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Summary. 

The problem of calculating the supersonic flow past a circular cone at small incidence c~ is treated by the 
method of inner and outer expansions, on the assumption that it can be expressed as a perturbation (in 15owers 
of e~) of the corresponding axially symmetric flow. Stone's first-order solution, and the first-order vortical-layer 
solution are connected as the first-order terms in the outer and inner expansions for the flow. I t  is shown 
that the logarithmic infinities which occurred in Stone's second-order solution are removed from the final 
(composite) solution for second-order terms by "applicati6n of the generalized matching prin'ciple, and the 
second-order terms in the expansions of the inner solution are obtained. - .' 
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1. Introduction. 

In this report, the problem of calculating the supersonic flow past a circular cone at a small angle 
of incidence ~ to the undisturbed stream is considered. Published work on this problem is dominated 
by the two original papers by Stone I, ~ which form the basis for the only available numerical data, 
the second and third volumes of the M.I.T. cone tables a, 4. A large proportion of papers on the topic 

which have appeared since has been devoted to elucidating, criticizing, or refining Stone's work. 
Below, Stone's theory and the main criticisms of it will be reviewed, and then the problem will be 

treated again, still using much of Stone's basic approach, but using also the ideas of the method of 
inner and outer expansions (also called the method of matched asymptotic expansions) due to 

Kaplun, Lagerstrom and Cole5 ,6,7. These meet many Of the criticisms of Stone's theory, at least 

those concerning the first-order solution, and appear also to overcome a major difficulty in the 
second-order solution. 

The review of Stone's theory, and of the criticism directed at it, is given in the next section. In 
Section 3 the first-order problem is treated. It is found that Stone's first-order solution, transformed 
to body coordinates, is the valid first-order 'outer' solution, while the 'inner' solution is identical 
to that obtained independently by Bulakh 8, Cheng 9 and Woods 1° for the flow close to the cone 
surface. In Section 4 it is shown that logarithmic infinities at the cone surface which occur in Stone's 
solution for the second-order terms for u and p are automatically cancelled from the final ('com- 
posite') expansions for these quantities by application of a generalized matching principle due to 
Kaplun ~1. Equations are derived for the finite ('non-cancelling') parts of the second-order terms in 
the outer expansions. Although these are not solved in this report, it seems justifiable to suggest that 
their solution would entail difficulties less severe than those reported by KopaP in his account of 
the computalion of Stone's second-order solution. Finally in this section a solution for the second- 
order terms in the inner expansions is given, assuming that the corresponding terms in the outer 
expansions have been obtained. 
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2. A n  Account of  Stone's Theory. 

The equations for the steady flow with conical similarity of a perfect inviscid compressible gas 
are as follow: 

(i) equation for conservation of mass: 

V(pv) = 2pu sin 0 + (pv sin O) + ~ (pw) 

(ii) momentum equations: 
3u w 3u 

v ~ +  

= o (1) 

sin 0 a~o 
7) 2 _  gO 2 ~ 0 (2a) 

% 
u = ~ + E(x,~ cos n9 + X~ sin n~o) [ 

/ v = ~ + ~(y~  cos n 9 +  ~ sin ng) 
I 

w = v ( %  sin ncp-Z,~ cos nqo) ~ (6) 

J p = ig + Y,(fl~, cos n~o + H~, sin nso ) 

p = ~5 + ~](~:,~ cos n5o + E~ sin nso ) . 

Here the barred quantities u, v, etc. are the values of u, v, etc. for the axially symmetric case, and 
are known from the solution due to Taylor and Maccoll 1~,1a, and the perturbation quantities 
G~, Y~,  etc. are functions of 0 only, and are assumed to be small. The requirement of symmetry 
about the plane defined by the cone axis and the incident stream direction (which is also the plane 
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Here 0 and 9~ are the angular coordinates in a spherical polar coordinate system (r, O, qo) and 
u, v, w, are corresponding velocity components (see Fig. 1). p, p and S are pressure, density and 

specific entropy, C~ the specific heat at constant volume, and y the ratio of specific heats of the gas. 

In  his first paper I Stone assumed that the solution of the equations (1), (2a) to (2c), and (3') can 
be expressed in the form: 

(const.) exp {S/  G } = p /py .  (4) 

In addition, Stone makes use of Bernoulli 's equation, although it is not independent of those 
given above: 

1 1 
(u2+v2+ w2) + 7 P / ( 7 -  1)p = ~ qo~ 2 + 7'Po~/(9"- 1)Ooo • (5) 

together with the equation of state 

av w av 1 ap 
v fro + s in~ a-~ + uv - w ~ cot 0 - p 80 (2b) 

aw w ~w - 1  ~p 
v f f ~ + s i n O  3~ + uw + vw c°t O - (2c) p sin 0 3qo 

(iii) equation for convective conservation of entropy; Stone uses the equation: 

P @ + - -  v + - -  , ( y )  - -  = sin 0 ~ sin 0 

which is equivalent to the more usual form; 

aS w aS 0, (3) 
v ~ -  + sin 0 3~o 



9) = O, rr) leads immediately to the deduction that all the perturbation terms denoted by capital 
letters vanish, and although Stone  does not.make.this assumption,, it will be made hereafter in this 
report. Similarly to (6), the equation for the shock wave is given as 

0 = O~ + E %  cosn~ ' . ~ (7) 

where the % are small constants. 
When the expansions of equation (6) are inserted into the equation of motion (1), (2a) to (2c), 

(3') and (5), and terms of first order of smallness equated, a system of ordinary differential equations 
for the perturbation coefficients results: 

dY,~d~ -+ c o t o + ~ d  (In/5) y , ~ + 2 x ~ + ~ + ~ 7 0  = 0 (8) 

o r  

dx• 
dO 0)= = 0 (9a) 

_ dy,~ { d ~  ) drt l rl% ~,~ d!5 
v-TtO + \dO + ~ y,~ + ~ x,~ + - 0 p dO p~ dO 

dz,~ 
70- + (~ + ~ cot O)z,~- n % - 0 

fi sin 0 
d 

7 0  = 0 

(9b) 

(9c) 

- = d , , ,  (10) 
where d,~ is a constant to be determined, 

~y.,~ + ~x,~ + ,~,~//5 + d,~f/(y-  1)fi = 0. (11) 

Stone reduces these to a second-order linear equation, with variable coefficients, for. x~ ; in his 

notation, this is 
d~x~ dx,~ n~d~ 
dO ~ + B(O): -clO + (C-n2D)x'~ - ~,----1 DT(O) (12) 

where B, C, D are known regular functions of 0 (being combinations of the Taylor-Maccoll variables 

u, v etc., none of which vanishes within the range of integration), and T(O) is a function got by a 
.preliminary integration, which can be represented, close to the undisplaced cone surface 0o, as 

T(O) =/~(0c)//5(ec)~(Oc) + .0 {(0 - 0c)'1~}. (13) 

The  boundary conditions at the shock wave are set by applying shock relations at the surface 
given by (7), and then, by using a Tay!or theorem expansion, are applied at the undisturbed position 
of the shock, 0 = 0 8 . Stone formulated the problem in wind coordinates (the line 0 = 0 corresponds 

to the direction of the undisturbed flow), and the values of x~, y~, z~, etc. at 0 = 0 s are all given 
'as multiples of the corresponding e.~ ; in particular 

Xr~(Os) =" Kle,, 

dx~ I = K~%, and (14) 

d,~ = Kae . 

• where the K ' s  are constants. It is clear that the differential equation (12) and the boundary conditions 
(.14) are sufficient to determine the function xn(O)/<~ = f,~(O) say, and this is computed in .the range 
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0 s/> 0/> 0o by numerical integration. The  value of d~ is then determined by the boundary  condition 

at the cone surface. In wind coordinates this surface is given to the required order of accuracy by 

0 = 0~ + ~ cos qo, (15) 

and here, v = 0. However, this boundary condition is actually set at 0 = 0c. By Taylor 's  theorem, 

at the cone surface 

and hence at 0 = 0 c 

= ~(0~) + c~ cos 9 
0=0  e 

= - 2~(0~)~ cos  ~o, 

J y~ = 0 (n+ 1). 

From equation (9), this gives 

d u  n 

gO o=oc dO o=oc 
= 2e~(0¢)  

since ~(0c) = 0, 

for n = l }  

n 4 : l .  

(16) 

(17) 

= 0 for .  

The possibili tythat df~/dO = 0 at 0 = 0 c in  some exceptional cases ,i's discarded and since df,~(O)/dO 
is already known from the integration of (12), d~ is determined by (17) as a multiple of a. The  

first-order solution is thus obtained, and can be expressed as: 

u ---- ~+c~XCOSrp 

v = ~ + ay cos 

w = ~ ,  sin 9 
(18) ! 

p = / 5 + ~ c o s 9  [ 

p = ~ + ~ c o s 9  t 

0 8 =  0 8 + ~ e c o s g . . j  

In the second of his papers 2 Stone obtained solutions for the second-order perturbation terms, 

i.e. those of order c~ 2. He began by observing that the boundary conditions for the problem could 

be satisfied by, and in general required, the following form of solution 

u = ~ + ~x cos ~ + ~ (u  0 + u2 cos 2~o) 

/ v = ~ + a y c o s g + a 2 ( v o + v 2 c o s 2 9 )  

w = ~z sin ~ + ~2w 2 sin 29 L (19) 

p = / ~  + a~ cos q~ + a~(po +P.z cos 29) I [" 

p = ~ + ~ cos  9 + z~(p0 + p~ cos  2v)  [ 
I 

0shoo k = 08 + ae cos 9 + c~(/30 + fil cos 29) J 

w h e r e t h e  second-order terms u0, uz, Vo, v2, etc., are, like the x, y, z, etc., functmns of 0 only. 
When the expansions (19) are inserted ill the equations of motion, arid terms of second order of 

smallness equated; a system of ordinary differeritial equations, analogous to (8) to (11), results. The  

reduction a n 4  solution o f  these will not be described in this report; in the words of Kopal, who 
directed the numerical computations of the second-order solution 'when the second-order terms are 



taken into account, the theory b e c o m e s . . ,  so complex as to defy effectively any attempt at 
presenting it in a concise form and still retaining intelligibility 4'. The problem is examined in some 
detail in Section 4.1 below, when it is shown that the straightforward linearization process used by 
Stone leads to equations which predict values of u and p of O {ln(0- 0r)}; i.e. which become infinite 
at the cone surface. This was recognised by Stone who remarked that, since ~ vanishes at Or, his 
procedure is invalid near the surface of the cone. However, he assumed that the expansions (19) are 

valid everywhere in the flow field except for a region of very small angular extent close to the cone 

surface. He observed that this assumption is plausible because the divergent terms in the solution 
are multiplied by the quantities (x+z sin 0) and d, which are very small at moderate supersonic 

speeds, and is supported by the fact that 'reasonable' values of p~ and u i at 0~ are obtained in (4) by 
extrapolation of the solutions got by numerical integration of 0 > 0~.. 

Criticisms of Stone's solutions have been made on two separate grounds. The more serious was 

raised initially by Ferri 14, who pointed out that Stone's first-order solution {equation (18)} predicts 

a sinusoidal variation of entropy at the cone surface. He argued that, because this surface must be 

wetted by a sheet of streamlines originating on the windward generator of the conical shock, it will 

be at constant entropy (except for the ieeward generator where the entropy is many-valued). Ferri 

introduced the concept of the 'vortical layer', a thin layer Close to the cone surface through which 

the entropy changes from the sinusoidally varying value given by Stone's solution to the constant 

value at the cone surface, and adduced physical arguments to show that this layer is of O(a ~) in 

thickness. The flow picture proposed by Ferri is given in Fig: 2a. Tl~is is a spherical projection of 

the flow through the origin on to a surface r = constant; 'streamlines' represent sheets of stream- 

lines originating from rays through the origin on the shock wave. At first these 'streamlines' lie 

close to lines of constant qs; then as they approach the cone surface, and the inward velocity (v) 

becomes small, they are swept around the cone and all tend towards the leeward generator on the 
cone, which has in this projection the appearance of a sink. Since entropy is different on each stream- 

line, it is many valued at this generator. The structure of Ferri's vortical layer was later investigated 
by Cheng 'q, Woods 1° and Bulakh s, who independently gave a solution for the flow close to the cone 

surface which both agreed with Stone's solution away from the cone, and conformed with the 
physical requirement that the entropy be constant on the cone surface. The basis for this solution, 
as obtained by the authors mentioned above, is a form of hybrid linearization, in which terms of the 
first order in ~ are equated with terms of first order in ( 0 -  0e) for small ( 0 -  0~). In the next section 
the same result is obtained as the solution for the first order in the inner expansion for the problem, 

and the apparent inconsistency of the earlier solution disappears. In his paper, Woods went further 
in criticizing Stone's solution, and asserted that, because of the properties of the vortical layer, in 
particular the fact that in it the derivative Ou/aO is of order ~2/(0-0~) 1-c~., the method used by 

Stone to set the boundary condition at the cone surface is invalid. This assertion is mistaken, as 
will be clear from the discussion in 3.4 below. 

Bulakh s considered both the first-order vortical-layer solution, and the logarithmic singularities 

in Stone's second-order solution and, in fact, identified the latter with what are in effect second-order 

terms in outer expansions of the former. He concluded that these singularities are due to truncation 

(at order 2, in this case) of the expansions for the physical quantities in power series in ~, and that 
such expansions are therefore invalid close to the cone surface. As has already been remarked, this 

difficulty is overcome in the method of inner and outer expansion, by applying a matching principle 
which is described below in Section 3.1.3, 



The other ground for criticism of Stone's theory, which is applicable to the solutions for both 

first- and second-order terms, is the inconvenience caused expressing the physical variables in wind 

coordinates. To determine, say, the pressure distribution on the cone surface proper, the solution 

has to be transformed into body coordinates. Rules for this have been given by Young and Siska 15 

and Roberts and Riley 16. These are quite straightforward, and, in the case of the first-order solution, 

valid; but in the case of the second-order solution, some of the rules become, like the solution itself, 

singular at the cone surface. For example, in the expression given by Roberts and Riley for deriving 

the second-order terms for w, the circumferential velocity, on the cone surface from the tabulated 
solution in wind coordinates, the term dz/dO occurs, and indeed these authors give a finite expression 

for dz/dO at 0 = 0 c obtained by 'using l 'Hospital 's rule'. In fact, it is clear from Stone's first paper 

{see, equation (36)[1], and the text immediately following it}, that dz/dO is of 0 [(0-Oc) -~/2] as 
0 --> 0o, and so the rule is theoretically inapplicable there. I t  is for this reason that the second-order 

terms of the outer expansions must be calculated in terms of body coordinates ab initio. 

3. First-Order Solution t .  

3.1. Expansions Leading to Linearized Equations. 

We begin by giving a brief account of the method of inner and outer expansions as it applies to the 

problem in hand. The method was devised initially to deal with problems in viscous flow at low 

Reynolds number,  in which the solution to the full Navier-Stokes equation could not be obtained 

and for which different approximate linearized forms of the full equations were appropriate in 

different regions of the flow field. This feature (the necessity for different forms of the linearized 

equations in different regions) also appears in the present problem. 

3.1.1. Outer expansions.--In the region away from the cone surface, it is assumed that 

the flow quantities may be expressed as expansions of the form (taking u as example) 

u = 0 exp (u) = ~(0) + ~fil(0, 9) + c~fi2( 0' qo) + . . . .  (20) 

These expansions (and the equations which govern them) are got by repeated applications of the 

outer limit 
O lim (f) = lim ( f ) ;  0, 9, fixed, 0 . 0 o ,  (21) 

~---> 0 

and are called the outer expansions. The natural coordinates 0 and 9 are the outer variables. 

3.1.2. Inner expansions.--Near the cone surface, as 0 approaches 0 c the linearized equations 

for successive terms in the outer expansions become invalid. To overcome this new inner variables 
~, 9' are chosen such that the equations for successive terms of the inner expansions of the flow 

variables, e.g. 
u = I exp (u) = ~(0(~}) + O~Ule(~, 9') + °~2u2"(- ~, 9') + . . . .  (22) 

J- In the following analysis the natural coordinates 0, 9 will always (unless otherwise specified) refer to a 
body coordinate frame, in which the origin coincides with the cone vortex, the line 0 = 0 with the cone axis, 
and the plane q~ = 0, ,r is defined by the axis and the undisturbed wind direction, with the half-plane ~ = 0 
extending to the windward side of the cone. This body coordinate system is shown in Fig. 1, 



are valid. The terms of the inner expansions (and the equations for them) are go t  by repeated 
application of the i nn i r  l imit ,  -. 

I lim (f) = l im.( f ) ,  ~, qo' fixed, ~ =t = 0. (23) 
~ 0  

3.1.3. M a t c h i n g  co)zd i t ions . - - In  general, the outer solution, being valid in a certain region , 
can be expected to satisfy only those boundary conditions set in that region, and the same is true of 
the inner sQlution. In the present application., the shock relations furnish boundary conditions, in 

the. region' of validity of the. outer expansion, while the flow tangency condition v = 0 at the cone 

surface is within, that of the inner expansion. In. neither case are there enough boundary conditions 

to determine solutions of the inner or outer equations fully, and the lacking boundary conditions 
are derived from the requirement that the inner and outer expansions should 'match'  in some sense 
where the regions of validity overlap. Lagerstrom 11 distinguishes between two matching principles; 
a restricted matching principle, which has been applied to boundary-layer-type problems, which 
saems from the proposition that if first the I lim and then the O lim are applied to some physical 
quantity, the result should be the same as that got" by reversing the order of the limits, and a general- 
ized matching prir.ciple, which asserts that the inner expansion of the outer expansion of a 
physical quantity should . . . .  agree within the order considered with the outer expansion of the inner 
expansion. If  We use the following notation for outer and inner expansions of up to some given 
order .n for some physical quantity f 

% 

" ~ c~i~(O, cp) = O exp ('~) (f)  = f(~), "~ 
~ = 0  " " . ) and . . . .  (24) 

E fi (~, ~') I exp(~'0(f) - f~("~) 
' i  = 0 - ,  

then the generalized matching, principle can be stated as .. 

I exp (~) (f("~) = O exp(',0 (f;x~(~)). (25) 

The  generalized matching principle has been found to be appropriate for the problem at hand. 

'3.1.4. Compos i te  e x p a ~ s i o n s . - - W h e n  the outer and inner expansions are known for some 
quantity up to order n, then. an expansion for that quantity up to  order n which is valid throughout 
the flow field is given by 

- " f(~Y = f ( ~  +f~("~} - 0 exp(~>(f~0~)). ' " - '  (26) 

Of course, from the generalized matching principle (25), the last term of (26) could equally have 
been i exp ~'~ (f(~). : ' ' . . . . . . .  

'3.2. Firs t -Orcter  Ou ter  Equat ions  a,zd Soh~tion. 

From the foregoing it is clear that Stone's linearization, applied to the first-order terms, is 
equivalent to an application of.the outer limit to the basic equation. Anticipating the result obtained 
later that the correct boundary condition at 0 = 0~ is v = 0, i.e. unchanged by the matching 
condit!on, we assert :that.his first-order.solution is thus a valid representation of the first t e rms  of 
the-outer expansions. However,  in order to formulate the inner equations., it is necessary to work 
in body cb0rdinates, so that Stone's.solution must be transformed to these, according-to the  rules 
given by Roberts and-Riley 16, - . . . .  



In effect, then, the first-order outer equations are (8), (9a) to (9c) and (10) in conjunction with 

the expangi0ns (6). T h e  fi'rst terms in the outer expansions are given by (18), in which we understand 

that the transformation to body coordinates has been carried out, i.e. 

q(0 ,  ~) = 4 0 )  cos ~ ] 

L %(o, v) = y(0) cos 

~ ( 0 ,  99) = z(O) sin ~o r (27) 
! 

p~(o, ~) = ~(0) cos ~ ] 

J "~i(o, ~o) = ~:(o) cos ~ .  

3.3. First-Order Inner Equations and Solution. 
We have first to choose appropriate inner variables. When the equations of motion are linearized 

by applying the outer-limit process, i.e. in terms of the natural coordinates, the following estimates 

for the O- and q0-components Of velocity are implied: 

~(0, v) = o(1)  

w(0, ~) = o (~ ) .  

Consequently, in deriving the equations f o r  the first-order terms in the outer expansions, the 

operator v 3/80 applied to such terms is retained (as ~ 3/80), but the operator (w/sin 0)3/8q0 is dis2 

carded as being an order of magnitude less in effect. 
However, the flow tangency condition at the cone wall requires that v vanish as 0 -+ 0c ; from the 

Appendix we have that 5(0) ~ 2Uc(0-0~) = - 2ueS, say, and from Stone's first-order solution, it 

can be shown that y(O) ~ A(O-0~) + B(O-0~) a/z = AS + B8 aI~. Inner variables are therefore 

defined for the region close to the cone surface in terms of which both operators are equivalent in 

magnitude. The circumferent, ial coordinate remains unchanged 

~' = ~ ( 2 8 )  

(and the prime will be omitted hereafter), and the coordinate normal to the cone surface, ~, defined 
by requiring that 

3 3 3 
v ~ ~ - 2u~(O- 0~) ~ = ~uc g~ (29) 

w h e n c e  

or  

( 0 -  Oc) = 8 = exp (-2~/c~), 

1 
= - ~ c~ log ( 0 -  Oc) 

1 
- 2 c~ l o g  ( 8 ) .  , ( 3 0 )  

The variable ~ ranges from ~ = oo (at the cone surface, 0 = Oc) to ~ = 0. The latter value is got 

by applying the outer limit (~ 2~ 0, 0 fixed ~= 0c) to it, and is the value i~f ~ in the matching region. 



The equations for u~ e, vx e, w~ e, p e and f ie  can now be derived from (1), (2a), (2b), (2c) and (3) 

{in conjunction with (4)}. The derivation of the continuity equation will be sketched in some detail. 
It  is convenient to work in terms of the two small quantities ~ and 8 { = ( 0 -  Oc) }. From Appendix, 

the non-yaw quantities and their derivatives are known in terms of 8 for small 8 ; 

= u11 - 8s + . . . )  

1 
= - 2u~8(1 - ~ cot 0 c 8 + . . . )  

fi = 0o(1-M~282+. . .). 

Then  ~ + au~ e, ~ + ~vl e, awz e and fi + apl e are substit.uted for u, v, w and p in (1), and ( -~ /28)~/0[  

for 0/00 when that operator is applied to the first-order quantities (8~/00, and 8fi/~O are known 
directly in terms of 8). In the equation then obtained by subtracting the axially symmetric continuity 

equation and dividing the remainder by a, terms of orders (a) and (8) are discarded, and terms of 
orders unity, (a/8) and (a~/8) retained, to give 

2 p j q e s i n O o _ ( ~ ) v ~ e o P ~  e (~)Pc . ( p~et 8vle 
2 -  0---[- sin 0 c - ~- sm 0 c ,1 + c ~ - ~ o / ~ - -  + 

~wl e 
+ pcVl  e COS 0 c + Pc --  O. 

a9 

Further,  because of the boundary condition v = 0 at the cone surface, it is assumed that vi e = 0(3); 

the second and fourth terms in the above equations are then discarded, and we have 

0 [  - \ 8~ + 2ule sin 0 c 1 - ~ cosec 0 e 
a Pc / 

=o(!). 
The two small quantities cz and 8 are connected by the relation (30); in the inner limit (a ~ 0 ,  

fixed, [ + 0) 8 is exponentially small--smaller than any power of a - - a n d  we have finally 

OVle 

a[ 

This equation can be integrated immediately to give 

v~e(¢, ~) = F t ~ )  

or, more precisely, by virtue of (31),, 

V e (¢, ~) = FI(~) + 0 ( 8 )  

and from the boundary conditions vie(co, ~) = O, we have Fl(~o ) -= O, whence 

vl*(~, 9) = 0. (32) 

{The assumption that vl e = 0(8) is confirmed a posteriori.} 
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The remainder of the inner equations are derived similarly. They  are given below, and in brackets 
at the right-hand side of each, the orders of magnitude of the terms neglected are indicated 

0//1" 1 0 g l *  g01.2 = 0 [0((~)] (33) 
u c ~  - + wl* sin 0 c Ocp 

0Pl* - 0 [O(3/~)] (34) 
a~ 

1 aPl* _ 0 [o(~)]  (3s) 
ucwl* + pc sin 0~ a~- 

3 wl* 3 
ue 3-~ (Pl*/Pc-TPI*/Pe) + sin 0 c 3qv (Ple/Ps-YPI*/Pc)  = 0 [O(a)]. (36) 

The  boundary conditions for ul*, wl*, pl  e and Pl* are given by the matching principle and to 

first order are simply that 
(ul *, wl*, . . . etc.)[~= o = (z/, ~ , . . .  etc.)[0=0o. (37) 

From (34) we have immediately 

p1"(¢, v) = f~(v) 

= ~c cos ~o (38) 

(from the matching principle) and this determines wl ~ from (35), as 

~% sin ~o. (39) 
wl*(~' q~) - p~u c sin 0 c 

Equation (39) does not conflict with the matching requirement for Wl*, viz. wl* = zc sin % it 

follows from (9c) that for 0 = 0~, z c = ~/pcuc sin 0~. 
With wl* known, (33) and (36) can both be integrated, to yield 

and ul~ = F3(tz) - sin O~z~ cos q), / (40) 

J Pl*Po - YPl*/Pe = F4(t z) 

respectively, where 

( z~ ) cot qo/2. (41) 
/~ = exp ~ u c s i n 0  c 

The  matching conditions enable F a and F 4 to be fixed; we have from (40) and (27), using (37), 

F~(cot ~o/2) - sin O~z c cos c? = x c cos ~o 
or 

Fa(/~ ) = (x~ + z c sin 0~)O(/~) 
where 

_ / x  ~ -  I (42) 
.0(~) ~ + 1 

and 
F4(tz) = [%/Pc - 7~e/Pc]O(f z) 

= ¢ ( ~ ) d ,  

say, where we have followed Stone in denoting the first-order entropy perturbation coefficient by d. 
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Thus finally, 

u~(~,  50) = (x~+zo sin 0c)O(/z ) - sin Ocz c cos 50 (43) 

p~(~, 50) = % cos 50/ac ~ - P S  ~b(i.O" (44) 

To comple te  the solution for first-order terms in the inner expansions, we anticipate the need in 
considering the second-order terms for a first-order correction to the operator vS/OO, by calculating 

Vie" = vle/~. Observing that in the inner limit the term 8v~/aO can be represented as - 2ucV1 e, 
we get from the continuity equation (1), 

Pc OWl e 
2pcua*~ - 2pcucVl~ + sin 0~ ~50 - 0 [O(a)] 

o r  

gO ! V~*" = u S  + cos (45) 
u c 2u c sin 0c 50" 

In deriving the equations for second-order terms in the inner expansions, we shall replace the 
operator v O/a0 by 

5 ( 1 + ~ V ~ ~ ) ;  = (1 +~V~)~uc  ~ .  

3.4. Remarks on Boundary Conditions and Order of Sohttion. 

In solving for the first-order terms in the outer and inner expansions, the logical sequence would 
be: (i) to derive the appropriate equations, i.e. the systems (8) to (11) and (31) to (35), (ii) to solve 
(31) for vl ~x', since this is the only equation which with its boundary condition vl*(oo , 50) = 0 is 
autonomous, i.e. does not rely on a matching condition, (iii) now knowing from the matching 
principle that y(Oc) = v*(0, 50) = 0, to solve the remainder of the inner equations in sequence, 
appealing to the matching condi t ionsas  boundary conditions. 

Thus  the boundary condition at the cone surface for the outer equations is precisely that which 
Stone used, so that the criticism made by Woods 1° on this count is mistaken. However,  this boundary  

condition does not follow immediately from the boundary condition v = 0 a t  the cone surface, 
which properly applies to the inner equations, but  rather from a matching principle .... 

4. Second-Order Sohttion. 

4.1.' Second-Order Outer Equations and the Matching Principles. 

We shall follow Stone in assuming the form of the second-order terms to be as given in equation 
(19), and shall use his notation. A second application of the outer limit to (1), (2a), (2c), (3') and (5) 
then gives precisely those equations derived by him in (2): 

d~ + vi cot 0 + 70 (log /5) + 2 u  i + 2 w  2 c o s e c 0 +  

+ ~ 70 + 2 y - 70 -T- 2p sin 0 - 0 (46) 

du i z t  cosec 0 
d O  v~ = + 2~ : (47) 
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dw~ 2p~ 
-dO- + (~ + ~ cot O)wz /5 sin~ + 

1{ dz sew } = 0  (48) + ~ y~-~ + z (x+y  cot O+z cosec O) + /5~ sin~ 

d (pp) d (~ )  z cosecOd 1 (d~ .d~ e) (49) 

l (x2+y~+_z2) + 7" ~ {pp p, 1~:({ p)} : 
' - -  . . . . .  = +  2 7  - = o ( 5 0 )  ~/ui + ~vi ~- 7# y - 1/5 p 

Here the suffix i takes the values 0 and 2, the symbol + means ( -  1) ¢f2, and t = x + z cosec 0. 
It is not proposed to reduce and solve the above equations in the present report, and the expressions 

for the boundary conditiofis at the shock wave will not be given. Stone gives the appropriate 
expressions in [2], for the problem set in the wind coordinate system; in the body coordinate system 
they would be somewhat different. As regards the boundarY condition at 0 = Oe, we anticipate the 
result obtained for the inner solution that %*(~, qo') = 0, so that vi(O~) = 0; again, the vortical layer 
has no displacement effect- 

By inspection, knowing that ~ = O(0 -  0c), we deduce from (47) and (49) that u~ and (pJ~-ypJ/5) 
must both contain terms of O[log ( 0 -  0~)], which become infinite atthe cone surface. We shall show 
that these terms are eliminated by formal application of the matching principle, and that the resultant 
composite expansions (to order 2) will give finite values for all the physical quantities throughout. 
We put 

u i = u( -T- z~tc cosec 0~ log (0-Oc) (51) 
4uc 

• t " , co ec 
= + ( 0 -  0 3  ( 5 2 )  

/5 - 4yu c 
and 

, Zct c cosec 0 c 
v~ = v~ + ( 0 -  0o) log ( 0 -  O~), 

2u c 

and convert (49) to (53) thereby into equations for u(, v(, wa, p~, and (Pi//5)'. These are: 

dv( ,( d ) 
d-O- + vi c o t O + ~ ( l o g / 5 )  + 2 u ~ ' + 2 % c o s e c O +  

d (pi) '  1 (  ~ ) d  sez ZctcCOsecO c 
+ ~  -- + ~  y -  (Se//5)-T- 2psin~ + 2u c + 

( d ) e zflcosecOc Zct ~ cosec O~ (O- 0~) log (O- Oc) cot. O +- (!og/5) + (O- O~) - 0 
+- 2u b - 4TUc 

du i , l.zt cosec 0 zJ~ cosec 0~t zot~ cosec 0 e 

d (~p)' {zdcosecO zedcosec_~_c t 1 (dr/ d~: ) 
= + 2~ + 4u~(O-O~) ) - . ~  ~ ~ - 7 ' ~ 1  d-O - Y  

and 

~u i' + g)v i + 

Zet e +~  

(0-  0~) log (O- 0~) 

7#1(xZ+Y2+Z=)+y~Y ff {p~ff_ (~)'+2~15e(~7_~_)} + 

c°secO¢(o-O~)l°g(O-Oc)-Y-zoc°secO~ { -P--1 } 
2u e " 4u~ log (0-- 0~.) ~t c q- (y )fi d = O. 

(53) 

(54) 

(55) 

(56) 

( 5 7 )  
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Equation (48) remains the same. With the aid of what is known already from Stone's investigations 
it can be shown that no infinities arise in the solution of equations (54) to (57) and (48). In (54),' 
~ / ( 0 -  0~) -+ - 2uc, so the last term is finite: in (54) and (56) the first terms on the R.H.S.  are both 
of O ( 0 -  0,)->~ as 0 -+ 0, so that u i' and (Pd~)' both have the form {const. + O(0 - 0e) ~/~} as 0 -+ 0 o . 
In (57), we recall from equation (37), Ref. 1", that t o = - { d / ( y -  1)} (pdu~po), so that the last term 

is of O { (0 -  0c) 2 log ( 0 -  0~)}. 
Thus,  a reduction of the system (54) to (57), (48) analogous, to Stone's reduction of the system 

(46) to (50) should yield two ordinary differential equations~ which with the appropriate boundary 

conditions could be integrated numerically to give, ultimately, values of u((O), v((O), pi(O), (pJp) '  

and w~(0) which should be finite within the range 0~ > 0 > 0 c . In the following discussion, we shall 

assume that this is the case. 

The  outer expansion for u, say, can now be expressed as: 

i~(~) = 

~1(o, ~) = 

G (  o, ~o) = 

where 

A 2* ~(o) + ~.,(o, ~o) + ~ .~(o, ~o) + . . .  

x(O) cos ~ 

{u0,(0 ) zot o coseC4u~ 0el°g(0-0o)} + 

{ - ,  } + u~'(O) + -4~ cosec 0~ log ( 0 -  0~) cog 2qo 

while the inner expansion can be expressed as 

u*~ ~-~ = uo + ~u**(g, ~) + ~ % * ( g ,  ~ ) .  
where 

/z z - 1 sin Oez(O~) cos ~,  ) ul* = to ~ 1 

) sin 0-o cot 2 

and uz* is not involved 

1 exp(2/(a(~)) = O exp (2) (u*(2)). 

Now,  in outer variables (from .(29)) 

/~z = (0 - 0c)-~d% sin 0o cot2c?/2 

and the first 2 terms of the outer expansion of (/~z~- 1)/(/xz+ 1) are: 

z, cosec 0 o log ( 0 -  0o) (1 - cos 2q)). 
cos qo - a 4u e 

Thus,  

(58) 

(59) 

(60) 

(61) 

in the present discussions. The generalized matching principle requires that 

'~c c o s e c  1 4u~ 0° log (0 - 0,) (1 - cos 2q~) . 

0 exp  (~) (u ~(2)) = g~ + ccxo cos  ~o + 

+ ~ ~u2*(0, qo) 
k 

(62) 

(63) 

. The value of t(O) is unchanged by a transformation from wind to body coordinates. 
cf. equation (28), Ref. 2. 
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Similarly, from (23) and (29) it can be deduced that if f(0) can be expressed as 

j (o )  = + g(O), 

where fc is a constant, and g(0) vanishes as 0 ~ 0  c either like ( 0 -  0c) ~ or ( 0 -  0c) ~ log ( 0 -  0c), where 
n > 0, then the inner expansion of](0) of whatever order is given simply byfc,  while 

2~ 
I lim {log ( 0 -  0~)} = 

O~ 

= ~og ( 0 -  0c) 
in terms of the outer variables. 

Thus the generalised matching principle applied to u gives 

%+c~x~c°scP+~2[ {u°'(O~)+u2'(Oc)c°s2cP} zctcc°secOc4uc log ( 0 -  0c) (1 - cos 2~o)] 

=uc+~xccos~o+~2[u2*(O, cp) zctec°secO~log(O-O)(1-cos2~o)]. (64) 
4u c 

The terms in log ( 0 -  0c) thus match automatically and in determing the second term in the inner 
expansion for u, we need only set 

u~*(O, 9) = Uo'(Oc) + u2'(Oc) cos 29o. (65) 

Further, when the composite expansion for u is made up from the inner and outer expansions, 
the divergent terms in log ( 0 -  Oc) cancel, and the resultant expression, which represents the physical 
quantity, will be finite throughout the flow field. 

It can readily be shown, by a similar use of the matching principle to the above, that the composite 
expansion for p is also finite, and that in determining Oa~(~, 9), we again need only set 

(P°I '+ pc(o2) cos2cp. (66) p~*(0, v) = Pc ~ ~ /  -~ 

Finally, in a more straightforward way, it can be shown that the matching principle gives 

w~*( 0, V) = %(0c) sin 2~ 

P2*( O, 9) = po(Oe) + P2(Oc) cos 2 9 . 

4.2. Second-Order Inner Equations and Solution. 
A second application of the inner limit to equations (1), (2a), (2c) and (3) yields: 

~7J2~ 
a~ 

8Uo* 8u2" _ 
Uc ~ -  + wl* cosec Oe 8~ 

8p2" 
a~ 

OWl # 
cosec Oewl ~ ~ -I- Wl~Ul ~ -I- uow2 ~ = 

o(,.) o(,.) 
uc + cosec 0c N 

- 0 ( 6 7 )  

- 0  

8u1" 0 Oul* %V1* - ~ -  - w2* cosec e ~ + 2wl*w~ ~: (68) 

1 Op~* Ol* Opl* + 
pcs in0 c O 9 pc 2 sin O~ Oqo 

(s:)_ cosec0   (s:) 
15 

(69) 

(70) 

(71) 



Immediate ly  f rom (67) and the boundary  condition v,e(oo, 9~') = 0, we have 

~,~(~, ~o) = O, 

and from (69) and the matching principle 

p~O( ~, ~) = po( O,) + p,( Oc) cos 2q~. 

T h e n  (70), together with the solutions for the first-order terms, gives 

w£ "x~ = W 1 sin 2cp + W.(1)(,) sin ~o 
where 

(72) 

- ,  (73) 

(74) 

Wl = 2p;(03 cosec 0c 1 [n~]~ [~°]" (cosec 0~-s in  0o) 
pcZtc 2 y u c p c p  c u c 

W , -  wd  tcz° , i 
7ucpc sin 0 o u c 

With w,*(~, q~) known {and we again observe that  its determination from (70) also satisfies the 
matching condit ion w,*(0, ~o) = w,(Oc) sin 2% as can be confirmed f rom equation (48)}, it is now 
possible to determine u,~"(~, ~o) and (s,~:/C~) from equations (68) and (71), and the appropriate 
matching conditions, u,*(~, cp) is given by 

+ u, ' ) ( / / ,  9) = Uo'(Oc) + u,'(Oc) {2(I)z(t ~) - 1} + KI.(I)( . )  

,7 d e ( , ) l o g  [ c°t2cp/2 + 1 , ) " 
+ ~ ' " - 7 ~ - -  \ . ' + 1  ~ /  + '• 

+ K ,  {cos 2fo - 2 0 ' ( . )  + 1} + K 4 ( I ) ( .  ) {cos ~ - ( I ) ( f f ) }  

w h e r e ,  and 0 ( . )  are defined above, and 

and 

[ K l = - t ~  E 

F2W1 z~ ] 
I{, = tcL zc + sin O czc 

u c 2'u o sin 0 e 

1 
K a =  - ~ W l s i n 0 ~  

K 4 = - W, sin 0 c 

4 , , .  

\ P J  
dq)(.) (cotZcfl2 + i 

+ Kd~ - - ~  log \ ~ 1  

s :  _ ? o ( O c )  - •~;'(oo) 
G LPc ~ p~ 

+ i-p~(oc) p~'(o~) 
L Pc Y Pc 

(75) 

(76) + G ~ ( ~ ( . )  - ~ -  log 

) \ z c - + s i n O  cud 2z 6s inOc " 

where 
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Finally, using (4), we have for p~*(~, 50): 

p~*(~, 50) 1 Fp ~ 1 F1 "%~ cos~50 . 
Pc 7 L Pc ~ - 2 L~, Po~ ', po / 

(77) 

5. Discussion. 

We begin by writing down (terms of outer variables) the composite solutions for the flow 

quantities, made up from the various solutions obtained or sketched out in this report: 

u (m = ~ + ~x cos 9 + °~(Uo'+U( cos 250) + ~[tfl~(/x) - sin Ocz c cos 50] + 

F dcI)(/x-) l°g ( ~ )  + dt z + ~ L~,;(0c) {2q,~(t,) - 1) + K I ~ ' ( ~ )  

dq)(/,) log / c°t2 ~o/2 + 1 /, ) + G t ,  ~ 7 ~ 7  f c d ~ / ~  + G {cos 250 - 2 ,=(~)  + 1} + 

+ K4~(~) {cos 50 - ,D(~)} 1 - ~xc cos 50 - ~'~,,;(0c) cos 250 (78) 

z, (e~ = v + ay cos 50 + c~Z(Vo' + %' cos 250) (79) 

w (~) = ~z sin 50 + ~ {u'~ sin 250 + W.aqb(/, ) sin 50 -- W~ cos 50 sin 50} (80) 

p ~  = / ~  + o~j cos 50 + oJ-(po+p2 cos 250) (81) 

{( I (7) } { -  } P0 +t5 P~ cos2~o + ~  Pc % cos 50 - - -  q)(/,) + p(2) = 15 + c~: cos 50 + ~2 15 \ 15 / YPc Y 

oc Ipo(Oc) p~(o~) cos 2~o - + - -  cos~ 50 e *(~)  - 
+ ~ 7 t - ~  + pc ~ ;  ~ pc ~ ~rp~ r 

- c~ Pc t'q¢ _ d/ cos 50 - ~ [po'(0~) + p~'(Oc)cos 250] (82) 
7 tPc 1 

where s~*/C~ is given by equation (79), and / ,  and ~(/x) are defined in (42), (42) above. 
The expansions are written down in the order O e xp + I exp - O exp (I exp) {or I exp (O exp) 

as the case may be}, and identical terms have been cancelled. We observe that in equation (79), we 

have written the second-order term for v as being given by %'(0) + %'(0) cos 250, i.e. by the solution 
of equations (54) to (57). This choice arises from application of the generalized matching principle 
to the expression v/~(O), from whence it is seen that the logarithmic terms cancel out in the com- 

posite expansion, as do those in the expressions for z%(0, 50) and p~(0, 50).~ 
The solution represented by the expressions (78) to (82) is clearly non-analytic. All the terms in 

the inner solutions (save Wx ~, p** and Pa*) are functions of the variable/, ,  so that they have infinite 
first derivatives with respect to 0 at 0 = 0c, on the cone surface. The outer solutions, expanded in 
series close to 0 = 0~, all contain in addition to regular series of integral powers of ( 0 -  0c) series of 

o0 -' 

the form E C~(O- 0e)~+'/~; in the first-order terms, N = 0 for z(O), 1 for y(O) and 2 for x(O), ~1(0) 
j = N  

and ~(0). In the second-0rder terms (which have not been thoroughly investigated) it is evident by 
inspection of equations (54) to (57) that at least u~'(0) and p~'(O) contain such expansions, with 
N = 0, and also that terms like ( 0 -  0c) log ( 0 -  0c) occur. 
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The non-analytic nature of the inner (vortical-layer) solution seems to be characteristic of pertur- 

bation solutions for non-axially-symmetric conical flows. A discussion of these has been given by 
Cheng 12. The  'half-power' series which cause the outer solution to be non-analytic as well are 
analogous to those which have been found in another perturbation problem based on the Taylor- 
Maccoll solution, namely the calculation of the flow past a pointed body of revolution at zero 
incidence, treated by Shen and Lin TM. This latter case has been rather fully discussed by Van Dyke1% 

Whether or not these solutions are non-analytic because of some inherent property of the full 
equations and boundary conditions, or because of linearization procedures, cannot be discussed on 

the basis of the work reported here. We shall merely remark that because these solutions are non- 
analytic, particular care should be taken in their computation. In this connexion, some methods 

described by Kaplan ~° may be of value. 

The solution corresponds qualitatively to Ferri 's description of the vortical layer. From (40), (41) 

and (42), we see that close to the cone, entropy is given to first order in a by (I)@.)d; q)(/x) tends to 
cos 5o at any finite distance from the surface, but at the surface, where/x{ = (0 - O~)-~:d°'"c'~in°, cot 5o/2} 

is in general infinite; ~(/x) -- 1, and the entropy is constant, equal to that along the sheet of stream- 

lines originating from the most windward generator of the shock wave. At 5O = 7r, however, cot 5O/2 

is zero, and/x is indeterminate; physically, all the streamlines tend towards the leeward generator 

of the cone, Where the entropy is many-valued. 

Fro m (76), it is clear that this picture is little altered by including second-order effects. Again, 

the second-order entropy term tends to its outer value at finite distance from the cone and is constant 

on the surface, equal to its value on the sheet of streamlines originating from the most windward 

shock generator. 
For moderately high values of incidence, alternative flow pictures have been proposed. That  

shown in Fig. 2b corresponds to a change in sign of the circumferential velocity w at S. If  the 
plausible assumption that {u + (1/sin 0)3w/35o} 4= 0 is made it may be deduced from equation (2c) 
that this would occur if the pressure passed through a minimum at S, i.e. at some value of 5O less 
than 7r, and this behaviour has been observed experimentally. The entropy on the cone surface is 
then piecewise-constant: on BS its value is that gained in passage through the shock at A, and on 
CS in passage through the shock at D. At S the entropy is many-valued. The streamline pattern in 
Fig. 2c was suggested by Ferri 21. In this case, the singular ray represented by the point S has been 

lifted off the cone surface. 
Neither of these flow patterns could be derived by analysis of the sort used in this report, in 

which, in the passage to the limit a -> 0, the hierarchy ~ >> o~v 1 >> o~2v~, o~;~ >> o~7v2, etc., must be 
maintained. For the flow represented by Fig. 2b to occur, it would be necessary for c~"zv2 to exceed 
~w 1 in magnitude for a finite range of % while for that in 2c, a"v, would have to exceed v 0 + ~v~ 

similarly. 

Conch~sions. 

The method of, inner and outer expansions has been applied to the problem of calculating the 
supersonic flow about a circular cone at small incidence. Stone's first-order solution for this problem, 

and the vortical-layer solution obtained separately by Cheng 9, Bulakh 8, and Woods 10, are more 

satisfactorily connected than hitherto as the first terms respectively of inner and outer expansions 

for the problem. It is found that the terms in Stone's second=order solution which are theoretically 

infinite at~he cone surface are in fact removed from the final expression s for physical quantities by 
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the generalized matching process. In practice this means that the computation of the second-order 

solution, which in the M.I.T. cone tables was restricted to low Mach numbers by the divergent 

terms, can now be extended to hypersonic speeds, using equations which have been derived above. 

The second-order terms in the inner expansion have been obtained in closed form. These, 

however, contain expressions which depend on the values at 0 = 0 c of the corresponding terms in 
the outer expansions, which have as yet not been computed. 

' i  
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SYMBOLS 

Specific heat at constant volume 

First-order entropy perturbation coefficient {equation (10)} 

Pressure 

Spherical polar coordinates 

Corresponding velocity components 

Specific entropy 

x + z sin 0. 

First-order perturbation coefficient for u 

First-order perturbation coefficient for v 

First-order perturbation coefficient for w 

Angle of incidence 

equation (27) 

Second-order perturbation coefficient for shock shape (equation (19)} 

Adiabatic index 

First-order perturbation coefficient for shock shape (equation (7)} 

Inner coordinates {equation (29)} 

First-order pressure perturbation coefficient (equation (27)} 

First-order density perturbation coefficient {equation (27)} 

Density 

Quantities in Taylor-Maccoll solution 

Quantities in outer expansions 

Quantities in inner expansions 

Quantities at cone surface 

Quantities at shock wave 

(When associated with circumflex and asterisk) first- and second-order terms in 
expansions in powers of ~ {in general: ( )~} 

(When no t  associated with circumflex and asterisk) in coefficients of cos (0 x ~o) 
and cos 2~ in Stone's second-order solution {in general: ( ) i )  
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A P P E N D I X  

Expansions of the Taylor-Maccoll Solution in Powers of ( 0 -  0~) 

~/(0) = u e -- uc(O-- 0~) ~" + u c cot  0 e - - -  
( 0 -  0~) 3 

+ . . . 

g~(O) = - 2ue(O-O~. ) + u~ cot' 0 c ( 0 - 0 c )  2 -  u c {cot  2 0 r + 4 Mc2} ( 0 _  0c.)a + . . .  

5 
f (o )  = p~. - o~u~(o -  o~)~ + ) p~,~ cot Oc(O- o~) 3 + . . .  

5 
~o(O) = pc - o Y e " ( o -  oe)~ + ~ pcM,.~ cot Oc(O- o~)~ + . . .  

H e r e  the  s u b s c r i p t  c refers  to c o n d i t i o n s  at 

~ 0 6 

a n d  

M 2 =  P~ u~2. 
7P~ 
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