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Summary.—Calculations of the pressure on a flat elliptic cone and on a flat elliptic hyper-cone at supersonic speeds
and zero incidence are made for the case when the cones lie inside the Mach cone of the apex. The results are combined
to give the pressure distribution and drag of a wing-like surface at zero incidence in a supersonic stream (see Fig. 6).
It 1s found that the pressure is constant along straight lines on this surface which are normal to the wind direction
(see Fig. 7). The drag results (Fig. 8) show the effect of sweepback on drag at supersonic speeds.

1. Introductory Account.—The lift and drag of a pointed triangular plate or ‘ delta wing’
at supersonic speeds is calculated in Ref. 1. For the derivation a special system of curvilinear
co-ordinates is introduced, which are closely linked with the plate and with the Mach cone from
its apex. The differential equation of linearised supersonic flow is then solved in this special
set of co-ordinates by.standard methods, and it is found that one of the simplest colutions
corresponds to the flat delta wing at incidence. No discussion was given in Ref. 1 of the signifi-
cance of the other simple solutions of the equation in the special hyperboloido-conal co-ordinates.
However, it became apparent that other interesting cases could be solved in this way, and the
present report gives an example of the procedure.

We first determine the pressure distribution for the thin elliptic cone with the equation
Z (L—_yz_‘i)”_?’ v

2, ct
where % is measured down stream along the wind direction from the apex,
y is measured to starboard,
b4 is measured upward,
c is the chord in the vertical plane of symmefry,
y is the apex semi-angle in the horizontal plane of symmetry,
and to is a constant determining the thickness.

The notatlon and shape are shown in Figs. 1 and 2.

The cone is set symmetrically to the wind direction so that the pressure on it is symmetrical
with respect to y and z.

The solution is only valid if the cone lies wholly within the Mach cone of the apex, so that the
Mach angle g = sin ~* (1/M]) is greater than the apex semi-angle y.

It is shown that the pressure is constant over the cone, and that the pressure coefficient C,

is given by
tan
n[z _ 1 —_ __9 Y
C VI ) ¢ >f1 tan u

*R.A.E. Report Aero 2184—received 27th May, 1947, and its Corrigendum (Appendix II) received 18th August, 1949
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where f; is a function which is given in Table 1 and Fig. 4. Values of C , are shown plotted against
M in Fig. § for y = 15 deg, 30 deg and 45'deg. o TR SRS

‘We next determine the pressure distribution“for the surface with the equation

L F (ot yi

2%, ¢ | - S ey
The shape of this surface is shown in Fig. 8. It will be referred.to as an * elliptic hyper-cone ’
as it has some resemblance to an elliptic cone. This hyper-cone is also set along the wind and

again the solution is only valid if the surface lies wholly within the Mach cone of the apex. It is
found that the pressure coefficient on this surface is given by ‘

CJWMK-DZG%QﬁG%%)

2 I

where £, is given in Table 1 and Fig. 4.

Finally the solutions are combined to give the surface

5 = (-9 =ty

with the pressure distribution
44 x
Gy —1 =) (h=21),

. where f, and f, are the functions defined above. The surface is shown in Fig. 6 and is wing-like
in shape. It has a straight sharp trailing edge on the line x = ¢, z = 0, and leading
edges x = + y cot y, 2 = 0 which are swept-back and are rounded except at the apex. The wing
section in the plane of symmetry ¥ = 0 is biconvex, with the equation

z x x
% == (1-5) | |
The maximum value of z is #,/2 at ¥ = ¢/2, and the thickness/chord ratio of the centre section is
therefore ¢,/c. - :

Fig. 7 gives the example of the pressure distribution for érw‘ing of th'isr form, of apex semi-
angle y = 30 deg and of centre section thickness/chord ratio- tofc = 0-10 at a Mach number
M = /2 (n = 45 deg). ' ’ AR -

In calculating the wing drag it is necessary to allow for the leading-edge force (Appendix IT)
as well as for the pressure distribution given by the theory. It is found that the drag coefficient
Cp, based on wing area, is given by : N S o

2D\/(M® — 1) 2 stp\e [, /tanys - tany o, tan? paire
2 f—] . —— - - -—;— —_ —
Cp v/ (M 1) pV?ic® tan y 3 <C> {ﬁ(tan,u o tan g ) 1 tan® y> ] ’

where f, is the function given in Table 1 dnd Iig. 4. '_l“heyalues of Cp, for. a: centre-section
thickness/chord ratio #,/c of 10 per cent are shown plotted against M for y = 15 deg, 30 deg,
and 45 deg in Fig. 8(a). This gives an indication of the effect of sweepback on drag. The strip
theory values for the centre-section are also shown in Fig. 8(a), but a direct strip theory com-
Pparison is not possible on account of the rounded leading edge of the wing. M S
" There is no basic difficulty in rﬁaking similar calculatlons for more complicated Wir__lli.g"sha'p:es,‘_
though the process would becomes increasingly complex.” = .. .. ~ B
The effect of incidence is given by the theory of Ref. 1. This will not be a good approximation
very close to the leading edges but should be satisfactory elsewhere.. ... .. oL ”
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2. Notation.
p  air density
V' free-stream velocity
M  Mach number
¢ Mach angle
AP excess pressure on the surface
C, pressure coefficient 2 Ap/p V2
G drag coefficient based on wing area
CDf 1

¢ centre section chord

v ., ,, frontal area

t,  maximum thickness of wing
apex semi-angle of wing

distance measured from the apex in the direction of the stream

distance measured upwards from the horizontal plane of symmetry .

I4
x
y  distance measured to starboard from the centre section
z
n (M?— 1)Y2

7

%'y defined by equation (1)
h: k 2 b 2 (2)
7’, u, v 7 7 717 % LR (3)

@ induced velocity potential

3. Method of Solution.—From this point it will be assumed that the theory developed in Ref. 1
is familiar to the reader, as the present investigation is a continuation of the earlier one. The
notation of Ref. 1 will be followed and the complete set of definitions will not be repeated here.

We work mainly with the 7, 4, v co-ordinate system where

x=munx', y=%, z=12, .. . .. .. .. .. (1)
n* = M? — 1 = cot? u = k* — A2, @)
k® = cot®y, h®* = cot® y — cot? p,

oty B B Tl Gty
¥ = 1’hk’ y - 7[ k2(k2 . h2) 4 & =7 k2<k2,_ hZ) (3)

We assume that the surfaces under investigation all lie close to the basic plate whose equation

is p = k, and that the induced velocities on these surfaces are small and equal to the induced

velocities on the plate. This leads to a relation between the shape of the body z = z(x, y) and
its induced velocity potential @ of the form

§5=+11/@_Q;>=k 2

where V is the stream velocity. In addition, for the linearised theory, the excess pressure
Ap and the pressure coefficient C, are given by : -

_ o0 _2ap 2739 o
A pV"(a%)pék’ Cr TpVE T VNoxJu-s o T ()
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The solutions of problems of the type under consideration are given by selection or com-
bination of the solutions for the potential of the form
@, = CrF,” (u) E,» (v), .. .. . .. .. .. (6)
where E,” (1) is the standard Lamé function, and F,” (x) is the second Lamé function, which is
related to E,” (¢) by the equation

o

"N Fm &
e = (”)L[E,:n e —me—rpe 0

The reader is referred to Appendix V of Ref. 1, and to Hobson’s book? for further information.

4. The Elliptrc Cone at Zevo Incidence.—We first solve the problem of the flow past a thin
elliptic cone, set at zero incidence, whose equation is

/% — y® cotPyN\1/2

2%, ( c? > o ®
This is obtained by taking the expression (6) for the induced potential, with m=n=1, so that:*

E (0) = p, ELY (v) =, W , ,
” dat . .. . (9)

Fit(p) = /«LJ £t — b (12 — Y] “I(/‘)’f
and ’ ' A

&, = Coymw I{p) = C, h k&' I(y). .. .. N (10)

At the plate p = % we have
0P, 0D, .0 .. . .. .. . . .. . (11)

B—Z o op o

since 2 = 2" and 7 and » do not vary along the normal at the plate. From (10) and (11) and from
{22) of Ref. 1 we get

22 _[camIw — G, ] [ =Rt — P — oy

5 Mz(Mz . hZ)l/z (‘uz . k(kz — h2)1/27’(,u2 — vz)
As u — k this becomes

0P Cy

oz R(k* — v3)Y2

Also on the plate, from (3),

;,2 — xlz - 12 —_— xz __-%2 9 %2,
vt = hx'? = hix%n?
and herice o

82? =~ C hx'

02 - 1]3[96,2(/32 _ ha) — k2y12:]1/2
hx

. = — Clk(kz . hz)uz (%2 _ kzyz)l/z ’ . e .. .. ‘- (13)
From (4) and (12) the equation of the body inducing the potential @, is
92 _ _ Gy hx ’
8x —  V R(R — W) (xF — By

which integrates to -
Cih rx* — kzyz 1/2

T VENR — k2> :

if the constant of integration vanishes. Since 2 = coty and k* — %* = #* this is identical with
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(8), provided that we put
| 2 5172 |
1=—V< °) =-—V<2t" fo L ay

The longitudinal induced velocity on the plate is

20, 1030, . bk -
St =G IR, e (19)

0
since it may be verified" that 8;’ vanishes on the plate. Hence, from (14) and (15),

: dat
ksI(k) = k? J tz( k2)1/2 ( - kz)uz

. ™ sin? 6 df
o (1 — A*sin® 6/R%)*/* ’
0

on putting ¢ = % cosec 6, and hence

K(hjk) — E(h|k)

3

1) = D () == i

where K and E are the standard complete elliptic integrals, so that
_@ . <2t ) D(h/k), '

Values of the function D are given in Ref. 3.

. The excess pressure on.the cone is .

: Ap——_—-pVa@l— V2(2t>Dh/k j

and hence :

6viar 1= (5) (15" 0 (3. o
since (M*— 1) = (k2 — kz) . We write this as 7 | \

€, /(M (‘”“)fl( oo :) SRS .. ae
where £ EEZ _ (1 _ Z—:)w DC;,:), l | R ;,&7)
and R, tan’y - R LT

k? tan®pu’ s J ) B



The function f, is given in Table 1 and Fig. 4. The values of C,/(4,/c) are plotted in.Fig. 5
against M for y = 15 deg, 30 deg, and 45 deg. It should be noted that (4¢,/c) is equal to the total
angle between the upper and lower generators of the cone in the vertical plane of symmetry
¥ = 0. For the infinite wedge of total angle 4f,/c set symmetrically to the wind the value of
C,/(4¢,/c)is equal to (M* — 1)*/% and this quantity is also plotted in Fig. 5 to show the reduction in
pressure on the cones in comparison with this wedge. ,

| . 0. The Elliptic Hyper-cone at Zevo Incidence.—We next solve the problem of the flow past
a thin elliptic hyper-cone, at zero incidence, whose equation is .

E(0) = u? — a,, (m=12 . . o =
where 4, and 4, are constants. Substituting this in Lamé’s equation®® with #» = 2 we get
(* — a,)[6p® — p (B* + k*)] — 2u%(2u® — h® — &) — 2(u® — h%) (u® — k¥ = 0.
Equating the coefficients of the powers of 4 to zero and eliminating the constant p we obtain

z % (%% — y® cot® p\M?2 N
e e N PR O €1
This is obtained® by combining the two solutions for # = 2 of type K, which are given by

3a,2—2a,, (B* + k?) + h%k* =0. (19)
The roots of this equation are @, and a, and hence ‘ .
' 3(a, + a,) = 2(h* 4 k?), 3a, a,= hzk‘z. . .. .. (20)

The second solution of Lamé’s equation, corresponding to E ZW(M), 1s
) dt -
Fzm (/") - (Hz - “m) J (tz _ am)z (tz . kz)'l/a (t'z . kz)llzl
. | _
We write this in the form

Fo(w) = (* — a,) Julw),
which defines the quantity [, (u).

RN

Consider the potential
$n= Co 7 Fy" (u) Ey"(v), _
= C, 72(:”’2 - am) (,U2 - am) ]m(”‘)’ ce T A L T T (21)

where C, is a constant. The shape of the body producing this induced velocity potential is given
by (4). As before, at the plate 4 = %, we have ST T

Obm _ 04, Op
0z op oz o ,
S ‘ . ‘a -
Differentiating (21) with respect to 4 and substituting from (22) of Ref. 1 for é%vve get

aqsm___' 2/ 2 __/ »1( E TR B
'a—z - C2 ¥ (T) — am) I:zﬂjm(nu) — (‘uz__am) (Mg _ kz)llz (qu R k2)1/2:|

) el = ) (= BT ey
X [ e S A T I }

As p tends to % this becomes
AN 0, o Cyrfvr— a,,)

N L

T s



We now construct the potential ®, by combining ¢, and 4, such that 7

¢2=£‘i-—§‘:. . .o .o .o - .o - (23)
Then from (22) and (23) : ’

0D, C,7 (v — a,) (v? — a,)

oz (BF —oY)? [al(kz —ay) | ag(k — az)]'

__ GCir(a — a) WP(R* — a1 — as) 4 a,a]

621 ag (kz - 611) (k2 - 612) (k2 - '02)1/2

From (20) we get
v2(R2 — a, — ay) + a, a, = %

1 ik — 2h) + BeR?),
(b — a)) (* — @) = } &

_ (k2 — h?),
so that
0P , "?(R? — 2h%) - hPRY]
322 = C2 [ (k2 (kz _ 3)2)1/2 ’ (24)
' 3C, (a2 — a,)
where Cy = — RAEE = )

From (12) and (24) it follows that

0P, 2 (kP — 2h%) + R*(x® — niy?)

0z n[k*(x®* — ny?) — h2x*]Y/?
, (2x% — R*y? .
= C, (552 — k2y23)’1/)2 , since #® = A* — A%,

Therefdre, from (4), the shape of body giving rise to @, is given by

B _ CJ (2x — )

8x VT (x% — Eryp)vRe

Integrating we obtain

= C,’

7 — (I/;a P (xz . kzyz)l/z , |
if the constant of integration is zero. This is equivalent to (18), since & = cot y, if
" , 2t
Cg = V 2"59 3

_ 2t k(R — B | . |
so that Cy, = — V'3c”' @ —a) .. .. . .. .. (25)

At the plate p = % we have from (21)
' by = Cy 7* (R* — a,) (v* — a,,) J.(k)

= ) T — ) 4 0 0,9 10

ne
Hence the longitudinal induced velocity is

Bo 9,y W= B —a) gy

7



For the potential @, we get, from (23),

0 g, % [Bm) (o
0x n .

: (h? — az') (k% — a,)
L LA

Jz(k)]. . \. (26)

The mtegrals Jiand J, are evaluated by W. Mangler in the Appendix and substituting from
the last equation of the Appendix in (26) we obtain

20, C,x [ (B — ay) K — BPE (B — a;) K — sz}

ox k n? a,’? a,®

R CRDICLEL R RN

Substituting for C, from (25) and for a,, and a, from (20) wé get

b, C2yx (B — YR [2(A° 4 £F)
e Vot P k- -k . @)
Now n? = k* — h?, and also by the standard definitions of the complete elliptic integrals® we have ‘
(k/k) — E(h]k)
(h|R)? =D k>
and K(hik) = 2D(h|R) — (h|R)? C(h]k).
Hence (27) may be written
9P, 20 % '
=V [ZD(k/k) + C(h/k)]
The excess pressure on the surface is therefore |
oD
Ap = 2 = szfb_—le(;:c |:2D.—I— C],
and hence
Gy (M — 1) = 4t0xf <tany : ’ (28)
/p 62 3 tan‘u ’ .. .. DEEEE e
where

ﬁ@“’=0-§YT%W@+ﬂM@

tan
E -1 tan? y
R tan®p

The function f2 1s given in Table 1 and Fig. 4.

6. Flow Over a Wing-like Suyface—We can combme the results for the cone and the hyper-
cone to give the flow over the surface whose equatlon is obtamed as the dlfference between (8)
and (18) and is therefore

% x——y cot? y\1/2 ‘ o
% (1 )( ) e e 30
The pressure distribution for this surface is obtained from (16) and (28) to be . ‘
tan y % tan y ] R ' 1
Co VM ( )[ﬁ(tanu) f2 tan " " (81)
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The surface is wing-like in shape and its geometrical characteristics are given in Fig. 6. As an
example the pressure distribution for such a wing of apex semi-angle y = 30.deg at a Mach number
of 4/2 (u = 45 deg) and of centre section thickness-chord ratio 10 per cent (to/c = 0-10) is shown
in Fig. 7.

To calculate the drag of the wing it is necessary to allow both for the effect of the pressure
distribution given by (31) and for the leading-edge force, as pointed out by R. T. Jones* (see
Appendix II). After some calculation we obtain the formula (— v

tan y tan y I tan® y *1/2]

vt =) =5 (&) [ Algay) +

tan p tan p ~ tan®u

for the drag coefficient C,, based on wing area, where f, is the function given in Table 1 and
Fig. 4. In this formula the first term in the square brackets represents the contribution from
(31) and the second term the contribution from the leading edge force. The drag coefficient
based on frontal area, Cy;, is given by ,

‘ 44/2 b, tan y tan y (; _ tan® y\-12
2 I e A _
Co vVIM* — 1) 3 <c> [ 2<tany T tan p ( tan? u J

As an example the drag coefficients Cp and Cpy for a wing of this shape, with centre section
thickness-chord ratio ,/c = 0-101s plotted against M for y = 15 deg, 30 deg and 45 deg, in Fig. 8.
The strip theory values for the biconvex centre section are also shown in Fig. 8.
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1 Robinson .. .. .. .. .. Aerofoil Theory of a Flat Delta Wing at Supersonic Speeds.
R. & M. 2548 (September, 1946).
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3 Jahnke and Ende .. . .. Table of Functions (1938 edition). : _
4 R.T. Jones .. .. s Journal of the Aeronautical Sciences, Vol. 17 (1950) pp. 307—310.
APPENDIX I

Evaluation of a Definite Integral

It is required to calculate the value of the integral

' ‘ N I dat |
Jm{k) - Jk (tz - 6lm)2 (tz __ hz)l/z (Zf2 - kz)llz ’
where © 3a, — 2a, (B + kY - B2 RE =0
Putting ¢ = k cosec 6, «* = a,/k*, and »* = A%[k® we get
w2 .
s | : sin* 640
L= Julk) = Jo (1 — a2 sin?6)? (1 — »* sin®0)*/* ’

where 8t — 2f(1 + #%) £ 22 =0. .. .. .. .. ... (i)



6 .
ds .
i % = , S = sin 6,
With " J‘ 1= % sn?0)° %

0
sn*u du
(1 — «® sn®u)® ’
where the lower limit of integration is zero and the upper limit is K(x), the complete elliptic
integral of the first kind. It is convenient to consider the indefinite integral first.

this becomes L =

On account of the relations

d_( 1 _ 20*snu.cnu. dnu
du l—oczlsn%)_

b

(I — o® sn®u)®

_d_ ( sn®u
du \cn#. dn «
It follows that . '

a7 _ | snfu _a_l_ 1
Za’l = Jcnu. dnz du (1 — ol sn“’u)du’

sndu - J[3+%2sn2% Sngu] snu du

sn?y i snzu:l
dn®# ' cn?ul’

):snzu [3+a¢2

+

~ cnudnu(l — of sn®u) dn?e - cn?ul (1 — o2 sn®u)
Also, since
sn?u . 1 [ 1 1 ]
dn®u(l — o® sn?u) (o — %)L 1 — a®sn*u  dn’ul’
and , ‘
sn?u . 1 [ 1 1 :l
o cnfou(l — o sn®u) (0 — 1) L1 — o®sn®u  -cn®ul’
we get ' ‘ ‘ ’
' o7 sn®u - 2 sn?u du
2a’L = cnu dnu(l — of sn?u) T (o — 2?) f dn?u

1 sn?u du x% 1 sn®u du
+ (o — I)J eny (3. T = o — 1){(1 — a?sn®u)’

. The last term vanishes because of (i).
By the properties of the Jacobian elliptic functions we can verify that

2 . N
(1 — w3 J_sn “ =Ji M)Snud%:s_nm [an u du,

cn®uy du \cnu cnu
sm? d senu sSn . cnu -
1 — x2 d —= — | — —)snudu:—— —— Jcn”udu
( ) dn®u - |du \dnu, ) - dnwu ’
S #%. C %

=~ dnn (1 ;2”2> u<+-;}z fdnzu:du.

Substituting these relations in the above expression for L we obtain, after so'merédii'ction,i o
2L = (?%-7?) [u — (—1—__1?)—fdn_””uldu]
n o sn#. cnu, dnu
(¢* — a®) (1 — a®) (1 — a®sn?u)
10




This is the value of the indefinite integral and 1nsert1ng the limits of integration, zero and K(x),
we obtain

I " 0t du (1 — o) K(x) —‘E(x}_
ST =) T Bl — o) (L) e e

Substituting the values of « and « this becomes

7RI — a,) K(hjk) — B E‘(k/kj] 1 . :
T 2a, — ) (B —ag) o e e e e e e e

so that finally
W _ (B — @) K@) — BEGE).
S = Tk — a) B — a)

APPENDIX II
The Leading-edge Force

~ R.T. Jones* has shown that linear theory may lead to incorrect results if applied to calculate
the drag of bodies with rounded leading edges, unless allowance is made for the local high pressure
there. Jones’ formula for the leading-edge drag will be derived here by a method which is dif-
ferent from his method.

. Consider the flow past a parabohc cyhnder with its axis parallel to a stream of velocity
v (Fig. 9). The equation of the cylinder i is :

7 (1 —}—cosB)—rO

or ‘ 711% cos (0/2) = (7,/2)"%, ‘
Where %o is the nose radius. The complex potential of the motion is

) w=¢+w——”— Vz 4+ 2V (#,)2)Y% /2,
So that p'= — 2Vr"? sin (6/2) [#'/? cos (6/2) — (7,/2)*'*],

which verifies that the cylinder is a streamhne We calculate the force on the cylinder from
Blasius’s theorem :— - ' : ,

X iy — %z'pf ‘f;”) d,

where X and Y are the component forces per unit length along the axes and the integration is
along the contour C (Fig. 9). Thls formula gives immediately

X =—ar, pV) Cea . .. .. .. .. .. (i)
Y =0, S ,
so that the resultant force on the cyhnder isa drag force glven by the above expression.

It is necessary to extend this formula toallow for thé effect of sweepback and compre551b111ty
This is done by assuming that only the component velocity normal to the leading edge, V siny.
(Fig. 2) is effective for sweptback wings and that compressibility can be allowed for by the *
Prandtl-Glauert formula applied to this normal component Mach number M sin p. . When
extended in this way (i) becomes . . . .

) sin?y = -
(]1 — M?sin y)l/z R I S S S G
11

X = A (V)



TABLE 1
Values of The Functions f, and f,

tan'yI I

tanp ’ 0 01 0-2 0-3 04 0-5 0-6 0-7 0-8 09 1-0

J1 0 0-2707 0-4095 0-5048 | 0-5755 0-6303 0-6740 0-7097 0-7393 0-7642 0-7854
fa 0 0-7148 1-0438 1-2528 } 1-3979 1-5038 1-5838 1:6458 | 1-6927 1-7347 1-7672

. ‘2:0

Y ' _

0 -8
* 1-6 //
i
'Fic. 1. Diagram showing notation. }
|
1-4 <

tan y
f2 ( tan [g)
1-2
! e /

Fic. 2. Elliptic cone.
06 //_<
. . tan b4
f (ton s ) '
0-4

£l o
—=[I" '
¥

O

A/_;‘_\B fo) 02 04 . . :
\—/ . ©O6 O-8

ton y
tap u

F16. 3. Elliptic hyper-cone. o - - Fic 4. Functions f1 and fs.
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F16.7. Pressure distribution on wing for y = 30 deg, M = 4/2, fo/c = 0-10.
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STRIP THEORY

Calculated wing drag fe/c = 0-10, Cp hased on wing area.
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F1G. 8(b). Calculated wing drag #o/c = 0-10, Cps based on frontal area,




F1c. 9. Calculation of leading-edge force.
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