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Summary. 

A practical procedure for the investigation of the state of stress around an arbitrary doubly-symmetric 
hole in infinite elastic sheets in tension and shear is presented. The associated problem of conformally mapping 
an arbitrary region on to the unit-circle is solved using an iterative technique. 

Section 

1. 

2. 

LIST OF C O N T E N T S  

Introduction 

The Mapping Problem 

2.1 Correspondence of position 

3. Melentiev's Iterative Procedure for Firid!ng the Mapping Coefficients 

3.1 Requirements for a computer programme 

3.2 Algebraic details of the iterative procedure 

4. Analysis of the Elastic Problem 

4.1 Algebraic development of stress functions for a given mapping function 

5. Example 

5.1 Criticisms of the method 

6. Conclusion 

List of Symbols 

List of References 

Appendices I and II 

Illustrations--Figs. 1 to 4 

Detachable Abstract Cards 

e Replaces R.A.E. Report No. Structures 283--A.R.C. 24,479. 



LIST OF APPENDICES 
Appendix 

I The effect of perturbations of a contour on the hoop-stress distribution around it 

II Extension to shear-loading case 

Figure 

1. 

2. 

3. 

4. 

LIST OF ILLUSTRATIONS 

Variation of arg z with arg ~ for mapping of two doubly-symmetric figures 

Co-ordinate system used in the Melentiev process 

Variation of curvature of approximate mapping around quadrant of rounded square 

Hoop-stress distribution around edge of rounded square hole in infinite plate 
under tension 

1. Introduction. 

The problem of the determination of stress distributions and in particular of stress-concentration 
factors for arbitrarily shaped holes is one of great importance in design. Considerable progress in 

analysis has followed the introduction of the complex-variable theory (Muskhelishvili 1, 2, Savin 3, 

Green and Zerna ~, Goodier 5 and others 6 to s). However the class of  holes for which exact solutions 

have been found is not of great practical interest, although approximations to some practical holes 

using 'curved-square' and 'ovaloid' shapes have been esteemed by Savin ~. 

Difficulties arise in the mapping of practical contours in reproducing accurately the profile and 

curvature distribution at all points of the boundary, particularly in those regions associated with 

high stress. A practical mapping procedure must be capable of a close approximation not only to the 

profile but to its curvature. Exact agreement with the desired profile may require an infinite number 

of terms in the mapping function, as, for example, when a curvature discontinuity is present. 
Generally it is found necessary to take 30 or 40 terms to avoid errors in curvature which produce 
significant, or even serious, errors in the stress. Kikukawa 6 to s has shown that the disparity in stress 

estimation can be important when a mapping function is extended from 2 to 6 terms for 'rounded 
polygonal' contours. In fact, considerably more terms have to be taken than are used by Kikukawa 
if undue distortions of the stress distribution are to be avoided. 

Since an approximate mapping is necessarily deficient in some respect, a standard of approximation 
is required in order that unnecessary computation may be avoided. In Appendix I a controlled 

curvature variation is introduced into a known problem as a small perturbation of the local curvature 
and the influence on the stress concentration observed. On the basis of this example a tentative 
proposal for assessing the adequacy of an approximate mapping is introduced. 

The problem of determining the stress field outside a given hole reduces to the determination of an 

adequate mapping technique, because once this has been obtained, the stress distribution is readily 
determined as an 'exact' analysis. The formal analysis of this elastic problem is well known 1 to s and 

its algebraic development is straightforward using one matrix inversion and some series formulation. 

The most direct of alternative methods of solution replaces the biharmonic equation for the Airy 
stress function by its finite-difference equivalent (Ref. 9, p. 483). Incomplete satisfaction of the 

boundary-value problem for the stress function can be used to find approximations to it such as, for 



example, the expansion of the stress function as a series of biharmonic functions with the boundary 

conditions satisfied only approximately (by collocation, or least squares) or in the limit (by Fourier 

analysis) 9. Similarly rigorous solution of the boundary conditions and Ritz-type approximation of 

the stress function using energy considerations is possible 9. Division of the sheet into elements and the 

use of the matrix methods recently introduced 1° has not been explored fully for problems of local 

stress concentration. Finally exact solutions of problems by semi-inverse methods is unlikely to be 

useful for the title problem. 
The procedure proposed in this report is considered superior to any of the above for the 

following reasons. The stress state is solved exactly for a contour which differs only slightly from 

the desired hole. The distance between the given hole and the approximation to it which is analysed 

is never serious and may easily be allowed for. The arithmetic effort required in solution is smaller 

for a given accuracy. Finally the method is quite general and independent of the shape of the hole. 

2. The Mapping Problem. 

For any given hole in an infinite sheet, there exists an unknown mapping function 

z = m ( 0  (1) 

which exactly maps the boundary C of the hole on to the unit-circle in the ~-plane. Given the 

geometry of the hole, we seek the appropriate form of m(~). 
The boundary C may or may not have sharp corners. Where there is a sharp corner with material 

projecting into the hole, the stresses around it are small and modifications to the profile of C near 

and at the corner do not introduce significant changes in other regions of higher stress. If there is a 

sharp corner forming a notch in the material, the stresses at the corner itself are theoretically 

infinite. Such corners are of little interest and for practical corners a small radius of curvature may be 

presumed. Thus we may assume that the tangent to C is continuously turning at all points of the 

boundary. This implies that the transformation (1) is free from singularities on the boundary and 

the mapping function rn(~) may be expressed in the form of a power series in ~, 
1]~ r 

z = Z (2) 
m = 0  

where M may be finite or infinite. 
The parametric form of the profile C which corresponds to the unit circle in the C-plane is given by 

z(O) = x(O) + iy(O) = .~ b~ea-m>~o. (3) 
m = 0  

The curvature K at any poii~t is given by the expression 

K = {22 - 2.'9}{2 ~ + :9~} -'~I~ (4) 

where dots denote differentiation with respect to 0. 
For a transformation of the type (2) with finite M, the curvature K is seen to vary continuously 

around the contour C, so that such a transformation cannot be exact for those important profiles 
with curvature discontinuities (e.g. rounded slots). In such cases an approximation C' to C, based 
on a finite value of M, may be obtained which is nevertheless suitable for use in stress estimation. 
The disparity between C and C' may be made as small as we please by allowing M to increase 
sufficiently and provided the bra are suitably chosen. The  disparity is greatest in the neighbourhood 

3 
(88723) A 2 



of a discontinuity in the curvature of C (cf. Gibbs phenomenon). In those problems for which the 
stress concentration is expected to occur in this region, particular care has to be taken to avoid 
unsatisfactory oscillations in the curvature of C' which induce errors in the stress estimates. This 

means, in practice, choosing a large value of M. 
Ideally the curvature variation of C should be used to derive the mapping coefficients b~, but 

since ~¢ is a non-linear function of them, such a procedure is quite unsuitable. An alternative 
procedure which first fixes the b,,~ without direct reference to the curvature leaves it as a derived 

item so that a transformation must be obtained before its merit can be assessed. Such a restriction 
is unimportant in practice. 

In the subsequent discussion of mapping procedures the profile C is assumed symmetric about the 

x- and y-axes, so that all the b~ are real and for odd values of m they are zero. These restrictions 

are far from necessary but are included in developing a computer programme and accordingly the 

arguments which follow require modification for the general contour. 
/ 

2.1. Correspondence of Position. 

Suppose that a set of ( K +  1) points P0, P1, • • • , Pzc is selected on the unit-circle in the ~-plane. 
Because of the assumed double symmetry of C, these points ,may all be taken to lie in the first 

quadrant. Under the mapping given in equation (1) each point P~ (h = 0, 1 , . . .  K) exactly 
corresponds with a point Qk (h = 0, 1 . . . , K) of C. In order to obtain the mapping coefficients 
b~ it is necessary to estimate the positions of the points Q1: on C. 

Any procedure for calculating the b.~ must allow for an initial ignorance of the points Qk. Only 
tentative estimates of the Ql,:, say Rz: , can be made. The difficulty in selecting the R k is shown in 
Fig. 1 where the corresponding arguments of the Q1~ as the Pk move round a quadrant of the unit- 
circle are depicted for two practical contours. Any computational procedure must be capable of 
improving the correspondence of the RT~ with the PT~ so that ultimately the curve C' which is 
obtained by the approximate mapping of equation (2) is an adequate representation of the given 
profile C. Such a procedure is described below. 

3. MeIentiev's lterative Procedure for Finding the Mapping Coefficients. 

An algebraic correspondence between the co-ordinates of the points PI~ and QI~ is an unsuitable 
basis for determining the b m because each point contributes two algebraic equations. Since errors 
in position of any of the points RI~ introduce errors into two of the equations, it is preferable to 
follow Melentiev it, 12 and compute the b m from the reduced variable 

2k£ 

- K 0 )  + iv(o) = Z (5) 
77~=0 

where the value of M wiU depend on K. 
The co-ordinates x, y are periodic in 0 whereas the co-ordinates u, v (see Fig. 2) behave quite 

differently. As ¢ goes round the unit-clrcle, say ~ = d °, u(0) and v(O) are given by the equations 

iTI ill 

u(O) = Z bmcosmO, v(O) = -  ~ b,~sinmO. (6) 

For typical profiles C, u(O) remains positive around the contour, whilst v(O)'is small and may change 
sign. Small errors in the location of the R1~ seriously influence the v(O) while the u(O) change only 

slightly. 
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The mapping coefficients b m are now derived by assuming values of u(O) appropriate to the set of 

points R k on C. The function v(O) is ignored in this derivation and is subsequently evaluated from 

the derived b.~ so that the exact correspondence of the Pk is determined. These points do not in 

general lie on C but near neighbours of them, which do lie on C, can be selected as a new set of 

R1~ and the process repeated until the discrepancy between the contours C, C' is sufficiently small. 
No general principle of convergence is available and it is advisable to examine the approximation 

in each case. The method is found to work satisfactorily in practice and is most rapid for holes for 

which the variation is u(O) is small. 

3.1. Requirements for a Computer Programme. 

For a given set of points PI~ corresponding to specific values of 0, and initial estimates of the u(0) 

for them, the computer evaluates the b~ and the exact correspondence of the P~., say RI~. It is 

necessary to be able to select a better set of approximations, say R'I~, of the R1~ within the machine 

and to repeat the process as often as necessary. The convergence of the process must be tested at 

each stage and a basis of agreement between the derived profile C' and C established within the 

machine. 
To improve the Rk the'profile C must be stored, digitally or functionally, within the computer. 

Numerical storage of C is undesirable if an analytical form, using only a few stored parameters, is 

available. Storage and access time are important since the computer process is repeated many times. 

Automatic procedures for correcting the R k are provided for arc elements of C which are either 

circular or linear, but more general contom's require special artifices for this correction. It is 

necessary only that the set of R'I~ is, as a whole, closer to C than the RI~ and precise correction on to 

C may be avoided, particularly with complicated forms of C. 
After the process has been repeated a number of times with K + 1 points P1;, there is a stage in the 

iteration process beyond which attempts to identify C and C' are meaningless since the curves 
C, C' may be very close at the control points RI~ but may be quite dissimilar in between. No reference 

is made to this region in the iteration cycle. The curvature distribution at the R k may be inspected 
and if the variation is unsatisfactory, K may be increased. The process is repeated until the 

curvature distribution is acceptable. In general the operator knows the likely value of K necessary to 
give satisfactory resuks in the subsequent stress analysis and is able to preset the extent of the 

iterative process. Acceptability decisions using the curvature distribution as a standard are made 
outsidethe computer and are based on experience with similar profiles. Some indication of inaccuracies 

in the curvature variation which will not influence the subsequent stress analysis is provided in 

Appendix I. 

3.2. Algebraic Details of the Iterative Procedure. 

The ( K +  1) points Pk are chosen to subdivide equally the first quadrant so that 0 can take any 

of the values 
07~ = k ~ / 2 K ,  k -- 0, 1 , . . . ,  K .  (7) 

The extreme values of u which correspond to positions on the x- and y-axis, namely u 0 and uzc, are 

known precisely since v(O) is zero for 0 = 0 and 0 = ~r/2. The remaining (~r(_ 1) functions u~; are 

estimated initially, using a rough and ready correspondence of position. No great accuracy is 
necessary in these estimations since the trial values of u k rapidly improve as the iterative process 

continues. 



T h e  equations 'which determine the b~ are taken to be 

)!/I 

uk = Z b~,~cosm0,¢, ( h =  0 , 1 , . . . , K )  (8) 
m = 0 

where there must be at least as many bra's as there are values" of ul~. I f  we take M = 2K, with the 

01~ equally spaced, these equations can be solved exactly without  matrix inversion (see, for example, 

Whittaker and Robinson la) to give 
1 ~K-1 "] 

l c : O  

and 

1 4K - -  1 kTlm, 

b , ~ -  2 K  ~ u l ~ c ° s 2 7 ( '  
l c = O  

1 4K--I 

b~: = g R  Z ( -1 ) '% 
lc=O 

where the values of uT~ for k > K follow from the double symmetry  of C so that 

.(9) 

ui~ = uzzc-l~ = u~rc+k = u~K-!~ (k = 1, 2, . . . , K - 1 ) .  

T h e  expressions for the b,~ can be wri t ten in terms of u0, uz, . . . , u K in the form 

and 

(lO) 

b o = ~ {u o + 2u~ + 2u~ + . . . + 2uic_ 1 + uzc}, I 

b 2 , ~ , = ~  2Uo+ E 4 u , ~ c o s - ~ + 2 ( - 1 ) ' % r c  , k =  1 , 2 , . . . , K - 1  (11) 
/ c = l  

b ~  ; __1~ {.o - 2~,~ + 2 . ~ . . .  + ( - 1)~-~2.~_~ + ( -  1 ) ~ .~ } ,  

with all b2m+~ zero. T h e  first estimate of the mapping function is obtained in the form 

z = bo~ + b2~ -1 + . . .  + b2z~  1-zK.  (12) 

By substitution of the b m f rom equation (11) into the second of the identities in equation (6), 

the vl~ are computed and the R7¢ found. Th e  correction of RI~ to points R' k nearer to C is 

s t ra ight forward  for linear elements. Let  RT~ be the point (xlo 21~) and let R'7~ be t h e  point 

(xk + 8xi~, 7k + $Yk) and let the line element of boundary have the equation 

a x + b y + c =  0, (13) 
where a and b are normalized so that 

a ~ + b ~ = 1. (14) 

The  foot of the normal from (xk, Y1~) on to this line has co-ordinates ( b ~ x k - a b y k - a c ,  

a~yk-abxz~-be) ,  so that the required corrections 8xl~, 82k in the co-ordinates of Rz ~ are given by 

/ $Yk = - b(axT~ + byl~ + c). 

T h e  corresponding change in z0~, say SUZr~ is then 

3U7~ = cos 01fiX k + sin 01fly/~ . 

6 
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(16) 



For circular-arc elements, the foot of the normal on to the arc is not found so conveniently but  the 
point midway between R k and its inverse point with respect to the circle is an excellent 

approximation. Let (~, 21) be the co-ordinates of the centre of the circular arc of radius p on to which 
Rl~(xz~, Yz~) is to be corrected. Then the required corrections 8xk, 3yl~ in the co-ordinates of Rz~ 

are given by 
8x,~ = ~(xk-  ~), 3y,~ = ;~(y,~- ~) 

where 
(17) 

(18) 
½p~ 1 

2 ,=  + ( y k -  - 

The change in uk, 3uz~ is given by equation (16). 
The  discrepancy between C and C' at the reference points R1~ is measured by the non-dimensional 

quantity . 

8 =  t ,~o {(Sxk)~ + (Syk)~}] >- (19) 

with equal weight attaching to all points. In a typical iterative cycle, 8 is reduced to about  10 -s, 
beyond which further iterations produce no significant changes in the curvature variation of C'. 

If  it is necessary to refine the interval for '0, K should be doubled, so that new values of the u k 

can he formed at once by computing mid-interval values, e.g. 

uz~+~f.., = ½ {u,~ + uk+l} (20) 

and subsequently renumbering the suffices to run from 0 to 2K. The process may now be restarted 

and continued until satisfactory approximation in the curvature is obtained. 

The  final form of the transformation which is used in the stress analysis is obtained as 

N 

z = ~ a ~  1-2~, (21) 

where a 0 = 1, a2~ = b2~/b o and N depends on the extent of the iteration performed as above. 
The  z- and ~-planes are brought into coincidence at infinity to preserve a stress field which is 

uninfluenced thereabouts by the presence of the hole. 

4. Analysis of the Elastic Problem. 
The  use of complex-variable methods in the investigation of two-dimensional stress systems has 

been proposed many times (Muskhelishvili 1,3, Green and Zerna 5, Stevenson 14, Mi lne-Thomsonl  5 
and others). Mi lne-Thomson 's  treatment of the analysis is followed and reference to his book 

• should be made for fuller development of the results used here. 
Let z = m(~) be the mapping function which maps the region exterior to the unit-circle in the 

~-plane on to the region exterior to the hole of profile C in the z-plane, with z and ~ asymptotically 
equal for large ~. The  stress field at infinity for large z which is uninfluenced there by the presence 

of the hole, is identical with the stress field for large ~. 
Let f~(z), co(z) be the complex stress functions so that the complex displacement el + iv is given by 

4G(u + iv) = S f g~(z)dz- z ~ ( ~ ) -  f w(~)d,g, (22) 

where  DT.(~) is the complex-number conjugate to f2(z), S is (3 - 4 v )  for plane strain and (3 - v)/(1 + v) 

for generalised plane stress and G is the shear modulus. 



The stresses are given by the Kolosov equations 

(23) 
J % - % + 2i%.,, ~f~ (z)  + oo(z).  

For a tension T applied at infinity making a direction c~ with the x-axis, the form of the stress 

functions f~(z), ~o(z) is, for large z, 

g~(z) = ½T + O(z-~), ) (24) 

co(z)  - + 

Under the given transformation these equations remain valid when ~ replaces z. 

The condition that the displacements given by equation (22) are single-valued enables the stress 

field to be developed in terms of a single function of ~ and by introducing the analytic continuation 

of t)(~) across the stress-free boundary C, it is possible to express the stress function o~(~) in the 

form 

for all ~ outside the hole. Further investigation of the properties of t2(~) shows that for < 1, 

the singularities of m'(~)t2(~) are, at most, those of m(~), m'(~) together with a pole of order 2 at the 
origin, ~ = 0. 

4-.1. Algebraic Developmeut of Stress Functions for a Given Mapping Function. 
Let 

N 
m(~) = ~; az,~ *-2'~ (26) 

which is the final form of the iterated mapping given in equation (21). The a2~ are all real and a o 
is unity. Then the required forms of N(1/~) and m'(~) are given, respectively, by the equations 

= Z a ~  2~-1 (27) 

and 
.N 

= 2: (28) 
n=O 

The function m'(~) has a pole of order 2N at the origin so that m'(~)t2(~) may be written as poly- 
nominal of order 2N in 1/~. An important simplification, which  enables the stress field to be 

expressed in terms of real coefficients only occurs when c~ is zero or ~r/2, which cases correspond to 
tension along the axes of symmetry of the hole. Thus m'(~)f~(~) may be written in the form 

N 
m'(~)f~(~) = Z A2~ -2~, (29) 

n=O 

where the A2~ ~ are real. Only even coefficients occur in this expression since for the loadings 
considered the stress field is doubly symmetric about the x- and y-axes. A similar simplification 
occurs for ttie case of shear loading when the coefficients A ~  are purely imaginary. This case is 

discussed in Appendix II. 
For tensile loading we may write 

.N'--I 
[ m ' ( ~ ) ]  -1  = Z bzn~-z*~ + O ( ~ - 2 N ) ,  . ( 30 )  

~=o  



where the b ~  are obtained from the identity [m'([)] [m'(C)] -~ = 1 + O(C-2N), which gives, on 

comparing coefficients of [-2, ~-a, etc., 

a o 0 0 , . . . ,  0" 

- a ~  a o 0, 0 

- 3a~ - a  2 ao, 0 

. .  . . 

- ( 2 N - 5 ) a e N _ 4 ,  --(2N--7)a2N~G, %_ 

This solves at 6nce, row by row, for  the b~ ,  
We are now able to compute  the stress-function 

m'(~) = 1 + O(~ -2) so that from equation (24) 

m'(C)co(C) = - Te - ~  + O(C-~), 

and 
A 0 = ½T. 

bz 

b4 I 

_D2N-2 

~ 2  

3a~ 

= 5a 6 

(2N--3)a~N_~ 

(31) 

coefficients A2~ " since, for large ~, 

(33) 
Equation (25) in association with equation (32) enables all the remaining coefficients A2~ to be found. 

Thus,  from equations (27), (29), (30) we may write 

= X ~2,~ E A2,~-2" + 0 ( [  -x)  (34)  

• where 
N - ~  

c~.,~ = " ~ a~{~+j)b~. (35) 
j = 0  

Substitution into equation (25), noting equation (32), gives the following identity in ~: 

Z Az~£ 2'~-2 - 2E A2/2(,~+~) ( 2 n -  1)~ 2'~-~ = /~T + O([-~),  (36) 
~ = 1  n = l  j 0 

where tz is - 1 for tension parallel to the x-axis and 1 for tension parallel to the y-axis. On comparing 
coefficients in equation (36) for non-negative powers of [, the following matrix equation for the 

A2~ is derived. 

( l - q ) ,  - Q ,  - cs, . . . ,  - %v 

- 3c6, ( 1 -  3cs), - 3q0, 0 

- 5Ca, - 5qo, ( 1 -  5qD,  

. . . ,  . .  . o  

- (2N- 5 ) C 2 N _ 2 ,  - -  ( 2 N -  5 ) C 2 N  , 0 ,  1 ,  0 

0 ,  0 ,  0 ,  1 - ( 2 N -  3)C2N , 

together with 

A~ 

A 4 

A6 

• ° 

A~N-4 

A ~N-~. 

] 1 
/~ + ~c~ 

3 
c4 

5 
c6 

2 N -  5 
~ C2N--~I 

2 N -  3 J 
- T  C2N--2 

(37) 

A2N = (N--½)C2N. 



The tangential or hoop-stress distribution around the hole is found from the first of equations (23) 

by putting ~ = d o and noting that since the normal stress is zero, 

Cro = ~ + ~0 = % + % -- f~(~) + ~(~).  (38) 

Substitution of the A2~ from equation (37) gives the following expression for Cro, 

(7 0 = 

N N 

~, Az,~ e-2~i° Z A~,~ d'~i° 
n = 0  n = 0  

N + N 
E (1 - 2n)a~e -2'~i° 

% = 0  

which can be written in real terms in the form 

N N N--~ '  

)] ( 1 -  2n)a2~e ~i° 
~ = 0  

E + E 2: 
,~=0 ,.=1 ~=0 (39) 

~ ( 1  - 2n)Za2,[ 2 + N  N ( 1  - 2 n )  ( 1  - 2 r  - 2n)a2~a2(~+.)cos 2rO 
n - - 0  ~ '=1 ~ = 0  

On putting T = 1, equation (39) may be used to determine the stress-concentration factor for the 

hole as the maximum of cr 0 for variation of 0. 
A Mercury Computer programme incorporating these algebraic solutions has been written in a 

form that allows for up to 92 coefficients a2~ in the mapping function. Only one matrix inversion 

is required and a typical 40 term mapping and elastic analysis takes about 8 minutes for both 
tensile-loading cases. 

5. Example." 

A 'rounded square' profile has been investigated whose profile, C, is formed by the circles 

centre (+  a, + a) an.d radius a and their common external tangerits. The stresses around this hole 

have been evaluated under axial tension, which has been applied parallel to the x-axis. 

A trial mapping with m = 5 was found to be unsatisfactory and m was increased to 10, 20 and 

40 in turn. For m = 40 the boundary of the derived profile C' was almost identical with C, but 

the curvature distribution showed an oscillation about the point of discontinuity as illustrated in 

Fig. 3. The amplitude and frequency of this irregularity in the curvature are not  significant in the 

stress analysis. 
The hoop-stress distribution is shown in polar form in Fig. 4. The stress-concentration factor 

is slightly greater than 3 and occurs at a point about 76 ° round t h e  quadrant. 

5.1. Criticisms of the Method. 

The choice of uniform spacing of the 01~ , which was ~tesirable in the interests of high-speed 
computing, leaves the correspondence of C, C' at its worst in the quadrant, where best agreement 

is sought. However, as is shown in Appendix I, the discrepancy should not influence estimates of 
stress concentration. I f  in more extreme examples, it is desirable to allow greater influence on the 
choice of mapping coefficients to be exerted by a region such as the quadrant, two choices are 
open to the computor: Either M can be increased up to the limit of 92 or an algebraic correspondence 
of points within the critical region and their associated points on the unit-circle can be established. 

This is made possible by the correspondence of arguments which is established by a limited iteration 
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of the mapping programme. Interpolation of other points can be made with confidence. This special 
device may be necessary for profiles with local radii of curvature of the order of 0.01 times the 
diameter of the hole. 

When attempts are made to map regions like the rounded square illustrated above, difficulties 
always arise in attempting to map accurately the region of a curvature change. Away from such a 

discontinuity the mapping will be smooth and it is only in the neighbourhood of the discontinuity 

that the mapping may be poor. Sometimes the stress concentration occurs near this region, as in the 
example. 

The following proposal is made for assessing the merit of a mapping: if the errors in curvature 

relative to nominal are small (say up to 20~)  and occur over distances which are small compared 

with the local radius of curvature the stress concentration remains uninfluenced by them. This 

proposal is substantiated by an exact analysis of a problem of the type described in this report for 

which a controlled perturbation of the curvature is introduced. 

6. Conclusion. 

A method suitable for the automatic computation of the stress distribution around an 

unreinforced hole of doubly-symmetric profile has been developed. The computed stresses are 

reliable in most practical cases. 

11 



x, y 

0 = 

K 

.(0), v( O) 

a, b, 

~l, g) 

G 

S 

ax, % 

~xv 

~( ~), ~o( ~) 

T 

Q 

crn, o" 0 

~2r, C2r 

/z 

f 

LIST  OF SYMBOLS 

Cartesian co-ordinates 
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A P P E N D I X  I 

The Effect of Perturbations of a Contour on the 

Hoop-Stress Distribution around it 

The  influence of small errors in the local curvature arising from the use of an insufficiently 

extensive mapping flmction can be estimated by the use of the mapping function 

= + ( 1 )  

where,  to produce a doubly-symmetr ic  contour, n is an integer of the form (4p + 3). 

The  curve C corresponding to the unit-circle in the ~-plane has parametric form 

x = cos 0 + c~ cos nO, y = sin 0 - ~ sin nO (2) 

which defines a hypotrochoid formed by rolling a circle of radius 1/n on the outside of a circle 

radius n - 1/n and observing a point on the rolling circle distant c~ from its centre. As the rolling 

circle moves round the other, it will complete (n+  1) revolutions before returning to its original 

position. T h e  locus C will; for small ~, be a figure which is nearly circular and has a radius varying 

between 1 + ~ and 1 - a, and which is unity precisely 2n + 2 times. This  figure has a curvature 
variation 

1 + n ( n -  1)~cos (n+  1)0 - nao~ 2 
,c = [ ~  2 n ~co s (n +  1)0 + n~c~] a/2 " (3) 

The  mean curvature is K = 1, a value which is attained at 2n + 2 points of C. Th e  wavelength 

of curvature variations is w/(n + 1), which figure is also the ratio of this length to the mean radius 
of curvature. 

T h e  stress function for an applied tension parallel to Ox is 5 

fl($) = ½ T ( 1  + n ~  ~ - ~ - * )  - [ 1 - (n  - 2 ) ~  2]-*(  ~-2  + (n - 2 ) ~  ~-~+*) 
1 - ( 4 )  

so that the stress-concentration factor for the hole is found by putt ing T = 1, C = d °, and forming 

f = 1{£1(~) + ~(~)) (5) 

which gives 

f = 1 - n ~  2 + 2{1 - ( n - 2 ) ~ }  -x [2c~cos ( n - 1 ) 0  + {(n 2 -  2n)~ ~ - 1} cos20] (6) 
1 - 2no, cos (n+  1)0 + n~e~ 2 

For  0 = ~r/2 and n of the form 4p + 3 this reduces to 

and 

f = 1 + nc~ + 2{1 - (n-2)o~2}-1(1 +nc~-2c~) 

. 1  - -  n o ~  

1 + n~e~ 
K - -  

(1 - nc~) 2 

F rom these two results a simple approximation is found; 

n - 1 + 3 K] 
f ' ~ 3  n + l + ~ A  

(7) 

(8) 
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where ,~ is the curvature at the point 0 = ~/2, and is given by (8). This  shows that the error in f is 

proportional to the maximum error in slope of the boundary which is approximately (no 0. When  

~r/(n + 1) is small, say 0" 2, n = 15 say, and for K = 0" 8, the resulting estimate o f f  is 2.4~o lower than 

the value of 3 for K = 1. A table of values of f for various n and K at 0 = ~r/2 is given. T h e  error 

in estimating f is not impor tan t ,  and for practical problems such as the example given in the text, 

the estimate available is adequate. 

Values o f f  f rom equation (7) 

n =  3 

7 

11 

15 

19 

23 

27 

0.8 0"9 1 1.1 1.2 

2.8073 2-9052 3 3-0920 3.1814 

2.8770 2-9391 3 3.0598 3.1184 , 

2.9121 2-9563 3 3-0431 3.0855 

2.9318 2-9661 3 3-0335 3.0667 

2.9444 2-9723 3 '  3-0274 3.0547 

2.9530 2.9766 3 3-0232 3.0463 

2.9594 2.9798 3 3-0201 3.0401 

~/(n+ 1) 

0.7854 

0.3927 

0.2618 

0.1963 

0.1571 

0.1309 

0.1121 
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A P P E N D I X  II  ' 

Extension to Shear-Loading Case 

I f  the plate is loaded in shear at infinity, (ax = % = 0; %v = Q say) the analysis given in the, 

main text is modified as follows• 

The  coefficients occurring in the expansion of m'(~)f~(~) are pure imaginary so that we may write 

N 

m'(~)a(~) = 2iQ E A ~  -2~, 
n = 0  

where the A2~ are real. ' 

At infinity 

n(~) = 0(~ -2) 
and 

= 2 i Q  + o(¢-2), 
so that A 0 is zero. 

I f  a,2n , b2~ , c2~ have the same meaning as in the main text, the identification of positive powers 

of ~ and of the constant term in equation (25) leads to the following matrix equation for the A2~: 

l + q ,  

3 c 6 ,  

5 c 8 ,  

• • 

( 2 N -  3)C~x , 

with A2N ./10 = O. 

'9 6 , 

1 + 3ca, 

5C10, 

O, 

C8,  • " • , C2N--2 ,  C2N- 

3clo, . . . ,  3C2N, 0 

1 + 5 q 2  , • . . ,  0, 0 

0, . . . ,  0, 1 

1 2  

A~ 

AG I = 

ill 
• • 

0 

Proceeding as in the main text, the hoop-stress distribution around the hole is obtained in the form 

o" 0 = 

4 Q Z  ~] 
r = l  j = 0  

{(1 - 2r - 2j)A2ja~r+~ - (1 - 2j)A2j+2,.a2j} sin 2tO 

iV 2V _N- r  

(1-2r)2a~.  2 + 2 Y~ 
r = 0  r = l  j = 0  

(1 - 2r - 2j) (1 - 2j)a~.+2ja2y cos 2rO 

T h e  stress-concentration factor in shear is am~x/%/3 Q using the Mises-Hencky criterion, which is 

based on the strain energy of distortion of the material• 
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FIo. 3. Variation of curvature of approximate mapping around 
quadrant of rounded square. 
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FIG. 4. Hoop-stress distribution around edge of rounded 
square hole in infinite plate under tension. 

(88723) Wt. 6511418 I{5 2]64 Hw. 

18 



Publications of the 
Aeronautical Research Council 

A N N U A L  T E C H N I C A L  R E P O R T S  O F  THE AERONAUTICAL 
R E S E A R C H  C O U N C I L  ( B O U N D  V O L U M E S )  

I942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post zs. 9d.) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.) 

x943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.) 
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 

9os. (post as. 9d.) 
x944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.) 

Vol. II.  Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and 
Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.) 

I945 Vol. I. Aero and Hydrodynamics, Aerofoils. x3os. (post 3s. 6d.) 
Vol. II. Aircraft, Airscrews, Controls. I3os. (post 3s. 6d.) 
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Paraehute~, Plates and Panels, Propulsion. 

x3os. (post 3s. 3d.) 
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. I3os. (post 3s. 3d.) 

1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. I68s. (post 3s. 9d.) 
Vol. II. Airserews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and 

Instrumentation, Interference, Jets, Miscellaneous, Parachutes. I68s. (post 3s. 3d.) 
Vo!. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. i68s. (post 3s. 6d.) 

I947 Vol. I. Aerodynamics, Aerofoils, Aircraft. x68s. (post 3s. 9d.) 
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, 

Stability, Structures, Take-off and Landing. i68s. (post 3s. 9d.) 

1948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, 
Propulsion, Seaplane, Stability, Structa/res, Wind Tunnels. x3os. (post 3s. 3d.) 

Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, 
Propulsion, Seaplane, Stability, Structures, Wind Tunnels. xtos. (post 3s. 3d.) 

Special Volumes 
Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, 

Stability. i26s. (post 3s.) 
Vol. II. Aero and HydrodynamJcs, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, 

Propulsion, Stability, Structures. i47 s. (post 3s.) 
Vol. •III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, 

• Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 9d.) 

Reviews of the Aeronautical Research Council 
i939-48 3 s. (post 6d.) 1949-54 5s. (post 5d.) 

Index to all Reports and Memoranda published in the Annual Technical Reports 
19o9-1947 R. & M. 2600 (out of print) 

Indexes to the Reports and Memoranda of the Aeronautical Research Council 
Between Nos. 235v-1449 
Between Nos. 2451-2549 
Between Nos. 2551-2649 
Between Nos. 2651-2749 
Between Nos. 2751-2849 
Between Nos. 2851-2949 
Between Nos. 2951-3o49 
Between Nos. 3o51-3149 

R. & M. No. 2450 as. (post 3d.) 
R. & M. No. 255 ° 2s. 6d. (post 3d.) 
R. & M. No. 265o zs. 6d. (post 3d.) 

: R. & M. No. 2750 2s. 6d. (post 3d.) 
R. & M. No. 285 ° as. 6d. (post 3d.) 
R. & M. No. 2950 3s. (post 3d.) 
R. & M. No. 3050 3 s. 6d. (post 3d.) 
R. & M. No. 315o 3s. 6d. (post 3d.) 

HER MAJESTY'S STATIONERY OFFICE 
from the addresses overleaf 



R. & M. No. 3354 

© Crown copyright x964 

Printed and published by 
HER ~%/~AJESTY'S STATIONERY OFFICE 

To he purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London w.J 
x3a Castle Street, Edinburgh z 

xo9 St. Mary Street, Cardiff 
39 King Street, Manchester 2 

5 o Falrfax Street, Bristol x 
35 Smallbrook, Ringway, Birmingham 5 

80 Chichester Street, Belfast x 
or through any bookseller 

Printed in England 

R. & M. No. 3354 

S.O. Code No. 23-3354 


