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Summary.  

A finite-deflection analysis is given of the buckling of long, slightly curved panels in compression parallel 
to the generators, with sides either clamped or simply-supported, and with various combinations of boundary 
conditions in the middle surface. 
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L IST  OF I L L U S T R A T I O N S  

General form of load/(end strain) curves 

Notation 

Load/(end strain) curves for clamped panels with sides unrestrained in the middle 
surface 

Load/(end strain) curves for clamped panels with sides held straight but free to move 
circumferentially 

Load/(end strain) curves for clamped panels with sides held straight and prevented 
from moving circumferentially 

Load/(end strain) curves for simply-supported panels with sides unrestrained in the 
middle surface 

Load/(end strain) curves for simply-supported panels with sides held straight but free 
to move circumferentially 

Load/(end strain) curves for simply-supported panels with sides held straight and 
prevented from moving circumferentially 

Waveform parameters. Clamped panels with sides unrestrained in the middle 
surface 

Waveform parameters. Clamped panels with sides held straight but free to move 
circumferentially 

Waveform parameters. Clamped panels with sides held straight and prevented from 
moving circumferentially 

Waveform parameters. Simply-supported panels with sides unrestrained in the 
middle surface 

Waveform parameters. Simply-supported panels with sides held straight but free to 
move circumferentially 

Waveform parameters. Simply-supported panels with sides held straight and 
prevented from, moving circumferentially 

Comparison of theoretical and experimental load/(end strain) curves 

1 .  I n t r o d u c t i o n .  

This report presents an approximate analysis of the finite deformation of long, slightly curved 
panels in uniform compression parallel to the generators, with clamped or simply-supported sides, 
and with each of the following boundary conditions in the middle surface: 

(a) sides unrestrained, 

(b) sides held straight in uniform longitudinal strain, but free to move circumferentially, 

(c) sides held straight in uniform longitudinal strain and completely restrained against 
circumferential movement. 
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The range of curvature over which the analysis is valid depends on the boundary conditions and is 
discussed in Section 5.2, where the results are compared with those of experimental investigations 

by Cox and Clenshaw 1 and by Jackson and Hall 2. 
In general the theoretical relationship between the mean end load and the mean end strain in 

a long perfect panel can be expressed as two curves, as shown in Fig. la. When the sides are free 

to move circumferentially, the unbuckled deformation consists of pure compression and OA in 
Fig. la is a straight line. The intersection A with the post-buckled curve then represents the 

small-deflection-theory buckling load at which the amplitude of the deflection in the post-buckled 

configuration is also zero; the theoretical curves thus give a complete description of the transition 

from the unbuckled to the buckled state provided that, in addition, the curvature of the panel is 

sufficiently small for the mean end load to increase monotonically, and hence in a stable manner, with 

the mean end strain. For increasing values of the panel curvature the post-buckled curve becomes 

progressively less stable, as shown in Fig. lb, and the onset of buckling then depends to a greater 
extent on initial imperfections and on local constraints at the ends. Nevertheless the perfect-panel 
analysis should give a good estimate of the minimum end load at which buckling is likely to occur. 
The interpretation of the more complicated theoretical relationship between the end load and the 
end strain when the sides of the panel are restrained circumferentially is discussed in Section 5.1. 

The analysis given here is based on the assumption that the form of the deflection across the width 
of the panel in the post-buckled state is the same as that at the small-deflection-theory buckling load. 
The deflection of the panel centre-line is then assumed to be the sum of a periodic component of 
arbitrary wavelength and a uniform inward component. This form of the deflection agrees well with 

Jackson and Hall's experimental results for panels of  small curvature; for panels of larger curvature, 
however, the true deflected shape after buckling tends to resemble the diamond pattern which is 
characteristic of the buckling in compression of complete cylindrical shells, and this analysis ceases 
to be applicable. The experimental results also show that the end effects are very local in long panels 

and are thus unlikely to affect significantly the load/(end strain) curve at a fixed wavelength of 

deformation. It should, however, be noted that changes in wavelength are impeded by the boundary 
conditions at the ends. These boundary conditions not only restrict the possible wavelengths of 

deformation but also tend to stabilise the established buckled form even when the strain energy in 
other possible buckled forms would be less; the wavelength thus tends to change in sudden jumps. 
The resulting discontinuities in the load/(end strain) curve, which are neglected in this report, should 
not influence the results significarttly provided that the length/width ratio is greater than, say, 4. 

Equations determining the amplitudes of the two components of the assumed form of the 
deflection at a given wavelength are derived using the principle of virtual displacements; all boundary 
conditions on the sides are satisfied exactly. The load/(end strain) curve corresponding to the least 
possible end load at a given end strain is then obtained as the envelope of all such curves when the 
Wavelength is varied. This gives a safer guide to the buckling behaviour than the load/(end strain) 
curve obtained by minimising the strain energy with respect to the wavelength, because of the 
restrictions imposed on the possible wavelengths of deformation by the end conditions in panels 
of finite length. Thus even a long panel may conceivably buckle into a configuration in which the 
wavelength is such that the end load at a specific mean end strain is less than that at the wavelength 
appropriate to an infinitely long panel. When the sides of the panel are free to move circumferentially 
and'the panel curvature is small enough for the end load to increase monotonically with the end 
strain, the difference between these curves is negligible; when the panel curvature is larger, however, 
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these curves may differ appreciably in the immediate vicinity of the end strain at which the end load 
is a minimum. Panels with sides prevented from moving circumferentially behave similarly over a 
much more limited range of curvature, as described in Section 5.1. 

The results obtained here are in agreement with Koiter's 3 conjecture that, when the sides of slightly 
curved panels are free to move circumferentially, the post-buckled load/(end strain) curves converge 
as the strain is increased with that of the equivalent flat plate. Furthermore, comparing the results 
of this analysis with those obtained for the flat plate by Koiter 4 and by Stein 5, who use more general 

expressions for the deflection, it can be shown that this convergence is virtually complete at end 

strains small enough for the deflected shape assumed here to be sufficiently accurate. The combination 
of the present analysis and suitable more detailed flat-plate analyses thus specifies satisfactorily over 

the complete practical range the load/(end strain) curve for slightly curved panels with sides free to 
move circumferentially. 

The bibliography of the buckling theory of curved panels is small compared to that of the related 

flat-plate and cylindrical-shell problems. The small-deflection-theory buckling loads for clamped 

and simply-supported curved panels with the middle-surface boundary conditions specified by 
(b) above have been calculated exactly by Leggett 6, and approximate energy solutions have also 
been given by Timoshenko and Gere 7 and by Re&haw s, 9. An analysis by Koiter 3 of the slope of the 

load/(end strain) curve in the immediate vicinity of the small-deflection-theory buckling load, for 
somewhat different boundary conditions to those considered here, is the only rigorous finite deforma- 
tion solution so far available. Previous approximate energy analyses by Cox and Pribram 10 and by 
Volmir 11 make considerable simplifying assumptions which, with the advent of the electronic digital 
computer, are now no longer necessary; both papers, however, give useful indications of the effect 
of initial imperfections. No analysis has yet been published of the influence of local end constraints 
on the buckling load of panels; the influence of these constraints in the corresponding problem in the 
buckling of cylindrical shells has, however, been illustrated by the recent papers by Nachbar and 
Hoff 12 and by Fischer 13. 

2. Basic Analysis. 

A history and derivation of the basic equations used in this section is given by Mushtari and 
Galimov 14. These equations are applicable to shallow cylindrical shells when the maximum 
deflection is small conlpared to all the dimensions other than the thickness. Here the range of 
validity of the analysis is further restricted by the assumed form of the deflection. 

The x and s axes lie in the middle surface of a tong curved panel of radius R and thickness t, as 
shown in Fig. 2. The x axis is parallel to the generators and the sides are defined by s = _+ b. 

The analysis may be conveniently expressed in terms of the following non-dimensional notation: 

S X s = / ,  x =~,, 

_ _  _ _  W W - 2a/3~ (1- ~)'/~ 7'  k = ~ / -  

where w is the radial deflection. 



Similarly the middle-surface stresses %, % and %s may be expressed in terms of a non-dimensional 
stress function ¢ such that 

0S ~ % = Ee o - Ee o (1) 
, ~ X 2 ,  a~ = ~XOS 

where e 0 is defined, for convenience, as the end strain at buckling in a long flat strip in uniform 

compression with simply-supported sides unrestrained in its own plane: 

(2) e o = 12(~ Z v ~) " 

The stress function ¢ then satisfies the equation 

- 10 w12 02w 02w ~/3 k) (3) 
2~ 

and the displacements u and v in the x and s directions respectively are related to the stresses and to 
the radial deflection by 

1 0u 02¢ 02¢ 1 {~W'I~ 
% ~ = 0 s  ~ - ~ ~2~  + ~ \ ~ /  ' (4) 

eo ~s - ~X~ v ~ + - zT  k w  + 2 1 o s  / ' (5) 

1 {Ou Or) - 2(1 + v) 02¢ OW OW 

The deflection of the panel is assumed to be of the form 

(6) 

W = (% sin AX+ at )W(S)  (7) 

where a 0 and a t are unspecified coefficients and where the function ~F(S) represents approximately 
the form of the deflection across the panel at the small-deflection-theory buckling load. Note that in 

the unbuckled state it is only necessary for the coefficient a 0 to be zero. The  stress function 

corresponding to this deflected form is found exactly by substituting equation (7) in equation (3) 

and solving for ¢. Equations for the constants a 0 and a 1 are then obtained by applying the principle 

of virtual displacements in conjunction with infinitesimal displacements of the panel given by 

3W o = ~(S)3a  o sin AN (8) 
and 

~ W t  = W ( S ) 3 a l .  (9) 

At a fixed value of the wavelength the principle of virtual displacements may be expressed in the 
form 14 

I E - t o o  3W V4W+ 7r rr \OX2 0S 2 OXO~S OX~S + ~S 2 0 X  2] 

~/3 k d X d S  = 0 (10) 
2 OX2J 

where 3 VV" is an infinitesimal arbitrary variation satisfying all the boundary conditions. For reasons 
given in the Introduction infinitesimal variations of the wavelength are not considered. 



Substituting now equation (7) and the corresponding stress function ¢ into equation (10), and 
considering in turn the infinitesimal variations of the deflection given by equations (8) and (9), 
equations of the following form are obtained for the unknown coefficients a 0 and a 1 : 

ao{( I i+  I2+  [a)ao 2 + I4al" + k ( L 1 - L ~ ) a l  - J1 + ~lJe - rl2M1 - k~J3} = O, (11) 

(I4 + Ia + I6)ao"a~ + k ( L l  + La + L4)ao ~ - (]4 +2~/.aM1)al + kr~2M~ = O, (12) 
where 

G 1 G 2 

7 1 -  Ee  o, ~72 - Ee  ° 

and ~1 and % are the mean end and hoop stresses respectively. All the unspecified constants in these 
and in subsequent equations in this section depend on the boundary conditions and are defined in 
the subsequent sections. 

I f  the edges of the panel are free to move circumferentially then 

~ = 0 (13) 

and equations (11) and (12) may be combined to form a cubic equation for either a0 ~ or a I. Under 
these conditions the coefficient a 1 is also zero if the panel is not buckled. 

If  the sides are completely restrained in the circumferential direction, the panel experiences a 

hoop compression which is evaluated by substitutiBg the assumed deflected form into equation (5) 
and integrating across the panel, giving 

"}72 = PT]I - k H l a l  - H2(ao  2 -F 2a12).  (14)  

The following equations for the coefficients a 0 and a 1 are then obtained by substituting equation (14) 
in equations (11) and (12). 

ao {G + z~ + I3 + H~M1)ad + G + 2mM1)a?  + k ( C l -  B~ + H~M~)al - 

- J1 + , h ( A - ~ M 1 )  - k % }  = O, ( l S )  
and 

(h + Z~ + I 6 + 2H2M1)ao2a, + A(L 1 + L3 + L4 - H2M2)ao 2 + 4H2M~al  3 + 

+ 2]~(HIM1 - H2M~)al  2 - (Y~ + 2V'qlM1 + ]~2H1M2)a 1 + v'rhhM ~ = 0. (16) 

These may be combined to form a cubic equation for a 1. It will be noted that in the unbuckled state, 
with these boundary conditions, the panel deflects radially and a 1 is not zero. 

3. Application to Specific Panels. 

In this section the functions used to describe the form of the deflection across clamped and 
simply-supported panels are specified, together with the constants in equations (11), (12), (15) 
and (16) derived from them. 

3.1. Clamped Sides. 

The form of the deflection across a panel with clamped sides is here represented by 

'F(S) = coshpS - qcospS (17) 

where p is the first positive root (2. 36502) of the equation 

and sinhp cosp + coshp sinp = 0 

' coshp J (18) 

q -  cosp 
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The small-deflection-theory buckling load calculated using this assumed form of the deflection for 
panels with the middle-surface boundary conditions specified by (b) in Section 1, is within 4% of 
the exact value calculated by Leggett 6 over the range of curvature considered; in the limiting case 
of a flat plate the error is less than 1%. The middle-surface stress function corresponding to this 
deflected form, which satisfies the condition that the mean end strain over a complete cycle of the 
deflection function along the panel is independent of S, is given by 

1 ao~A 2 
¢ = 2 (~1S2 + ~72X2) - 3 ~  (cosh 2 p S -  q2 cos 2 p S -  8q sinhpS sinpS) + 

{ v/3kao A~ 
+ 2 ~  (go coshpS +gl  cospS + b o cosh AS + b~S sinh AS) - 

a°alA2P2 } 
2 (g2cosh2pS+gscos2pS+ 16g6+b2coshAS+b.~SsinhAS ) s i n A X -  

where 

ao2A2p 2 
(ga sinhpS sinpS +g5 coshpS cospS-g6  + ba cosh 2AS + baS sinh 2AS) cos 2AX (19) 

1 - q  1 
go - (p2_ A2)2, g~ - (p2 + A2)2, g2 - (4p2_ A2)2, 

_ q2 q(4A 4 _ p4) qA2p~ 
g3 - (4p2 + A2)~, g4 - 4(4A4 +p4)2, g5 - (4A4 +p4)~, 

q 2  1 

g6 - 1 6 A  4 

(20) 

and the coefficients b 0 to bs, which depend on the boundary conditions in the middle surface, are 

given in Section 4.1. 

The constants required in the equations for a 0 and a~ are given b.y 

~¢/3 p212 
H1 = ~ 1 1 7 '  H2 = 8 ' 

I 1 = p4AZrr2(gsl 1 -g612 + b4mo + b~ml), 

A37T 2 
I2 = 8 [13 - 4p2{P2(g41a-gJs) + 2A(Ab4+bs)m2 + 2A2bam3}]' 

/3 = PaAs~Z{P(g4 +g5)/6 + P(g4-g5)/7 + (2Ab4 + bs)m4 +. 2Absms}, 

p4~3~72 
I4 - 2 (gels +g819 + 16gj2 + b2m6 + bsmT)' 

p2A3~T2 

IG = _ p3A%rZ{2p(g2lzo-gje~) + (Ab2 + bs)m~e + Ab3m18}, 

• 11 = ( ( A 4 + p % o -  2A p 12}, 

J~ = ATr2llo, 

(21) 

contd. 



3A 3 
4 = -4- (go&  +gA  + born8 + blm ), 

2p 
J4 = l 0, 

C 3p2 A 3~r 
L 1 - ~ ( go113 +grit4 + born6 + blm7), 

L~ - ~3p2A3~ (g~l~5 +g3l~6 + 16ga/t7 + barn s + b3mg), (21) 
4 contd. 

~¢/3A3~ 
L3 - 2 { -  2p2(gol2z-gflz~) + A(Abo + 2b~)m,o + Aab,m~} , 

L 4 = .C3pA3~{p(go122-gtl~3) + (Abo + b~)m~2 + Ab~m~3), 

M 1 - P~Tr2lz M2 - ~/3~rllv 
A ' A 

The integrals l.i, which are constants, and mi, which are functions of A, are listed in the Appendix. 
The  mean end strain in the panel in this deflected form is given by ee o where 

aO2~t 2 
e = r h -  v% + - 8  (q~+ 1). (22) 

3.2. Simply-Supported Sides. 

The form of the deflection across a panel with simply-supported sides is here represented by 

7rS 
'F(S) = cos y .  (23) 

The small-deflection-theory buckling load calculated using this assumed form of the deflection for 
panels with the middle-surface boundary conditions specified by (b) in Section 1 is within 1% of the 

exact value calculated by Leggett 6 over the range of curvature considered; the exact value is obtained 

in the limiting case of a flat plate. Thus the slope of the post-buckled curve at the instant of buckling 

is also obtained exactly for the flat plate (see Mansfield15). The middle-surface stress function 

corresponding to the assumed deflected form, which satisfies the condition that the mean end 

strain over a complete cycle of the deflection function along the panel is independent of S, is given by 

1 a°~2 { '/3ha°)t~ [h rrS b lSs inhAS)  ¢ = 2 (*hS2 + ~/2X2) + 8 ~ -  cos rrS + 2~r k 0 cos -2-- + b° cosh AS + 

aoa1A27r 2 
cos 7rS + 16h 2 + b~ cosh AS + b3S sinh AS) } sin AX - (hi 

8 

~0g~2~7 2 
8 ( - h2 + b4 cosh 2AS + bsS sinh 2AS) cos 2AX (24) 

where 
16 1 1 

ho - (~+4A~) ~, hi - (~+A~)~, h~ 16A~ (25) 

and the coefficients bo to bs, which depend on the boundary conditions in the middle surface, are 
given in Section 4.2. 



The constants required in the equations for a 0 and al are given by 

HI  - zr~ ' H~ - 32'  

~3~6 
I~ - ~6- (h2+b4no+ban~) ,  

)t3~ 2 
/2 = 16 [1 + 4?t~r2{(Ab4+bs)no + Absn~}], 

/~37r5 
I 3 - ~-  ((2hb4+bs)n2 + 2Absn3}, 

~37-r 6 
I 4 = ~ -  (hi  + 32h~ - 2b2n ~ - 2b3ns) , 

,~3~-4 
15 = ~ {7r2hl + 2Z(;~b2 + 2b3)n ~ + 2A2b~na}, 

= )t3~r5 {Trhl + 2(Zb.+b~)n8 + ab.n~} 
16 

1 
J1 = ~ ( 4 ~  +~")2, 

"73 ~ /~77"2'~ 

3A3 (h ° + bon 6 + blnT), 
4 = -  4 - 

71.4 
gX' 

- 8 - ~ + b°n4 + bin5 ' 

L ~ -  ~/3;~r~ { 4 ( h l + 4 8 h ~ ) + b ~ n 6 + b ~ n v }  
16 ~ 

- 2 " h° + ~(~b° + 2bl)n4 + )t2bln5 ' 

2 - -  + (;~b° + bl)ns + Abln~ ' 

~4 4~/3 
, 

(26) 

The integrals u i are listed in the Appendix. 

The mean end strain in the panel in this deflected form is given by ee o where 

a02~ 2 
C =  ~1 --'V~2 + - -  8 ( 2 7 )  
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4. Middle-Surface Boundary Conditions at Sides. 

In this section the constants b 0 to b~ are evaluated for the specific combinations of boundary 

conditions considered in this report. The algebraic form of these constants is the same whether or 

not the sides are free to move circumferentially. 

4.1. Panel Unrestrained iu the Middle Surface. 

Consider first the sides supported in such a way that the panel is unrestrained in the middle 

surface. The constants b 0 to b~ are obtained from the boundary conditions 

~24 - 0 and ~2¢ - 0 (28) 
OX 2 ~X~S " 

This somewhat impractical combination of boundary conditions is include,d for comparison with 

previous experimental results. 

4.1.1. Clamped sides.--The following expressions for the constants b 0 to ba are obtained by 

substituting equation (19) in equations (28): 

b 0 cosh ~ = - (go coshp +g l  cosp + b 1 sinh A), 

bl(2A ÷ sinh 2A) = 2{g0(A coshp sinh A - p  sinhp cosh A) + 

+ gl(A cosp sinh A +p  sinp cosh A)}, 

b~ cosh ~, = - (g2 cosh 2p +g8 cos 2p + 16g 6 + b 3 sinh A), 

bz(2A + sinh 2A) = 2 {g2(~ cosh 2p sinh A - 2p sinh 2p cosh A) + 

+ gz(A cos 2p sinh A + 2p sin 2p cosh ~) + 16g62~ sinh )~}, 

ba cosh 2A = - (g4 sinhp sinp +g5 coshp cosp -g6  + b5 sinh 2A), 

b5(4~ + sinh 4A) = 2 {2A sinh 2A(g~ sinhp sinp +g5 coshp cosp -g6) - 

- g~p cosh 2A(sinhp cosp - coshp sinp)}. 

4.1.2. Simply-Supported Sides.--The following expressions for the constants b o to b 5 are 

obtained by substituting equation (24) in equations (28): 

b o = - b  ltanh?~, 

bl(2A + sinh 2A) = 7rh 0 cosh )~, 

Ab 2 sinh A = - b3(sinh A + ;~ cosh A) 

b~(2A + sinh 22~) = - 2Z(h 1 -  16h~) sinh A, 

b 4 cosh 2;~ = h~ - b 5 sinh 2~, 

b5(4~ + sinh 4A) = - 4Ml 2 sinh 2A. 

4.2. Boundary Conditions along Sti.ff Edge Members. 

It is assumed here that the panel is bounded by edge members of sufficiently high rigidity for the 
normal displacement and the longitudinal strain of the sides to be independent of X. The components 

10 



of  the end load which  are per iodic  in X unde r  these boundary  condi t ions are, in fact, less than 3% of  

the  mean  end load over  the  range computed .  

4.2.1. C l a m p e d  s i d e s . - - S u b s t i t u t i n g  the  assumed def lected form,  equat ion (17), and the 

middle-sur face  stress funct ion,  equat ion (19), into equat ions  (4) and (5), and integrat ing the  latter 

across the panel, the  fol lowing expressions are ob ta ined  for the constants  b 0 to b a by  equat ing the  

relevant  t e rms  to zero. 

bo(1 + v))t 2 cosh )t = - [go(p 2 + v2  ̀2) coshp  - g l ( p  ~ - v2` ~) cosp  + 

+ Ab 1 {2 cosh 2  ̀+ 2`(1 + u) sinh 2`}1, 

bt2`2p {22`(1 + v) - (3 - ~) s inh 22`} 

= cosh ?t [Ph7 - 22`~{g0( 2̀ 2 + vP 2) s inhp  + g~(2`~ - vp ~) sinp}] + 

+ 22`p sin 2`{go(p 2 + v2` 2) coshp  - g l ( p  2 - v2` 2) cosp},  

b~(1 + v)2` 2 cosh 2  ̀ = - [g~(4p ~ + v2` 2) cosh 2p - ga(4p 2 - v2` ~) cos 2p + 16v2`~g~ + 

+ 2`ba {2 cosh 2̀  + 2`(1 + v) sinh 2`}], 

ba2`~p {2•(1 + v) - (3 - u) s inh 2A} 

= cosh 2  ̀[2pl~ - A 2 {g~(2`~ + 4up ~) sinh 2p + ga(A 2 - 4vp 2) sin 2p + 32p2`2g6}] + 

+ 2pk sinh a {g2(4p 2 + vk 2) cosh 2/) - ga(4p ~ - v2` 2) cos 2p + 16v2`296}, 

2b4(1 + ~)a ~ c o s h  22` = - [(p2g 4 + 2~A295) c o s h p  c o s p  - 

- (P~g5 - 2v2`~g4) s inhp  s inp  - 

- 2v2`2g6 + 2Abs{cosh22` + Z(1 + v)sinh22`}], 

2b~2`~p {4a(1  + ~) - (3 - ~) sinh 42,} 

= cosh 22` [ -  pl~ - 4;~(22`2g 5 + vp~g4) (coshp  s inp  - s inhp  cosp)  + 16p)t496] + 

+ 42`p sinh 2A ((P~ga + 2v)~Zgs) coshp  cosp  - (P~g5 - 2v2`Zg4) s inhp  s inp  - 2vA296}. 

4.2.2. S i m p l y - s u p p o r t e d  s i d e s . - - S u b s t i t u t i n g  the  assumed def lected form,  equat ion  (23), 

and the  middle-sur face  stress funct ion,  equat ion  (24), into equat ions  (4) and (5), and integrat ing 

the latter across the panel,  the  fo l lowing expressions are obta ined  for the  constants  b 0 to  b 5 by 

equat ing the relevant  t e rms  to zero. 

bo(1 + v)A cosh )t = - b~ {2 cosh A + A(1 + v) s inh 2`}, 

blh2Tr (2A(1 + v) - (3 - v) s inh 2A} = cosh 2`{4 - A~h0(4h 2 - vrr~)}, 

b2(1 + v)A 2 cosh A = hl(Tr ~ - vA ~) - 16rASh2 - t b  3 {2 cosh h + h(1 + v) s inh 2`}, 

b32`{22`(1 + v) - (3 - v) s inh 2~} = 2 sinh )t { -  h~(~ -~ - v2` e) + 16v2`Zh~}, 

b4(1 + v)h cosh 2A = vhh~ - b~ {cosh 22` + 2`(1 + v) s inh 22`}, 

b~ {4Z(1 + ~) - (3 - v) sinh 42`) = - 4vAhz sinh 2A. 

11 



5. Discussion of Results. 

5.1. Theoretical Results. 

Graphs showing the variation of the mean-end-load parameter ~1 and the waveform coefficients 
A, a 0 and al with the mean-end-strain parameter e and the curvature parameter h are given for long 

panels with each of the following combinations of boundary conditions: 

711 

Fig. 

3 

4 

5 

6 

7 

8 

Fig. 

9 

10 

11 

12 

13 

14 

Clamped sides unrestrained in the middle surface. 

Clamped sides held straight but free to move circumferentially. 

Clamped sides held straight and prevented from moving circumferentially. 

Simply-supported sides unrestrained in the middle surface. 

Simply-supported sides held straight but free to move circumferentially. 

Simply-supported sides held straight and prevented from moving circumferentially. 

The characteristic behaviour of curved panels in axial compression with sides free to move 

circumferentially is comparatively straightforward and is described in the Introduction. The following 

discussion is concerned, therefore, with the effect of restraining the circumferential movement of the 

sides. 

When a flat panel is compressed axially with transverse displacement of the sides prevented in 

its own plane, the unbuckled deformation is stiffer than that of a corresponding panel with free 

transverse deformation by the factor 1/(1 - v2). When, however, the panel is initially curved across 
its width and is restrained circumferentially, the curvature increases with end load to relieve the 
hoop stresses, as shown in Figs. 11 and 14, and thus the unbuckled axial stiffness is less than that 
of the corresponding flat plate; consequently the stiffness in the unbuckled state varies slightly with 
the curvature parameter k and with the magnitude of the applied load. The stiffness is, however, 
virtually identical with that of a panel with free circumferential movement of the sides when h is 
large. This is illustrated by the results for clamped panels shown in Fig. 5; when, however, the sides 
are simply supported (Fig. 8), the unbuckled load/(end strain) relationship is indistinguishable from 
that for panels with free circumferential movement of the sides even at the smallest value of the 
curvature parameter shown. 

For reasons given in the Introduction, the envelope of the post-buckled curves for all possible 

longitudinal wavelengths of deformation is used in this report to represent the post-buckled 
behaviour of curved panels. Now, when the sides are free to move circumferentially, the unbuckled 
and post-buckled load/(end strain)curves always intersect at a bifurcation point (i.e. the amplitudes 

of the radial-deflection components in the buckled form are both zero, so that the buckled and 

unbuckled forms coincide). When, however, the sides are prevented from moving circumferentially, 
the unbuckled and post-buckled curves only intersect at a bifurcation point over a limited range of 

the wavelength, due to the increase in curvature with end load in the unbuckled state. When the 

wavelength and the initial curvature are such that the post-buckled curve does not intersect the 

unbuckled curve at a bifurcation point, the computations show that these have, nevertheless, a 

12 



non-bifurcational intersection. The envelope of post-buckled curves only consists entirely of 
'bifurcational' curves when the curvature parameter h is less than about 8 for clamped panels or 
about 1 for simply-supported panels. It is found, however, that the post-buckled curves contributing 
to the envelope when the end strain is large are 'bifurcational' over the whole of the range of the 
parameter h for which results are given. 

Before assessing the significance of those postTbuckled curves which do not intersect the unbuckled 
curve at bifurcation points, it is useful to consider a curved panel with sides held straight but free 
to move circumferentially, under steadily increasing axial strain. The sides move apart at first due 
to the effect of Poisson's ratio, and this movement is increased immediately after buckling by the 

overall flattening of the panel in the buckled configuration (i.e. the mean deflection of the panel 

centre-line approaches the plane containing the sides as shown in Figs. 9 to 14). At the same time, 
however, the periodic radial deflection along the buckled panel causes a second-order reduction in 
the width, which predominates when the end strain is sufficiently large. Thus, at a specific large 

value of the end strain, there is again no circumferential displacement of the sides, and the work 

done on the panel and the configuration of the panel are the same as for a panel with sides prevented 
from moving circumferentially. Although this end strain is far beyond the range of validity of the 

present analysis, the value obtained here can, nevertheless, be used to verify the significance of 
numerical results when the end strain is smaller. 

Consider, now, a curved panel constrained to deform in such a way that the deflection of the centre- 
line has a fixed wavelength, and let this wavelength be so chosen that the post-buckled load/(end 

strain) curve does not join the unbuckled curve at a bifurcation point if the sides cannot move 
circumferentially. Computations using this analysis confirm that the appropriate results for such 
panels with and without circumferential movement of the sides coincide at the relevant large value 
of the end strain. It is thus indicated that those curves in the envelopes of post-buckled load/(end 
strain) curves which do not intersect the unbuckled results at bifurcation points have, nevertheless, 
some practical significance. It must be remembered, however, that everywhere except at this particular 
large end strain, the presence of circumferential restraint necessarily increases the work done in 
applying a given end strain to the panel. Now, by comparing Figs. 7 and 8 it is seen that the minimum 
end load at a given end strain for simply-supported panels appears to be consistently reduced by 
the presence of circumferential restraint on the sides. Thus the jump to the post-buckled con- 
figuration when the sides cannot move circumferentially must necessarily be delayed to a far greater 

end strain than that at the intersection with the unbuckled curve. Post-buckled curves are therefore 

only shown in Fig. 8 at relatively large values of the end strain. This is the only combination of 
boundary conditions considered for which the present type of perfect-panel analysis fails to give a 
sensible estimate of the minimum end load at which buckling is likely to occur. 

5.2. Comparison with Experimental Results. 

Deductions made in this section regarding the range of curvature over which the theoretical 
analysis is valid refer only to panels with sides free to move circumferentially; no experimental 
evidence is available on the reduction in the range of validity when circumferential movement is 
prevented. 

An examination of the available experimental results 1, ~, which were all obtained using panels with 
clamped sides free to deform in the middle surface, suggests that the assumed deflected shape is 
adequate under clamped boundary conditions provided the curvature parameter h does not exceed 
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about 25. On this basis it can be inferred that the theoretical analysis for simply-supported panels 
can be used when the curvature parameter h is less than about 15. Thus, for example, the analysis 
is applicable to panels 10 in. wide and 0. 128 in. thick provided that the radii of curvature are not 

less than 30 in. and 50 in. respectively for clamped and simply-supported sides. 
Two specimen experimental load/(end strain) curves from Jackson and Hall's paper 2 are compared 

in Fig. 15 with corresponding theoretical results for an infinitely long panel. The theoretical analysis 

slightly underestimates the stiffness of the panel immediately after buckling, probably because it takes 
no account of the restriction imposed by the ends on the possible wavelengths of deformation. 

The deterioration in accuracy when the end strain is large is due to modifications in the deflected 

shape which are not allowed for in this analysis. At such values of the end strain however the behaviour 

of the panel is virtually the same as that of a flat plate, for which more elaborate theoretical results 

are available 4, 5 
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Deflection parameters defined by equation (7) 
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APPENDIX 

Coefficients Used in Equations (11), (12), (15) and (16)for ao and a~ 

1. Panel with Clamped Edges. 

(a) Coefficients which are independent of it. 

Let 
c~ = ~ / ( q 2 _  1) ,  fi = ~/(q2+1).  

l l  - 5 p q '  112 = 2p-q  - q '  

fi) lla - 2"V/2o~ 
12 = - ~ x  c ~ - ~  , l ~ p - ( q 2 - 7 ) '  

3c,afl 1 (1 + 8q 2 + qa) /14 2~/2c~ 
la - 4p + 2 ' = 15p~ (7q2- 1), 

c~a/3 2~/2~ 
/4 q, 65 - (q2- 2), 

4pq 15p 

3c~/3 a 2~/2o~ 
15 20pq' 1~6 - 15pq 2 (2q2+ 1), 

c~/3 q ll ~ 2~/2~ 
16 - 20pq (q2_4)  + ~ ,  - ~ - ,  

~/3 q 
17 = 2 ~  (4q2_ 1) + ~, ~fi (2q z + 7 ) + ~ ,  1 1 8 = ~  

~/3 1 c43 q2 
ls = "VpTT" + 2 '  11' = -- 2" ' q  ~ u P  (7q2 + 2) ,,+:,- --,2 

~5 q2 ~5 1 
/9 = ~ - ~-, go = - 2-~ (2q2-13) - ~, 

/1 ° = q 2 + l ,  121= _ ~/3 (13q2_2) q2 
20pq 2 2 ' 

~fi 4~/2~ 
lll = 2~ + 1, 122 - a ~ -  (q2+S), 

4~/2= 
12a = (5q 2 + 1). 

15p 

(b) Coefficients which are dependent on A. 

The form of the coefficients given below is applicable provided A 4 = p and it # 2p. 

1 /sinh 2(it +p)  sinh 2( i t -p)  } 
mo= ~ / 2( ;~7D + 2(i t-p) 

q2 
2()t2 +p2) (it sinh 2)t cos 2p + p  cosh 2it sin 2p) - as __sinh 2it 

2it ' 
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1 lCosh2(A+p) 
ml- -  ~ ( ~((~-p~ + 

cosh 2(A-p) sinh 2(~. +p) s inh2( l -p)  / 
2 ( t -p )  4(1 +p) 2 4(?~-p) ~ J 

_ [co h2    nh_21  ¢ 
~. 2,~ 41~ J 2(A~+pZ) (tcosh21cos2p+psinh2)tsin2p) + 

q2 
+ 4(12+P~) 2 {(12_p2) smh 21 cos 2p + 21p cosh 21 sin 2p}, 

1 /s inhZ(A+p ) sinh 2 ( I - p )  / 
m ~ = ~ t  2(~U~ + 2(I-p) J + 

+ 
q2 

2(Az +p ~ ) 
(~ sinh 21 cos 2p +p cosh 21 sin 2p) - 

2q 
(21 +p)2 +pZ {(21+p) sinh (21 +p) cosp +p cosh (21 +p) sinp} - 

2q sinh 21 
2 t -p)2  +p~ {(21-p) sinh (21-p) cosp +p cosh (2 t -p )  sinp} + fi2 21 

1 
m3 ~---~ ~ 

cosh 2(t +p) cosh 2(A -p )  sinh 2(1 +p) sinh 2(A -P)  t 
2(1 + p) + 2(1-p) 4(I +p)~ 4(A-p)Z J + 

+/3 ~ /cosh2A sinh2A] q2 
\ 21 ~ ] + 2 ( t 2 + p  2) (A cosh 21 cos 2p +p sinh 21 sin 2p) - 

q2 
4(AZ~p2) z ((12-p~) smh 21 cos 2/, + 21p cosh 21 sin 2p} - 

2q 
(21 +p)2 +p2 {(21 +p) cosh (21 +p) cosp +p sinh (2), +p) sinp} + 

2q 
+ {(21 +p)2 + p2}2 {[(2t +p)2 _ p~] Sinh (2?t +p) cosp + 2(2t +p)p cosh (21 +p) sinp} - 

2q 
(2)~ -p)~ +p2 {(21-p) cosh (2t -p )  cosp + p sinh (2t -p )  sinp} + 

+ 2q 
{(21-p)~ + p~}~ {[(21 _p)2 _ p~] sinh (2% -p )  cosp + 2(21 -p)p cosh (21 -p )  sinp}, 

1 /sinh2(t+p) sinh 2()~-p) t q2 
m4 = 2 [ ~ , ~  - 2 ~ i - -~  J 2(12+p2)(Acosh21sin2p-psinh2Acos2p)- 

2q {(t+p)sinh(2A+p)cosp - Acosh(2A+p) sinp} + 
(2t +p)~ + p~ 

+ 2q 
(21 _p)2 + p~ {1 cosh (21- p) sinp + (A-p) sinh (2 t -p)  cosp}, 
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1 /cosh2(?,+p) cosh2(Z-p) sinh2(Z+p) 
m~ = 2 [  2 ( ~  2(;t-p) 4()t+p) ~ + 

sinh2(A-p) 
4(?t-p) z } 

q~ 
2(A~ +p2) (A sinh 2A sin 2p - p  cosh 2A cos 2p) + 

q2 
+ 4(A2 +pZ)2 {( )t2 -P~) cosh 2A sin 2p - 2Zp sinh 2A cos 2p} - 

2q 
(22, +p)Z + p2 {(;~ +P) cosh (2A +p) cosp - A sinh (2A +p) sinp} + 

2q + {[2(Z +p)Z - p2] sinh (27t + p) cosp - (2)t 2 -.pe) cosh (2A +p) sinp} + 
{(2A +p)2 + p2}~ 

2q 
+ (2A -p)~ + pZ {(A-p) cosh (2A-p) cosp + ;t sinh (27,-p) sinp} - 

2q 
- {(2t-p)~ + p~)2 ([2(A-p)Z - pZ] sinh ( 2 t - p )  cosp + (2A z-p~) cosh (21-p)  sinp}, 

1 [ sinh (A + 2p) sinh (A - 2p) / 
m ° = 2 t  X 2p + 

q 2  

A2 + 4p 2 ()t sinh Z cos 2p + 2p cosh )t sin 2p) - c~ z sinh )t 
~t 

1 { cosh (A + 2p) cosh (A - 2p) sinh (~t + 2p) sinh (A - 2p) } 
= ?, + 2p + - 2p (A+2p) ~ (A-2p) 2 

~2 (co~__h A si_nh A~ q2 
- A 2 ] A2 + 4p ~ (A cosh A cos 2p + 2p sinh A sin 2p) + 

a 

q2 {(~tZ-4p ~) sinh ?tcos 2p + 4?tpcosh Asin2p}, 
+ i)t~ + 4p~) 2 

sinh(~t+p) 
m s --  )~ + p  + sinh (A 'p )  2q (A sinh 2t cosp +pcosh ~t sinp) 

- p 

m 9 - -  

cosh (A + p) cosh (A - p )  sinh (A +p) sinh (?t - p )  
+ p  + Yt - p  (?t +p) 2 (A-p) 2 

2q 
A ~ + PZ ()t cosh A cosp +p  sinh 2, sinp) + 

+ - -  2q 
(A~ +pZ)2 {(A~ _pZ) sinh A cosp + 2Ap cosh ?t sinp}, 

1 / sinh (A + 2p) 
X¥2-t; + A -  :p 

~2 
A2 + @2 (?t sinh A cos 2p + 2p cosh A sin 2p) + 

+ t9 2 sinh ;~ 2q A (A+p)~ +p2 {(?t+p)sinh(?t+p)cosp +pcosh(A+p)sinp} - 

2q {(Z - p )  s i n h  ( A - p )  c o s p  + p c o s h  (?t - p )  sinp}, ()t-p)Z + pZ 
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1 / c o s h  ()t + 2p)  
/7/11 = 2 t X j2-~- q- 

c o s h ( h -  2p) sinh ()t + 2p) sinh (A-  2p) t 
- up (~ + 2p)~ ( a -  2p)~ ~ + 

a~ ] + - -  
q2 

,~ + 4p ~ ()t cosh 2t cos 2p + 2p sinh ,~ sin 2p) - 

q2 
(~t2 + 4p2)~. {(2t ~ - 4p 2) sinh 2, cos 2p + 4,~p cosh 2, sin 2p} - 

2q 
()t +p)~ + p2 {()t +p)  cosh (;t,+p) cosp + p sinh (2~ +p)  sinp} - 

2q 
- ((;~ +p)~ + pC}2 {[(;t +p)~ - p~] sinh (A +p)  cosp + 2(;~ +p)p cosh (A +p)  sinp} - 

2q {@-p)cosh(A-p)cosp + psinh(A-p)sinp} - (~_p)2 + p~ 

2q 
- {(;t _p)2 + p~}2 {[(~t -p )~  - pZ] sinh ( ,~-p)  cosp + 2(2 t -p)p  cosh (;t - p )  sinp}, 

1 /sinh (;t+ 2p) sinh (?t ~p2p) } 
m ~ = ~  ;~+2p - ;~- 

~2 
;~2 + 4p2 (2t cosh 2~ sin 2p - 2p sinh ;t cos 2p) - 

q {(2t+2p)sinh(Pt+p)cosp - ;t cosh(,~+p) sinp} + (Z +p)2 + p2 

+ 
o 

q {@-2p)s inh@-p)cosp  + ) tcosh( i~-p)s inp} (;~-p)~ + p~ 

1 [ cosh (~+2p)  cosh (;~- 2p) s inh(A+ 2p) 
m l a  = 2 [ ?t + 2p ~ - 2p (2t + 2p) 2 

sinh (;t- 2p) t 

~2 
As + 4p ~ (A sinh 2t sin 2p - 2p cosh 2t cos 2p) + 

q2 
+ (2~ + 4p~) 2 {(2~ 2 - 2p ~) cosh A sin 2p - 4;~p sinh A cos 2p} - 

q { ( 2 t + 2 p ) c o s h ( ; t + p ) c o s p  - 2tsinh(J~+p) sinp} + 

+ 
q 

{(2t +p)~ + p~}~ {[(2t + 2p) ~ - 2p z] sinh (A +p )  cosp - (;t 2 - 2p ~) cosh (2t + p) sinp} + 

+ 
q 

(A-p)2 + p~ {(A - 2p) cosh ( A - p )  cosp + A sinh ( ) t -p )  sinp) - 

q 
- ,{(2t _p)2 + p2}S {[(~ - 2P) ~ - 2PZ] sinh ()t - p )  cosp + (A 2 - 2p 2) cosh (A - p )  sinp}. 
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2. Panel with Simply-Supported Edges. 

7r 2 s i n h  22 

n o =  - 4 j t 2 + T r  2 22 ' 

~e c o s h 2 2  

n l  = 42  ~ + T r  2 22 + 

qT 
n~ = 422 + 7r 2 s i n h  2 2 ,  

7ra(122t 2 +Tr ~) s i n h  22 

(42 ~ + ¢r2) ~ 422 ' 

w 427r 
cosh  22 + s i n h  22 ,  

n~ = 4 2  ~ + 7r ~ ( 4 h e  + ~r2) 2 

7r 2 s i n h  2 

n4 = - h e + ~ . o  A ' 

7r ~ c o s h 2  7r2(322+~r ~°) s i n h 2  

2 2 + 7 r  2 2 + (2°-~,-r~)  2 2 ~ '  ?/5 

47T 
- -  cosh  2 ,  

n~ - 422 + 7r 2 

4w 
- -  s i n h  2 n 7 - -  422 + 7r 2 

"/Y 

n s - he + ~r e s i n h  2 ,  

322w 
cosh  A, 

( 4 2 ~ + ~ ) ~  

7r 22rr 
n 9 = 22 + w~ cosh  2 + (22+  w2)~ s i n h  2 .  

21 

(90631) C 



IXJ 
h~ 

END 
LOi~D 

DEFORMATION AFTE~ BUCKLING 
OP~ 5NAP THP, OUGH 

M~.~,N END STRAIN (a) GENERAL FORM OF THEORETICAL RESULTS 

Lh, Rr=ER 
CURVATURE 

END ~ 
LO~,D 

VERY 5MP~LL 

MEAN END STi~,AIN 

(b)  INFLUENCE OF CURVATURE ON BUCKLING OF PANEL 
WITH SIDES FREE TO MOVE CIRCUMFERENTIALLY- 

FITS. la and b. General form of load/(end 
strain) curves. 

- ~ - ,  R G z / / ~  

~ ' -  6- 

FIG. 2. Notation. 



3 

/ .  
L 

. /  
O I 

J 
J 

F~o. 3. 

Z ~. hi" 5 6 7 

Load/(end strain) curves for clamped panels with 
sides unrestrained in the middle surface. 

3~ 

7- 

/ 
/ 

A 
S ~ 7 - "  

Y 

J 

I 7 3 ~ S 6 7 

Fie. 4. Load/(end strain) curves for clamped panels with 
sides held straight but freeto move circumferentially. 

23 
(9o631) D 



o 
0 

I 

/ /9 
I ~ 5 4 

£ 

/ 
f 5 

~ f  

6 7 

FIG. 5. Load/(end strain) curves for clamped panels with sides 
held straight and prevented from moving circumferentially. 

0 
0 

FIG. 6. 

y 
Load/(end strain) curves for simply-supported panels with 

sides unrestrained in the middle surface. 

24 



'Z, 

O 

Y 

f / 

FIG. 7. 
panels 

Load/(end strain) curves for simply-supported 
with sides held straight but free to move 

circumferentially. 

I f" 
FIG. 8. Load/(end strain) curves for simply- 
supported panels with sides held straight and 
prevented from moving circumferentially. 

25 



I '0 

TT 

C-S 

J&=O ~ JF.= 16 

o 
O I Z 3 ~- 5 

I 'O 

0 5  
"/-C 

3 4-  

b O  e?.. 
(o)0.o 

g 

THE DASHED LiNE DENOTES THE VALUE OF ~;(o)0~ I NF-CESSA~.~" FOP, THE MEAN 
D E E ? O N  OF THE CENTRE-LINE TO LIE IN THE PLANE CONTAINING THE 
SIDES. 

FIG. 9. Waveform parameters. Clamped 
panels with sides unrestrained in the middle 

surface. 

- - Z  

THE PASMED LINE 15 DEFINED iN FIG,5. 

FIG. 10. Waveform parameters. Clamped 
panels with sides held straight but free to 

move circumferentially. 



t O  
"--I 

I-5 

I .O 

" I T  
Z ~  

0"5 

d 
j "====:::::¢=t:=:=m- I 

0 I ~-- 't- g G 

~:L6 

~(olC~o 

o 

F, = 8_ . . . . . . . . . . . .  r r 

-~°I ~'-~ . . . . . . . .  li . . . . . . . . . . . . . . . . . . . . .  i! 
-LI-. O - -  I 

T I l E  DASHED LINES A~,~ D~FIN~.I) IN FIG 

FIG. 11. Waveform parameters. Clamped panels 
• with sides held straight and prevented from moving 

circumferentially. 

~ 'Z-O 

1"5 I 

I 'O  

.-ff 

Z A  

0 . 5  

O 
O ?_ 

6 

3 0"° 

£ 

FIG. 12. Waveformparameters. 
Simply-supported panels with 
sides unrestrained in the middle 

surface. 



t ~  

1'5 

I ' 0  

1T 

0 ' 5  

0 
0 

\ 

2 5 4- 

E 

4 " ? -  

- 2 .  

,di__ ) 

1 
THE DASHED LINES ARE DEFINEO IN FIG.9 

FIG. 13. Waveform parameters. 
Simply-supported panels with sides 
held straight but free to move 

circumferentially. 

~°I 

1"5 

1.0 

Z..'~ 

0"5 

\ 

I ~ 3 R- 

+ Z o..~. -'k~ 0 

I / q ~ . , ,  a~B_ t ! 
I ~ - - 4  - - - ~ - -  i ! 

N o., , .~'~=8 1 

/ I I J - Z  

THE DASNED LINE 15 DEFINED IN FIG.9. 
)(.,DF-NOTE5 THE INTERSECTION OF THE UNBUCKLED AND BUCKLED 

LOAD/(EN~ STRAIN) CURVES. 

FIG. 14. Waveform parameters. Simply- 
supported panels with sides held straight and 
prevented from moving circumferentially. 
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