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By means of a Fourier analysis a function is derived which gives the minimum value of the integral

~

1 1 1
I= "_f f S"(x)8"(y) log | — 3| dw dy
27T 0J 0

for any function S(x) which has a continuous first derivative and given values at a number of discrete points.
This minimal function suggests a method for the numerical evaluation of I from a graph or table of S(x).
An example is constructed to illustrate the method and to give some indication of its accuracy.
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1. Introduction.

Integrals of the form
1 1 1 " " .
1= =5 | | S50y tog v - ylasay (1)
T JoJo

{in which S”(x) denotes d25(x)/dx?} occur in several contexts in theoretical aerodynamics and many
attempts have been made at their numerical evaluation. Two difficulties underlie the problem
confounding any direct and simple approach: the loss of accuracy attendant on any kind of numerical
differentiation, and the troubles inherent in the singular nature of the integrand.
In this paper we consider a limited class of functions S(x), namely those which satisfy the
conditions: '
S’(x) continuous for 0 < x < 1

S(0) = §'(1) = 0. | (2)

We suppose S(x) to be known at x = 0, 1 and at # other stations and evaluate [ for that particular
S(x) which makes it 2 minimum under these conditions. The calculation is simple and the value of 7
that results is then the exact value of I for some S(x) which approximates to the given function.

The restrictions we impose on S(x) are those which must be satisfied by the area distribution of a
slender body in order that the integral I shall represent its wave drag at zero lift. It was to calculate
this that the method was originally devised. In Section 6 we shall collect together other expressions
in which integrals of this form occur, indicating to which the method is immediately applicable
and which violate the assumptions on which the method is based. '

2. Fourier Analysis of the Function S(x) and the Integral 1.
Since S’(x) is a continuous function of x for 0 < x» < 1 with §’(0) = S°(1) = 0, it may be

expressed by the transformation

(1—cos ) | 3)

S'(x) = 3 a,sinrf, 0<x<1, (4)
=1 :
where
a,.—_—%f S'(x)sinrfdd, r=1,2.... (5)
TJo
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A single integration gives S(x) as a function of ¢ and of the Fourier coefficients a,:
S(x) = ¥ a, f sin 70 dx
r=1

=1 Z a,.fsin 78 sin 8 d0

® sin (r—1)8  sin (r+1)6
a+ta (6_§s1r120) %Ear[ 1,(_1) B r(—l-l)}
) R

=a+g ale + Z (aHl ar—l) sin 70 (6)

r=
where a, is defined to be zero and the constant of integration a = S5(0). (7)

A double integration gives the integral 7 as a function of the Fourier coefficients a,. Integrations
of this form have often been published and the result is now well known*. In the notation of this
paper, with the transformation x = £(1— cos ), y = 4(1— cos ¢), the main steps in the argument

are:

1 1
I- - if f §"(x)8"(y) log |x — y|dx dy
20 Jo J o

fS( J]S”y)d dx (8)

X =Y

where f denotes the Cauchy principal value of the integral; but
1_)

fS”(y) ® va, J‘” cos r¢ d¢

dy = 2 —
X—y 4 ,Z‘l o COs ¢ — cos 0

@ sin 70
= 2 o
' " El " Gin ()
so that
3 ra, sin #0 2 a,sin s6d0

0 ¢=1 s=1

ey
It
o)

o

> Y raa, ( sin 70 sin s6 d8
0

r=18=1
T o]
— 2
=7 ¥ ra,r.
=1

We therefore have the result: if S(x) is a continuous function of x for 0 < & < 1 with
S'(0) = 8(1) =0,

and
x = $(1—cos 0) (3)
then _
S'(x) = § a, sin 78 ' 4)
r=1
Sx)=a+3a,0+1 3 ;(arﬂ—a,._l) sin »f (6)

r=1

* See, for example, Glauert! chapter XI.
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and

m ® :
=2 2 :
I = 47§1 ra, (10)
where

a = S(0) (7)
2 (" .

a,.=~f S'(x)ysinv8df, r=20,1.... (5)
T™Jo

3. Minimal Functions for the Integral I.

The Fourier analysis of Section 2 provides a method of deriving functions which minimise the
integral T under certain specified conditions. We are confined to smooth functions because of the
nature of the analysis of Section 2 but within this limitation we shall consider all functions which
satisfy the conditions we impose.

Since both the function S(x) and the integral I can be expressed as functions of the coefficients
of the Fourier sine series of S'(x) we simply require the values of the coefficients which make 7 a
minimum subject to the conditions on S(x) which relate them. If these conditions can be written

ES(x)} =0, i=12...m, (1
then a necessary condition for 7 to be a minimum subject to ¢, = 0,7 =1,2,...m,is
ol ™ _ 93¢
— A—= =10
oa, + 7'§1 " da, (12)
for each a, and some constants Ay, ¢ = 1, 2, . . . m. If the values of 4, which satisfy this condition

yield convergent series for S(x) and I, then these give the required minimal function and the
corresponding minimum value of the integral for the specified conditions.

4. The Minimal Function for which S(0) = N, S(1) = B and Stk = A i=1,2,.. .1
The function which minimises the integral 7 when S(0) = N, S(1) = B and S(k) = 4,

i=1,2,...n may be deduced from the series for S(x) and I given in Section 2 by writing them
in the form
«© ] » — 1)6 ..
S(x) = a + }ay(0— sin Bcos ) + 3 % [Si“ (=16 _sinG+DE g3
o r—1 r4+ 1
™ b .
I=- {alz + 3% ra,.z} (14)
4 r=2
where
a=N (15)
2 )
a,:—f S'(x)sinrfdd, »=1,2... (16)
w 0 .
and in particular
20 . 4 4
a; = — J. S'(x) sin 0 df = — f S'(x)dx = — (B—N). (17)
T Jo TJe ™
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Since N and B are given,  and a; are uniquely defined. Hence to find the minimal function for

given N and B which also satisfies the # conditions S(k;) = A, 1 =1, 2, ... n, we require the
values of a,, @, . . . which give a minimum of ¥ ra,? subject to
* sin (r— 1)k, sin (74 )7 .
'gzi[ :_1 L r-i—l) :|a,r=A7;——(l——;]€(ll(Ki—Sllll€iCOS ;) (18)
fori=1,2,...n, where k; = (1—cos «;). A necessary condition for this is
® o rsin (r—1)x;  sin (7 4+ 1)k
", — ; f— 1 =0 19
T Eﬂb[ r—1 r+ 1 } (19)
for each # > 2, and some constants A, ¢ = 1,2, ... n
The constants A, ¢ =1, 2, ... n, are found by substituting the @, from equation (19) into

equation (18). This gives

2, [sin (r—1)«; s1n (r+ )k, i sin (r—1)x;  sin (r+1)k;
,.§24|: r—1 r+1 }rg‘ [ r—1 r+1 }
= A; — a — }a,(r;— sin x; cos «;) (20)
forj = 1, 2, ... n. By changing the order of summation and using the result of the Appendix we
may write this '
> ANoley, k) = A —a— 1 ay(r;—sin x; cos «;), (21) .

forj=1,2,...n, where

_® 1 [sin(r—1)x; - sin 7+ 1] [sin (7= 1);  sin (r+ 1)k
G(Ki’Kj)_g'él_[ r—1  r+1 :H: r—1  r41 ]
1 — cos (x;+ «;)
= —1 o 2 1o o COS \K T )
L (cos x;—cos k;)* log T cos (x;— ;)
+ 1 sin x; sin «;(1 —cos x; cos ;). (22)
With these values of A;, i = 1, 2, . . . n, the condition (19) now gives the coefficients

A\
(N

(23)

1 sin (r— 1)k, - sin (r+ D)r;
?:5 [7-1 T+l }

Substituting for 4, in equation (13) we find

S(x) =a+ %al(ﬁ—sin 8 cos 0} +

2, [sin(r—1)¢ sin(r+1)071 2 )\ sin (r— 1Dk, sin (r+ 1)«
724[ .",'%,1_.,‘_ r+ 1 i|;,i§‘1 L[ r—1 r4+1 ]
= &+ }ay(6—sin § cos 0) + 3 Ao(f, «)). | (24)

i=1

5



Substituting for a, in equation (14) we find

o O O sin (7 — Dyw;  sin (74 1)) 2
=5 _{ZZ/\"L[ r—1 . r+1 }}

=1

T T - 1 x N sin(r—l)xi_sin(1’+1)xi}
461:l +4j,.§21’1:1]_1)\z)\‘7[ r—1 r+ 1 x
y sin (7 —D)x;  sin (74 1)x;
[ r—1  r+1 }
= Zaf +7 Y Y Aok, 1) (25)
i=1j=1

In terms of «x, therefore, the minimal function for which S(0) = N, 8(1) = B and S(k,) = 4;,
i=1,2,...mn1s

S@) = N+ (B—Nu(s) + 3 Ap(x, k) (26)
where -

u(x) = ;17 [cos™(1 —2x) — 2(1 — 2x) 4/ {x(1 —x)]] ‘ L (27)

x4y — 2xy + 2 4/{aey(1—x)(1-y)}
x4y = 2xy =24/ fay(l=2)(1-p))
+ 2(x+y — 2x9) v/ fay(1—x)(1 - )} (28)

The corresponding value of the integral I is

p(x,¥) = — §(x—y)*log

4_ H [
f=14j=1
and the constants A;, 7 = 1, 2, . . . #, are given by the # linear ecuations
> Nplky, k) = (A;—N) — (B—Nyky), j=12,...n (30)

i=1

5. A Method for the Numnerical Evaluation of the Integral 1.

The result of Section 4 suggests a method for the numerical evaluation of the integral  from a
graph or table of the function S(x). As Sections 3 and 4 concern only smooth functions this method
is similarly limited in its application.

If the value of S(x) is known at # = 0, ¥ = 1 and at » intermediate points, the minimal function
through these points is uniquely defined and the corresponding value of the integral 7 can be
calculated from the result of Section 4. If % is increased in such a way that each set of n points
includes the previous set, the values of the integral for the corresponding minimals form a monotonic
non-decreasing sequence bounded above by the value of the integral for the given function. If
this is the least upper bound, then by taking » large enough it should be possible in this way to
approximate to the integral as accurately as the data allow.

6



Suppose that we take # arbitrarily spaced pbints x=k;,i=12,...n To evaluate I we have
first to compute the functions u; = wu(k;) and p;; = p(k;, &) for ¢, j = 1, 2, .. . #n. Then with

¢; = (4;—N)—(B-Nyu,, i=1 2,...n (31)

we must solve the # simultaneous équations

S APy = cj,' j=L1L2 ...n » (32)
. i=1 '
Now with these values of A;
4 2w [
I =—-(B-NpP+m 3 3 N\py
™ i=1j=1
4 N n
i=1 .

If we anticipate doing a large number of these sums (appreciably more than n) we can save time
by taking the same # points in each case and inverting the matrix [p,;] once and for all. Then if the
elements of its inverse are f3;, 4,7 =1,2,...n,

4 nooon
(B-NP+r % 3 ctify (34)

i=1lj=1

I=-
™

an expression which takes little time to evaluate once the f;; have been found*.
To test the method a polynomial was chosen to represent S(x),

S(x) = 40025 — 11765 + 1257x% — 588x + 10842 (35)

and the # points were equally spaced along the axis at k; = #/(n+1),7 = 1,2, .. . u This rather odd
polynomial was originally chosen for its resemblance to the area distribution of a swept wing on a
cylindrical body. The shape of the function is shown in Fig. 1, and the values of the integral / for
the function itself and for the minimals which approximate to it in Fig. 2.

During the computation of these results, using the Ferranti Mercury digital computer, one practical
limitation of the method became apparent. For small values of » accurate enough results were
obtained working with eight significant figures but as 7 increased the equations (32) became rapidly
more ill conditioned until at # = 19 the programme failed. A secend programme using double
precision for the solution of the equations extended the useful range of the method to » = 35.

Despite this difficulty the accuracy .of the method seems adequate for most practical purposes.
In this example an error of not more than 2%, occurs with 17 points and the simplest programme.
The second programme gives an error of less than 19, with 25 points and 49, with 35 points.

To facilitate an immediate application of the method the functions #; and f;; have been tabulated
in this paper for the 19 equally spaced points k; = /20,7 = 1, 2, . . . 19. Rounding off the elements

* These results are perhaps more obvious if written entirely in terms of matrices. Equation (32) becomes
PA = ¢, whence A = p,
where A and ¢ are column vectors and p a symmetric matrix. The series in / becomes
ANpA = N, as in (33),
= ¢'p7l¢, as in (34).
7



of f;; to three decimal places gives, for this particular example, an arithmetical error of less than
0-19%, in I. This is negligible compared with the 2%, difference between the 19 point approximation
and the true value of I.

6. Applications in the Evaluation of Drag Forces.

Consider any kind of body in a steady uniform stream. To determine the drag forces acting on
the body it is convenient to imagine it completely surrounded by a large control surface S and to
equate the forces acting on S to the rate of change of fluid momentum through S. If S is a circular
cylinder with its axis in the stream direction the drag D is made up of three surface integrals—one
over the curved surface of the cylinder and one over each plane end. As-the cylinder grows both
in length and diameter the integral over the upstream end tends to zero, the integral over the
downstream end tends to a limit known as the vortex drag, and the integral over the curved surface
tends to a limit known as the wave drag.

If the nature of the stream and the geometry of the body satisfy the assumptions of small-
perturbation theory there exists a perturbation velocity potential ¢ which satisfies the linear equation

(1 _M2)¢a:x + ¢yy + ‘lszz =0 (36)

where M is the Mach number of the undisturbed stream. The two components of the drag are
given by

2r [73)

D, = lim — p f 6 f b da | (37)
=0 0 —w

D, = ip f f ($,2+$.2)dy d (39)

where x lies in the stream direction, v, z and 7, 8 are co-ordinates in the transverse plane, and p
is the density of the undisturbed stream.

From these two basic relations come expressions for the drag of a wide variety of bodies—slender
bodies, thin wings, slender thin wings, not-so-slender thin wings—all including somewhere a
double integral related to

1 1
1= -5 [ [ s@s70) 10g |5 - ylandy.
27 00

Some, but by no means all of these are amenable to evaluation by the method of Section 5.
In the notes that follow the fact that the integrals are taken between other limits is only a superficial
difference since a simple transformation or a new choice of the unit of length brings them to the
“same form. For example

1 ! _
f f S//(x)SN(y) 10g x—Z_y dxdy
0 0
1 1 p1 . ,
0
1 1 V
- lzf f 8" (x)S"(yy) log [y — ys|dwydyy (39)
0V 0
where .

¥ = &/l, y; = y/land §; = S/2.
8



6.1. Slender-Body Theory: Wave Drag at Zero Lift. ‘
Suppose that S(x), 0 < x < /, is the cross-sectional area distribution of a body, a wing or a
wing-body combination. If the configuration is slender and has a pointed nose then according to
Ward’s slender-body theory? for supersonic flow its wave drag at zero lift includes the term

f f S"(5,).8"(35) log |

A pointed nose implies S(0) = S’(0) = 0. If also S’() = 0 and in between S'(x) is continuous then
all other terms vanish and this integral alone determines the wave drag. This particularly simple
case is the one for which the method of Section 5 was designed.

When S’(J) #= 0 the method in its present form is not applicable. However, a modification exists,
devised by J. Weber? to include this case. It requires an extra term in the function ¢; {equation (31)}
and a couple of extra terms in the final expression for I {equation (33)} but leaves the rest of the

2\ dx, dx,. (40)

calculation unchanged.
With this extension the method can be used to evaluate the double integral in the wave-drag
formula for any slender, pointed configuration with a smooth area distribution.

6.2. Not-so-Slender Thin-Wing Theory: Lift-Dependent Wave Drag.
The wave drag of a supersonic wing without thickness has been calculated to second order by
Adams and Sears®. It includes the term

14 1 —
f f L'(x) L (%) log | 2= 22 gy, i, (41)
0JO0

where L(x) is the load on a cross-section of the wing.
If we replace L(x) by S’(x) we can identify this double integral with the integral  of Section 6.1.
The conditions
S’(x) continuous for 0 < & < [ and S’(0) = 0
then become
L(x) continuous for 0 < ¥ < / and L(0) =0

: T
which are a remarkably innocuous pair of restrictions. Provided therefore we can find f L{x)dx to

0
replace S(x) the method of Section 5 is again applicable—in its present form if L(/) = 0 and through
Weber’s extension if L({f) + 0.

6.3. Small-Perturbation Theory: Wave Drag.

Sections 6.1 and 6.2 give expressions for the wave drag of two rather special kinds of body.
Both are independent of Mach number although, wave drag being a supersonic phenomenon, they
imply M > 1. For the wave drag of more general bodies there is an expression derived by Lomax?
which introduces the concept of oblique sections. '

In cylindrical polar co-ordinates x, 7, § imagine a family of co-axial cones ¥ — x; = Br where
p* = M?—1, with planes tangent to each member of the family along the generator given by
f = constant. For certain values of x;, say —/4(6) < »; < /(6), each plane slices from the body an

9
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oblique section. Lomax defines L(x;, 6) to be the load on such a section and S(x,, 6) to be the
projection of its area on the plane x; = constant, and shows that according to supersonic small-
perturbation theory the wave drag of the body for any M > 1 can be written

D 1 27
= %L 1(0) o (42)
where
I L l S 0 B L 0
= — — X9, 0) — 5= L(%, x
O =], |, |50 56 0]
y [S”(xz» g) — %L’(xz, 0)] log %, — xy|dxy diy, (43)

In practice most oblique area distributions and the corresponding load distributions satisfy the
conditions S(—4, ) = L(=1, 0) =0, S'({, ) = L(, 6) = 0 and S'(x, 6) and L(x, 6) are
continuous for — [, < x </, so that the method of Section 5 can be used in the manner of
Sections 6.1 and 6.2 to evaluate /(). However, great care must be taken over the exceptions.

For example, wherever the trailing edges of a wing are straight and supersonic the oblique planes
will lie parallel to the trailing edge for two values of 8. Unless the edges are cusped this will produce a
discontinuity in 8’(x, 6) and unless the load vanishes there, a discontinuity in L(x, ) as well. For
these two values of 0, I(0) is infinite but if the nature of the infinity is known, methods can be devised
to integrate I(0) across the singularity. For examples of this see the papers of Weber® and of Cooke
and Beasley”.

For wings that are thin, L'(x, 6) is an odd function and S”(x, 6) an even function of 6. This
simplifies the expression for I(6) into the form

1 ¢ ‘
I(0) = — J‘ j S"(xg, 0)S (25, 0) log |, — wy|dy doy —
2m )y d gy

B2 1 l ‘
- f [ L, 0L (s, ) log |2, — ] dxy i, (44)

=l v =l

and the wave drag becomes the sum of a zero-lift drag and a lift-dependent drag.

6.4, Vortex Drag.

Vortex drag as defined in Section 6 is a surface integral taken over a plane far downstream—the
Trefitz plane. If it can be assumed that vorticity is shed from a wing only at the trailing edge in a

sheet which meets the Trefftz plane in a straight line then the vortex drag of the wing can be written
in the form

D, = -L= f D'y (92) log | 31— pa|dy dy, | (45)

-8 —8

where p,, is the density of the undisturbed stream, s the semi-span of the wing, and I'(y) the total
circulation developed by a chordwise section (see, for example, Reference 8, Section D14). If I'(y)
is continuous across the span of the wing and vanishes at the tips then the method of Section 5
can be used to evaluate this expression as in Section 6.2. However, for a wing of given geometry

the vortex drag can usually be more easily determined as a by-product of the calculation of spanwise
loading.

10
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Fourier coeflicient in the series S'(x) = ;“, a, sin rf
S(1) -
(4;—N) - (B=N)u,

Drag
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APPENDIX
Summation of the Series of Section 4

The series to be summed is

4‘7(051 B) =2 tr(_c" B)

© 1 sin(r—1)x sin(r+ D] [sin(r—1)8 sin(r+1)8
§;|: r—1 r+1 :I[ r—1 71 ]

The series may be considered as a function of two variables «, 8. Double partial differentiation
term by term gives the series

8(1226 9§ %[COS( — 1o — cos (r+ 1)af [cos (r—1)8 — cos (r+1)8]

© 1
=4ginasinfB ¥ ~sinrasinzs
s

= 2sin a sin B E} % [cos 7(a—B) — cos r{a+B)]

r=2

= 2sinasin B [%log%
— o —

for all « # f, since ¥, %cos r0 = — log (2 sin 6/2) for all § %= 0 (mod ).

r=1

— 2 sin a sin /3:'

Since X #,(«, B) converges to zero when either « = 0 or 8 = 0 and 3 (9%,/0x 3B) is uniformly
convergent in any region excluding the points o = 3, therefore X #(x, fB) is also uniformly
convergent in any region excluding the points « = B, and whenever « + f,

2 (9%,/8 3B) = (%[0 ) 3. 4,(o, ) -
Hence by a double integration, when « %

3 tfe, B) = — &(cos a—cos )% log %:EZ{—%

When o = B the series becomes a function of one variable

o1 [Sin (r—Da  sin(r+ 1)04]2'

+ sin « sin B(1 — cos « cos B).

i

% r—1 r+1

2 ¥

PIRACY

Differentiation of this series term by term gives the series

by 4, = § 2 [Sinr(r_—ll)(x - sin?(:_-kll)onj [cos (r — D)o — cos (1’+ D]

P=2 r

~ 4sina Z sm’roc |:Slnr(7’_ —1 Dee 51n7,(:_ +11)o¢j|

r=

. . . . sinrasin (r+1
= 4 sin « |:—‘§— sin « sin 2¢ — lim asin 7+ )a}
7~ 0 v ¥+ 1

= 2 sin2x sin 2« for all o.
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Since ) t{a) converges to zero at a=0 and 3, (dt,/dx) is uniformly convergent, therefore
3 t,(«) is also uniformly convergent, and ¥, (dt,/dx) = (d/dw) ¥ (o). Hence by integration

> t(x) = sint «.

Finally since

1 — cos (a+ . . .
I:— L(cos a—cos B)% log m—g—a_—g + sin a sin B(1 —cos « cos B)L=ﬂ = sinto
therefore
&1 [sin(#—1)a  sin(r+1)o] [sin (r—1)8 sin (r+1)8
3 = Y% - - — A
2 4o B) ’Ez,,[ r—1 r+1 ]I: r—1 r+1 :l
1—cos(x+p) . .
_ _ 1 _ 2 £ -
1 (cos a—cos )% log T cos (a—f) + sin o sin B(1 — cos a cos f)
for all «, 8.
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TABLE 1

The Values u; for Nineteen Equally Spaced Points

i 1,
1 0-01869
2 0-05204
3 0-09406
4 0-14238
5 0-19550
6 0-25232
7 0-31192
8 0-37353
9 0-43644
10 .0-50000
11 0-56356
12 0-62647
13 0-68808
14 0-74768
15 0-80450
16 0-85762
17 0-90594
18 0-94796
19 0-98131

15
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TABLE 2

The Matrix Elements f,; for Nineteen Equally Spaced Points

N 1 2 3 4 5 6 7 8 9 10
J \\

1 373-996

2 - | —232-710 349-278 fig =t =Foos205

3 59-098 | —228-760 348-637

4 —6-124 58-526 | —228-669 348-625

5 1-604 | —6-039 | 58512 | —228-667 | 348623

6 0-029 1-590 —6-037 58-510 | —228-665 348622

7 0-119 0-029 1-590 —6-036 58-510 | —228-665 348-623

8 0-047 0-119 0-029 1-590 —6-036 58-510 | —228-666 348-623

9 0-030 0-047 0-118 0-030 1-590 —6-036 58511 | —228-667 348-624
10 0-019 0-030 0-047 0-118 0-030 1-589 —6-037 58-512 | —228-668 | 348-625
11 0-012 0-019 0-030 0-047 0-117 0-030 1-589 —6-037 58-512
12 0-009 0-012 0-019 0-030 0-047 0-118 0-030 1-590

13 0-006 0-008 0-012 0-018 0-031 0-047 0-118

14 0-004 0-006 0-008 0-013 0-018 0-031

15 0-003 0-004 0-006 0-008 0-013

16 0-003 0-003 0-004 0-006

17 0-001 0-002 0-004

18 0-002 0-001 maximum error + 0-002

19 0-000




The example of Section 5

S(x)

!
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Fre. 1. The function S(x).

128 TRUE VALUE

x

x 1", ERAOR
126

* 2°ERROR

122

120

s

o o 20 30 40 N+

F16.2. Theintegral  and its approximations.

17

(87839) Wt. 65/1418 K.5 11/63 Hw.



Publications of the
Aeronautical Research Council

1942 Vol. 1.
Vol. 1II.

1943 Vol. L
Vol. II

1944 Vol. 1.
Vol. 1II.

1945 Vol. I
Vol. 1II.
Vol. III,

Vol. IV.

1946 Vol ' 1.
Vol. IIL

Vol. III

1947 Vol. L.
Vol. IL

1948 Vol. L
Vol. IL

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL
RESEARCH COUNCIL (BOUND VOLUMES)

Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 755, (post 25. 9d.)
Noise, Parachutes, Stability and Control, Structures, Vibration, Wind ‘Tunnels. 47s. 6d. (post 25. 3d.)

Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.)

Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
90s. (post 2s. gd.)

Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)

Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and
Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.)

Aero and Hydrodynamies, Aerofoils. 130s. (post 35. 6d.)
Aircraft, Airscrews, Controls. 130s. (post 3s. 6d.)
Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.
130s. (post 3s. 3d.)
Stability, Structures, Wind Tunnels, Wind T'unnel T'echnique. 130s. (post 3s. 3d.)

Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. 9d.)

Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and
Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 3s. 3d.)

Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s. 64.)

Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. gd.)

Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes,
Stability, Structures, Take-off and Landing. 168s. (post 35. 9d.)

Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments,
Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 130s. (post 3s. 3d.)

Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments,
Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 110s. (post 3s. 3d.)

Special Volumes

Vol. 1. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion,

Vol. II
Vol. III

Stability. 126s. (post 3s.)

Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes,
Propulsion, Stability, Structures. 147s. (post 3s.)

Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes,
Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 9d.)

Reviews of the Aeronautical Research Council
1939-48 3. (post 64.) 1949-54 5s. (post 5d.)

Index to all Reports and Memoranda published in the Annual Technical Reports
1909-1947 R. & M. 2600 (out of print)

Indexes to

Between Nos. 2351-2449
Between Nos. 2451-2549
Between Nos. 2551-2649
Between Nos. 2651-2749
Between Nos. 2751-2849
Between Nos. 2851-2949
Between Nos. 2951-3049
Between Nos. 3051-3149

the Reports and Memoranda of the Aeronautical Research Council
& M. No. z450 zs. (post 3d.)

& M. No. 2550 2s. 6d. (post 3d.)

& M. No. 2650 2s. 6d. (post 3d.)

& M. No. 2750 2s. 6d. (post 3d.)

& M. No. 2850 zs. 6d. (post 3d.)

& M. No. 2950 3s. (post 34.)

& M. No. 3050 3s. 6d. (post 3d.)

& M. No. 3150 3s. 6d. (post 3d.)

RERRPRE AR

HER MAJESTY’S STATIONERY OFFICE

from the addresses overleaf



© Crown copyright 1963

Printed and published by
Her MajesTY’s STATIONERY OFFICE

'To be purchased from
York House, Kingsway, London w.c.2
423 Oxford Street, London w.x
134a Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
so Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
8o Chichester Street, Belfast 1
or through any bookseller

Printed in England

R. & M. No. 3341

R. & M. No. 3341

S.0. Cade No. 23—3341

[Lamait ey

WNiBampo  ier



