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Summary. 

Approximate expressions for the generalised airforces acting on a rectangular wing of low aspect ratio 
oscillating harmonically in sonic flow at low frequencies are derived in this paper. The modes of oscillation 
considered are rigid modes and a small selection of flexible ,nodes. Results are presented as the first few 
terms of infinite expansions. 

A brief description of the modes of oscillation and of the generalised airforces is given towards the end of 
the paper so that the resuks may be used without the main text of the paper having to be read. 
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1. Introduction. 
The reliable prediction of wing flutter speeds involves the proper assessment of the airforces 

acting on the wing when it is oscillating in various modes. The transonic speed regime is often the 
most critical from the flutter standpoint but it is also the regime in which theoretical assessment 
of the airforces is most difficult. However, with certain restrictions (see Ref. 1) on the thickness 
ratio, aspect ratio and frequency parameter it is possible to deal with wings of particular shapes 

in this regime. This paper is concerned with the assessment of these airforces,for a low-aspect-ratio 
rectangular wing oscillating in the transonic regime. 

Mangler 2 and LandahP have considered the low-aspect-ratio delta wing; Miles ~, using a method 
different from that of the present paper, has treated the low-aspect-ratio rectangular wing. Since 

the work of this paper was completed, LandahP has given a treatment of low-aspect-ratio rectangular 
wings, which, although similar to that of this paper, differs in detail and produces slightly different 

results. The results of this paper and of Landahl's contain terms of higher order in frequency than 
do those of Mangler 2 and Miles 3. 



The procedure is first outlined to draw attention to the assumptions and approximations that 
underlie the solution. Approximate expressions are derived for generalised airforces acting on the 
low-aspect-ratio wing oscillating harmonically in sonic flow at low frequencies. The modes of 
oscillation considered are rigid modes and a small selection of flexible modes. Results are presented 

as the first few terms of infinite expansions. A final resum6 permits the results to be used without 
the main text having to be read. 

2. Procedure. 

With certain restrictions on the thickness ratio, aspect ratio, and frequency parameter, it can be 
shown 1 that the partial differential equation governing the oscillatory flow about a wing may be 

linearised even when the main-stream speed is sonic relative to the mean position of the oscillating 
wing. 

The procedure of this paper is to take Fourier transforms of the velocity-potential function and 
other appropriate functions with respect to distance in the main-stream flow direction so that the 
governing partial differential equation is transformed into a simpler one. This simpler differential 
equation together with the transforms of the boundary conditions are then replaced by an integral 
equation, originally obtained by Landahl 1, which relates the transform of the known upwash on the 
wing surface with the transform of the velocity potential on the wing surface. It does not seem 
likely that an exact analytical solution of this equation can be obtained so an approximate solution 
must be sought. If the Hankel function appearing in the kernel of the integral equation is expanded 
in a series and term by term integration is allowed, then a solution of the integral equation valid for 
small values of the transformed variable u may be obtained by the method described in Section 4. 

As it has not been possible to obtain the solution of the integral equation over the whole of the 
u-plane certain assumptions about the behaviour of the solution at large distances from the origin 

have to be made in order to make any progress. These assumptions are stated where they occur in 
the text. When the flow is steady these a,ssumptions can be readily justified, but for oscillatory flow 
it is not possible to do this and they then remain intuitive assumptions. Using these assumptions 
it is found in Section 4 of this paper that, with certain restrictions, an approximation to the original 
functions can be obtained from the approximation to the transformed function valid for small 
values of u only. 

Fourier transforms of generalised airforces may be given as simple expressions in the transforms 
of the velocity potentials on the wing surface, so that once the expressions for the velocity potential 
on the wing surface, valid for smM1 values of u, have been obtained then the expressions for the 
transforms of the generalised airforces, valid for small values of u, can be obtained immediately. 
The generalised airforces themselves can then be obtained without having to obtain the velocity 
potentials themselves on the wing surface. 

The derivation of one particular generalised airforce is given in detail in Section 5, and an 
indication of how others can be obtained is also given. Derivations of other generalised forces are 
usually more complicated than the one given in Section 5, so an example of a more complicated 
derivation is given in Appendix II. 

Results are given in Section 6 for generalised airforces associated with the modes described in 
Section 5, and a discussion of the validity of these results is given in Section 7. A brief description 
of the modes of oscillation and of the generalised airforces is repeated in Section 8 so that the results 
may be used without the main text of the paper having to be read. 
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3. An Integral Equation for Sonic Flow. 
When the flow about a wing oscillating in an airstream is governed by linear equations, we can, 

by the principle of superposition separate the steady and unsteady parts of the disturbed motion 
created by the presence of the wing. For flutter purposes we are interested in the unsteady part of 
the motion only. This is independent of the thickness distribution of the wing (provided always 
that the thickness parameters are small enough for linearisation to be permissible), so for its analysis 
the wing may be considered to be a flat plate in its undisturbed state, and in this undisturbed 

state its surface is parallel to the main-stream flow. 
A Cartesian co-ordinate system (x, y, z) as shown in Fig. 1 is chosen fixed relative to the undisturbed 

position of the wing, with x-axis in the direction of the undisturbed flow, y-axis to starboard in the 
p lane  of the undisturbed flow, and z-axis vertically upwards to complete a right-handed system. 

The origin is taken at the undisturbed position of the mid-point of the leading edge. 
In linearised theory, the velocity potential ¢(x, y, z, t) satisfies the second-order linear partial 

differential equation 

1"(3 ~)~ 3~¢ 324 3~¢ (1) 
j ~ +  v ~  ¢ = aC~+~y~+ Oz- ~ 

and the linear boundary condition of tangential flow over the wing surface 

a¢ = w ( . ,  y,  t) = ?-t + v 
z~O 

where Z(x, y, t) represents the vertical displacement of a point (x, y) on the wing at time t. 
If we assume that conditions are varying harmonically with time we can take 

¢(x, y, z, t) = ~o(x, y, z)e *°'~ (3)  

W(x, y, t) = w(x, y)d °)t . (4) 

Also when the main-stream speed is sonic, as is here the case, we have V = a. The governing 

partial differential equation then becomes 

2 i~o co 2 
~o,,,~ + ~ z  - Z ~ o < ~ + j ~ o = o  (5)  

and the boundary condition becomes 

ioJ Z w(x, y) G + - - (6) 
a a 

on the wing planform. 
Since the flow is sonic no disturbances are transmitted from the wing forward of the leading 

edge, hence 
9(x,y,  0) = q~z(x,y,O) = 0, x < 0 (7) 

and also there is no influence from the wake on the potential on the surface of the wing so that the 
velocities in the wake may be replaced by other velocities which are more convenient for our 
purposes without affecting results, and this will be done to simplify some of the analysis. 
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Outside the wing planform the pressure across the plane z = 0 is continuous. Since the velocity 

potential is continuous across this plane except over the wing planform and wake we must have 

~(x, y, 0) -- 0 for [Y] /> b. (8) 

The solution of the partial differential equation (5) under the conditions (6), (7) and (8) will 

be obtained with the aid of Fourier Integral analysis. 
If, for u in some domain of the complex u-plane, the integral 

2;)dx (9) 

is absolutely integrable, then i (u;  y, z) is the Fourier Integral ofg(x,  y, z) with respect to x. The  
function i (u;  y,  z) can usually be continued analytically to a larger domain of the u-plane than that 
for Which the integral (9) is absolutely integrable. Similar definitions hold for functions with a 

different number  of variables. 
In the applications which follow the functions g(x, y,  z) will be zero for x < 0, and the domain 

in which the integral (9) is absolutely integrable will be an upper half-plane I(u) /> a constant. 
In some cases it will be quite evident that if(u; y, z )  may be continued analytically to the whole 
complex u-plane except for isolated singularities. In 'o ther  cases the i(u;  y, z) will be known by 
means of infinite series only in a restricted area, and then it will be assumed that analytic continuation 
to the whole complex u-plane excluding .isolated singularities is permissible. 

On multiplying equations (5), (6) and (7) by e ~u~, integrating from - oo to + oo, and simplifying 

we get respectively 

~ ( . ;  y, ~) + ~..(u; y, ~) + ~ - 2 -a u ~( . ;  y, ~) = 0 (10) 

~=(.; y, ~) = ~(u; y) f y] -< b (11) 

¢p(u; y, 0) = 0 lyl ~> b. (12) 

To obtain the Fourier Integral N(u; y) the function w(x, y) must be assumed in the wake. If  w(x, y) 
is a polynomial in x and y on the wing, then it is convenient to extend this polynomial to the region 

of the wake. 
A solution of (10) in z > 0 which vanishes as z -> oo when u is in the upper half-plane is found 

in Appendix I to be 

)f  l( co2 w 112 +bZHl(~ ) g - 2 u 95(u; ~, +0)d~? (13) ~ ( u ; y , z ) = - i  ~ - 2 - u  ? j 
tg - b  

where 
e = ~ /{(y-~)~  + ~} .  (14) 

To make {(co~/a =) - 2(co/a)u} ~/" single valued a cut must  be introduced into the u-plane from u = oa/2a 
to infinity. Since the Fourier Integral cp is regular in an upper half-plane I(u) > a constant the cut 
must not enter the upper half-plane. It  will be inserted between the point u = co/2a and infinity 
along a straight line parallel to the negative imaginary axis. If  the branch of {(oa~/a ~) - (2co/a)u} ~12 is 

obtained by putting 
co _ qe~O 3w zr (15) 

U = 2 a  , - ~ - < 0 < ~  

then in the upper half u-plane the imaginary part of ((~o2/a ~) - (2cola)u} ~12 is negative. 
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The function ~1 (2) is defined by 

u/1/2 = H:(2) f ~i a ' 
~1<+ e ~ . u I ( u ) > 0  (16) 

and by analytic continuation in the whole cut u-plane, where/-/1 (2) is Hankel's function of the first 
order and first kind. 

Differentiating equation (13) with respect to z and proceeding to the limit z = +0  we obtain 
the integral equation 

l (+ 2++)+i i +2 2+ 1]~ +~H1 (~> lY 7t S+ + 

-( +)f ~z( . ;y ,  o) = ~ (u ;y )  = 2 ~+ + -~ l y -  71 ~ (u;7 ,+o)dT.  (17) 

An expanded form of this integral equation is obtained if the function 

s~(+ [ly - 71 {(+~/~2) _ (2+/~)u}1]0] 

is replaced by a series expansion and integration carried out term by term. 
The Hankel function HI(~)(A) of the complex variable A may be expressed as 

1~(h2)+ h log (~ ) f i ( h  2) (18) H~<2>(h) = 

where ~(h 2) and/3(23) are integral functions of the complex variable h 2 the expansions of which as 
power series in 23 are well known. The logarithm is, as is usual, real on the positive real axis of the 
complex ;t-plane and has a branch line along the negative real axis. 

In the upper half u-plane we therefore have 

~-+ -,+ u) ~+_(2, ry-++I ++ -,+ 

1 + ( + + 2 + ) }  (+3 2+ ) 
- - u + l y - ~ l  ~ ~ u  × 

x l l o g i y - + I + ½ l o g ( # C a ~ _ ~ ) } / 3 1 ( y _ + ) 2 ( ~ m  2 + u )  l ' a  (19) 

Let the analytic continuation of log{(+2/4ah)-(+u/a)} to the whole cut u-plane be called 
Log {(+2/4a2) - (+u/a)}. Using the expression (15) for u, this is defined as 

Log ~ = log 2a + i 0 '  - ~ - <  0 <  ~. (20) 

Then for the complete cut u-plane 

(+2 2+ \112 { ~  a u) /t1(2) [Y-71 (+2~ 2+a u)]l'2 t 

- u  + l y - ~ l  ~ - - s - u  × 
= ~ ~  ( y - ~ ) ~  ~ 

I,o+ +,++ Lo+ + ++ (J 2+a +)I" 



Substituting (21) into (17) and using the power-series expansions of a and fi defined in equation (18) 

we get 

~(u, y) = 1 (+b ~(u; 7, +0) d~ 
~J-b  (Y-v)  ~ 

x 55(u; 7, + 0 ) d r  + 2 ~(u; 7, + 0 ) l o g  lY - ~/Idv + 
--b --b 

f+° r +° I x qZ(u; r/, + O ) ( y - v ) 2 d ~ l  + 2 qZ(u; 7, + O ) ( y - . ) ~  log ty  - w l d ,  - 
- b  . / - b  

2~r 

V V x 55(u; ~?,-t-O)(y-v)4d~? + 2 ¢(u; 7, + O ) ( Y - ~ )  ~ l°glY - vld~ + . . . .  (22) 
--b - b  

4. Solution of the Integral Equation. 

• Corresponding to the Fourier Integral formula (9) there is the Inverse Fourier Integral formula 

g(x, y, z) = L lira 
N+ie 

2(u; y, z)e-~"~du (23) 
27r N-->co d--N+ie 

where e > 0 is a real constant such that ~(u; y, z) is a regular function for I(u) > e. The path of 

integration is along a straight line parallel to the real axis. 
A more powerful form of inverse formula may be obtained by applying contour integration in 

the complex u-plane. The function 2(u; y, z) is assumed to have a branch point at u = co/2a. 

The contour of integration is shown in Fig. 3. 

A, G, C and B lie on a circle of radius R { = ~ / (Y 2 + e2)} and centre u = 0. 

D, E and F lie on a circle of arbitrarily small radius 3 and centre at the branch point u = w/2a. 

G F  and CD are two lines, indefinitely close together, but separated by a slit in the u-plane. 

I f  we apply Cauchy's theorem of residues to the integral of g(u; y, + 0)e - i ~  around the contour, 

we obtain 

; (u;  y,  z)e-i~Xdu = ~ + + + 
2 ~  J- -N+ie  a r c  2kG G F  ~rc  F E D  

f f + De + ,~o CB ~(U; y,  z)e-lu~du - 

- i Z R~(x, y ,  z )  (24) 
8 

where Rs(x, y ,  z )  is the residue of fl,(u, y ,  z)e - i ~  at any pole u = u s which may occur inside the " 

contour. Any poles on the slit could be accounted for by deforming the lines GF  and DC appropriately 

near these poles. 



The transfotm functions g(u, y, z) will be replaced later by the functions Qj, k(u) defined in 
equation (60). In the case of steady flow these functions can be obtained exactly and tend to zero 
on the large circle as R -> oo, so that 

lim I f  ÷ f fi'(u; Y' z)e-e~xdul = 0  
1~-->~ A G  CAB 

when x > 0. 

We make the assumption that the limit formula (25) still holds when the flow is oscillatory. 
Proceeding, therefore, to the limit R = oo in formula (24) and writing 

(25) 

we obtain 

(.0 

u = 2 a  - qd° 

g(x, y, z) - 2rr e-i~°xl"a ff 2aa y, z -- F" 2a - qe~12; y '  z e -qx dq + 

f,,2 ) 
2a - 8d°; y '  z e ixeex do dO - i Z Rs(x, Y, z) .  (26) 

The first integral on the right-hand side of (26) is very powerfully convergent for large positive x 
and it is assumed that it may be used when ~ is given by an infinite expansion to give a result as an 
asymptotic expansion valid for large positive x. 

We solve equation (22) by using the procedure of Stewartson 6, rather than that of Adams and 
Sears 7 since the former procedure reveals the existence of poles, which the latter does not. 
Corresponding to the Fourier Integral of the symmetric normal velocity 

co 2r 

~(u;y) = Z, A,,(u) Y~. (27) 
V = 0  

the Fourier Integral ~5(u; y, + 0) of the surface velocity potential is given by 

~(u; y, +o) = X ( b ~ - 9 )  ,+~l~ 
v = O  

(28) 

as substitution in (22) will show. If the series (27)and (28) are substituted into equation (22), and 
the coefficients of all the different powers of y compared, an infinite set of simultaneous equations 
for the Br(u ) results. An approximate solution of this set is obtained by taking the first few equations 
only (N in number say) and assuming that all but the first N of the Br(u ) are negligibly small• 
By solving this finite set of equations the Br(u) are obtained as the ratio of a numerator and 
denominator function, the denominator function being the same for all the B~(u). The numerator 
and denominator functions so obtained are only approximations to the actual numerator and 
denominator functions and represent only the first few terms of infinite series expansions. The 
effect of increasing N is to add higher-order terms to these series expansions without altering the 
lower-order terms. 

The poles of qs(u;y, +0) are the zeros of the denominator function, and with only an 
approximation to this function available it is possible to determine the position of the pole nearest 
the origin only. 



If the first two terms only of (27) are non-zero, and if we take N = 4, then we obtain the 
following expressions for the first four of the B~(u): 

l (1~) I Ao(u) Bo(u)= - 1 + 2 0 - 0 ~ ( ~ + ½ ) + 2 0 8  ¢ - ~  + . . .  A ~  + 

l ® a @  - ~69) 1 1 ®"@ ~) 74 
Al(U) 

+ ~ , -  - 0 ( ~ - 3 )  + - - + " }  ao(®) (29) 

Bl(u) = ~ - O + O 2 ( ~ b + l ) - 3 O  8 ¢ -  + . . .  ~ 0 ~  + 

l ll  20 @ - ~ )  3®=(¢ ~ ) + ® a @ _ ~ ) +  I Ax(u) (30) 
+ ~ + . . . .  ho(®) 

l ~o~(~) l~°/~, 4 _ 0  9 + ~ + . .' B=(u) = ~ ~ • ~ + 

2 (¢ ~) 0 a @ - 2 6 9  ) . .  t A*(u) (31) 
+ i 3 1  ° + 2 0 ~  - - + "tAo(O) 

161_~÷.. iAo(u) 4 1 l~1(u) {32,. Bs(u) = ~ " ~ + f0~ 0~ + 2 0 8 ( ¢ - 2 )  + . . .  ao(®)' 

where 

® = 2a 2a - u (34) 

¢ = Log ® + 2y + 7ri. (35) 

The zero of Ao(@ ) nearest the origin is at 

G0 = 0.0482 + i0.0956 

and corresponding to this zero the B,(u) will have a pole at 

w 8a 
u° = 2a ~-b -z®°." 

Corresponding to the Fourier Integral of the antisymmetric normal velocity 

co 3]2r+1  

~ ( u ; y )  = E G ( - ) ~  
r = 0  

the Fourier Integral @(u; y, + 0) of the surface velocity potential is given by 

o® D~(u) _ y~)~+V= 
~(u; y, +0) = 2E --~TgfY(b ~ 

r = 0  

9 

(36) 

(37) 



where, following the procedure for the symmetric case and assuming only the first term in 
(36) non-zero and N = 4, it is found that 

11 l oa( i~) I C°(u) (38) D0(u ) =~ - 1 + 0 - ~  ~h- + ' ' "  A~(O)' 

11 Oa ( ~) I C°(u) (39) Dl(u ) = ~  - O +  ¢ +  + ' ' "  A~(O)' 

2 I 103 I C°(u) (40) D2(u) = - 0 2 - 2  + ' ' "  AI(O)' 

where 

Da(u) = 2 l -  oa + .1 C°(u) . .  AI(O), (41) 

il(O) = 1 - 2 0  + 0 2  ( ¢ + ~ ) -  208 ( ¢ -  ~) 

The zero of AI(® ) nearest the origin is at 

+ . . . .  (42) 

@, = 0.2901 + i0.3151 (43) 

and corresponding to this zero, the Dr(u ) will have a pole at 

8a 
ul = 2a ~ob2 01. (44) 

5. The Generalised Forces Associated with Different Modes of Oscillation. 
Let the displacement of a point (x, y) on the surface of thewing at time t be given by the second- 

degree polynomial equation in x and y the coefficients of which are functions of time 

Z(x ,  y ,  t) = ql(t)  + q2(t)x + qa(t)y + q¢(t)x 2 + q5(t)xy + q6(t)y 2. (45) 

The q's may be regarded as generalised co-ordinates for the wing motion. If the displacement 
varies harmonically about the undisturbed state with circular frequency ~o, we may write 

q~ = qjo d~ j = 1, 2 . . . . .  6 (46) 

where the qj0's are constants which may be complex. 
Since the governing equations are linear, the potential about a wing oscillating in the form 

defined by (45) and (46) may be written 

6 
¢ = 9e ~ = • 9jqjod ~ (47) 

5=1 

where q0je ~t is the velocity potential associated with the displacement 

Zj = f~.(x, y)d~' (48) 

andf/(x, y) is the coefficient of qj(t) in equation (45). 

10 



Corresponding to the displacements Zj of equation (48) there are the normal velocity distributions 
on the wing surface 

wj(x, y)e ~°'t = V ~-~ + kof~ e i~, (49) 

and the Fourier Integrals of the wj are 

~(~;Y) = iu ( 5 0 )  

1( ;+) 
- a - ( 5 1 )  zu  ~-u 

~(~;y)  - . y ( 5 2 )  
gU 

2(+) 
~+(,,; y) = ~ a -/V, (53) 

- a - ( 5 4 )  zu  z~- y 

i~o 
~+(~;Y) = i,~ y ~ "  ( 5 5 )  

The potentials far downstream of the leading edge could now be obtained by using the formulae 
of the last section and the Inverse Fourier IntegraI in the form (26), but these are not suitable for 
obtaining the generalised forces using Bernoulli's equation over the whole wing. Instead the 
Fourier Integrals of the generalised forces as functions of wing chord will be obtained in terms of 
the Fourier Integrals of the velocity potentials and the inverse of these taken. 

From the linearized Bernoulli equation, the aerodynamic loading distribution (positive upwards) 
on the wing is given by l(x, y)d ~t where 

l(x, y)e ~ °̀t = 2p I a 

= 2pla 

~ ( ~ ,  a¢ I 
y, + O, t) + ~/(x, y, + O, t) 

U~ ~ (~' y' + o) + i~(~,  y, + o) 1 

The generalised airforces on the 

We may write further 

where 

(56) 

6 

Q~ = :S Qs, kq~:o, (58) 
k = l  

Qj, k = 2p a -~x 
~ r e a  of  

w i n g  

11 

wing are given by Qje i°'~, j = 1, 2, . . . , 6, where 

Q.~ = f f  l(x, y)f~(x, y)dxdy j = I, 2 , . . . ,  6. (57) 
8,tea, of  

wing  



The  generalised forces will be required for a wing of chord length c. For the present consider the 
generalised forces on a wing of arbitrary chord length X, so that X may be considered to be a 
variable. The  generalised forces are functions of the chord length and may then be writ ten 
Q3', k(X) • If  Qj, k(X) is defined to be zero for X < 0 then we may write down the Fourier Integrals 

of Q~, I¢(X) as 

#j, ,c(u) = 9j, k(X) ei~xdX j = 1, 2, . . . , 6 (60) 
o k =  1 , 2 , . . . , 6 .  

These Fourier Integrals reduce to 

qSk(u; y, +Oily (61) 

2p 3 (a iw +~ 
Q2'k(u) = i u - ~ u  I iu - ~ )  f _  k(u; y, +O)dy I (62) 

( yq%(u; y, + O)dy G,k (u )  = 2P ~ - i~  -~ (63) 

2p a~ t iu ,, - ~k(u; y, + O)dy 

Qs, k(u) = iu i~u iu a - iu Yql~(u; y' + O)dy 
d - - b  

y~(ok(u; y, + O)dy. G,,~(u)  = 2p a -  ~ -~ 

(64) 

(65) 

(66) 

The  following integrals are therefore required. For  the symmetric oscillations, 

-b ~(u; y ,  + O ) a y  = ~b~ Bo(u) + ~ • • • 

111 7) 1 -Ao(O )Ao(~) - ~ + ~ o - o  ~ ¢,+ + . . .  + 

+ ~ & ( ~ )  - ~ + -6 o - o~ ¢ + + - . . .  

_ty2~(u; y, +O)dy = rrb ~ Bo(u ) + B~(u) + ~ B2(u) + ~ B3(u) + .  • • 

~rb4 l 1 1 
- Ao(0 )Ao(u ) - ~ + ~ 0  

(67) 

+...l 
+ ~ Ad~) l - 2-4 

+ 

(68) 
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For the antisymmetric oscillations, 

+~ l l 1 5 7 
f y(o(u; y, +O)dy = wb 8 -8 Do(u) + Dx(u) + ] ~  D~(u) + ~ D3(u) + . .  • 

--b 

l 1 03 I ~rb~Co(u) 1 1 1 02 + + . . . .  
A~(O) - -f6 + ~ o - F ~  ~ff8 

The residues of the flmctions 

- ~ + ~ o -  ¢+ + . . .  

~0(o) 

- g + ~ o -  ~+ + . . .  

~o(O) 

1 1 
- ~ + ~  

7)+ 
Ao(O) 

1 (1 
-2-4-  ~ 4 , -  + ~-2~6 + " "  

Ao(0) 
at the pole u o are respectively 

8a 8a (0.0111 +i0.0616) 
eob-~ ao, o = 

8a 8a (0. 0034 +iO" 0149) 
wb-- ~ al, o = ~b ~ 

8a 8a (0. 0034 + iO. 0149) 

8a 8a 
~ob2 as, 1 = ~ ( - 0.0011 - i0. 0049). 

• The  residue of the function 

at the pole u s is 

1 8 1 1 1 0 ~ , +  + 
- 1-6 + N  ° -~F~  ~ o  . . .  

AI(O) 

8a 8a 
oab ~ Co, o = ~-~ (0.0011 + i0 .0139) .  

13 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 



The functions (67), (68) and (69) when expanded as infinite series in the variable ® become, in 
the symmetric case, 

f -b y '  O)dy - ~ + - - . . . 7rbZAo(u) 

1 

f" I ~ (~ ~) (~ ) I y2 f fo (u;y ,+O)dy  = - + ®  ¢ _  _®~ ¢2 9 73 
- ~  g - g ¢ + ~ + . . .  ~b~Ao(.) + 

1 1 

and in the antisymmetric case 

f" I x '  ~'(~6 '~) I -~YC°(u; y ,  + O)dy = 16 12 0 + ¢ - ~ + . . . .  ~rb~Co(u) (82) 

The expressions (80), (81) and (82) are now inserted into the formulae (61) to (66) with the 

appropriate expressions for Ao(u),  A I (u  ) and C0(u ) to obtain the first few terms of infinite expansions 
suitable for insertion in the integrals of the inversion formula (26). These first few terms of the 

infinite expansions are adequate approximations to the functions they represent only for small 

values of ®. However, for sufficiently smaU values of co and large values of X the exponential term 
in the infinite integrals will reduce the values of the integrands to negligibly small quantities while 
O is still small {see equation (34)} so that the final results should be a good approximation. When the 

contributions of the residues at the poles are also included with the contributions from the integrals 
in formula (26), approximate expressions for the generalised forces are obtained. The values of the 
generalised forces are required only at X = c, where c is the chord length of the actual wing under 
consideration. 

Generalised force coefficients Pj, z, may be defined by 

P ~ , , .  

and these expressions may be written in terms of the frequency parameter 

coC 
= - -  ( 8 4 )  

a 

and the aspect ratio 
2b 

A = - -  (85) 
C 

only. 

The expression for P1,1 will now be derived. The derivations of expressions for the other P~., l~'s 
are similar to, though more complicated than that of P1,1. The derivation of P4, a is given in 
Appendix II as an illustration of one of the more complicated derivations. 

From (61) and (67) with k = 1 the following expression for ~)1,1(u) is obtained: 

I ' 1  (~ ;) I ~i..~,~=-,,,,-(~) (,-~) -'÷'°-°' ~÷ +... Ao(® ) (86) 
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is 

The residue of Q1. l(u) e-~ at the pole 

~b~ 8a ® o -  
u® = o~b~ 1-~] ~ 

vAao, o { 
R1,1 = p~b~ [ - - 7 ~ . ~  1 

~0o- ~ - 1  

(87) 

The function ¢5 (u~e -i~ has also a pole of order 2 at u = 0. Its residue there is therefore ~ 1 ,  Ik ] 

R 1 , 1 = -  Uuu ~=o (89) 

-where h and k are functions of a single variable. Approximate expressions for h and k are obtained 
by using the first few terms of the infinite expansion 

÷ . . .  01'1(u)=-2prrb~ ( ~ ) ( a - z z . ~ ) l - ~ + O  - ; )  I (92, 

and are 

h(vA) = + ~  - -  l o g - ~ + y + ~ - l - 2  + 

5 (~A-) 5 ( l °gvd  2 )  ~ - ( l °gvd  2 )  17 + ] 6  1 ~- + + ( 27 ~~) ~ -  + + (72--2-67+3) I (93) 

k(VA) = + # log  - 8  + y + 2-  - + 

(91) 

where 

1 ~ ( l o g V A + 2 ) 2  - ( l°gvA 2 )  5 

correct to within O{(uA) 7 log (vA)}. 

Let us write 

The contributions of the terms containing integrals in the inversion formula (24) must now be 
determined. 

Since Qa, l(U) is finite at u = (w/2a) we may take 8 = 0, and then the contribution from the 
second term is zero. 

~)1, 1(/ /)  = Q1,  1(1)(//) -'1- ~)1, 1(2)(g) -~ ~)1, 1(3)(u) "~- " " " 

_ 5 01,1(8)(u) = 4~pb ~ (i~u) (a i~u ) (¢2_  ¢ + ; ) 0 2 .  

15 

(95) 

(96) 

° (97)  

(98) 

(94) 

and this may be written 
A 
RI,1 = i~pa~b [h(~A) +/~k(~A)] 



The contribution of ~)x,1 (1) to the first term in (24) is 

2"1, i (I) = O. 

The contribution of Qa, ~(") to the first term in (24) is 

I1 1(~) --_ i e_iVl2 £ i ~ 2~pb ~ 
' 2~ ~ 0 q + i°~ 2 

( - 2i~r) mb~ " 8aa zqe-qedq 

( ,.v) fooq q - T a  - 7~ Pb%~Ze-~m . . . . . . .  e-q~dq .. o [ i v \  ~ 
~ + 2a) 

8a (q + i) ~ 

1 ~ (2) f;e-('e)qdq - 3if,j~ dq+ 

(99) 

f oo e-iq 

l~rp ba~ ( ~ ) ( i ~  ---~) - 13+ (2) I f~j~ e-iq : 8  [l 1 + 2  (2) l e-~''/2 (2) 2 -~- dq]. (100) 

The contribution of ~)a,.l(3/(u) to the first term in (24) is 

i e_i~/~f~rpb%a( 3ioo 5 ( ~ ) ~ (  1 ) 
/1'1(a)= + ~  o 64i~ q - 2 a  + 4  i~o q + ~  

l (cob2q~ ~i 5 l e_q~d q x 16irr log\16a~] + 2 ~ + . ~ -  

4 (qlioj~21 x 
~i] j 

irrpb%~5 e -~:~/2 q - 3i - - -  
32aa o 

: + log + 2~, + - 
q+~ ( q ~ t t  ~ ]  ~- :~ 

1 rpba2 ( i~) ( iv~e)  ~ (2) ~ Ie_i m f :  (q_3i)l log [~°~beq~+ 
32 - -  \ 1--6~a ~ ] 

+ 27 + ~ - e-(m)qdq - 
r,  

-2i(2) f~/211°g\32 ] 

e-(vl2)qdq 

5 ~/2 log~ 32] +l°g q -  + 2 ~ + ~ i -  ~ - d q -  

+ log ( q - 2 ) + 2 , + ~ i - ~ l e - ~ q  -qT aql 
[Continued 
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1 2/ivA\(iuA2Z)2 2 I(2)2 I {vA2~ ~ri ~le_im 
32 rrpba (2-) (2) ~ log \ ~ ]  + y +  ~--  - 

- 3 i  log \32] + y + 2 - -  

l :lf - 5  l o g \ 3 2 ]  + 2 ) ' + ~ r i -  ~i~. q dq-  5 f~/~log (q-2)ve-iq dq-  

:I I - 2i log \ 32 ] + 2)" + rri - t v/2 - i f~/~, e-zq Tdq- 

v o,lz --q- dq - i f~12 q 

1Trpba ~ ( ~ ) ( ~ ) 2 [  [vA 2] ~ri 
32 ll°g\-~ -] + Y + 2 - - ~ I  e - im-  

-3  log \32]+y+ ~ -  - 

-2  log \ 32] +)' + ~-- + 

+ (7)  3 1 5 + 2  (2) lllog {vA2~ 5 ¢~ e -iq \32] +2) '+rr i -41amq-dq+ 

+2(7) 3f~/2 ~ e-S-~q dq+ (7) 315+2 (2) If~. 2~°l°g(q-2)q = e-~qdqJ • (101) 

Then adding allthe contributions to equation (24) we get 

P l . ~  - - -  
Qll (i~A>o,o F ~ m  7 t 32i v~A~t P ha2 - 7r [ ---- ~A-A2 ~ 1 + [ -_~v~A2~| exp t ~  (6) 0 - --~-] 

.t e° - To-/~ 32 ~eo-[7~-71 

Ir I ( ~ )  + T~ ll°g ( ~ ) + ) ' + - - - - -  2 + 

+ 5 (~)5  +7)  2 __17 +~ri ~-~ l(log (~)  + (2)' ~-(~) (log (~)  -~-).+ 

+ (V ~ 17 

[Continued overleaf 
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+1 (z2~_) 5 (log -t- 2) z - (log + 2) l (#)  +(~" ~) (~)  + 
5 

1 (~)(~) + l ~ (2) +Err  I l l  2 ( 2  ) e-~m-- (2)  + 2  

l {ivA~(ivAU~2I t {vA2~ rd 
+ ~ r r  \ 2 ]  \ 2 ]  [_ { -  l°g \ 32] + Y +  2 - -  ~l e-i~/2 + 

f oa e-iq ql 
~f2 --q- d + 

+3  log \ 32] + 7' + ~ - -  + 

(2)~1 (vAz~ ~ri ~le_im - + 2  log \ ~ - ]  + y + ~ - -  

--(2) {5+(2) I11°g\32] +2y+rd-7~lom--q -dq-  

_e(~)~f~e-~ ~/~ q dq- (2)ul5+2(2)lf~121°g(q-2)e-¢qdqlq (102) 

provided v and A are sufl:iciently small. 
To evaluate the integrals which occur the following rapidly convergent series may be used: 

~,~T~_-- + - 1 o ~ ( ; ) _ ~ ~  (103) 

l o ~ ( , _ ; )  1 . ~ 
f e-iqdq = y2 . . . . .  . ~,~ q ~ T 4  + 2 

1 (Y + = n 
~)~ ( ?)" 

- - +  

co co 

~ (  ~)~ ~ ~._~_1,, (10~) 
-e-~VI2 E - E n! 

v = O  ~ = r + l  n X 

where y = 0-577216 is Euler's constant. 
When v is very small these series may be truncated after a few terms. Also e -ivlg may be replaced 

by the first few terms of its power-series expansion. In the results given in the following section 
such expansion arid truncation has been carried out. 
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6. Results. 
When v and A are small approximate values of the generalised airforces are: 

 ba2 °1,1  i A,ao, o E  2A2 1 t tOo_V2A l I , = /~----v~A2~ 1 + [ --->=A2~/exp irA2 --64-] 
~@o- ~ - /  32 ~@o- ~ - / j  

I 1 (2)  2 3 (iv] 3 llog [vA~ 1 ~ri, ~I 
-,~A~ - g  + ~ \ 2 ] .  \ 3 2 ! + ~ ' + ~ - -  + 

~(~)'l ~< ~'~I 9~(~) ~ (~)°] +~. log\32]  + y + y + 7 4  + +O - 

_ i r A S [ l ( 2 ) a l l o g ( V A  2] ~i 
\32 ]  + Y + 2 - ~ }  - 

8 l°g \ 32] + V + 2  - I  + 

+ (vA 2] (5i~ 5y 118) log ( vA2] 
(2) ~ l ~5 1°g2\32 ] + \ 6 4  + 32 \ - ~ - ] -  

15,r2 5 5 .  11 11 I} 
-- 2S--6 + (i~Y) + 64 W -- ~ i~ -- 1~ ~' + 64 + 

÷o~ }l. (2)6 log {vA2] \ ~ J  ,, 

P1, Q1, 2 Aao, o V v~A~ ] ~ 2 = pbca ~ -  7r [ ---~ffA2 ~ 1+ [ - - -v2A~[  exp 
[®o - -64-] L 32 1®o - 6 4 - ] ]  

32i (®o - v2A2] 
7~ ~ - !  

(105) 

~* I- ~ (~) +~ (~)~11o~ ~<,~, +~+ ~'2 ~I + 

+~  l°g \ 32] + Y + ~ +  + 

1 a log + 9' + + + 
+ ~ \-~-] ~ g4 

{vA2~ ~i 
- ~A5 [ 1  (2)e  ltog \--~-] + y + ~ - ~f - 
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3 (~)8 I (vi~ wi 13 I 32 log \32]  + y + 2 - -  12 + 

(2)~ I 13 ~vA_~ [13in 13 2~6) [vA~i + i ~  l°g~ \ 32 ] + \ 128 + 64 7 - log \ 32 ] 

13 13 43.  43 5 )  39 (in) 2 + izry + 7 ~ - - 
+ ~i~ / ~  / ~  s ~  ~ 2~  ~' + 6-41 + 

+ 

(2)8 13 [vA~ [_3!~ 3y 11) (vA~ 
+ l°g~ \ 3 f ]  + \ 32 + ]-8 + §-6 log \ 32 ] + 

3 3 11 11 891 
9 (in) ~ + in?, + 7 ~ in + 7 + ~-6~ t + 

+ i ~  3~ ~ + -(q~ 

lo ,32,I]. (106) 

Q1, B -- 0 .  
P1, 3 = pb~a 2 (107) 

n ivAaao, o [ v~A2 -] ~ 
e l 4  =" g l ,  4 __ + [ - - - ~ 2  1 + [ ---- v~A~| exp 

, pb~,~ /~ ~Oo - - ~ !  32 ~Oo- ~ ] j ,  

32i [O v2A2] 
vA~.~\ o -64-]5 

(2) 2 /iv~2~- hA3 [~ (2)1 l°g [vAu~ i~r ¢61 -wA [1+2 +3\2/_1 \32] + v + ~ - -  + 

5(2)2 I (vA2~ in 1_30I 1(2)3 1 [vA~ i~ 9 1 +8 l°g \ 32] + Y + 2  +2 log \32]  + 7 + ~ - +  + 

+12\2] 1°g\32] +Y+2-+2-4 + 2 ~  +O + . . .  (108) 

Q1, 5 --  0 . 
P I ,  g --  pb2ca2 (109) 

P 1 6  91 ,6  ivAal, o V v2A2 - t 32!_ ( 0 0  v2A2~ 
- - n  - I- , - pb3a 2 [ - - - ~ f i 1 2  ~ 1 + i rA  ~ - ~ - ]  

1 

+ ~  l°g \ 32] +Y+~- 

(vA2~ zri I log\~-]  +9 '+-2--1  + 

15 5 
+ ~  + 3 ~  + o  + . . .  (110) 
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P2 1 -- Q2,1 _ 
, pbca ~ 

rr v~tAaao, o 32i (0 ° _ v~A~ _ 

1 2 log  + + - - + 

1(2)~ I (vA!~ ~ri ~I 5 (2)'5 (2) 6] +8 l°g \ 32] +V+2-+ +1~  + 0  - 

+ 

~A ~ E~ 6 log \32] + ~ + 2 -  + 

(~) l -~i°g~,~=~ + (-  ~ , - - ~ ) , ° g  ~3=~ - 
1 

(2)al 5 (vA°"~ 1 1 9 t + - log \32] - ~ * r i - ~ - 2 ~ - l ~ t  +O 

' pbda ~-= 5]-2 [ - - - ~ ] ~  1+ [ ---v~A~| exp 
. ~ @ o -  - 6 4 - ]  32 ~ @ o -  ~- ] 1  

2 

- ~A~ [ -  16 (2) ll°g \ 32 / 

+~. log\32] + Y + 2 - - -  

1 (2)~t llog (vA2 ~ 
+ i ~  ~ 3 2 !  

[~(~)~I ~ '~ ~; 3~ 
- ~A~ log t 32 / + ~ + ~- - 41 + 

+ - l ° g Z \ 3 2 ]  + - ~ i - . ~ +  

+ 

+ 

+ 

. , , ,  (.A~l 2) l°gZ \ 32]J" 

13~i (~o-~A~ 

~, ~ ,(~)~ 
+ ~ + Y - 2 t  - i g  + 

7 I 16 + 

+ 7 + ~ + ~  + ~ - 6  + o  - 

(vA21 1)~o~,.~- 

9 (i~-)~ 
~ 6  

ol(~) ° 

6 ~ ~  ~ . 1  ~ 9 (i~)~ - ( ~ # )  - v~ + 2Y6 ~ + i ~  7 + - 
256  

64 log \32] +9 '+~- -  + 

1°g2\32] + r r i+~7+  log\32] + 

6~ ~ 1 7~ 
+ (~i~,) + ~'~ + Y6~ i~- + V6 ~ + -1~6 + 

log2 \ 32] I] " 
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Q 2 ,  8 - 0 
P~,3 - pb~ca ~ 

P2,  4 - -  
Q 2 ,  4 "17" v2A5ao, 0 

- + 

pbcSa ~ 572 ((90_ v~A~ s 
-6T] 

I (  v~A2 3 (  v~A~ ] 
x 1 + v~AZ~ + 102~ --~-A~e | exp 

8 0 o  - ~ 7 - )  oo - ~7 -7  _1 
32i (0o - ~,~A~ 

--6T/I- 

4 1 

1 (2)2 llog [vA~ ~ri 41 _ . 3 1 1  + +  - 
- , \ 3 2 7  Y 2- 5t  + 

1 (7)'~ I (v.d2~ -n'i 19 I +~ l°g \32} +Y+ ~- + T~ t + 

1 (2)4  I (-vA~ "a'i 41 t 17 (7)a (;)61 +]~ log\32] +y+~-+~Zl.t+ +0  . 2 ~  (113) 

Q 2 , 5  - -  O ,  
P2, ~ - pbec2a ~ (114) 

p~ _ Q~,6 _ _ v'lASaTA° 3expt~-A~ 6) o - ~ ]  - 'n 'A - 
,6 pb,~ca~ 512 ({96_ -64-7 

(7)  I (vA~ 7ri 1 t 3 (7)3 + 

1 (7)4 1 (vA~ zri 5 1 5 (2)5 (2)61 + ~  logt 32) + y +2- + +~-~ +0  . (115) 

3, 1 - -  0 .  
P3,1 - pb2a ~ (116) 

P3 ,  2 
_ Q3,2 - o .  

pb~ca ~ 
(117) 

P3 Q3, 3 _ _ 7r ivAco, o I v2A~ ] 
. a - -  pb3a~ ( O° -  v~A~ ~ 1+ [ ---v~A2 ~1 exp 

-~-] 32 ~0o---~-]3 
32i (0o - vZdZ] t 

 -It - 

1 1 
-~A E~ (~)+~ (~)~1 - ~  E- -~ (~ ) -  1 (~)~1 " (118) 

4 - -  0 , 
P 3 ,  4 - -  pbZca ~ 

(119) 
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G, 5 - Q~, 5 Aco, o r v2A~ ~ ~ 
;b"c~ - - ~ { - ;¢A~] L1 + { ~ A ~  | *~P 

I, 6)0 - 6T- ]  32 1,0 0 - 6 T - ] J  
,,A~ -6-4-! 1 - 

1 1 1 {iv~]_~rAaI1 ~ (2) ~ - 1 (2) a - 1 (2) 4 ] 

Q3, 6 - -  0.  P3, 6 - -  

pb~a ~ 

94, 1 - ~ , , ~ -  ~ ' : ~  t ' 2 ' ( ~ o _ ~  ~1 pbcZa ~ 16,384 (19o - vZAZ] 4exp t ~  -~-] I -TrA I~ (2) - 
Gg-! 

-vr-//a I~ (2) ~- 3 (2)2+ 1 (2) 4 l l°g \32]{vM~] + Y+-2+~i 1 I +  

~ ( 7 )  o (;)~ 
+ ~  + 0  . 

p,~_  e~,~ _ ~ ~,~, [ 3 ~  ~ t 3~ (Oo- ~ t  , ~,~a~ ~ 2  ( 0 o - 7 ~ '  1+ i - - - ~ i e ~ P i ~  ~ - I I -  
- ~ - - ]  64 1`% - 6 4 ] 1  

1 

I1(2)  5 (iv)2 1(2)a I (vA~ 1 rri 29 I -~rda - ~  +6 l°g \32] +Y+ 2 ~ + 

1 (2)4 I {vA ~] ~i 291 17 (2) 5 ( ) 1  +]6 1°g\32] +Y+2-+~  +19~ +0 2 ~ " 
Q4, 3 P4, 3 m pbZcSa 2 -0 .  

Q4, 4 7r iv3A 7 
, - ( ~ A ~ 4  × P4 4 pbc~a~ 8192 Oo _ -~-] 

I 3 v4d 4 -] 
x 1+ (®3~A;~A~ +512(@o--V~A2i] 

16 - 6 V ]  - ZT- ! j  

_ = ~ E - 1 ( 7 )  + 

+ ~ I l°g \ 32 ] 

t 32 / (0o-  ~A~ 
exp irA2 -~-]  l - 

~ {  ~ =, 29} 
2 4 \ 2 /  1 ° g \ 3 2 7  + ~ ' + 2 - - 3 0  + 

+ 9 ' +  ~-+ + 

+ ~' + 2- + 12o) + 3 ~  + O  . 
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(121) 

(122) 

(123) 

(124) 

(125) 

(87657) B** 



Q4, ,5 - -  0 .  
P 4 ,  5 - -  pb~cSa z (126) 

Q~,G ~ iv`sATan'° t 32i (@o - v~Az] 
pb~ceaZ - 16,384 (Oo_ V~A~exp { ~  T4-]] --~r~ I~ (2)I  -- 

T 4 - /  

-~[~(~)~ Z(~)~ (~)~ ~ ~ _ + 1  log \ ~ - ]  + 7 + ~ - + ~ I  + 

+768 +o . (127) 

Q`5, 1 - -  0 .  Ps, 1 - pb2ca2 028) 

Q5, 2 - -  0 .  
P`5, ~ - pbZc~a ~ (129) 

P5 ,  3 7r o 132i( v2A2] l [~ (2) 3] _ Q5,3_ v4A`5;°'A213 exp ~ @ o - - ~ - ] .  '--~'A - 
pb~ca ~ 1024 (0 ° _ 64-]  

-~[-1(~)~+~(~)~ 1. (13o) 

Q5,4  - -  0 .  P`5, ~ - pb~c3a ~ (131) 

P 5 ,  5 - Q s ,  5 
pb~c~a 2 

Tr iv~A%o o I = ffl-2 {----~-A~] 3 1 
[Oo - - ~ )  

v~A2 

32 1@o- ~ - ] j  
t 32~ (Oo - ,,~m~ exp ( vA ~ --64 ] 1 - 

- ~  [~ (~) ; (~)~l - ~  E; (~) ~ (~)"- 1 ~vt 
- - i-~ \~-1 A 

(132) 

QS, 6 ~ 0 ,  Ps, 6 - pb4ca 2 (133) 

e 6 , 1  - Q6,1 ivAao, 1 I v2A2 7 pb~,~ - ~ [ ~ A ~  1 + { - - - ~ A ~  | 
\% - -6-4-I 32 \ %  - T 4 - )  ] 

1 

1 ,t l log [ v A ~ ]  +~(~)  \Y~/ 

(vA2~ ~-i 3 (2) 3 ll°g \ 32] + Y + ' ~ ' -  1I + 

+7+~+]~  + ~  +o 61 . (134) 
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P 6 ,  ,2 - 
QB'~ Aa°"~ I v~A~ ~ t32i ( (30 - v~A~ 1 

- - ~r. --- 7£A~ ' 1 + [ ---vZAZ~i exp iv ~ -64T-Jt - 

1 " 1 

-Trd a - ~ f 8  + ~  l o g \ 3 2 ]  + y + 2 - -  15 t + 

1 (2)a I (~A~ 7ri 11, 
+ ~  1°g~32]  + Y + T + ~ 8 t  + 

1 (2)~I {vA~ ~i 1~ I 17 (2)  a (;)~] 
+ ~  l°g \ 32] + Y +  2-+ + 9 ~  + O  . 

P a a -  QB,~ _ 0 
, p b 4 a  2 • 

p6,4 Q6,~ rr ivAaao l [ v~A 2 72 t 32i (@o_ V~A2 ~ 
- pbac2a - [-6 [ ---~"ft-2~ 2 1 + { ----v2A2~] exp { ~  -6T] I  - 

~@o - -64-] L 3 2  i@o - 6 4 - ] ]  

1 1 (vA2~ rd 
-rrA [#+~ ( 2 ) + g  (~)z]-  7r-//a [~4 ( 2 ) l l ° g  \ 32] + y +  2 ~I + 

{vA ~] ~'i 2 t log \-j~-] y ~ 
+ l o g \ ~ ]  + r + ~ - - 1 7  t +- + + + 

(135) 

(136) 

-F 

+ Y + 2- + 24 + 1 ~  + 0  . (137) 1 (2)411og(vA2~ + %  \ 3 2 ]  

Q6,5 _ O. (138) P6, 8 = pb4ca ~ 

Po Q00 i Aall I - t32i(o  ° ° - - - ~ { - -  > A ~ [  e x p  - - , O b'~a2 { - - - ~  1 + I vA~ 6g-It 

-zrAa [ - ] ~  + -f~ 1 l °g[ -~  - ) 
~ i  1 1 t l  

+ 7 + 2 12t J" (139) 

7. Discussion of Results. 
The results given in Section 5 are approximately correct only when vA and vA 2 are both small and 

v is not large. An idea of the ranges of v and A over which these results are applicable may be 
obtained by drawing graphs of the different approximations to the generalised forces corresponding 
to the different number of terms retained in equations (28) and (37). These approximations are 
easily identified since the highest power of A retained is increased by two when the order of 
approximation is increased by one. The contribution of the residue at the pole nearest the origin is 
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taken into account in each approximation and is also drawn separately and labelled R. The value of 
this residue is also obtained only approximately, but only the approximations based on all the terms 
quoted in equations (29) to (33) and (38) to (42) have been used. 

The graphs plotted are a selection of different order approximations to the generalised forces 
against frequency parameter v for different values of aspect ratio, and they display characteristics of 
asymptotic expansions. 

An example of an asymptotic expansion is 

F(v) = sin v - s  o " ~ ds ~ u - 2Iv a + 4t~ 5 - 6!v v + . . . .  

This asymptotic expansion is divergent but nevertheless the n'th approximation given by the 

sum of n terms of this series is an arbitrarily good approximation to the actual value of F(u)  in a 

limited range of values of v near v = 0. This agreement deteriorates as v increases and becomes very 

bad for large v. However, for the range of values of v over which different approximations are close 
to each other they are also close to the actual value of the function. 

Accordingly we surmise that when curves corresponding to two consecutive approximations are 

close together then it may be assumed that a good approximation to the generalised force has been 
obtained. 

It is seen from these graphs that the results are applicable over a fairly wide range of frequency 

parameter when the aspect ratio is small, but that this range of frequency parameter rapidly 

diminishes when the aspect ratio is increased. This range of frequency parameter also depends 
on the particular generalised force coefficient under examination. 

When the frequency parameter is so large that the results of the different approximations are all in 
poor agreement with each other, then it is not to be expected that taking still higher-order approxima- 
tions will improve the position. 

In Fig. 5, for example, the second and third approximations to the real part of/'1,1 are quite near 
to each other for v between 0 and 1, but for v greater than 1 they diverge. The values of the real 
part of P1,1 obtained from either the second or third approximations may then be expected to be fair 
approximations to its actual values for v between 0 and 1 but no¢ otherwise. For v > 1 good approxi- 
mations to the values of the real part of P1,1 cannot be obtained by the method of this paper. 

The second and third approximations to the imaginary part of P1,1 are, on the other hand, quite 
near to each other over the whole range of v from 0 to 2 shown in Fig. 5, so these should be fair 
approximations to the actual values of this imaginary part for v between 0 and 2. 

8. Resumd.  

A thin flat rectangular wing of aspect ratio X is placed in a uniform sonic airstream with its 
surface parallel to and its leading edge at right angles to the stream. A Cartesian co-ordinate system 
is chosen with x-axis in the direction of the flow, y-axis to starboard in the plane of the wing and 
z-axis vertically upwards. The origin is taken at the mid-point of the leading edge. 

In a smalt disturbance the vertical displacement of any point On the surface is assumed to be given 
by the second-degree equation 

Z ( x ,  y, t) = ql(t)  + xqz(t)  + yq~(t)  + x~q4(t) + xyqa(t)  + yZq6(t) (140) 

6 

= Y~ fj(x, y )q j ( t ) .  , (141) 
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The q's may be regarded as generalised co-ordinates for the wing displacement. If the wing 
experiences an incremental virtual displacement at time t given by 

6 

8Z = E f;.(x, y) 8qj (142) 
y=l  

where the 8qj are incrementally small and arbitrary, then the virtual work done by the airforces on 
the wing in this displacement is 

f f L(x, y, t)3Zclxdy 
a,rea of 

w i n g  

° I f  = X aqj L(x,  y ,  t)L.(x , y )dx  dy 
j = l  

&rea, o f  
w i n g  

(143) 

where L(x,  y,  t) is the loading distribution on the wing at time t. 
The virtual work may however be written as 

6 

8 W =  ~E QjSqj (144) 
j = l  

where Qj is the generalised force in modej .  Hence by comparing (143) and (144) and noting that 
the 3qj are arbitrary we get 

G= 
are& of 
w i n g  

harmonic with circular frequency w, we may write, as is usual 

(146) 

If the disturbed motion is simple 
with linear theory, 

qj = qjo ei~ j = 1, 2 , . . . ,  6. 

The  corresponding loading distribution may then be written 

6 

L(x,  y,  t) = Y~ lk(x, y)ql¢o ei°~t 
k=l 

where ll~(x, y ) d  °~ is the loading distribution corresponding to the wing oscillation 

Z k = fk(x ,  y)e i~l . 

Substituting expression (147) into (145) leads to 

6 

Qj "- y, Qj, kqko d ~  
k = l  

where 

(147) 

(148) 

(149) 

Q~,k = f f  f j (x ,  y)ll¢(x , y )dx  dy ~J (150) 
& r c ~  o f  

w i n g  

is a generalised aerodynamic force coefficient. We can define a non-dimensional aerodynamic force 
coefficient P~, k by 

Pj, l~ = oa2bfj(cQ,'i(~k(c, b) (151) 
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where b is the wing semi-span, c is the wing chord, a is the speed of sound and p is the density of 

the air. The  coefficients Pj, 1~ are functions of aspect ratio 

A = --2b (152) 
C 

and frequency parameter 

coc (153) 
a 

only. Expressions for the Pj, k's are given in Section 5. 
We may compare some of the quantities Pj, z~ with ordinary aerodynamic derivatives (stability 

derivatives) when the wing is oscillating rigidly. In this case we retain only the first two terms in 

equation (140). 
The  total lift on the wing is Le i~t where 

L= f f l(x, y ) d x d y  
~1'o~ of 

w i n g  

= Q1 {since fl(x, y) = 1} 

= Q1, lqlo + 01, ~ q ~ o  

= pa~b(P1, lqlo + cP1, 2qeo). (154) 

In the derivative notation we have 

L = 2oa~b {z(O)/, + c~(O)l=} (155) 
where 

z = z(O)d ~°t (156) 

is the vertical displacement of the wing leading edge, and • 

c~ = a(0)d ~' (157) 

is the angle of inclination of the wing to the horizontal. If  ~(0) is small then the displacement of a 

The  pitching moment  about the leading edge, and positive in the sense which would make the 

leading edge move upwards  relative to the trailing edge, is 3/Id ~'~, where 

M = -  ~ xl(x, y ) d x d y  

a,r oa, of 
w i n g  

--  Q2 

= - -  Q 2 , 1 q 1 0  - Q 2 , z q z 0  

= - pa 2 Cb(P~, lql, o + P% 2cqz, o). (162) 
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point on the wing is 
Z = {z(0) + xc<0)}e e~ . (158) 

Hence 
z(0) = q~o, c~(0) = q~o (159) 

and 
L = 2pa2b(q,ol~ + q~ocl~) (160) 

from which we identify 
PI , ,  = 21., P1,2 = 21o~" (161) 



In the derivative notation (derivatives about the leading edge) we have 

M = 2pa2cb{z(O)m~ + (O)cm~} 
and so 

P~,I = - 2m~, Pz,z = - 2m~. 

(163) 

(164) 

9. Conclusion. 

Results have been obtained for the generalised forces on a low-aspect-ratio rectangular wing 
oscillating in sonic flow at low frequencies. The modes of oscillation considered were rigid modes 
and a small selection of flexible modes. These results are valid only for low frequency unless the 
aspect ratio is extremely small, in which case the frequency may be quite large. 

The results of the present work reduce to those of slender-body first-order theory for very small 

aspect ratio and frequency parameter. The results given by Miles 8 are more restricted than the 
present ones but are in agreement with them as far as they go. 
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= 

= 

(M 2 - 1)u ~ - 2 M u  a + 

generalised co-ordinates 

f i (x ,  y ) d  °~, mode of oscillation 

Qj., kq1~, generalised airforces 
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Contribution to P~, 1,: from residue at the pole nearest the origin 

Log ® + 2y + ~ri, where Log is defined immediately after equation (19) 
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A P P E N D I X  I 

Soh~tion of Partial Differential Equation 

When u is in the upper half-plane I(u) > 0 an elementary solution of the partial differential 
equation 

_ (o,~ _ 2_°, ) ~vv + 55= + \7~ a u 95 = 0 (165) 

which vanishes as z --> oo, and is singular at the point (~, 0 ,  is 

where 

~Oo HP I ( °'~- 2°' a 
= " ) t  

= ~/{ (y-  ~)~ + (~ -  0~}. 

(166) 

(167) 

If  ~5 is a solution of (165) which is non-singular in an area d of the y, z-plane, then provided the 
area A does not include (~?, 0 ,  Green's  theorem gives 

f s @  &7°O~n 95° a~ 

= 0 (168)  

where s is the contour bounding A and ~/~n is the derivative in the direction normal to this contour 
and pointing out of the area A. 

Let us take ~ > 0. Let ~]1 be a circle of small radius e and centre (~2, ~-). Let ~ and Y~a be respect- 
ively the parts of the circle of large radius R and centre (~2, ~) in z > 0 and z < 0. Let Y~4 be the 
part of the line ~ = 0 lying between the points of intersection of this line with the circle of~radius R. 

Let the area Ax be the area enclosed between ~]~, ~2 and ~]~, and let area A~ be the area enclosed 
between Y~2 and ~a  as shown in Fig. 2. 

We have, with suffixes 1 and 2 referring to areas A1 and A2, 

f (a~o a¢) lim ( o ~ - q o  o ~  ds, = 4ic~(u;~, ~) 
e--->O Z 1 

H I  (2) f f  

f < lim ~ ~ - ~o ~ ds~ = - ~ -rift a u 
R--> co Z 4 (3" 

2~Oa u)'/'l 

x (?(u; y, +O)dy + f ~ [  Ho(m 

(169) 

)1I  I - u ~(u; y)dy (17o) e 7~ a 

f ( a~° lim cp ~ - 
R---~ m Z 4 

u l ~ ,  a 

where 

Hi (a) - u 

X 

x 55(u; y, -O)dy - Ho (~) e a( a u ~(u; y)dy (171) 

= ~/{(y-  v)~ + g~}. (172) 
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Also if ~ = O(log R) and ago/OR = O(1/R) for large R 

f ( a¢o  0¢) lim ~ ~ - goo ~ ds 1 = 0 
/~---> co X 2 

l i m  t~n-9O~2n. 2 ds  I -= O. 
/?-->co 5" 3 

" (173) 

(174) 

Hence applying Green's  theorem and taldng the limits e --> 0 and R -> oa for the two areas A 1 

and An we get respectively 

H i ( 2 )  ~ u 

u go(u; y, + O)dy - 4 i ~ (u ;r  l, ~) = + ~  j a 

- Ho (~) v -~ u ~ (u ;y )dy  (175) 
co a 

oJ 2 2aJ 1/2 //1 (~) e ~ a 
0 = - ~  a e 

f5 i( (176) 

(177) 

Then  from (175) and (176) on using the fact that 

¢(.; y, -0) = -~( . ;  y, +o) 

we get 

= - u go(u; y, +O)dy. (178) 
2 ~7 a e 

This result may be extended analytically, to the whole cut u-plane, described in the main text, 

and then since 

~(u; y, + 0) = 0 lyl > b 

it may be written 

(179) 

/~1 (~) ~ u 

u _ ~(u; ~, + 0 ) d ~  (18o)  
~ ( u ; y , z ) =  ~ 7 a -b 

• e = V ( ( y - ~ ) 2  + ~=} (181) 
where 

and/~1 (~) [f{(eo2/a ~) - (2o~/a)u)'q is the analytic continuation of Hl(2)[f{(oo2/a 2) - (2oJ/a)u} 1/2] to the 

whole of the cut u-plane. 
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A P P E N D I X  II  

Derivation of the Expression for P< ~ 

From (64) and (67) with k = 

1 ~ 
Q4, 4(*,) = 4P zrb~ iu i~au ~ 

4 the following expression for ~4,4(u) is obtained: 

- - - -  ~ ~ /  ao(O)  

Tke residue of Qa, 4(u)e -~uc at the pole 

is 

gl 0 

8a ( ~=b~ 
oob~ O o -  ~ a ~  l 

~ 8a ~1 ~2 1 ( a _ i W l . .  
R4,4=:gPrrb -£~ao, o l ~ i i & z i ~ l ~  ~-u/ l?u~uo exp 

p3A76~o, o 
_ 1 prrbc4a9 - v~A~.~ 4 x 

8192 (@o -- 

3 v2A 2 3 v4A 4 

x 1 +  16 0 o - - 6 4 - !  0 o - - 6 4 }  ) 

Using the first few terms of the infinite expansion of 

- ~ + ~ o -  ~ + + . . .  

ao(O) 
and carrying out the differentiations we obtain 

exp 

32i ( 0 o -  v2A2" 

32i (0  ° _ vZA~ 1 
-6T] 

0 4  4(/'1) = 04', 4(1)('L) -]- 04 ,  4(2)(?'t) -]" 04 ,  4(3)(u) -]-" " " 

where 

E G,~(1)(u) = ~pb~a~ - ~ + - - -  - 24  
a u~ 7 ~  

I ( ja,~e)(u)=~-pbcoa ¢ -  5-a--u 4 - 1 2 ~ - u ~ - + 6 ~  - 

oJb2 11  50o 1 +4c°2 1 3~°a 11 { 1 - 4 c °  1 . . . .  + 3  °)2111 
8a (9 2 a  u ~ a 2 u  4. 2 a  3 u ~ + ~ a u  4 ~ -  

1 co 2 1 36 - -  + 12 + (~4, ~(a)(u) = ~ 7@b% 2 ¢2 26 a~ u~ - ~ u5 ~ 

l 1 1 co2 1 ~a 1 c~*l I + ¢  8 ~ + 2 4 ~ - - - - 1 2 1  - - +  114 . . . .  30 + 

coal co4 111 - - + 2 1  J u~ ~ ~ " 
1 co 1 247 a~ z 1 

+ - 2 = - 4 6 - - - +  93 
, ~ 2  a U 3 2 a 2 u 4 
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The value of the residue of Q4, 4(U) e-/uc at u = 0 is approximately equal to the value of the residue 
of {Q4,4(1)(u) + Q4,4(2)(u) + Q4,4(a)(u)}e --i"~ at u = 0. The residue may be written 

R~,4 = i~pb~2 h~(~A) + h~(~A) + h4(~A) + ~ h~(~A) 

where 

2 1 4 log + ~, + ~ + 
15 

16 
haO'A) - 3 1 20 1 log + Y + 2 20 

1: ( ~ ) [ l l o g  ( ~ ) +  2 1 2 +  ( 2 y -  52~)llog ( ~ ) +  2 l +  

( 11 11)1 + ~ - 1 2 ~ + ~  

ha@A ) = 32 1 8 1 log + ~ - - 

+ (y~ 5 

The contributions of Q4, 4 (1) to the first term in (26) is 

f4 (1) , 4  = 0 

The contribution of Q4, 4 (2) to the first term in (26) is 

I 4 ,  4 (2) = o 27rDb4~°a 5 a i(o] 4 
q+~/ 

o) 3 1 } 
6 

12 
co s i 
a 2 / 

~q + 2a] 

where, since the integrand is integrable at q = 0, the lower limit of integration 3 has been replaced 
by zero in anticipation of the passage to the limit S --> 0. 
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T h e n  

I~, ~ (~) = 4rrpb~a~ e -~m 5 - - 1  24 i 
~o o (q+i )  ~ ( q + @  

= 4~pb~a~ 1 f~o 5 

--==:- 15 

1 (~), 
+ 24/ p -  24 

1 

~(~)~lr ~-~ . 

T h e  con t r ibu t ion  of - (2) Q4,4 to the  second t e r m  in (26) is 

ja a(2) = lim + iS e_,m ~ "12 lzrP b4wa 1 5 °2 1 
' ~=.o 2~r J - 3 ~ I ~  2 ~ 2 a u ~ 

1 I e-(~12)qdq 24 

e-ivt2 _ 

~o ~ 1 3 ~o 3 1 I eiOS*~odO 
+ 4 aS u4 2 a 3 u 4 

( c ° ' d ° )  
u = 2a 

1 
= -2~rpbSa~e-i"l~(i~_ ) • 

T h e  con t r ibu t ion  of Q4, 4 (3) to the  first  t e r m  in (26) is 

1 ~ ,  ~bo~ae~.fo i l ~  ~ 1~, ~ ~ ) 

+ - ~qTi)~ - (q ~ ) ~  - i q ~ )  ~ ( ~ 5  + ~ e - ,~dq  

f~l ~ (~)' (~) 'I  x + 144 - 96 e-iqdq + 

+ - + 12 - 12 

- 228 ~g + 120 \ 2 ]  q6 e-iqdq + 

+ (~)~LI~ ÷ 1~ (~) ~ ~6 ~I1°~ 
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__ ~ ( ~ )  l o g \ 3 2 ]  + 7 +  X 

18 22 (2) 64 (2) ~ ~ (2) a 4(2)~ I 15 15 + ~ + + g e-~m - 

~ ~ +~l l~+ ~I ~ -(2) 11°g\32] +7' -- 6 (2")+4 (~) f,/2~-dq+e-~q 
2 2 53 3 4 t _ 

÷ l~- ~o (~)+ ~ (~)-  ~ (~)-(2)  t e-~'~ 

1~-5 ~(2) ~-q ~ f,/~e~ _ ~(~) ÷(~)~I ~ 

3 1 4 ~°l°g(q-2) e_~qdql 
(~) l~ ~ (~) +~ (~)~I L 

The contribution of Q~, (a to the second term in (24) is 

J~ ,4  (a) = O .  

Then adding all the contributions to equation (24) we get 

Q4, 4 7r iv3ATao, o 
Pa ~ pbc~a~ 64 @o • - -  _ v ~ A ~ 4  × 

t 64 ] 

( 6v2A2 6~A~ } 
x 1 + v2A~ + / --v2~2\2 exp 

Oo~j ~o ~) 
[(~ 1 ( ~ ) l l o g ( ~  ) 

60 

_ ~+~ (~)÷~ 

+(27-~2) llog(V-~---)+2il+(72-- --~7+~)25 1 ] -  

- . 3+g log + y + ~ - -  + 

32i (®o - v~A2~ 
~-~ - ~ !  1 - 

+ ~ , +  ~- + g - 
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3 (iz~-) +2} 2 +~ [ll°g (~) + 

+ (27 H)llog(~A- ) 2I 11 11 - 

1 (i~A) log(~-)+y+ - + -(2) 5~rA4 (i~i_d)~ + 10 . ~ 7¢ 

+ (2Y- ~) ll°g (~-) + 2I + 

w 1 +4 (~_)5 [l 7 30 (2) + 

+ 

(5   )11 + 

1(;)~ I +3 e - - i w 2  __  

- (2) 8156+ (2) +51(2) 2 l fo~l~ e-iqdqlq + 

(vA2] 8 22 
+16 (i~_)~ . l°g\~-]+'+ 15 15 -----(2)  64(2) 2 + ~  +~ (2) s 

4 _ ( 2 )  s [~,A 2 Y 2I 

4(7)~ r~ ~-~ 

- ~ (~)~I: -~,,,-~ 

1815 256 (2) 8+.F9 (2) 4+ (2)~lf °°,/2e-zqdq-q 

-(~)~l~ ' 4(~)2 ~lo~(q-~)e_~ ~ 

+ 
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Lo 2 :  
Fro. 1. The  wing and co-ordinate system. 

FIG. 2. The  areas A 1 and A 2 
described in Appendix I. 
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FIG. 3. The  contour in the u-plane. 
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