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Summary.—Lift, drag, and pressure distribution of a triangular flat plate moving at a small incidence at supersonic
speeds are given for arbitrary Mach number and aspect ratio. The values obtained for lift and drag are compared with
the corresponding values obtained by strlp theory. The possibility of further applications of the analysis leading up
to the above results is indicated.

1. General Discussion.—1.1. Introduction.—The pressure distribution on a flat Delta wing
(¢.e., an isosceles triangular flat plate having its apex pointed against the direction of flow) belongs
to one of two different types according to whether the apex semi-angle of the triangle is (i) greater,
or (ii) smaller than the given Mach angle. The difference between the two types of flow expresses
itself not only in the final result but also in the fact that different methods are best suited for
their analytical treatment.

The pressure distribution on a flat Delta wing whose apex semi-angle is larger than the given
Mach angle (case (i)) was first calculated by Ward®. It was later obtained as a corollary to some
work by the present author®. The total lift and drag of the aerofoil in that case are also given
in R. & M. 2394%

The solution of the corresponding problem for a flat Delta wing whose apex semi-angle is
smaller than the given Mach angle (case (ii)) has now been obtained by a method which is a
counterpart of the treatment of Laplace’s equation by systems of orthogonal co-ordinates.
Results obtained for this case will be given together with the corresponding results for case (i)
which are taken from the above-mentioned papers. These results—without the analysis leading
up to them—have already been issued in a preliminary note.

1.2. Notation.—

p  air density
free-stream velocity
Mach number
Mach angle

surface area of Delta wing

-~ n = g?

span

* R.A.E. Report Aero. 2151, received 31st December, 1946.
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¢ maximum chord
A aspect ratio
y  apex semi-angle
x  chordwise co-ordinate (measured from the apex against the direction of flow)
vy  spanwise co-ordinate (measured from the centre line)
o incidence (in radians)
4,  pressure difference between top and bottom surfaces of the aerofoil
ly)  spanwise loading
C, lift coefficient, based on surface area
Cp:  induced drag coefficient based on surface area
A cot p.tany

1.3. Results.—The pressure difference between top and bottom surfaces is given by

. — 20V %
(L 1) 4, = 4/ (cot?u — cot?y)’
. . In case
when |x| < |y| cot g, t.e., outside the Mach cone of the apex, (i), d.e
I_ 4pV %, can—1 | %] cot®u — cot?y when
P e/ (cot® u — cot®y) -\ cot y \/[ 2 — yrcot’u D ! v
when |x| > |y| cot g, 1.e., inside the Mach cone of the apex,
and by
i ~  2pVax tan®y |%|
(1, 1) b7 E'(cotu tany) © 4/(x*tan®y — »7)

in case (ii), ¢.e., when y < u.

In these formule p denotes the air density, V' the free-stream velocity, « the incidence of the
Delta wing in radians, and y its apex semi-angle; p is the Mach angle, cot u = +/(M? — 1),
where M is the Mach number, and £’ is the elliptic integral defined by

E'() = J”’ VAL — (1 — u?) sin® ¢} dg.

The chordwise co-ordinate x is measured from the apex against the direction of flow, and the
spanwise co-ordinate y is measured from the centre-line of the aerofoil.

(The above formula are still valid if the trailing edge of the aerofoil is deformed in any way
such that the Mach cones issuing from the trailing edge do not include any portion of the aerofoil.)

Let ¢ be the maximum chord of the triangular aerofoil and b its span so that the surface area is
given by S = }bc, and the aspect ratio by 4 = #*/S = 2b/c = 4 tan y. Then the spanwise lift
distribution /(v) is given by

| 26V (c — |y|cot 7)
(2,1) Iy) = /(cotin — cot'y) when ¢ < |y|cot g,

B 20V % B cotp —coty c¢—ycoty In case
Hy) = y/cot? p — cot%l}c +ycoty) tan™ \/[coty +coty ¢ +ycoty} i

B -, [eotu —coty ¢+ ycoty
4+ (¢ — y cot p) tan \/cot,u—[—CO'CV c—ycoty]|’

when ¢ > |y]| cotp
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and by

.. 2oV« . ..
(2,1ii) I(y) = E’(cotpy tan 7) v/(c®tan®*y — »%) in case (ii) .

The lift coefficient, based as usual on surface area, is given by
(3, i) C, = 4atanp in case (i), and by

2motan y
E’(cot u . tany)

C,L= in case (ii) .

The ratio of this coefficient and of the lift coefficient predicted by two-dimensional (‘* strip ”’)
theory is shown in Fig. 1. It depends only on the parameter 4 = cot p.tan y. Fig. 2gives
C, for various apex angles (or aspect ratios) plotted against Mach number. As mentioned in
R. & M. 2394%, C, is equal to its value by strip-theory if y > u (case (i)).

A simple dimensional argument shows that the centre of pressure coincides with the centroid of
the wing (%, = — 2¢/3, y, = 0).

It will be seen from formula (1, i) that in case (i), the pressure remains finite at the leading
edge, and we may therefore assume that the resaltant aerodynamic force is normal to the plate.
This implies that the drag associated with the lift equals the product of lift and incidence (in
radians). To avoid some of the confusion which has arisen in this connection we shall agree to
call the whole of this drag “ induced drag . The corresponding coefficient Cp, will again be based
on surface area. In case (ii) formula (1, ii) shows that, at least according to linear theory, there
will be infinite suction at the leading edge, as in subsonic flow, and of the same order of infinity.
This indicates the presence of a longitudinal ‘‘ suction force ” which tends to reduce the induced
drag. As a result, the induced drag no longer equals the product of lift and incidence.

As formulee (2, 1) and (2, ii) show, the spanwise lift distribution is of elliptic shape as long as
y < u, 1.6, in case (ii) but not in case (i). The value of Cp, for a given elliptic lift distribution
under low-speed conditions is known to be C;*/z4, so that the value of C,,/(C.*/nA) measures
the deviation of the high-speed régime from the low-speed régime, at least for y < u. This ratio
which again depends only on the parameter 4 = cot u tan y is plotted against 1 in Fig. 3, and for
various apex angles or aspect ratios against Mach number in Fig. 4.

Analytically,

CDi

(4, i) Clnd =™ cotu tany in case (i), and

(4, ii) 6%4 = 2F'(cot pu tany) — tany 4/(cot®’y — cot®u) in case (ii).

For a given spanwise lift distribution, the trailing vortex field in regions far behind the aerofoil
is the same in supersonic as in subsonic flow (compare Ref. 7). Accordingly we may subdivide
the induced drag into vortex drag, which is associated with the trailing vortex field and is the
same for supersonic as for subsonic flow, and induced wave drag, which 1s peculiar to supersonic
flow. The corresponding ‘ vortex drag coefficient ”’ for a Delta wing equals C,*/zA4 for y < u.
For y > u this coefficient increases, for a given lift coefficient, as the spanwise lift distribation curve
deviates from the elliptic shape. Inspection of Fig. 3, then shows that even when y < u (case (ii))
there still is an induced wave drag in addition to the vortex drag. Thus, while this case shows
some affinity with subsonic conditions, the flow is still not truly subsonic. However, as shown
by formulee (3, ii) and (4, ii), as the aspect ratio tends to 0, Cp == (z4/2) «, while Cp; = C;*/=zA4,

3
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both of which are the values given by low-speed theory. This is in agreement with an argument
due to R. T. Jones® which tends to show that for pointed wings of infinitely small aspect ratio lift

and drag are given by the above formule in supersonic as in subsonic flow, and serves as a check
on the results obtained here.

2. Analysis.—2.1. Pseudo-orthogonal Co-ordinates.—Let %,, x,, %5 and vy, ¥,, ¥5 be two sets of
variables interconnected by the relations

x]:.f; yl:y2:y3): _7:1,2,3,]

yf:gj(lexZJ x3)’ 7:1,2J3J ()
The transformation is supposed to be non-singular in a given region,
Uil 2o, (2] %0,
Yy 0%,
We have
dx-_— f’dy, j=123. .. .. .. . .. . (2)
7 ay )
Hence
dx? — dx® — dxg® = b2 dy? — b’ Ayt — g’ dys?
+ 2Ny, dy, dys + 20y Ay, Ay + 2hes dyy dys, .. .. .. .. (8)
where
e _ (/1Y 0/ 2 /s
“"éﬁ‘(@) @)’
:_ o/ 0/ 9 /3\?
Bt = — ( ) Q%)+(@Q , O
2 df1 e\ | (s
= 8y3> <ay3) ™ (@J ;
and
A AN IAYGE AT :
Py = a—y) @,) (83/) ayk) o ay) <8yk> 5 k=123 j#k.
Now assume that the functions %; vanish identically. In that case

dn? — dnt — dxd = b dy? — bt dyr — b2 dyd . .. .. .. (5)

If x,, x,, x,, are rectangular cartesian co-ordinates in three-dimensional space, and another set
of co-ordinates vy,, v,, ¥; is given, such that the functions %;, vanish identically, then y;, v,, ¥5 will
be said to be pseudo-orthogonal co-ordinates in the given space. As a simple example of a system
of curvilinear pseudo-orthogonal co-ordinates, we may mention the pseudo-orthogonal counter-
part of the familiar spherical co-ordinates. It is given by

%y == y; cosh y,, %, = y, sinh y, oS Vs, %3 = Y, sinh y, sin y,.
2 % 0%

We shall require an expression for the differential parameter A axt  xd in terms of
1 2 3
general pseudo-orthogonal co-ordinates, where ¢ is an arbitrary scalar function. It is shown in
Appendix I that

0% 0% 0% 1 [ hohy 0 o (hhy 0¢ hihg 8¢ :l
ayl

T~ 5 = i Loy Cne )~ 35 e )~ 2 (o o ©)
4



2.2. Hyperboloido-conal Co-ordinates—The solution of problems connected with triangular
aerofoils moving at supersonic speeds can be effected by the introduction of a special system of
pseudo-orthogonal co-ordinates. Writing ', »', 2" and 7, u, v for %, %, xs;, and y;, V., ¥,
respectively, the connection between the rectangular cartesian co-ordinates x’, y’, z’, and the
special system to be introduced, 7, x, », will be given by

, p , \/( 2 _ hZ) ,\/(,‘)2_}&2) , ,\/ 2 kZ k2 —_— 172
xsz%e, y =7 Mh\/(kz——hz) , 2=7 G k\/(kLZ(}ﬁ) ), .. (7)

where & and % are positive constants, £ > 4. The intervals of variation of 7, u, » will be takenas
I<7<w,bu<oo, bhgrv< k.
Eliminating x# and » from (7) we obtain a family of surfaces with 7 as parameter,

X — oyt — =, . .. . . (8)

Similarly, eliminating » and », and # and p, respectively, we obtain two more families of
surfaces,

x'z 12 2/2

?_sz_hz*—‘uz_kz:o, . . .. . (9)
and

x’2 ,ylz le

,p_z'—vza__hz_l_kz_vg:o. .. . .o . (10)

(8) represents a family of hyperboloids of two sheets while (9) and (10) are families of cones.
This justifies the name “ hyperboloido-conal co-ordinates ”’ for the system under consideration.
They are the pseudo-orthogonal counterpart of the system of orthogonal co-ordinates known as
“ sphero-conal co-ordinates 4.

Equation (7) shows that for the specified interval of variation, the co-ordinates #, u, » can
only represent points inside the positive half of the cone %2 — y” — 2 =0 (ie, ¥ > 0,
¥ — gy — 2% > 0). By solving (7) for 7, u, v it is found that to every point satisfying x" > 0,
%' — y® — 2’2 > 0 there corresponds exactly one triplet 7, u, » inside the domain of variation
of these variables. On the other hand, to each triplet 7, u, » there correspond four points %', y’,
z’, according to the determination of the square roots in (7). The ambiguity can be avoided by
writing # and » as elliptic functions of new variables, but this procedure will not be required in the

present report.

For u — o, the cones of the family (9) tend to approximate the cone x" — y” — 22 =0,

while for ¢ — £ they tend to become equal to the (two-sided) angular region in the x’, ¥’ plane
2 2

given by 7w — 7’;2-{_—%2 > 0. On the other hand, the cones of (10) approximate the comple-

19 9
mentary angular region in the %', y’-plane (% — k_zy:—hz < 0)as v — k&, and the y-axis (v" = 0,

2" = 0) as » —A. Thus, the intersections of the u-cones with the plane x" = 1 are ellipses,
2

varying between the circle "2 4+ 2 = 1 and the slit 2/ =0,y% < 1 — 72 - The intersections-
of the »-cones with the same plane are hyperbolae (Fig. 7).

We shall now calculate the quantities Ay, %,, /s, 515, fus, /55 defined in section 2.1 above. We have

x'  uv ox' v ox' u
W_}—JE’ E__—T}Lk’ 5’;:?%, v .o (11)
o _ V=RV A Clll 5 BV V(=)
or I/ (B — 1) " (B =) N (=) oy (B2 A (V=R
o _ Nl — BB — v 0z 2z V=Y 0 v (=)
o R dn T TR E—) N E— By R (B A (B— )
5
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Hence

=G -G -G -
W:~aw+(w> o) = L
== () 1 () 4 >m&mu:
= () (&) - )3 - @) -0
M<W%%%%$mo

o= () ()~ (2 () - () () 0.
B e oy on oy

The last three equations show that the system of co-ordinates 7, ¢, » is in fact pseudo-orthogonal,
as asserted.

(12)

Let @ be an arbitrary scalar function. Then, by (6),
320 0 %0 A/{(u? — B (v — BN (u® — R)(RF — »%)}

x oy "2 oz’ 7* (u? — %)

l: ( 7t (u? — %) o0
or \y/{(n® — v——hz)(a—kz)(kz—v} o

pM(J’::ZZ W) - s lEme—a &)

Or
20 20 90 1 . om0 [,00
ox® T y? T 37 Pt — Y [(“ "”)ar< ar
= V= Wt — K)o (et = ) 2
A — AR — Y a_v<\/(v2—h2)(k2— v Z_‘f)} L. .. (13

A scalar function ® which satisfies the equation

iR ) 0D 0%
-8—-—56—,—2-—83}—,2'-————-—:0 ° o .. .. PR (14)

will be called a hyperbolic potential function (or, alternatively, a pseudo-harmonic). Equation
(14) is equivalent to

(0 =) 2 (P 2) = Vit = W0t — K 2 (Ve = W)t — 2 22)

— /(0 — B (R — »Y) %(\/(wz — )R — ») g—?) —0 N 1)

in hyperboloido-conal co-ordinates.



2.3. The Triangular Aerofoil.—Consider a triangular aerofoil of span b and maximum chord
length ¢ in a uniform supersonic airstream (Fig. 5). The linearised equation of stationary
supersonic flow is (e.g., Ref. 7)

0’0 o® %D
2 = * 0 .. . e .

GF TRl i F (16)
where #* = M* — 1, M = V/a, M being the Mach number, V the free-stream velocity, and a the
velocity of sound ; x is the longitudinal co-ordinate, measured from the apex of the aerofoil against
the direction of flow, y the lateral co-ordinate, positive to starboard and negative to port, and
z the vertical co-ordinate, positive downward. @ is the induced velocity potential so that the
three velocity components are given by

op 00
—V+ 5

da(D tivel
% » 5y » andgzy  respectively.

2

In accordance with the conventions of linearised theory, the incidence of the streamlines at
the aerofoil is estimated at the vertical projection of the aerofoil, into the x-y plane, thus

s — %(gﬁpo, R 0 V)

where s is the slope of the aerofoil at the point in question, on the upper or lower surface, as the
case may be.

® must be continuous everywhere except possibly across the wake of the aerofoil. In the
present analysis we assume that the aerofoil is completely inside the Mach cone issuing from the
apex, so that ® must be a constant, and may be assumed to vanish, outside the cone. In
particular, this yields the condition

=0 for ¥ —w(y*+2)=0. .. .. .. .. (18

The assumption that the aerofoil is inside the Mach cone issuing from the apex means, in
symbols, ‘

n = cot u <%—C=CO1:y, .. .. .. .. (19

where y is the apex semi-angle of the aerofoil, and x is the Mach angle.

The longitudinal components of induced velocity is 2®/6x, hence, by the linearised Bernouilli
equation,
o0
= p, — pV =, .. .. . .. (20
p=pa—rV = (20)
where $ is the pressure at the point in question, $., the free-stream pressure, and p the air density.
The excess pressure 4p is therefore given by

— o0
dp = — pV 5 - .. .. .. .. .o (21)

2.4. Transformation into Hyperboloido-conal Co-ordinates—Put x = — nx’', y =y', 2= 2"
Expressing equation (10) in terms of %', ¥/, 2/, we then obtain equation (14). The span of the
triangle remains unaltered in the transformation, while the chord is magnified in the ratio of 1 : #.
The Mach cone x* — #*(y* 4 2% = 0 is transformed into x* — ¥ — 2 = 0.

Next, transform into hyperboloido-conal co-ordinates, as by (7), with %= coty,
h = 4/(cot?y — cot>u). For these constants, the leading edges of the aerofoil determine the
angular region in the x'-y’ plane to which the cones ot the family (9) approximate as p — 4.
The triangle itself becomes part of that region.

7



In order to express the derivatives 9f/x and 9f/oz of an arbitrary function f in terms of
hyperbolmdo -conal co-ordinates, we first have to calculate the derivatives of #, x, » with respect
x" and 2’ in terms of 7, x, and ». The calculation of these quantities is simplified by the fact that
we are dealing with pseudo—orthogonal co-ordinates (see Appendix II). Using equations (11)
and (12) we find

ﬂ_lﬂ’ _aﬂz__v(,uz—hz)(,uz——kz)
ex’  hk’ ox' hky (u? — »%) ’
ov _p(ot— i) (B —
ox’ hkr (u® — »%) ’ (22)
oV B VE )t — B Y — ) 3/ —
57 = a7 B E — e — )
v (=) V(= B)V(E— )
57 IR — 1) 1(a® — 79
Hence
af =17, v =) —R)  of p(* =) —") of
2 iﬁﬂ;[b S ey 5;}, %)
and
of A= R)V(E =T of ule*—=h) of (=) o7 "
P v/ 1y [‘a‘ﬁ E—) e — ) 5;] e ()

If the induced velocity potential is given as a function of 7, x, and », then the excess pressure at
any point will be found from (21) and (23). Also, the corresponding shape of the aerofoil will be
found from (17) and (24). It is to be noted that the differentiation, as by (24), has to precede the
passage to the limit x — £ The induced velocity potential, apart from being continuous except
possibly across the wake of the aerofoil also has to satisfy equation (15), which is the equivalent
of equations (14) and (16) in hyperboloido-conal co-ordinates. Particular solutions of (15) can be
obtained by separation of the co-ordinates. This leads to Lamé functions of all kinds and degrees
(Appendix 1V). To each such solution there corresponds a possible aerofoil whose shape can be
calculated, as detailed above. It should be observed that as long as we confine our attention to
the region ahead of the trailing edge, conditions behind the trailing edge do not affect the results,
so that we may modify the boundary conditions there at our convenience.

In the present paper we shall only consider the special function which corresponds to the flow
round a triangular flat plate at incidence.

2.5. The Flat Della Wing at Incidence—Let « be the incidence of the aerofoil; « is supposed
to be small, so that tan « = «. Equation (17) then becomes

(azzw (%)

According to what has been said in section 2.4 we may assume (25) to hold not only at the
acrofoil, but also aft of its trailing edge, between the two straight lines through the leading edges.
As there is now no definite length involved in the specification ot the boundary conditions, it
follows from geometrical considerations that the induced velocity potential @ must be of the

form r@, where @ is a function of ¢ and v only. In particular we shall try to find a solution of
the form

v \/(Nzk—\/l(:)z i‘ﬁif YD) = Zgln) = %), e (28

8




where g is a function of x yet to be determined. The reason for choosing @ in this way is that at
the aerofoil » = &, while z = 0, so that 2®/0zis constant at the aerofoil, as required. Substituting
® = 2'g(u) in (15) we obtain an ordinary differential equation for g(u). In performing the

substitution it is useful to remember that 2" — 7 Y& — #) V& — ) i olution of (14) and

T/ — )

therefore of (15).

We obtain

2 2 2 2 9 0 ! d o
2 A/ — ) —k}—<\/{/«6 — W)t — B} & )+2M —W =R 2 E =0,
or
2 2' d 1 2 2 2 dg J—
(= ) (VI =t = ) 2/l = WY — B B =0 . (27)
Hence
(= ) W/l — )t — 1} 55 = const. = C,

and

at

) = e Ry

In order to ensure that ® — 0 as u —>o for any given # and », as required by continuity, we
have to take u, = . Hence

at ;
cj T e (28

and

_ Cr+/(B — v : dt

At the aerofoﬂ (s.e., forM = k) we have x' = rv/h, y' = ry/(v* — B*)[h, x* — y"* = 7*, and so
7/ (R — v®) = /{x'¥ 7 — Y — y"?k*.  Also, by partial integration

lim , o (@ dat ‘
WV =B o )

B ull-rilk v ){[— NVE—R) 1 ([ — h2)]j +] w % <W(zzl_ h2)>\/(t2d = k?«)}
lim V=) 1

B R e N e R
Hence, at the aerofoil (but not elsewhere in the x-y plane)

kB —n 2 221 .
@:C”‘/{ P e (30)
P — )

9




The value of the constant C can be determined by means of equation (25). We have, using (24)

20 = 2 () = glu) + 2 28
ety + VU= PV =) et = ) ry RV g
WE— ) WE—d

=C U & — BV ;t— ™E— ) kz(kzﬂ— 2N Zf:: :: ' \/ Hﬂ ’
“CU F B — 4 A E — 7)) k(kzﬂ—— 77 \/ : _h2>+ﬂ1;2/;§ _];;( v ZZ;):I-

2 2 2
As ;i tends to &2 \{EE(M kz_ ]23)(\/2(“ _2>h) tends to 0, so that 2®/2z is, in fact, independent of »
ut— v
and 7 at the aerofoil, as required. Also, as before,

© d — B2
J E— V@ = AE— B kz(kzﬂ_ 7 \/ fﬁ — k2>

_ F" a ( 1 ) dat v 1 . J — h2
w AN (EBE— 1)/ A/ (8 — k) T A0 — D pna (0 — B R(RE — BN \u? — k2

by partial integration. Now
lim 1

ot .

w (= ) Bk = \Kﬁ __k2 B

lim PR — B — u(u? — 77

u—h BB — B/ (@ — B — )

Hence, at the aerofoil

0D ~(*d 1
5% L Ez?(w(tz — h2)> V(B — R
where the integral on the right—hand side is now convergent.

The value of this integral is ———— E ( ) where E(u) is the complete elliptic integral of

e
_ Vak(R — &)

E(D)

the second kind, E(% f V{1 — u?sin® ¢} d¢ . Hence, by (25), C =

Equation (30) now becomes

o= V)

Recalling that # = cot u, & = cot y, & = 4/(cot® y — cot?u), we finally obtain

o Va . s o
® = T Flotp tany) Y Y=, N €1 )

10




where E'(u) is the compleméntary complete elliptic integral of the second kind, E'(%) =
72

J Vil — (1 — #*) sin®¢}dp. According to our choice of co-ordinates, the sign of the square
0

root is to be taken as positive at the top surface of the aerofoil, and as negative at the bottom
surface. The magnitude of the pressure difference between top and bottom surfaces is, by (21),
and (31)

- 2pV2x tan®y x

AP = Fleotu tany) " | v(@tanty — 5 | - e (89

2.6. Lift and Drag.—The spanwise lift distribution /(y) is obtained by integrating the pressure
difference 4p along the chords of the aerofoil. It will be seen that ® vanishes at the leading

edge, and so I(y) = JZP dx = 2|®(c,, y)|, or
20V %

Uy) = Ecot i tan ) 4/ (2 tan®*y — 47) . . .. .. (33)
Tlge totallift L on the aerofoil is obtained by integrating /(y) along the span, from — g = —ctany
to 5 = ctanvy,
2, 2 42
L= Z?e(rtjo:; .t’?;n ;g}/) ) (34)
The lift.coefﬁcient C:, based on surface aiea, is given by C, = %7% , S =c*tany, or
Co= Efféi ,tf“lln 7 (39)
The longitudinal component of the pressure integral is given by
D, = Lo = “pVoc tan’y )

E'(cotyu .tany)

However, the induced drag D, (defined as the total drag associated with the lift, section 1.3)
will not in general be equal to D, but will be rather smaller than that quantity. In fact, by
equations (31) and (32), the longitudinal component of induced velocity, and hence the pressure
difference, both tend to infinity at the leading edge. As in subsonic flow, (compare Ref. 5), this
indicates the presence of a suction force whose longitudinal component Ds acts in a direction
opposite to that of the longitudinal component of the pressure integral, D,. It follows from the
nature of this force that the contribution to it of any particular element of the leading edge
depends only on thelocal conditions (e.g., the local trend to infinity of 2@ /0x) and not on conditions
elsewhere in the field.

Let dl be an element of the leading edge of the aerofoil, and assume d/ to be yawed at an angle
g (Fig. 6). Let %, y, be the co-ordinates of the midpoint of d/, and dy the length of its lateral
projection. Assume that on approaching 4/ longitudinally against the ditection of flow, 2®/0x
is given by
o0 C .
— = ... (f
5% = Ve — % -+ (finite terms)

on the upper surface. It isthen shown in Appendix III that the longitudinal component dDs
of the suction force contributed by 4/ equals

dDs = C?n p+/(tan®g — cot’u) dy, .. .. . .. (37)
11



where x is the Mach angle, as before. The total suction force is then obtained by integrating
dDs across the span of the aerofoil. For the Delta wing,

= Vas/(vstany) . T
C_'\/ZE/(COIM.taIl‘y) ’ ﬁ_w:[:(é V).

Hence
2.,2,2 3 2 2
D:anocctan y 4/ (cot’y — cot® u) B - B
s 2[E'(coty . tan y)]? ’ (38)
and
2.,2.2 2 2.,2.2 3 2 2
D —D _ D.— wpV P’ tan’y  wpV?elc® tan’ y 4/(cot’y — cot® u) o N
' ? * " E'(cotp.tan y) 2[E’(cot p . tan y)]* (39)

Let C,; be the induced drag coefficient based on surface area, D; = Cp,; . 3pV%S. Then

2
Cpi = [E’(:oofc ;al}t‘:n P [ZE’(cot,u . tany) — tany +/cot’y — cotzu] T .- (40)

and, observing that the aspect ratio 4 equals 4 tan y,

Coi

. 4 _ 2 i 2
CLz/%A_ZE(cotu.tany) tan y 4/(cot?’y — cot’u) . .. .. .. .. .. (4D

This completes the justification of the data given in section 1.3 in relation to Delta wings whose
apex semi-angle is smaller than the given Mach angle.
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APPENDIX I
The Second Differential Parametey in a Pseudo-ovthogonal System

In this appendix we shall use the notation of the tensor calculus, including Einstein’s convention.
Accordingly, we replace x;, %,, %5 and ¥,, Vs, ¥ as used in para. 2.1 by x', &%, 2% and »', »?, »?
respectively.

Let g, be the fundamental covariant tensor of the quadratic differential form (dx")* — (d#%)? —
(dx%)2, 1.e

1 0 0
[gizl = O ""1 0 , SO thatg: Igwl — 1 .
0 0 —1

If the &’ are rectangular cartesian co-ordinates, and the 3/ form a pseudo-orthogonal system,
then by (5), the above tensor is given by

L 0 0
(giv - 0 '_]2’22 O » g = ‘giul = h’12 hzz h32:
O O _h32
in the 37 co-ordinates.
The corresponding contravariant tensors are

1 0 O _ 1/h? 0 0
]=10 —1 0| and [§]=|0 —1k® 0 |.
0 0 —I 0 0 —1/hg

The expression \Tg — <\/ g g” o0 ) is called the second differential parameter of the (arbitrary)

scalar function ®. Thls expressmn is known to be an absolute scalar, 7.e.,

"= (VEE):

In the particular case here under consideration, this equation becomes

) ' 0D
(A D a(a)

=_l_[_a_ hohs 3®\ B (hihy 0N (hh acp}
hihohs Loy' \hy T 0y 8E\ By, 0y°

which is equivalent to equation (6).
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APPENDIX II
Calculation of Some Partial Derivatives

Using the notation of section 2.1 we require expressions fo1 dg;/ex, j=1,2,3, k= 1,2, 3,in
terms of y,, v,, ¥s. We have

3
k=1

where a;, = % . Solving for dy,,
k

3
i=1

where [4,] is the inverse matrix of [a;] , [4y] = [@;,]”". On the other hand, evidently 4,; = o8

ox;

Now let the x; be rectangular cartesian co-ordinates, and the y; any system of pseudo-orthogonal
co-ordinates. Using the relations of pseudo-orthogonality we find, by direct (matrix) multipli-
cation that

oo — o e _ifﬁ/hz— K of o] —1 0 ()H
B_yl/ ! ayl/ ! ay, ' 39 0y, 895
ofs of; fs ofs ofs ofs

_ 1R L2 ]2 RCLNYY/VCH B s 2 2y = (0 1 0f.
\ayz/ 2 ayz/ ? ayz/ 2 ayl 8y2 ay3

g Yeppe P % % U 0 0 1

i aya/ ? 6y3/ : 6y3/ . [0y, 0y, 0y L A

The second ot the above matrices is identical with [a;] so that the first must be [4,]. Hence

a;gl: if_llh2 ?_g_r_l:__aj; 2 ag1:_§f3 .2
0%, oy, 0%, 53)—1/%1 D% ayl/ 1
08 _ _ a_fl 2 0 __ s 17 2 08s __ ofs 7 2
i a am ™ m

08 . _ Oh s 0 e & U
oy, | 5% 3y, /s e

3%, - D %s

These are the required expressions.
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APPENDIX III
Calculation of the Suction Force

As in section 2.6, let d/ be an element of the leading edge of the aerofoil, yawed at an angle 8.
Let x,, ¥, be the co-ordinates of the midpoint of 4/, and dy the length of its lateral projection.
As the suction force depends only on local conditions, we may modify the boundary conditions
elsewhere at pleasure. Accordingly, we may assume that 4/ forms part of an infinite straight
leading edge (Fig. 6). It is, therefore, sufficient for our purposes to calculate the suction force
at the leading edge of a yawed infinite flat plate. The type of flow is again assumed to be such
that

o__C
0x A/ (% — %)

The free-stream velocity is — V.

-+ . . . (finite terms).

According to a now well-established argument (e.g., Ref. 6) the flow round an infinite aerofoil
yawed at an angle g to the free-stream direction is the resultant of (i) a uniform field of flow
parallel to the leading edge at a velocity — V sin # and (ii) a two-dimensional field of flow at a
free-stream velocity — ¥V cos g in planes normal to the leading edge. Field (i) does not affect
the dynamic reactions at the aerofoil, so that we may confine our attention to Field (ii). Since
Field (ii) can produce no reactions in a direction parallel to the leading edge, it follows that

dDg = cos pdD’s, .. . .. .. .. .. .. (42)
\(zY.})lere aD’s is the suction foice produced by d/ against the direction of the free stream of Field
ii).
Let %', ¥, 2’ be a new system of co-ordinates, obtained by turning the x, v, z system round the
z-axis through an angle 8, i.e.,
%' = xcosf — ysin f#,
y' = xsin g + y cos B,
2 =z.
The linearised equation for the velocity potential is
cotty 8O _ @0 80 _
%
For the primed co-ordinates, this equation is carried into
3’
oy'®
20 0%

2, 1 R
—|— Z(Cot u 1) Ccos ﬁ sm ﬂ ax/ay/ azlz

2
(cot? p cos*f — sin’®B) g;z ~+ (cot?p sin® g — cos? B)

Now in Field (ii) both the total velocity potential and the induced velocity potential satisfy
o®/dy’ = 0 so that the above equation becomes

2 92D 0*®
! ax® T Bz 43)
where

g* = sin®* 8 — cot®u cos?® 8.
15



(43) is, in fact, the linearised compressible flow equation corresponding to the component tree-
stream velocity in the direction of the x’-axis (Mach number M = /(1 — ¢*) = M cos §).

It was assumed above that the total velocity in longitudinal direction is of the form

__¢ + . . . (finite — 7.e., bounded-terms).

A %y — %)
This is the resultant of the longitudinal component of Field (i), which is bounded, and of Field
(ii). Hence the component velocity ot Field (i1) in the direction of the x'-axis is of the form

C

o5 PN =) 4+ . . . (bounded terms) ,
or
——TQ‘_—,- 4+ . . . (bounded terms),
V(¥ — ¥
. : . : ~ C
h ‘s 1s the x'-co-ordinate of the mid f . == .
where x', is the x'-co-ordinate of the midpoint of d/ (see Fig. 6) and C V(605 F)

Again, it follows from the character of the suction force as depending only on a local singularity,
that the suction force per unit length in the direction of the x’-axis (o, say) depends only on p, C,
and the parameter ¢ (representing the Mach number M = M cos 8). To calculate it, we consider
the special case of an infinite flat plate of constant choid width C at an incidence & in a aniform
stream of velocity ¥, the corresponding Mach number being # < 1. 1t is known that, by

x

linearised theory, the longitudinal induced velocity at the plate is given by v = N id
g
where the leading edge of the plate is at #” = 0, and its trailing edge at " = — ¢. Hence, in the

notation used above, C = g V /T . Also, thetotal pressure per unit length of the span is given by

L=anpz V*% . Now the pressure acts in a direction normal to the surface so that there is a back-
-~ ~ 2 ~
ward component of magnitude L% — 7p¢ 7*% = ngpC? per unit length. As there can be no resultant

drag in two-dimensional potential flow (see Ref. 9 for compressible fluid flow), it follows that the
suction force exactly balances the above backward component, or

o = ngoC?. R )
For ¢ = 1, this formula was first given by Grammel (compare Ref. 5).

It follows from the character of the suction force that (44) holds not only for the case for which
it has been established, but also for any other case with equal ¢, , C. In the particular circum-

stances in which we are interested C = (%B , ¢ = sin®’f — cot®u cos® g, and so
0 = apg C*+/(tan®  — cot®u). .. . . .. (45)

This is the result stated in section 2.6.
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APPENDIX IV
Solutions in Terms of Lamé Functions

The differential equation of a pseudo-harmonic in hyperboloido-conal co-ordinates is (compare
section 2.2, equation (15)),

bt =9 5 (P 57) = VA — W — ) 2 (v — W) kmgﬂ
— VAt = B = 7 (VAG — M) =0

We try to find solutions of the form ® = #* ¥, where ¥ is a function of z and » only. On
substitution in the above equation we have

nn + 1)t — ¥ — V/{(u* — ) u }—(V{c—hz )} o
— V== 2 (VIO - R — ) =0, .. (48)

Next, we assume ¥ to be of the form ¥ = G(u) H(v). The differential equation (46) now
becomes

H(0) [+ 1 Gl) — (e — 1 — ) 52 — (2 = )" — ) ¢

2
_ G(u)[n(% 1)t H() — v(20° — B — B g@ — (0 — I — B gg} —0.
v
In order that this equation should be satisfied it is required that

L TGl — (2t — = ) B — (et =t — ) ]
1 2 2 2 2 aH 2 : 1
~Hp) [%(n—l—l)v H() = »(@" = 1 = 1) 5 — (" = )07 _k)dﬂ

= const. = p(h* + £?), say,
where p is an arbitrary constant. It follows that G(u) has to satisfy the differential equation

Dl + 1 — U + B Glu) — (2t — B — 1) T — (2 =) — Y ST =0, .. (4D

with an exactly similar equation for H(v).

Equation (47) is Lamé’s equation (compare Ref. 7). For given 7, p can be determined in
(2n + 1) different ways, so that G(u) is of one of the following four forms

K(p) = (@p” + a2 4+ . . 1),
L{p) = +/|p - Bl (@eut a4 . 0)
M) = /|u* — B| (@p" + @ + . . ),
=/ | =B V[ — B[ (@p" + aw + . . ),

where the expressions aou” + a,u""% ayw™ + au™ >, au" "t +ap™ 2+ . .., ap"  F ap
are all polynomials in p.
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Thus, for » = 0, the only solution of the above-mentioned type is (except for a constant factor)
Eip) =1.
For » = 1, there are three independent solutions,
Ei) =n,  EF) =/ — Bl Efe)=/|ut— &

Assume that E,” (1) has already been determined for given # and for an appropriate p. Then
a second solution of Lamé’s equation is given by

m . m * dﬁ

Fol) = BE) || ot T — o =T
Thus
j dat
V{# — ) — B}

o dat
EW“”Lﬁww—ww~mr

2 2 o [ di
F(u) = A/ (u* — 77 fﬂ E — h2)3/t2 v E = ’

d
J v __ hf) _ k2)3/2 *

Fip) = +/(0* — &)

From the above particular solutions of Lamé’s equation we then obtain ‘normal’ pseudo-
harmonics of the form #* G(u) H(»). For instance,

C

* = E =

EINORING

is the solution used in the body of the report.
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