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A. ROBINSON, M.Sc., A.F.R.AE.S.
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MINISTRY OF SUPPLY

Reports and Memoranda No. 2548*

September, 1946

Summary.-Lift, drag, and pressure distribution of a triangular flat plate moving at a small incidence at supersonic
speeds are given for arbitrary Mach number and aspect ratio. The values obtained for lift and drag are compared with
the corresponding values obtained by strip theory. The possibility of further applications of the analysis leading up
to the above results is indicated.

1. General Discussion.-1.1. Introduction.-The pressure distribution on a flat Delta wing
(i.e., an isosceles triangular flat plate having its apex pointed against the direction of flow) belongs
to one of two different types according to whether the apex semi-angle of the triangle is (i) greater,
or (ii) smaller than the given Mach angle. The difference between the two types of flow expresses
itself not only in the final result but also in the fact that different methods are best suited for
their analytical treatment.

The pressure distribution on a flat Delta wing whose apex semi-angle is larger than the given
Mach angle (case (i)) was first calculated by Ward", It was later obtained as a corollary to some
work by the present author". The total lift and drag of the aerofoil in That case are also given
in R. & M. 23942

•

The solution of the corresponding problem for a flat Delta wing whose apex semi-angle is
smaller than the given Mach' angle (case (ii)) has now been obtained by a method which is a
counterpart of the treatment of Laplace's equation by systems of orthogonal co-ordinates.
Results obtained for this case will be given together with the corresponding results for case (i)
which are taken from the above-mentioned papers. These results--without the analysis leading
up to them-have already been issued in a preliminary note'.

1.2. N otation.-

p air density

V free-stream velocity

M Mach number

t-t Mach angle

5 surface area of Delta wing

b span

* R.A.E. Report Aero. 2151, received 31st December, 1946.
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c maximum chord
A aspect ratio
Y apex semi-angle
x chordwise co-ordinate (measured from the apex against the direction of flow)
y spanwise co-ordinate (measured from the centre line)
a incidence (in radians)

LI; pressure difference between top and bottom surfaces of the aerofoil
l(y) spanwise loading
CL lift coefficient, based on surface area
CDi induced drag coefficient based on surface area

A cot fl • tan Y

(1, i)

1.3. Res1tlts.~The pressure difference between top and bottom surfaces is given by

2pV2aLI - --;-;--~-----,--;;------;

p - y(cot2fl - cot2 y) '

when Ix I < Iy I cot fl, i.e., outside the Mach cone of the apex,

x - 4pV2a tan- 1(M J[Cot2 fl
- cot2YJ)

p - n\/(cot2 fl - CO[2 y) cot y x2 - y2 cot2.u '

when Ix I > Iy I cot fl, i.e., inside the Mach cone of the apex,

and by

In case
(i), i.e.,
when
Y > fl

- 2pV 2a tan2y
(1, ii) LIp = E' (cot z, tany)

in case (ii), i.e., when y < fl.

In these formulae p denotes the air density, V the free-stream velocity, a the incidence of the
Delta wing in radians, and y its apex semi-angle; fl is the Mach angle, cot fl = y(1~12 - 1),
where M is the Mach number, and E' is the elliptic integral defined by

E'(,,) = [/2 y{l _ (1 _ 1£2) sin" rp} drp,

In case
(i)

c - Y cot Y}
c +Y cot y

The chordwise co-ordinate x is measured from the apex against the direction of flow, and the
spanwise co-ordinate y is measured from the centre-line of the aerofoil.

(The above formulae are still valid if the trailing edge of the aerofoil is deformed in any way
such that the Mach cones issuing from the trailing edge do not include any portion of the aerofoil.)

Let c be the maximum chord of the triangular aerofoil and b its span so that the surface area is
given by 5 = ibc, and the aspect ratio by A = b2jS = 2bjc = 4 tan r. Then the spanwise lift
distribution l(y) is given by

l( )
__ 2pV2a (C- Iy[coty)

(2, i) Y - y(cot2 fl _ cot" y) when c < !y Icot fl,

l( ) 2pV
2

a [( ) 1 J{cot fl -- cot y
Y = yCOt2,il - cot" Y c + Y cot y tan- cot « + coty

1r: fl - cot r c + Y cot YJ+ (c -y cot y) tan- .
cot fl + cot y c - Y cot y ,

when c > Iy[ cot «
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and by

(2 ..) l( ) 2pV
2
iX • /( 2 2 2)

,11 Y = E'(cot y . tan y) v c tan y - y in case (ii) •

The lift coefficient, based as usual on surface area, is given by

(3, i) in case (i), and by

in case (ii) .
C _ 2niXtany

L - E'(cotfl. tan y)

The ratio of this coefficient and of the lift coefficient predicted by two-dimensional (" strip ")
theory is shown in Fig. 1. It depends only on the parameter A = cot fl. tan y. Fig. 2 gives
CL for various apex angles (or aspect ratios) plotted against Mach number. As mentioned in
R. & M. 23942

, CL is equal to its value by strip-theory if y > fl (case (i)).

A simple dimensional argument shows that the centre of pressure coincides with the centroid of
the wing (xo = - 2c/3, Yo = 0).

It will be seen from formula (1, i) that in case (i), the pressure remains finite at the leading
edge, and we may therefore assume that the resultant aerodynamic force is normal to the plate.
This implies that the drag associated with the lift equals the product of lift and incidence (in
radians). To avoid some of the confusion which has arisen in this connection we shall agree to
call the whole of this drag" induced drag". The corresponding coefficient CDi will again be based
on surface area. In case (ii) formula (1, ii) shows that, at least according to linear theory, there
will be infinite suction at the leading edge, as in subsonic flow, and of the same order of infinity.
This indicates the presence of a longitudinal" suction force" which tends to reduce the induced
drag. As a result, the induced drag no longer equals the product of lift and incidence.

As formula: (2, i) and (2, ii) show, the spanwise lift distribution is of elliptic shape as lung as
y < fl, i.e., in case (ii) but not in case (i). The value of CDi for a given elliptic lift distribution
under low-speed conditions is known to be CL2/nA, so that the value of Cn;/(CL2/nA) measures
the deviation of the high-speed regime from the low-speed regime, at least for y < fl. This ratio
which again depends only on the parameter A = cot fl tan y is plotted against A in Fig. 3, and for
various apex angles or aspect ratios against Mach number in Fig. 4.

Analytically,

CDi
(4, i) CL2/nA = n cot fl tan y in case (i), and

(4, ii) CL~/:A = 2E'(cot fl tan y) - tan y V(coP y - cot" fl) in case (ii).

For a given spanwise lift distribution, the trailing vortex field in regions far behind the aerofoil
is the same in supersonic as in subsonic flow (compare Ref. 7). Accordingly we may subdivide
the induced drag into vortex drag, which is associated with the trailing vortex field and is the
same for supersonic as for subsonic flow, and induced wave drag, which is peculiar to supersonic
flow. The corresponding" vortex drag coefficient" for a Delta wing equals CL

2/nA for y < fl.
For y > fl this coefficient increases, for a given lift coefficient, as the spanwise lift distribution curve
deviates from the elliptic shape. Inspection of Fig. 3, then shows that even when y < fl (case (ii))
there still is an induced wave drag in addition to the vortex drag. Thus, while this case shows
some affinity with subsonic conditions, the flow is still not truly subsonic. However, as shown
by formula: (3, ii) and (4, ii), as the aspect ratio tends to 0, CL~ (nA/2) a, while CDi ~ CL2/:rr,A,
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(1)

both of which are the values given by low-speed theory. This is in agreement with an argument
due to R. T. Jones8 which tends to show that for pointed wings of infinitely small aspect ratio lift
and drag are given by the above formulas in supersonic as in subsonic flow, and serves as a check
on the results obtained here.

2. Analysis.-2.1. Pseudo-orthogonal Co-ordinates.-Let Xl> X2, X3and Y1' Y2' Y3 be two sets of
variables interconnected by the relations

xj =J; (Y1,Y2,Y3) , j = 1,2,3 ,)

Yj = gj (Xl> X2, x3), .i= 1, 2, 3 .f
The transformation is supposed to be non-singular in a given region,

I°li I # 0, Iogj I # 0.
0YIi OX-Ii

We have

dx, = 1: °oiJi dy" , j = 1, 2, 3 .
kel y"

Hence

dX12- dX22- dX32= h1
2dYl2- h22dY22- hS

2 dY32

+ 2h12dY1 dY2 + 2h13 dY1 dy; + 2h2S dY2 dY3 ,

where

and

hjli = (011) (oh) _ (~L2) (0 12) _ (ols) (ols) j, k = 1,2,3, j # k .
0Yj 0Yk 0Yi 0Yk aYi 0Yk

Now assume that the functions hili vanish identically. In that case

dX1
2- dX22- dX32= h12dY12- h22dY22- hS

2 dYs2 .

(2)

(3)

(4)

(5)

If Xl' X 2 , Xs, are rectangular cartesian co-ordinates in three-dimensional space, and another set
of co-ordinates y., )'2, Y3 is given, such that the functions hik vanish identically, then Y1' Y2' Y3 will
be said to be pseudo-orthogonal co-ordinates in the given space. As a simple example of a system
of curvilinear pseudo-orthogonal co-ordinates, we may mention the pseudo-orthogonal counter­
pat t of the familiar spherical co-ordinates. It is given by

Xl = Y1 cosh Y2' X2= Y1 sinh Y2 cos Ys, X3= Y1 sinh Y2 sin Y3'
02~ a2~ a2~

We shall require an expression for the differential parameter ~ - ~ - -02 in terms ofuX1 uX2 X3
general pseudo-orthogonal co-ordinates, where ~ is an arbitrary scalar function. It is shown in
Appendix I that

02~ a2~ a2~ 1 [a (h2h3 a~) a (hIhs O~) a (h1h2 a~) ] (6)
OX12- (}X22- axs2= hIh2hs 0Y1 hI 0Y1 - 0Y2 h2 0Y2 - 0Ys ha Y3 .
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2.2. Hyperboloido-conal Co-ordinates.-The solution of problems connected with triangular
aerofoils moving at supersonic speeds can be effected by the introduction of a special system of
pseudo-orthogonal co-ordinates. Writing x', y', z' and r, ft, 'V for Xl, x2, x3, and YI, Y2' Y3'
respectively, the connection between the rectangular cartesian co-ordinates x', y', z', and the
special system to be introduced, r, ft, P, will be given by

, ftP r Y(ft2 - h2) y('V 2
- h2)

r Y(ft2 - k2) y(k2_ p2)
X = r hk' Y = r hy(k2 _ h2) ,z = r ky(k2 _ h2)' (7)

where k and h are positive constants, k > h. The intervals of variation of r, ft, 'V will be taken as

O~r<oo,k~ft<oo,h~p~k.

Eliminating ft and p from (7) we obtain a family of surfaces with r as parameter,

X'2 _ v" _ Z'2 = r", (8)

Similarly, eliminating rand P, and rand ft, respectively, we obtain two more families of
surfaces,

(9)

and

(10)

(8) represents a family of hyperboloids of two sheets while (9) and (10) are families of cones.
This justifies the name" hyperboloido-conal co-ordinates" for the system under consideration.
They are the pseudo-orthogonal counterpart of the system of orthogonal co-ordinates known as
" sphero-conal co-ordinates "4.

Equation (7) shows that for the specified interval of variation, the co-ordinates r, ft, P can
only represent points inside the positive half of the cone X'2 - y'2 - Z'2 = ° (i.e., x' > 0,
X'2 - y'2 - Z'2 > 0). By solving (7) for r, ft, P it is found that to every point satisfying x' > 0,
X'2 - y'2 - Z'2 > °there corresponds exactly one triplet r, ft, P inside the domain of variation
of these variables. On the other hand, to each triplet r, ft, P there correspond four points x', v'.
z', according to the determination of the square roots in (7). The ambiguity can be avoided by
writing ft and 'Vas elliptic functions of new variables, but this procedure will not be required in the
present report.

For ft --* 00, the cones of the family (9) tend to approximate the cone X'2 - y'2 - Z'2 = 0,
while for ft --* k they tend to become equal to the (two-sided) angular region in the x', y' plane

X'2 y'2
given by k2 - k2_ h2 > 0. On the other hand, the cones of PO) approximate the comple-

(
X'2 '2 )

mentary angular region in the x', y'-plane Ii - k2~ h2 < ° as P --* k, and the y-axis (x' = 0,

z' = 0) as P --* h. Thus, the intersections. of the ft-cones with the plane x' = 1 are ellipses,

varying between the circle y'2 + Z'2 = 1 and the slit z' = 0, y'2 < 1 - ~:. The intersections
of the »-cones with the same plane are hyperbolae (Fig. 7).

We shall now calculate the quantities hv h2, h3, h12, h13, h23defined in section 2.1 above. We have

ox' ftP ox' P ox' ftar = hk ' Oft = r hk ' a; = r hk ' (11)

oy' Y(ft2 - h2)y(p2 - h2) oy' ft y(p2 - h2) oy' P Y(ft2-h2)
ar - hyl(k2- h2) 'Oft = r hy(k2- h2) . Y(ft2 _ h2) , a; = r hyl(k2-h2) . y(p2 __h2) ,

oz' Y(ft2 - k2)y(k2- p2) oz' ft y(k2- p2) oz' 'V Y(ft2-k2)

ar = kyl(k2- h2) , oft = r ky(k2 - h2) . Y(ft2 _ k2) , 0'1' = r kyl(k2-h2) . yI(k2_ '1'2) .

5
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(12)

l2 _ (OX')2 (Oy')2 (OZ')2 _h1-------lor or or '

h12 = (~:') (~;') - e~') e~') - (~:') G;') = 0,

1213 = eo:') (~:') - e~') (i:') - (~:') G:') = 0,

( OX') (OX') (oy') (oy') (OZ') (OZ')h23 = nil a; -?; ~ - op a; = 0 .

The last three equations show that the system of co-ordinates r, p, v is in fact pseudo-orthogonal,
as asserted.

Hence

Let <I> be an arbitrary scalar function. Then, by (6),

02<1> 02<1> 02<1> _ V{(p2 - h2)( V 2 _ h2)(p2 - k2)(k2 - v2)}
OX'2 - oy /2 - OZ'2 - r2CU 2 _ v2) .

[
a ( r2(p2 - v2) 0<1»

X or V{(ll 2_ h2
)( V

2
_ h2)(lt 2

- k2) (k2- v2)} or

o (J{(p2 - h2)(lt2- k2
) } 0<1» 0 (J{(v2- h2)(k2

- v2)) 3<1»J
- Cft (v2_h2)(k2_ v2) ofl - 3v 1(ft2 - h2)(p2-k2)ra; .

A scalar function <I> which satisfies the equation

02<1> 32<1> 32<1>
OX'2 - 3y'2 - OZ'2 = 0 (14)

will be called a hyperbolic potential function (or, alternatively, a pseudo-harmonic). Equation
(14) is equivalent to

(p2 _ v2) ~ (r2 0<1» _ V(p2 _ h2)(p2 _ k2) ~ (V(p2 _ h2)(p2 _ k2) 0<1»
or or op op

- V(v2- h2)(k2 - v2) oOv (V(v2- h2)(k2_v2) ~:) = 0 (15)

in hyperboloido-conal co-ordinates.

6



(19)

2.3. The Triangular Aerofoil.-Consider a triangular aerofoil of span b and maximum chord
length c in a uniform supersonic airstream (Fig. 5). The linearised equation of stationary
supersonic flow is (e.g., Ref. 7)

02eD 02eD 02eDn2 = 0 (16)
ox2 oy2 OZ2 '

where n2 = M 2
- 1, M = Via, M being the Mach number, V the free-stream velocity, and a the

velocity of sound; x is the longitudinal co-ordinate, measured from the apex of the aerofoil against
the direction of flow, y the lateral co-ordinate, positive to starboard and negative to port, and
z the vertical co-ordinate, positive downward. eD is the induced velocity potential so that the
three velocity components are given by

oeD oeD oeD
- V + ox ' oy , and oz respectively.

In accordance with the conventions of linearised theory, the incidence of the streamlines at
the aerofoil is estimated at the vertical projection of the aerofoil, into the x-y plane, thus

s = JG:\=o ' (17)

where s is the slope of the aerofoil at the point in question, on the upper or lower surface, as the
case may be.

eD must be continuous everywhere except possibly across the wake of the aerofoil. In the
present analysis we assume that the aerofoil is completely inside the Mach cone issuing from the
apex, so that eD must be a constant, and may be assumed to vanish, outside the cone. In
particular, this yields the condition

eD = 0 for x2 - n2(y 2+ Z2) = 0 . (18)

The assumption that the aero foil is inside the Mach cone issuing from the apex means, in
symbols,

2cn = cot « < b = cot y ,

where y is the apex semi-angle of the aerofoil, and u is the Mach angle.

The longitudinal components of induced velocity is oeD lox, hence, by the linearised Bernouilli
equation,

oeD
P = r- - pV oX ' (20)

where p is the pressure at the point in question, Poo the free-stream pressure, and p the air density.
The excess pressure LIp is therefore given by

LIp . - pV ~~ . (21)

2.4. Transformation into Hyperboloido-conal Co-ordinates.-Put x = - nx', y = y', Z = z',
Expressing equation (10) in terms of x', y', z', we then obtain equation (14). The span of the
triangle remains unaltered in the transformation, while the chord is magnified in the ratio of 1 : n.
The Mach cone x2- n2(y 2+ Z2) = 0 is transformed into X'2 - Y 12 - Z'2 = O.

Next, transform into hyperboloido-conal co-ordinates, as by t7), with k = cot y,
h = y(cot2 Y - cot" jUl. For these constants, the leading edges of the aerofoil determine the
angular region in the x'-y' plane to which the cones of the family (9) approximate as fl -"Jo- k.
The triangle itself becomes part of that region.

7



In order to express the derivatives of/ox and of/oz of an arbitrary function f in terms of
hyperboloido-conal co-ordinates, we first have to calculate the derivatives of r, p, v with respect
x' and z' in terms of r, It, and v. The calculation of these quantities is simplified by the fact that
we are dealing with pseudo-orthogonal co-ordinates (see Appendix II). Using equations (11)
and (12) we find

or
oz'

Hence

op __ V(p2 - h2) (p2 _ k2)

ox' - hkr (p2 - '1'2)

av __ p ('1'2 - h2) (k2 - '1'2)
ax' -- - hkr (p2 _ '1'2)

y'(p2 _ k2) y'(k2_ '1'2) op _ p(p2 _ h2) y'(p2 _ k2) y'(k2_ '1'2)
ky'(k2 - h2) , oz' - kV (k2 - h2) r(p2 - '1'2)

0'1' __ '1'('1'2 - h2) y'(p2 _ k2) y'(k2_ '1'2)
oz' - k\/(k2- h2) r(p2 - '1'2)

(22)

oj = -1 [ltV oj _ V(ft2 - h2)(p2 - k2)

ax nhk or r(lt2
- '1'2)

and

ft (v2 - h2) (k2 - v2)
r(ft2 - v2)

oj]. av '
(23)

(24)oj _ y'(lt2- k2) y'(k2- v2) [ oj p(p2 - h2) oj v(v2 - h2) of] .
oz - ky'(k2 - h2) - or + r(ft2 - '1'2) . op - r(p2 - '1'2) . 0'1' .,.

If the induced velocity potential is given as a function of r, p, and v , then the excess pressure at
any point will be found from (21) and (23). Also, the corresponding shape of the aerofoil will be
found from (17) and (24). It is to be noted that the differentiation, as by (24), has to precede the
passage to the limit It ~ k. The induced velocity potential, apart from being continuous except
possibly across the wake of the aerofoil also has to satisfy equation (15), which is the equivalent
of equations (14) and (16) in hyperboloido-conal co-ordinates. Particular solutions of (15) can be
obtained by separation of the co-ordinates. This leads to Lame functions of all kinds and degrees
(Appendix IV). To each such solution there corresponds a possible aerofoil whose shape can be
calculated, as detailed above. It should be observed that as long as we confine our attention to
the region ahead of the trailing edge, conditions behind the trailing edge do not affect the results,
so that we may modify the boundary conditions there at our convenience.

In the present paper we shall only consider the special function which corresponds to the flow
round a triangular flat plate at incidence.

2.5. The Flat Delta Wing at Incidence.-Let c< be the incidence of the aerofoil; o: is supposed
to be small, so that tan c< :::e= o: Equation (17) then becomes

o: = ~Co~)z=o. . (25)

According to what has been said in section 2.4 we may assume (25) to hold not only at the
acrofoil, but also aft of its trailing edge, between the two straight lines through the leading edges.
As there is now no definite length involved in the specification of the boundary conditions, it
follows from geometrical considerations that the induced velocity potential <I> must be of the
f, .rm ref), where <I> is a function of It and )J only. In particular we shall try to find a solution of
Hl'_' f..rm

(26)

8



where g is a function of fJ, yet to be determined. The reason for choosing <D in this way is that at
the aerofoil s = k, while z = 0, so that a<Djazis constant at the aerofoil, as required. Substituting
<D = zlg(fJ,) in (IS) we obtain an ordinary differential equation for g(fJ,). In performing the

substitutionitisusefultorememberthat z' = r y'(fJ,2 i:v~12 ~(~:)- v
2)is a solution of (14) and

therefore of (15).

We obtain

or

Hence

and

In order to ensure that <D ~ 0 as fJ- ~ 00 for any given r and v , as required by continuity, we
have to take fJ,o = 00. Hence

(28)

and

(29)

At the aerofoil (i.e., for fJ, = k) we have x' = rvlh, y' = ry'( v2 - h2)jh, X'2 - y'2 = r", and so
ry'(k2- v2) = y'{x'2(k2- h2) - y'2k2}. Also, by partial integration

lim {'y'( 2 k2)fOO . dt . I
fJ,~k fJ, - p W- k2)y'{W - h2)(t2 - k2)}J

= }!:k y'(fJ,2 - k
2){[

- y'W _ k2) \y'W _ h2J:+ I: ;t Cy'W 1_ h2))y'(t~~ k2J
_ lim . y' (,u 2 - k2) 1
- fJ,~k y'(,u2 - k2) . fJy'(ft 2 - h2

) = ky'(k2- h2
) •

Hence, at the aerofoil (but not elsewhere in the x-y plane)

(30)



The value of the constant C can be determined by means of equation (25). We have, using (24)

3<1> 3 3g
3z = 3z(zg(fJ)) = g(ft) + z 3z

fJ(ft2 - h2)
. r(fJ 2 - v2)

rY(fJ2 - k2)y(k2_ v2)
ky(k 2 _ h2)

dg
dft '

_ [Jet:! dt fJ k
2

- v
2

J(fJ2 - h
2)]

- C I' W - k2h/{(t2 - h2)(t2 - k2)} - k2(k2~ h2) . ft2 - v2 ' ft2 _ k2 ,

_ . [Jet:! dt ft J(fJ2 - h2) ftY(fI2_k2)V(fJ2_h2)]
- C I" W - k2)y{W - h2)W - k2)} - k2(k2-= h2)' ft2 - k2 + k2(k2- h2)(fJ2 _ v2) .

Y( 2 _ k2) Y( 2 _ h2)
As ,I! tends to k, fJ k2~k2 _ h2)(fJ2~ v2) tends to 0, so that 3$ /3z is, in fact, independent of v

and r at the aerofoil, as required. Also, as before,

by partial integration. Now

lim[1 fJ J(fJ2 - h
2)J_

It-*k y(ft2 - k2) . WV(ft2 - k2) k2(k2- h2) ft2 - k2 -

lim k2(k2- h2) - fJ2(fJ2 - h2) _
u-*k k2(k2_ h2)fty (fJ 2_ h2h/(fJ2_ k2) - °.

Hence, at the aerofoil

where the integral on the right-hand side is now convergent.

The value of this integral is k(k:.-! h2) E(~) ,where E(u) is the complete elliptic integral of

J
" /2 V I/.k(k2 h2)

the second kind, E(u) ~ o V{I ~ u' sin' +} d4>. Hence, by (25), C = - E Ci) .
Equation (30) now becomes

_ V I/. "J(k
2

- h
2

2 _ k2 2)<1>-- h 2 X y.
kE (k) n

Recalling that n = cot ft, k = cot y, h = y(cot2Y - cot" ,u), we finally obtain

<1> = _ VI/. y(x2tan2y _ y2) ,
E'(cot ft . tan y)

10
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where E'(u) is the complementary complete elliptic integral of the second kind, E'tu) =

J
" / 2
o V{1 - (1 - u2

) sin" rjJ} drjJ . According to our choice of co-ordinates, the sign of the square

root is to be taken as positive at the top surface of the aerofoil, and as negative at the bottom
surface. The magnitude of the pressure difference between top and bottom surfaces is, by (21),
and (31)

(32)

(33)

2.6. Lift and Drag.-The spanwise lift distribution l(y) is obtained by integrating the pressure
difference Xp along the chords of the aerofoil. It will be seen that lI> vanishes at the leading

edge, and so [(y) = JLlp dx = 21lI>(co, y) I, or

l( ) - 2pV2C1; v( 2 2
Y c tan y _ y2) .

- E'(cot p . tan y)

The total lift L on the aerofoil is obtained by integrating l(y) along the span, from - ~ = - c tan y
b 2

to "2 = c tan y ,

_ npV 2C1;C2 tan" y
L - E'(cot p . tan y) . (34)

The lift coefficient CL , based on surface mea, is given by CL = 1 (;2S ' 5 = c2tan y, or
7JP

C
L

= 2nCl; tan y (35)
E'(cot p . tan y)

The longitudinal component of the pressure integral is given by

npV2C1;2C2 tan" y
D, = LCI; = E'(cotp. tan y) . (36)

However, the induced drag D; (defined as the total drag associated with the lift, section 1.3)
will not in general be equal to D, but will be rather smaller than that quantity. In fact, by
equations (31) and (32), the longitudinal component of induced velocity, and hence the pressure
difference, both tend to infinity at the leading edge. As in subsonic flow, (compare Ref. 5), this
indicates the presence of a suction force whose longitudinal component D, acts in a direction
opposite to that of the longitudinal component of the pressure integral, Dp• It follows from the
nature of this force that the contribution to it of any particular element of the leading edge
depends only on the local conditions (e.g., the local trend to infinity of 0lI> lox) and not on conditions
elsewhere in the field.

Let dl be an element of the leading edge of the aerofoil, and assume dlto be yawed at an angle
{3 (Fig. 6). Let xo, Yo be the co-ordinates of the midpoint of dl, and dy the length of its lateral
projection. Assume that on approaching dllongitudinally against the direction of flow, o<J>/ox
is given by

0lI>
oX v c + ... (finite terms)

Xo - x

on the upper surface. It is then shown in Appendix III that the longitudinal component dDs
of the suction force contributed by dl equals

d.D, = C2 n p V(tan2 {3 ., cot" p) dy, (37)

11



where fl is the Mach angle, as before. The total suction force is then obtained by integrating
d.I), across the span of the aerofoil. For the Delta wing,

Hence

C = V IX y' (Yo tan y)
-yl2E'(cot fl . tan y) , p = ± (~- y).

and

(38)

:Ii PV 2
1X

2
C

2 tanS y y'(cot 2 Y - cot2 fl)

2[E'(cot fl . tan yW (39)

Let CUi be the induced drag coefficient based on surface area, D, = CDi • lpV2S.

CUi = E'( :li1X

2
tan y )J2 [2E'(cot fl . tan y) - tan y y'cot2y - cot" flJ

[ cot fl . tan y

and, observing that the aspect ratio A equals 4 tan y,

Then

(40)

(41)

This completes the justification of the data given in section 1.3 in relation to Delta wings whose
apex semi-angle is smaller than the given Mach angle.
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APPENDIX I

The Second Differential Parameter in a Pseudo-orthogonal System
,

In this appendix we shall use the notation of the tensor calculus, including Einstein's convention.
Accordingly, we replace Xl' X2, X3 and Y11 Y2' Y3 as used in para. 2.1 by xl, x2, x3

, and y1, y2, y3
respectively.

Let g;v be the fundamental covariant tensor of the quadratic differential form (dxl)2 - (dx2)2 ­
(dx3)2, i.e.,

° 0]-1 0° -1
, so that g = !g;v I = 1 .

If the x j are rectangular cartesian co-ordinates, and the yj form a pseudo-orthogonal system,
then by (5), the above tensor is given by

in the yj co-ordinates.

The corresponding contravariant tensors are

[g"] = [g ° 0]--1 °° -1
and

The expression _1_ .~. (yg giv iN») is called the second differential parameter of the (arbitrary)
yg ox' oxV

scalar function <P. This expression is known to be an absolute scalar, i.e.,

1 a (. / . 0<P) 1 a (. r : _. 0<P)
yg oxi vgg'v oxV = yg oy; ·v g gW oJ" .

In the particular case here under consideration, this equation becomes

02<p 02<p . 02<p
o(xl? - otx2)2 - 0(X3)2

1 [a (h2h3 0<P) a (h1h3 0<P) a (h1h2 0<P)]
= h

lh2h3
oy1 hI . oy1 - oy2 h; oy2 - oy3 h3 3y3 •

which is equivalent to equation (6).

13



APPENDIX II

Calculation of Some Partial Derivatives

Using the notation of section 2.1 we require expressions for ogj/oxk , i = 1, 2, 3, k = 1, 2, 3, in
terms of Y1> Y2' Y3' We have

h oj.were aj k = _J •

°Yk
Solving for dYk'

3

dx, = :l; aj k dYk
k=1

S

dy, = ~ A kj dx,
j = 1

On the other hand, evidently AI'j = og" .. o~

Now let the xj be rectangular cartesian co-ordinates, and the Yj any system of pseudo-orthogonal
co-ordinates. Using the relations of pseudo-orthogonality we find, by direct (matrix) multipli­
cation that

af1 /11.12 _ of2/h12 _ 3f3 '11. 2 of1 of1 of1 1 0 0-, 1

°Y1 °Y1 °Y1 °Y1 °Y2 °Ys

_ ~f1 /11.22 of2/h22 oj~ /11.22
of2 of2 of2 0 1 0

,OY2 °Y2 °Y2 °Y1 °Y2 °Ys

_ of1/h32 of2 /hs2 of3 /hs2 of3 of3 ofs 0 0 1
°Ys °Ys °Ys °Y1 °Y2 °Y3

The second of the above matrices is identical with [aj k] so that the first must be [Akl Hence

Ogl = of1 fh 2

A A I 1
Xl Y1

Og2 = _ of1 /11.12
OX1 °Y2

Og3 = _ of1/h32
OX1 °Y3

Ogl = _ 0/2 /11.12
OX2 °Y1

Og2 = of2 /11.22
OX2 °Y2

Og3_ of2/h 2
OX2 0Ys 3

ag1= _ of3 / h12

oXs °Y1

Og2 = of1 /11.22
OXs °Y2

Og3 = of3 /11.32.
OX:; oy:;

These are the required expressions.
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APPENDIX III

Calculation oj the Suction Force

As in section 2.6, let dl be an element of the leading edge of the aerofoil, yawed at an angle p.
Let xo, Yo be the co-ordinates of the midpoint of dl, and dy the length of its lateral projection.
As the suction force depends only on local conditions, we may modify the boundary conditions
elsewhere at pleasure. Accordingly, we may assume that dl forms part of an infinite straight
leading edge (Fig. 6). It is, therefore, sufficient for oUI purposes to calculate the suction force
at the leading edge of a yawed infinite flat plate. The type of flow is again assumed to be such
that

3<1>
3x

v( C ) + ... (finite terms) .
Xo - x

The free-stream velocity is - V.

According to a now well-established argument ie.g., Ref. 6) the flow round an infinite aerofoil
yawed at an angle p to the free-stream direction is the resultant of (i) a uniform field of flow
parallel to the leading edge at a velocity - V sin f$ and (ii) a two-dimensional field of flow at a
free-stream velocity - V cos p in planes normal to the leading edge. Field (i) does not affect
the dynamic reactions at the aerofoil, so that we may confine our attention to Field (ii). Since
Field (ii) can produce no reactions in a direction parallel to the leading edge, it follows that

dDs = cos PdD's, (42)

where dD's is the suction force produced by dl against the direction of the free stream of Field
(ii).

Let x', y', z' be a new system of co-ordinates, obtained by turning the x, y, z system round the
z-axis through an angle p, i.e.,

x' = x cos p - y sin p ,
y' = x sin p + y cos p,
z' = z.

The linearised equation for the velocity potential is

32<1> 32<1> 32<1>
cot" It - - - - - = O.

3x2 3y2 3z2

For the primed co-ordinates, this equation is carried into

32<1> 0' <I>
(cot" ft cos2p - sin2p) -'2 + (cot" It sin" p - cos" P) ...........,-z

3z 3y

02<1> 02<1>

+ 2(cot 2 ft - 1) cos p sin p -,:>-,-, - -'2 = O.
ox oy 3z

Now in Field (ii) both the total velocity potential and the induced velocity potential satisfy
0<1> Idy' = 0 so that the above equation becomes

q2 32<1> 32<1> _
3x'2 + 3z'2 - 0, (43)

where
q2 = sin" fJ - cot" It cos" 8 .

15



(44)

(43) is, in fact, the linearised compressible flow equation corresponding co the component free­
stream velocity in the direction of the x'-axis (Mach number M = y(1 - q2) = M cos (J).

It was assumed above that the total velocity in longitudinal direction is of the form

y C ) + ... (finite - i.e., bounded-terms).
{xo - x

This is the resultant of the longitudinal component of Field (i), which is bounded, and of Field
(ii). Hence the component velocity of Field (ii) in the direction of the x'-axis is of the form

C + . . . (bounded terms) ,
cos (J y(xo- x)

or
c

y (' ') + . . . (bounded terms) ,
X o - x

where x'o is the x'-co-ordinate of the midpoint of dl (see Fig. 6) and C= y( C )
cos {J

Again, it follows from the character of the suction force as depending only on a local singularity,
that the suction force per unit length in the direction of the x'-axis (a, say) depends only on p, C,
and the parameter q (representing the Mach number 1M = M cos (J). To calculate it, we consider
the special case of an infinite flat plate of constant chord width {; at an incidence a in a uniform
stream of velocity V, the corresponding Mach number being 11-} < 1. It is known that, by

linearised theory, the longitudinal induced velocity at the plate is given by v = ~ VJc~, x' ,

where the leading edge of ~he plate is at x' = 0, and its trailing edge at x' = - c. Hence, in the

notation used above, C= ?- V yc. Also, the total pressure per unit length of the span is given by
- q

I = npc V2 '!- . Now the pressure acts in a direction normal to the surface so that there is a back­
q

- - a2
-ward component of magnitude L'i = n pC V2 - = nqpC2 per unit length. As there can be no resultant

q
drag in two-dimensional potential flow (see Ref. 9 for compressible fluid flow), it follows that the
suction force exactly balances the above backward component, or

a = nqpC2
•

For q = 1, this formula was first given by Grammel (compare Ref. 5).

It follows from the character of the suction force that (44) holds not only for the case for which
it has been established, but also for any other case with equal q, p, C. In the particular circum-

stances in which we are interested e= ~ , q = sin2 {J - cot" fh cos" {J , and so
cos {J

a = npq C2 y(tan2{J - cot" It) .

This is the result stated in section 2.6.
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APPENDIX IV

Solutions in Terms of Lame Functions

The differential equation of a pseudo-harmonic in hyperboloido-conal co-ordinates is (compare
section 2.2, equation (15)),

(p,2 _ v2) ~ (r2 0<I» _ V{(fl2 _ h2)('lt2_ k2)} ~ (V{(/t 2_ h2)(fl2 _ k2)} 0<I»
or or op, op,

_ V{(v2 - h2)(k2_ v2)} ~ (v{(v2 - h2)(k2_ v2)} 0<I» = 0
ov OV

We try to find solutions of the form <I> = r" P, where P is a function of p, and v only. On
substitution in the above equation we have

n(n + 1)(p,2 - v2) P _ V{(fl2 _ h2)(p,2 _ k2)}~ (V{(.lt 2_ h2)(p,2 _ k2)} 0P)
op, ov

_ V{(v2- h2)(k2- v2)} ~ (v{(v2_ h2Wk - v2)} OP) = O. (46)
ov ov

Next, we assume P to be of the form P = G(fl) H(v). The differential equation (46) now
becomes

H(v{n(n + l)fl2G(fl) - p,(2fl2 - h2 - k2) ~~ - (p,2 - h2)(p,2 - k2) ~;~J

- G(p,) [n(n + l)v 2H(v) - v(2v2- h2- k2) ~~ - (v2 - h2)(V2- k2) ~:~J = O.

In order that this equation should be satisfied it is required that

_1_[n(n + 1)p,2 G(p,) _ p,(2p,2 _ h2_ k2) dG _ (p,2 ., N)(p,2 _ k2) d
2GJ

G(fl) dp, dp, 2

= H~V) [n(n + l)v2H(v) - v(2v2
- h2- k2) ~~ - (v2 - h2)(V2:""- k2) ~:!t] ,

= const. = P(h2 + k2
) , say,

where P is an arbitrary constant. It follows that G(fl) has to satisfy the differential equation

[n(n + 1)p,2 - P(h2+ k2)J G(fl) - p,(2p,2 - h2 - k2) ~~ - (p,2 - h2)(p,2 - k2) ~:~ = 0, (47)

with an exactly similar equation for H(v).

Equation (47) is Lame's equation (compare Ref. 7). For given n, p can be determined in
(2n + 1) different ways, so that G(fl) is of one of the following four forms

K(p,) = (aop,n + a1p,n-2 + ...),
L(p,) = VIp,2 -:- h21 (aop,n+l + a1p,n-3 + )

M(p,) = V [p,2 - k2\ (aop,n-l + a1p,n-3 + ),
N(p,) = V 111,2 - h2\ V 1p,2 - k21 (ao p,n-2 + a1p,n-4 + ...),

where the expressions aop,n + Ci1fl n- 2, aop,n-l + «w:", aop,n-l + a!p,n-3 + ... ,aop,n-2 + a1p,n-4+ ...•
are all polynomials in p,.

17



Thus, for n = 0, the only solution of the above-mentioned type is (except for a constant factor)

For n = 1, there are three independent solutions,

Assume that Enm ([t) has already been determined for given n and for an appropriate p. Then
a second solution of Lame's equation is given by

Thus

From the above particular solutions of Lame's equation we then obtain 'normal' pseudo­
harmonics of the form r" G([t) H( v). For instance,

is the solution used in the body of the report.
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FIG. 2.. Variation of the lift coefficient of a Delta wing with Mach
number for various apex angles.
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FIG. 4. Variation of the induced drag of a Delta wing with Mach
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