y)-plane. 

On tho Jet, y = x, (5) yields 

2% e,(P) dy* 1 r(n')dtl* 

9% = 
- --_-- -----w--e + - ---------- . ..(7) 

cosy* t coshll .u cash+ - coshtl 

whhlch combined wvlth (1) lmmedlatoly ylolds ,?n intogro-dlffercntial 
equation for 0,. Unable to find an exact colutlon of thu oquatlon, the 
author solved it approximately, only as far as the first step of the 

L~ouvlllc-Neumann/ 
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Liouville-Neumann iterative process - a solution valid only for small 
VdUeS of CJ - 2CQ. In addition the theory was slightly complicated by 
the rcquiromont imposed by tho author that the solution remain valid in 
the limit CJ 3 ~CQ. k'hen CJ - 2CQ we have a homogeneous source- 
type of flow for which the solution 18 known exactlylO. While Spence's 
method of putting CQ P 0 obviates the difficulty of the non- 
homogeneous flow, it cannot provado a correct solution for small values 
of CJ. 

3. The Equivalence of the Two Integro-Differential Equations 

The equivalence of (4) and (7) is easily shown. First from (5) 
the assumption that 0 vanishes at infinity, 1.0.) at I) = - O(I, gives 

2x 
r(q*) drl* = 0 . . ..(a) 

If (8) is now multiplied by sinhn/l2A(coshn + I)], and added to (7) 
there results 

sinh n 

li 

27x e(P) (1 - co*P)dyo 
a, = - ----- --_--__-------------- 

2x o (1 + cash rj) (co8 p+ coshn) 

J!(@) (1 + cash n*)dn* 
---m-e---- 

3D3 (1 + cash n) (cash n' - cash 7) 
. ..(9) 

On the aerofoil (n P 0) 
a(1 - cosy),x = 

and Jot ( 
x = *(I + cash 177 9 'b~~hi~~i~i":s(~~ang~~~~rned 
into 

on eliminating I' by (2). As &le(Y+) + s(2x - p)] is the avorege of 
the slopes on the upper and lower surfaces of tho aerofoil it is 
immediately obvious that equations (4) and (10) are identical. 

. 
This means that equation (4) is simply sn alternative form of 

equation (7). Although tho author dorivod equation (8) In 85, he did not 
combine it with (7) to produce the form (9) which exactly corresponds 
with (4). Equation (9) is clumsier than (7j, and in the (n,y)-plane 
at least has no advantages over (7). 

4./ 
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4. COtlClUSlOnS 

The method of dealing with the Jet-flap given by Spcnce 13 

leads to exactly the same mtegro-differential equation for the Jet 
slope (excepting a tnflag transformation of variables) as that 
derived earlier by the author using hodo raph methods. The general 
expressmn given for the lift by Spence 7 his equation (105)) 1s also 
exactly the same as that derived by the author, but this is not 
acknowlcdgod. 

However Spence has carried the numerical work of solving the 
integral equation, and deriving values for the lift end moment to a 
stage which renders obsolete this part of the author's work. 
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