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Summary. 

The paper gives a theory of vortex flow in turbo-machines in which the basic assumption is made that the 
axial-velocity profiles always belong to a family governed by a single parameter, ;I. This parameter is a 
measure of the radial displacement of the streamlines. The flow equations then reduce to a single linear 
differential equation for ~ and a corresponding simplification of ideas about, the way in which these flows 
behave is achieved. Comparison with experimental results by Horlock and more-accurate calculations by Wu 
shows that the theory is sufficiently accurate for design purposes. 

The theory, is applied to compressors with a large number of identical stages, and it is shown how a rapid 
solution may be obtained by matrix methods. Examples of flow in a ten-stage compressor are given, and the 
effects of variation of mass flow and of modifications to the inlet guide vanes are demonstrated. 

1. Introduction. 

In the design of an axial-flow compressor or turbine it is usual to proceed in three steps. First the 
overall conditions for each stage are determined by specifying the axial and radial velocities of the 
flow at some design radius. Then the radial variations of these velocities are considered, and finally 
blading is specified which will realize the desired angles of flow. This paper is concerned with the 
second step of this process. The flow is therefore considered to be axi-symmetric, and as is usual the 

effects of viscosity and turbulence will be neglected. Consequently the theory will be in error near 
the inside and outside walls of the machine, but may be expected to hold over a substantial proportion 

of the blade height. 

A large number of methods has been proposed for calculating these flows, so that it may be useful 

to enumerate the criteria by which it is suggested that these methods should be judged. Firstly the 

method must be sufficiently accurate.' The accuracy required is not high, since the changes in axial 

velocity resulting from the three-dimensional effects which are to be calculated correspond to 

changes in the flow angle of a few degrees only. Discrepancies of 10% in the theory will not 

therefore give rise to measurable effects. The Second criterion is that results should be easily 

obtainable. The advent of digital computers means that volume of arithmetic is no longer the primary 
consideration, and ease of programming becomes more important. Thirdly, the theory should be 

conceptually simple, so that the qualitative effects of changes in the  design can be easily visualized. 

The simplest type of theory assumes that the flow is in 'radial equilibrium'i It is now recognized 
tha t  except for certain special designs this is very inaccurate. 
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The most accurate type of solution is based on a numerical solution of the full equations of 
motion through the blade rows. The general theory has been given by Wu 23, and solutions for 
compressible flow in a single-stage free-vortex turbine have been obtained (Wu2~). This method 
has also been used for a single-stage and for a seven-stage compressor (Wu25). These solutions are 

extremely valuable as yardsticks against which more-approximate theories may be measured, but 
the method appears to be far too complicated for general use. 

Approximate solutions using semi-graphical methods have been given by Smith, Traugott, and 
Wislicenus 18 and by Holmquist and Rannie 5. These methods do not appear to be suitable for 

digital computers. ~ 
Another method of solution is to assume that the streamlines in a plane containing the axis of the 

machine are sinusoidal, with a wavelength equal to the axial length of a stage. This approach has 
been used by Traupel 2°. Wu and Wolfenstein ~ and $chnittger 17 have shown how this method can be 

extended for the case where the flow has not yet become completely periodic. While these methods 
may be expected to work well in the later stages of a compressor, where the flow has settled down 
to a repeating pattern, they seem likely to be inaccurate in the first few stages. 

Another approximate type of theory which has received considerable attention is the actuator-disc 
theory. This theory involves replacing a blade row by an infinitely thin disc which causes a sudden 
discontinuity in whirl velocity and static pressure. The resuks of this type of theory have been 
summarized by Marble 13 and a number of papers are included in the Bibliography. Recent 

developments include the application of actuator-disc theories to machines with conical wails by 
Lewis 1°, and to flows with compressibility effects by Horlock 8 and by Hawthorne and Ringrose 4. 
Although there is some difficulty in deciding exactly where to place the actuator discs, it appears 
that the accuracy attained by the actuator-disc theories is very satisfactory. The design problem 

can be solved very readily by actuator-disc methods (Horlock and Carmichael ~) but the problem 

of the analysis of the flow in a given muki-stage machine is much more complicated and there 
appears to be some difficulty in programming this for digital computers. Also, since the problem 
remains one with two independent variables (radius and axial distance) the effects of design 
modifications are hard to visualize. In addition, since in the simplest theory the blade is reduced to a 
disc of infinitely small axial length, this theory does not yield any information about the velocity 
field within the blade passage itself. This difficulty can be overcome by replacing the blade row by 

more than one actuator disc. 
A theory is now being developed by the Authors which can be used to solve both the direct and 

inverse problems of the flow of a compressible fluid through a multi-stage compressor with varying 
hub and tip radii. This paper is concerned with the fundamental part of the theory, which is the 
analysis of the flow of a perfect fluid through a given compressor of constant hub and tip radii. 
In this theory as well as making most of the usual approximations, an approximation to the form 
of the axial-velocity profile will be made. This makes the problem simple to consider, yet retains the 
general overall features of the fluid flow. It will be assumed that the distribution of axial velocity 
with radius can be represented as a single-parameter family of profiles. It is thought that this new 
approximation is as good as is warranted by the assumption of non-turbulent and inviscid flow. 
Using this assumption, the hydrodynamical equations are satisfied at the design radius only, where 
the design radius is defined as the root mean square of the hub and tip radii. The equations are 
solved in terms of a non-dimensional slope of the axial-velocity profile, which can be assumed to 
give an approximate picture of the radial displacement of the streamline at the design radius. 



2. Approximations. 
In this paper the following approximations will be made: 

(a) The air is assumed to be incompressible and inviscid, and the flow is non-turbulent. 

(b) The flow is assumed to be rotationally symmetric. This neglects all blade grid effects such 
as wakes and secondary flows. 

(c) It is assumed that the air outlet angle from each blade row is constant. This will be very 

nearly true as long as the blades are not stalled. 

The two latter approximations are equivalent to replacing the actual blades by a cascade of 

infinitely thin blades, very close together, but having the same axial chord as the actual blades. The 

outlet angle of these blades is the air outlet angle, but the inlet angle is the air inlet angle determined 

by the conditions at exit from the previous row. This inlet angle will vary with mass flow, and, 

except when the blades operate at zero incidence, bears no relation to the actual designed blade 

inlet angle. 

(d) It is assumed that the total pressure loss in each cascade relative to that cascade is independent 

of radius. 

(e) It is assumed that the radial displacement of the streamlines is small. 

(f) Variation of axial velocity with radius is assumed to be of the form of a family of curves 
governed by a single parameter. 

(g) The equations of motion will be satisfied only at a design radius. 

AwaY from the design radius the equations of motion will not be satisfied exactly, but since the 
axial-velocity profile and its radial derivative are correctly determined at the design radius it is 
possible to draw the complete axial-velocity profile with little error. 

(h) It is assumed that the blades exert no radial force on the air. 

Since a twisted blade can only be radial at one axial station this will only be exactly true at one 
axial station. Wu 2~ found that the effect of radial force was negligible in his solutions for compressors, 
but that there was a significant effect in a free-vortex turbine (Wu24), where the blades are highly 
twisted. This is therefore a small effect which could be incorporated into the present theory, but 
will be neglected in this paper. 

(i) It is assumed that the air flows through each row of blades on a path such that the tangent 
of the relative air angle varies linearly from the leading to the trailing edge of the blades. 
This assumption is exact for a row of infinitely thin blades designed on a parabolic centre- 
line. 

This last assumption is not essential to the theory, which can readily be modified to allow for 
any given variation of relative air angle through a blade row. 

In addition to the above approximations, the theory in this paper is established for the special 

case of a compressor with constant hub and tip radii. 

3. Basic Theory. 

3.1. Assumed Axial- Velocity Profiles, and Continuity. 
In accordance with tile fundamental approximation that the distribution of axial velocity with 

radius in a machine can be represented as a single-parameter family of profiles, it will be assumed 
that the axial velocity v is given by 

v _ 1 + - 1 (1) 
" 
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Profiles for various values of the parameter A are shown in Fig. 5. At the design radius, R, the axial 
velocity is always V~, and the shape of the curve at this point is controlled by the parameter A. 
This of course is far from being the only family of profiles which satisfies the required conditions, 
but it has been chosen both for algebraical simplicity and since it gives profiles which are similar 
to those used in practice. 

The design radius R is chosen as the root mean square of the hub and tip radii, 

R e = ½(t e + he). (2 )  

The mass flow through the machine is then given by 

2rcrovdr = 2rcpVi~ f r + ½~r ~ - 1 dr 
h , )  h 

= 7 r p V n ( # - h  e) 

from equations (1) and (2). This is independent of the parameter A {the choice of design radius in 
equation (2) has been made to this end}. Since it is being assumed that p, t, and h are constants, 
this shows that V R is a constant throughout the length of the machine, and is determined by the 
mass flow. The problem of finding the flow in the machine is therefore reduced to finding the way 
in which A varies along the length of the machine. 

The continuity equation allows a stream function ¢ to be defined so that 

a¢ 
r v  = - ( 3 )  

and 
a¢ 

r u - -  ax" (4) 

Substituting for v from equation il) in equation (3) gives 

Or 

Integrating this with respect to r, and choosing the constant of integration so that ~b is zero at the 
hub gives 

¢ = _ ½v (,,e_he) + g g e  ( te--re)(re--he)"  ( 5 )  

If this is now substituted into equation (4) an expression for the radial velocity is obtained as 

V R d?t 
u = 8rR~ (#  - r 2) (r ~ - h e) dx" (6) 

The stream function may also be used to compute the radial displacement of the streamlines. 
It will be assumed in the theory that this radial displacement is small. Consider in particular a 
streamline which lies at the design radius at an axial station where the axial-velocity profile is 
specified by A (point A in Fig. 4). Farther downstream the streamline lies at B where the radius 
is (R + 3R), and A has increased to (A + 3A). For the point D, which is the point on the design radius 
at the second axial station, the stream function is given by equation (5) as 

VR 
CD = CA + ~ ( t e - R e ) ( R ~ - h e )  ~A. 



Also from equation (3) for the second station 

o~ 
¢~ = CD + U~ , R  = ¢~  - R Y d e R .  

But since A and B are on the same streamline ~b A = CB, and eliminating the stream functions gives 

1 
~R = ~ ( # -  R ~) (R2-hZ)3A. 

This may be written 
a2~ 2 

~R = W 3~, (7) 

where k is a constant which depends mainly on the aspect ratio of the blades and is given by 

k -  (t~-h=) (8) 
4~/2 Ra" 

Equation (7) shows that, for small displacements, the radial displacement of a streamline near the 

design radius is directly in proportion to the change of A, and this is probably the easiest way to 
visualize A. )t is also simply related to the slope of the axial-velocity profile at the design radius, 

since differentiation of equation (1) gives at the design radius 

R ( 0 v )  
a = ~ ~ ~=. (9) 

v~=(t=- R=) (R=- h~) d~  
8R a dx 2 

This may be written 

3.2. The Basic Differential Equation for ~. 
In order to find the way in which ~ varies along the machine an equation of motion is required. 

Assuming that the blades exert no radial force on the fluid, the radial equation of motion for axi- 
symmetric flow is 

Ou au w ~ _  lop .  (10) 
u 7 r  + v Ox r p ar 

Owing to the restricted range of axial-velocity profiles which are available it is only possible to 
satisfythis equation exactly at one radius, and this will be chosen as the design radius. From 
equation (6) at the desig n radius, 

(~u) = VR(t2-R2)(R2-h~)d~A 
~x • 8R a dx ~ 

Putting this into equation (10) for the design radius gives 

where 

g =  VR~ 

(11) 

(12) 



Since the radial velocities will be small the ½u ~ term in equation (12) is negligible, g may therefore 
be thought of as the static-pressure gradient at the design radius. Equation (11) then shows how the 
curvature of the streamlines is determined by the centrifugal effect of the whirl  velocity and by the 
static-pressure gradient. This is the equation governing the variation of A along the machine. 
However, as the static-pressure gradient g will vary along the machine, it is useful to replace it by 
the gradient of stagnation pressure. 

The stagnation pressure of the fluid relative to the blade row through which it is flowing is 
given by 

e - P + + + 

P p 

where/3 is the tangent of the flow angle in the circumferential plane, so that/3v is the relative whirl 
velocity. Differentiation with respect to r gives 

) 1 0P=_0 P+½u s +v(1+/3~')Tr + v~l~r" (13) 
p 3r 3r 

At the design radius this gives 

G = g + ~(l+fiR~) + (R/3~!)  , (14) 

where 

a = pvR--- ( i s )  

G is the gradient of relative stagnation pressure at the design radius. 

Eliminating g from equations (11) and (14) gives 

d~A 
k=a = 

This is the basic differential equation for the variation of A within a blade passage. The quantities 
/3n, (O/3/ar)n, and W R / V  R are presumed to be known functions of x, since they are determined by 
the blade geometry. 

It will also be shown that provided the displacement of the streamlines is small, G is a constant 
in any one blade passage. For, considering the two streamlines AB and CD in Fig. 4 which are 
always close to the design radius, the change in stream function 8¢ from one line to the other is 
constarit and, at the design radius, the axial velocity V R is constant, so that from equation (3) the 
distance between the two streamlines 3R is also constant. For flow without loss through stators P is 
constant along a streamline. The corresponding condition for rotors is that (P+  ½pf~2re) is constant 
along a streamline. Now" since the streamlines AB and CD are deflected by the same distance, the 
term ½pg2Zr e will change by the same amount for each of them, and so 8P, the difference in stagnation 
pressure between the two lines, is constant. Therefore, since 8P and 3R are both constant, G must 
also be constant. 

If there are losses in the flow, the assumption that G is constant will still hold, provided that the 
losses are the same at all radii. 

Before considering methods of solving equation (15) within the blade rows, the flow in the 
annular ducts which form the inlet and outlet to the machine, and also in the gaps between the 
blade rows, will be considered. 



4. Flow in an Annular  Duct. 

For flow in an annular duct  the angular momentum, wr, and the stagnation pressure are constant 

along streamlines. At the design radius the separation of the streamlines is constant, and therefore 

and 

3 
&~7 (wr)R = constant = oJ V R (17) 

G = constant.  (18) 

~o is a constant which determines the amount by which the flow departs from free-vortex conditions. 

Referring to Fig. 4 in which points A and D a r e  at the design radius, the angular momentum at B 

is given by 

O ( w r ) 3 R .  (wr)B = + 

But since points A and B are on the same streamline, (wr)B = (wr)A, and using equation (7) for the 

displacement of the streamlines, and also equation (17), 

~°VRa~k~ 32t. 
(wr)A = (wr)D + R 

This may be written 

~oVRaeh 2 ~ = wr + -~ ~ , 
w r +  ~ ~ . D 

so that at the design radius and providing the displacement of the streamlines remains small 

w R  ~ + coVRa2kZA = constant.  (19) 

On substituting w = fly, equation (17) gives 

or, using equation (9) 

Similarly equation (19) gives 

 RVR + Tr 

~ ¢ . I ) .  

coa2k 2 
fir + - ~ 5 -  Z = constant.  

(20) 

(21) 

Eliminating fiR, (Ofi/Or);v and G from equations (16), (18), (20) and (21) then gives 

This may be written 

where 
_ 1 

k'~ k 2 

a ~ d2A 

k 2 

= constant = - A~. 

k,2a ~ dZA (22) 

(23) 



The  solution of equation (22) is 

;~ = Aoo + Ae +zIlr~ + Be -~lk'~ (24) 

where A and B are arbitrary constants. 

For an inlet duct the value of A must not become infinite far upstream where x tends to - oo. 

This  means that B is zero. Similarly, for an outlet duct the solution must remain finite when x tends 

to + oo, and then A is zero. Hence, if A 0 is the value of A when x = 0, 

(;~ - Aoo) = (A0 - Aoo) e~ '~Ik'~  , ( 2 5 )  

where the upper  sign refers to the inlet duct  and the lower sign to an outlet duct. I t  is seen that Ao~ 

is the value of A far away from the machine. 

Differentiating equation (25) gives 

k,a dA 
dx = + (a°--A°°)e±X]k'a" (26) 

Differentiating again and using equations (11) and (23) gives for the static-pressure gradient 

( k~a~°J°~ 
g = - 1 R z ](A0-A~o) e~xlk'~+fiR 2- (27) 

The  result obtained in this section may be compared with the exact solut ionfor  flow in an annular 

duct when Ao~ = 0 and co = 0 (Bragg and HawthornO)  .This exact solution has the form of a series 

in which each term varies exponentially with x in the same way as in equation (24) but  with a 

different value of k for each term. These  values of h are the roots of 

where J and Y are the usual Bessel functions. Th e  axial-velocity profile corresponding to the lowest 

root has no maximum or minimum for h < r < t (although the slope is zero at r = h and r = t) and 

is therefore comparable to the profiles assumed in this paper. The  values of ka/t calculated from 

equation (8) and for the lowest root of equation (28) are compared in Fig. 6. Th e  agreement is 

seen to be very close. 

When ~o is not zero the exact linearized solution for flow in an annular duct has been given by 

Marble 13. The  effect on the rate of decay of disturbances agrees exactly with equation (23). 

5. Flow in an Isolated Blade Passage. 

I t  has already been demonstrated that for a compressor with constant hub and tip radii the values 

of R and V R are constant through the compressor, and in particular through each individual 

blade row. In  addition G has been assumed to be constant in a blade passage. Thus  in order to solve 

equation (16) it is necessary to know ~ ,  (a[3/Or)n and w R as functions of x. However,  f rom Fig. 3 it 

is seen that wi~ for both a rotor row and a stator row depends only on fiR, as given below. 
For  a rotor row (1 

and, for a stator row 

VR / = fir  2 (29b) 



where m is a mass-flow parameter defined by V~If~R which is constant in any blade passage. 
Thus any analysis applied to equation (16) for the blade passage of a rotor row will apply for the 
blade passage of a stator row, if 1/m is put equal to zero. The remainder of this section will therefore 

be devoted to the flow through an isolated rotor row of blades. 

The values of fir and (3fi/3r)R at entry to and exit from a blade passage are determined by the 
flow conditions at inlet and exit. However, we can assume any reasonable variation of fir and 

(8fi/3r)n within the blade passage itself. In this analysis it has been assumed that both fin and (3fi/3r)R 

vary linearly with x through the blade passage, so that fR and (3f /3r)n at any point within the 

passage are given by 

J 
(30) 

This assumption is very close for the central streamlines in a blade passage, and is exact for a row 

of infinitely thin blades designed with a parabolic centre-line, working at zero incidence. A more 

accurate variation could be obtained by analysing the pressure distribution round the cascade blade 

and putting in the correct variation of mean flow angle. 

Substituting equation (30) in equation (16) yields 

dZA 
dx 2 ( L + P x + Q x 2 ) A  = W +  U x +  Vx ~, 0 ~ x <~ a (31) 

where 
k2a~L = 1 + f r o  ~ 

k~aap = 2fm(f in~- fm ) 

k a%o = 

k2a 2 W 

k 2 a  3 U = 

k2a4 V .= 

R o. _ R 

8B 

This is a linear differential equation for A, the solution of which will contain two arbitrary constants, 

one of which is determined by the conditions at entry to the passage and the other by the conditions 

at exit from the passage. 

If we assume that the isolated blade row is preceded by an inlet duct and followed by an outlet 

duct, it follows from equations (25) and (26) that the solution of equation (31) at inlet to the blade 
passage must satisfy the equation, 

dA (A- A~.,,). (32) 
k'a dx = 

Similarly at outlet from the blade row, the solution must satisfy 

k'a dA _ (A- A~oe) (33) 



where Z ~  and k~d are calculated from equations (16), (20), (22) and (23). Since, in general, it will 
not be possible to obtain an exact analytical solution of equation (31) for a blade passage, an 
approximate solution (e.g. a power-series solution) must be found, or a numerical method of 
solution may be used. In each case the method of attack is the same. An initial guess for the value 
of ~ at inlet to the blade passage is made, and (dA/dx) is calculated from equation (32). Solving 
equation (31) then yields the values of A and (dA/dx) at exit from the blade passage. These values 
should satisfy equations (23) and (33), which are used to provide a closer initial guess for )t. Further 
iterations are performed until a solution is found which satisfied the conditions at exit. 

The solution for the flow through an isolated blade row followed closely by a row of outlet 
guide vanes can readily be obtained. In this case the value of m in equation (23) for the outlet duct 
becomes zero, and assuming the gap between the two blade rows to be small the problem assumes 
a linear form. To solve this two initial guesses for the value of A at inlet are made, and the 
respective values of (dA/dx) are calculated from equation (32). The two solutions at exit are scaled 
by a factor b and substituted in equation (33), producing a linear equation for b. Knowing the scaling 

factor b the true values of A at every point on the mean radius within the blade passage can at once 
be obtained from the two initial solutions. 

Some solutions for the flow in a blade passage have also been obtained using an alternative 

assumption about the variation of fin and (3~/3r)R through the blade passage. By analogy with 
equation (22) for the flow in an annular duct, equation (16) for a blade passage may be written 

k~a2 d2;~ - ~ =  -Zo~ (34) 

where 

and Ao~ 

l 
~ = - A~Jg- ~-~-£! - , ' R ~  or/~'R + C (35) 

is assumed to vary linearly through the blade passage so that 

then the solution for A is 

X 
A~ = A ~ + ( A ~ a - A ~ ) - ,  (36) 

a 

(x) (x)  37, A =  C isinh ka + C2cosh ka +A°~u+(A~a-A°°'*)xa 

where C 1 and C~ are constants. Calculating these in terms of the inlet values of A and (dlldx) gives 

(dA) _ k(A®a_ ;t~,) ' Cl= ka dx 

C~ = A i - A~u. 

Thus the value of A at exit from the blade, row is given by 

As= l ha (~@~)l- k(A°~d-A~)I sink ( ~ ) +  ( ) t l - ~ , ) c o s h  (~) + Aooa. (38) 

The values of A ~  and A~a are calculated from equations (16) and (34) and the same method of 
solving the problem is used as was described in the previous paragraph. It is interesting to note 
from Fig. 7 that (for a multi-stage compressor) the values of )t obtained using this assumption agree 
very closely with the values obtained using the assumption of a linear variation of tan ~. Since this 
assumption leads to a vast saving of arithmetic and seems to be quite accurate it is recommended 

10 



for use when a digital computer is not available. However, since equation (35) contains A, which is 

the unknown which we are trying to find, the physical meaning of the assumption in equation (36) 

must always be dubious, and when a computer is available the assumption of linear variation 
of/~R and (a~/ar)R is preferred. 

6. Flow in a Multi-Stage Compressor--General Case. 

A compressor consists of alternate rotating and stationary rows of blades, i n  each of which 

equation (16) is true. Thus  the solution of this equation for a complete compressor consists primarily 
of solving the equation for each individual blade row in turn. On passing from one blade passage 
into the next continuity of axial, radial and whirl velocities must exist, and in addition the static- 

pressure gradient (g) must be the same. Therefore, if for the present the axial gaps between the 

blade rows are neglected, the values of fib and (3~/3r)R at entry to a blade passage can at once be 

written in terms of the given values at exit from the preceding passage. 

For a stator, the whirl velocity is given by w = fly. For a rotor, the whirl velocity is w = - fly + ~r. 
Therefore from Fig. 3, at exit from a rotor row, 

so that 

and 

- fi2v + ar = 

= + - - ,  
gl 

afi~ 3fl~ f~ D.r 3v 
Or Or + v v ~ Or" 

Thus  at the design radius, putting r = R and m = VR/t2R, 

and 

1 
f i8  = - fi~ + - -  ( 3 9 )  

m 

R \ a r ! R  - R \ a r / R  +-m-- 'm (40) 

Similar expressions can be obtained for a stator exit-rotor entry interface. 

Since g is constant at the interface between two blade rows the value of the stagnation-pressure 
gradient G in a blade passage can be found in terms of the value of G in the previous blade passage 

by writing equation (14) for both blade passages at the interface. Finally A and (d)L/dx) must be 
continuous from one blade passage to the next. Thus  if a solution of equation (16) has been found 

for one blade passage of a multi-stage compressor, a solution for a blade passage in the next row 
can readily be obtained. 

It  is not necessary to neglect the axial gaps between the blade rows when considering a multi-stage 

machine. Having obtained a solution in a blade passage, the theory of Section 4 can be used to find 

the solution in the gap after the passage. This will give values of A and (dA/dx) at entry to the next 

blade passage, and these values together with equations (14), (39) and (40) will enable the solution 
to be continued through this passage. 

Equation (16) is linear within each blade passage and in the axial gaps between the blade rows 

and at exit from the compressor, but  the boundary conditions are non-linear, since the value of the 

constant k' for each of these sections depends on the value of 2 at entry to the section. However, the 

11 



axial length of the gaps between the blade rows is usually very small compared with the axial length 

of the blades, so that they are usually neglected. If they are not neglected the solution within each 

gap is given by equation (24) as 

A = A~ + A e  ~Ik'~ + B e  -xI~'~, 
where 

Now (m/R), given by equation (20), will in general be small compared with (l/ha) which is itself 

small. Since x is also small, ( x / k ' a )  will be much less than unity so that within the gap, equation (24) 
may be written 

)t Ao~+A l+~7~a + B  1-- 

and the effect on A of neglecting the modification to 1/ka  will not be significant. Thus within the gap 
between blade rows it will be assumed that k'  is equal to k. 

At exit from the compressor the air will normally flow through a set of outlet guide vanes before 
entering the outlet duct. These guide vanes will remove the swirl component of velocity so that ~o 
becomes zero in the outlet duct and k '  assumes the constant value k. Consequently, the problem is 

linear within the whole compressor and a method of solution similar to that for a single blade row 
followed by a row of outlet guide vanes can be used. Two initial guesses are made for the value of A at 

inlet to the first row of blades, and two complete solutions using these initial guesses are then 

obtained. The solutions at entry to the outlet duct are scaled linearly to fit the boundary conditions 

at that point expressed by equation (26) in the form 

k 'a d)~ _ ( ?t - ao~ ) . 

The scaling factor b thus derived is used to calculate the correct solution at that point and thus at 

every point within the compressor. 

The special case when there are no outlet guide vanes (and thus k' is not equal to k in the outlet 

duct) can still be treated in the same manner, since k' only occurs in the solution when the scaling 

factor b is being calculated at exit from the final blade row. This is given by 

1 
b =  

1 - )~ +k-~(dA)~ 1 (A,._A~) 

(dh)~ 2 +~a l  (A_A~o~) 

where the subscripts 1 and 2 refer to the two initial solutions. Since (dA/dx)  and (h-A~o) will be 
very large at this point for any initial guess which is not the exact initial value of A, a small change in 
the small number 1 /k 'a  will not significantly affect b, and so k '  may be assumed to have the value k. 

Since the solution for a multi-stage compressor is basically a series of solutions for individual 
blade rows, the problem of the flow through a multi-stage machine lends itself very readily to an 
efficient digital-computer solution. A programme for the solution of equation (16) in any compressor 
has been written for use on the EDSAC 2 computer of the Cambridge University Mathematical 
Laboratory. Details of this programme are given in Appendix I. This programme has been used 
to obtain the flow patterns through several compressor designs, the results of which are shown 

in Figs. 7 to 14. 
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7. Flow in a Mult i-Stage Compressor--Identical Repeating Stages. 

In the previous section the flow through a general multi-stage compressor has been considered, 

and it has been shown how the problem can be solved numerically. A numerical solution, of 
necessity, involves dividing each section into small intervals, and solving the equation step by step. 
However, for the case of a set of identical' repeating stages a method of solution has been evolved 
which will provide values of A at the leading and trailing edges of all the blade rows, without having 
to solve the differential equation at any intermediate points within the blade rows. It will be assumed 
that the compressor under analysis consists of a number of identical stages which may be preceded by 
several stages which do not form part of the repeating group. The compressor will be terminated by a 
row of outlet guide vanes followed by a duct. The axial gaps between the blade rows will be 
neglected. 

Consider a row of rotor blades. The linearity of equation (16) permits the solution at the trailing 
edge (station 2) to be written in terms of that at the leading edge (station 1) in the form 

= + aags + a4 As alas + a2 a dx 1 

dA as?t s + a  6 a d x  s a dx 2 = ' + aTgs + as (41) 

= + assgs + as2 g~ agA s + aso a dx s 

where a s to a12 are constants and a is the axial-chord length of the blade row. 
Similarly for a stator row the solution can be written 

A 4 = blA ~ + b2 

( d h )  = b S ~ a + b 6 .  a ~ x  4 

(ad@) +baga +b~ 

( a ~ ) 3 + b T g a  +bs  

= + bslgs + bl~ g4 bg;~s + blo a -d-x 3 

Now a column matrix, X~, is defined such that 

= 

and in addition define matrices A, D, B, E such that 

as ~2 a3 ] 

A ~ a 5 a 6 a 7 

a 9 alo al l  

bl ba .ba ] 

B -= b 5 b 6 b 7 

b9 bso bss 

D - 

E --- 

a4] 
a8 

a12 

b s • 

b12 

(42) 

(43) 
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Then equations (31) and (32) may be written in the form 

X~.= AX~ + D 

X 4 = B X 3 + E .  

(44) 

(45) 

If now, in the usual way for a compressor, a 'stage' is defined to be a rotor row followed by a stator 

row, then by continuity of 2~, (d,~/dx) and g at the rotor-stator interface, and neglecting the axial 

gap between the blade rows, 

X3. 

Thus by combination of equations (44) and (45), there follows for a stage 

24-.= CXI-I- H 
where 

and C = B A  I 

H BD + E .  ) 

Therefore, writing (~)X as the value of X at entry to the nth repeating stage, 

(n+~)X = C(u)X + H. 

This can be written in the form 

(~+l)X' = C(n)X' 
where 

(.~)X' = (~)X - M 
and 

M = ( 1 -  C)-IH.  
Hence it follows that 

(n)X' = Cn (llX ' . 

Let the eigenvalues of C be/L1,/~ and/~8 with corresponding eigenvectors ~1, as, '%- 

Thus (1)X' can be written as the sum of the three eigenvectors in the form 

(1)X' = ~IE1  --t- 72E2 --~ 73E3 

where y,, ~2 and Ya are constants. 

And since, by definition, CE 1 = /zlE 1 it follows that 

and therefore 
(n)X t = -),,1~ln-1E1 + ~21(L2n--l~'~2 + ~3~3n--1.~,3 

(n)X = ~]1~/,lq¢-1~1 -t- 72~t2n-l'~'2 "[- ~]3/£3n-1'~'3 + M. 

(46) 

(47) 

(48) 

(49) 

(5o) 

(51) 
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There are now three conditions available to determine the three constants 7a, 72, Ys- Two of these 
conditions are at entry to the compressor. One is the relation between ~ and (dPt/dx) given by 
equation (32), and the other is the condition for the correct stagnation-pressure gradient at inlet 
given by equation (14). The third condition which must be satisfied is the relation between Z and 
(d~/dx) given by equation (33). 

(51a) 



The three terms on the right-hand side of equation (51) may now be regarded as disturbance 
terms to the regular flow pattern, these being significant at the ends of the compressor only. Thus 
for a compressor with a large number of repeating stages, two of these terms will be significant 
at the front and become small towards the middle, and the third will be significant at the back and 
likewise become small towards the middle. If all the eigenvalues are real then 

- 1  < / ~ <  1 

and 
- 1 < / ~ 2 <  1 

/x 8 < - l o r / x  3 > + 1 .  

However, in practice it has usually been found that ~1 and/~2 are complex conjugates and will be 
denoted by ~ _+ i~. In this case the modulus of the complex roots must be less than unity. For 
complex conjugate eigenvalues'the eigenvectors will also be complex conjugates, which will be 
denoted by A + i I I .  

Using these definitions, the solution at entry to the first repeating stage can be written as 

(1)X' = yl(A + i I I ) +  y2(A-  iII) 

and the solution at exit from a compressor of n repeating stages is 

(s2) 

(~+~X' = y3~2~Ea. (53) 

Since (1)X' must necessarily be real, it follows at once from equation (52) that Yl and 72 are complex 
conjugates, Which will be represented by p + is. 

Now, if A 0 is the value of ;~ at entry to the compressor, 

then 

[!:1 X0 = ~o 

and it can be seen that the value of X after all the stages which precede the repeating stages (i.e. the 
value of X at entry to the first repeating stage) may be expressed in the form 

(1)X = AoP + (54) 

where P is a 3 by 3 matrix and Q is a 3 by 1 matrix devised from the matrices which define the blade 
rows preceding the repeating stages. 

Therefore, equating equations (52) and (54) the matrix equation 

is obtained. 

(p + ic 0 (A +iII)  + (p - icr) (A - i I I )  = AoP (55) 
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o r  

This  can be writ ten in the form 

1̧1-1 E-o-  • (56) 

This  equation determines A0, p and ~. Hence, the solution at the front of the compressor and the 

constants 71 and y~ have been found, so that there remains only Y8 undetermined.  

To  find 7a, equation (33) expressed at exit f rom the outlet guide vanes is used. Since co is zero in 

the outlet duct, k' has the constant value k and equation (33) can be expressed in the form 

dA 1 
a Zx' = k (g-/32)" (57) 

I f  J and K are respectively the 3 x 3' and 1 x 3 matrices governing the flow through the outlet 

guide  vanes, the matrix X at exit from these blades is given by Xe, where 

= J(r3  3 E  + M)  + K 
which can be writ ten as 

X~ = Tatar(J v s) + (JM+K). (58) 

I f  equation (58) is now writ ten in terms of the matrix components  in the form 

equation (57) can be used to obtain the equation 

yam'~D~ - ~d = [~a - k~]  - fi~. (59) 

Equation (59) yields 73 directly. 
This  matrix analysis furnishes a quick method for obtaining the solution of equation (16) at the 

trailing edges of all blade rows in a multi-stage compressor of identical stages. First the coefficients 

of the matrices A, B, D, E are obtained for an isolated rotor row and an isolated stator row using a 

numerical or approximate analytical method. Th e  eigenvalues and eigenvectors of the three by three 

matrix C are next found, and then the constants 71, 7~ and Y3 are evaluated. Equation (51a) gives the 

value of X after every repeating stage, and equation (44) gives the values of X after the rotor rows. 

For  the special case of 50~/o reaction stages, the values of X '  after the rotor rows can be found 

by taking n as the corresponding half-integer {e.g. the value of n to give the solution after the nth 

rotor is (2n + 1)/2}. This  follows because the matrices A and B are identical, and thus the eigenvalues 

of A are the square roots of the eigenvalues of C, the eigenvectors remaining the same. However,  

instead of adding the matrix M to (~)X' to get (~)X in this case we must  add the matrix [AM + D]. 
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This matrix method of solution is considerably quicker than the numerical method, and is 

particularly advantageous for a compressor having a large number of identical repeating stages. 

The main disadvantage of the method is that it is only possible to obtain solutions at the leading 

and trailing edges of each blade row, and thus no indication is given about the form of the solution 

within the blade passages themselves. The method of solving equation (16) described in this section 

has also been programmed for use on the EDSAC computer, and details of this programme are 

given in Appendix II. Results obtained by this method have been found to agree exactly with results. 

obtained by the longer numerical method of solution. 

Simple calculation of the regular flow patt&n. 

The regular flow pattern which occurs in the middle of a multi-stage compressor with many 

stages may be obtained by evaluating the matrix M, but the resuh may be obtained much more 
conveniently by starting from the basic equations for flow in a blade row. It will be assumed in this 
section that the aspect ratio of the blades is high, so that the change in A across either the rotor or 

the stator is small, and 
A1 = A2 = ~3 = A4 = A. 

Since the flow is periodic it will also be assumed that 

~ J ~  = - ~,¢x212 = - \ & V ~  = \ & 2 ]  " 

Also, since there is no change of stagnation-pressure gradient across each blade row, 

G1 = G2, G3 = G~. 

Equations (39) and (40) relate the flow angles at stator inlet to the conditions at rotor outlet. 

Since the pattern is periodic, similar equations relate the conditions at rotor inlet to conditions at 

stator outlet, namely 
1 

/31 = m /34, 

and 
{a/3q = [a/34  1 a2 

R k a r ] R  - R k & ] n + m  m" 

If equation (16) is written for each of stations 1, 2, 3 and 4, there are then sufficient equations. 

for the unknowns to be found, and the result for A is 

2 / Off2 
(~2 +/3~)  - { R  -'-~h m -  \ -~r + R Or/ 

A =  
/32 +/34 

The corresponding result for the gradient of stagnation pressure relative to stators is 

4 2 2 ~ 2 
1 - 2/32 - 2/3~ + ~/34 + m/34 - --/32/34 

G = 2(/32 +/3~)  m 

+ R ~ -2 - /342+ /32 /34 -~ /34  + 

+ R ~ - r  - 2 - 1 3 2 2 + / 9 2 / 3 4 + m / 3 2  • 
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For the special case of 50o//o reaction at all radii 

= 

'Then 

and 

Y r ,  Yr " 

1 R 3fi 
A -  1 

mE p ar 

1 Rg~  1 
G 3 - I + - -  

rnp fi ar 2m ~ 

(62) 

(63) 

These results are particularly useful in the preliminary design calculations for a compressor. 

8. Discussion of Results. 

8.1. Model Compressor. 

To illustrate the method of using the theory presented in the foregoing sections, it has been 

:applied to calculate the flow through a hypothetical ten-stage compressor both in the 'as-designed' 
condition and for conditions when various modifications are made to the compressor geometry and 
to tile mass-flow rate through the compressor. 

The machine consists of a row of inlet guide vanes followed by ten identical stages, the axial 
gaps between the blade rows being ignored. I t  is presumed that the blading has been designed by 
assuming constant axial velocity throughout (i.e. A = 0), equal work done at all radii, and 50% 

reaction at all radii. The rotor blades are therefore mirror images of the stator blades. 
The information relevant to the specification of the compressor is summarized below. 

Constant tip radius t 

Constant hub radius h 

Angular velocity of rotor f2 

Axial-chord length of all blades a 

Exit air angle relative to blade c~ 

Stage work AH 
(Blade speed at design radius) 2 (f~R) ~ 

500//0 reaction at all radii. 

Hence, 

Design radius R 

Blade speed at design radius f~R 

Mass-flow parameter m 

Aspect ratio 

Blade twist at exit 3B/Or 

This  value of 3fi/Hr is obtained by putting A = 0 in equation (62). 
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1208 r.p.m. 

1.6086in.  

30 ° 

0 .4  

9.4868in.  

100 ff/sec 

0.5196 

3.73 

0.1420. 



As-designed conditions.--The vortex flow for the hypothetical compressor under as-designed 

conditions is shown in Fig. 7. It is seen that the flow pattern can be divided into three distinct 

phases. First there is a basic periodic variation which persists right through the compressor; then 

superimposed on this basic flow are the other two phases. These consist of disturbances at inlet and 

exit caused by the conditions existing in the inlet and exit ducts respectively. Each of these phases 
of the flow will be considered in turn. 

After the first four stages the variation in A consists entirely of the basic periodic variation, called 
the regular flow. This regular flow has a wavelength equal to the axial length of a single stage and is 
of very small amplitude. This result verifies the assumption used by Traupel ~°, Wu and Wolfenstein 22, 

and Schnittger 17, that the streamlines in a plane containing the axis of the machine vary in a periodic 

manner. 
The regular flow comprises a radially inward deflection of the air through the second half of a 

rotor row and the leading half of a stator row, and a radially outward deflection through the latter 

half of a stator row and the leading half of a rotor row. These flow variations are small, and can 
1 c normally be neglected for design purposes, since the overall effect is to increase by approximately 

the air angles on to the leading edges of the blades at the stator tip and the rotor root, and to decrease 

by the same amount the air angles on to the leading edges at the rotor tip and stator root. 

Now consider the disturbances at inlet to and exit from the compressor. As would be expected, 

the effect at inlet propagates downstream much farther than the effect at exit propagates upstream. 

As the air enters the compressor it is deflected radially inwards through the inlet guide vanes and 

the first-stage rotor, the maximum deflection occurring just before the trailing edge of these rotor 

blades. The radial deflection then gets progressively smaller, and through the third-stage rotor there 

is almost no variation of the flow in the radial direction. Through the third-stage stator there is a 

small outward radial deflection as the disturbance at inlet dies away and the flow settles down to 

the regular flow. The inward deflection of the air causes a maximum increase of 7½ ° in the air angle 

on to the tip and a decrease of 4½ ° on to the root at the leading edge of the first row of stator blades, 

compared with the design condition of zero deflection. As the air leaves the compressor it flows into 
an annular duct, the effect of which is to cause an outward flow of air in the last stator row, but it 
has negligible influence on the flow farther than one blade chord upstream. 

Also shown in Fig. 7 are values obtained by the matrix method of solution described in Section 7, 
using the assumption of a linear variation of A~ mentioned in Section 5. The agreement between the 

two solutions is close. 

Effect of varying the massflow.--Fig. 8 shows the effect of varying the mass-flow rate through the 
hypothetical compressor. All the solutions exhibit the same three characteristics, namely, an initial 

disturbance which settles down after the fourth stage to a regular periodic flow, followed by an 

outward deflection of the flow in the stator row of the final stage. 

As the mass-flow rate is decreased from the design flow rate the maximum inward deflection of 

the air in the inlet guide vanes and first rotor row is decreased, but a large outward deflection is 

induced in the second and third stages. After the fourth stage the periodic flow is such that more 

air is going through the tip section than the root section. This will tend to stall the root section more 

than the tip. It will be noticed that as the mass flow is decreased so the amplitude of the periodic 

variation increases. This is caused by the air having greater difficulty in trying to attain radial 

equilibrium conditions for the smaller mass-flow rates. 
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For mass-flow rates greater than the designed flow rate the maximum inward radial deflection is 
increased, and the flow eventually settles down with more going through the root section than the 
tip. It appears from Fig. 8 that as the mass-flow rate is increased the amplitude of the periodic 
variation decreases, so that the flow through a stage becomes more uniform although radially along a 

blade row there is more air going through the root than the tip. 

Modifications to the inlet guide vanes.--The considerable inward flow set up in the first few stages 

of the hypothetical compressor running under as-designed conditions is a departure from the 
design assumptions and is therefore very undesirable. Consequently a simple method of reducing 
this deviation from the zero-slope design condition was sought. Two methods were tried, the first 
being a complete removal of the inlet guide vanes and the second a modification to the exit air angles 
of these blades. The results of these investigations are shown in Fig. 9. 

It is seen that removing the inlet guide vanes has the effect of replacing the inward radial deflection 
by an almost equal outward deflection. In this case the maximum deflection occurs just before the 
trailing edge of the first row of stator blades. As in the as-designed case, the flow settles down to a 
periodic variation after the large deflection, and becomes identical to the original flow pattern after 
the fifth stage. 

The reason for the inward deflection of the flow is that a non-constant stagnation-pressure profile 
is required in the later stages in order that equilibrium may be attained. This stagnation-pressure 
gradient is given by equation (63). Since the stages are designed for constant work, the first stages 
must depart from their design conditions in order to produce the required stagnation-pressure 
profile. If therefore the inlet guide vanes are designed so that the required stagnation-pressure 
gradient is produced in the first stage of the compressor, the departure from the design axial-velocity 

profile 'will be reduced. Consequently the air angles out of the inlet guide vanes were modified to 
produce this effect. This was done by changing the twist on the trailing edges of the guide vanes, 

keeping the exit angle of 30 ° at the design radius. 

The rise of stagnation pressure in the first stage is 

AP 
- ar(w -w0 

P 

AP 
o r  

- Q r ( Q r  - / ~ 2 v  - p~v) ,  (64)  
P 

where the subscript e denotes conditions at the trailing edge of the inlet guide vanes. Since 

R (aP t , G-pV 2\ar]R 
equation (64) can be differentiated to give (after putting A = O) 

2 1 + 8o + R 
G - m ~  m -37 + R  8r]"  (65) 

The hypothetical compressor under analysis has been designed for 50% reaction at all radii. 

Consequently, 

and 
0t3  

Or Or 
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and the value of (a/ge/ar) can be found using equations (62), (63) and (65). In this case the value is 
0. 04057, compared with the as-designed value of 0- 14200, and the twist on the inlet guide vanes is 
considerably reduced. 

Using the modified inlet guide vanes, the resulting flow shown in Fig. 9 is seen to possess a 
much smaller inward deflection in the first two blade rows. As in the two previous cases the flow 
assumes a periodic form after the first four stages, and again becomes identical with the original 
design flow after the fifth stage. 

Alternative design.--Another possible basis for the design of a compressor is to make the stagnation- 

pressure gradient zero in the regular flow. This would have the advantage of giving nearly constant 

stagnation pressure at outlet from the compressor. The twist on the blades has therefore been 

altered to achieve this condition. The required twist is obtained by putting G = 0 in equation (63) 

giving 

Op fi 1 _ 1 +  = 0 . 2 5 4 7 0 .  
J r  = r ~m ~ 

Comparing this with the value of 0. 14200 for the constant-axial-velocity design, it is seen that the 

constant stagnation-pressure design requires blades with a much higher degree of twist. 
The design value of ~t is given from equation (62) as 

1 
A = - 1. 852. 

2m 2 

This design axial-velocity profile is in fact the mean of the radial equilibrium profiles before and 
after a rotor row, assuming constant stagnation pressure with radius. 

Fig. 10 shows the computed flow for this compressor. It is seen that the design condition is 
reached after about 3 stages. 

8.2. Comparison with Existing Data. 
An attempt has been made to compare the theory with experimental results obtained by Horlock 6 

and with the theoretical results of Wu ~5 for single-stage compressors of constant hub and tip radii. 
The results of these investigations are presented in Figs. 11 to 14. 

The compressor analysed by Horlock had a hub-to-tip ratio of 0.4, and consisted of a row of 
inlet guide vanes followed by the single stage. This was followed by an annular duct about nine 

axial-chords long, which was terminated by a row of outlet guide vanes. Calculations were 
performed for the compressor both with and without the outlet guide vanes, and, as would be 

expected, it was found that these guide vanes had no effect on the slope of the axial-velocity profile 
within the three blade rows constituting the compressor. 

Two sets of calculations have been performed, one using the air angles predicted by Horlock for 
the actuator-disc theory, and the other using air angles observed by that author during the 

experiments. The variations in ?t through the compressor for each of these cases are shown in Fig. 11 
together with approximate values of ~ calculated from Horlock's experimental axial-velocity 
profiles. Fig. 12 shows the axial velocities within the compressor at values of the hub-to-tip ratio of 
0.6, 0.7616 (the design value) and 0.9. At each of these values four axial-velocity variations are 
presented. These consist of two curves obtained from the calculations using the two sets of air 
angles mentioned above, the experimental values obtained by Horlock and finally values predicted 
by that author using the actuator-disc theory with the discs placed at the centres of pressure of the 
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blades. It is seen that the agreement between experiment and the vortex-flow theory is, in this 
case, comparable with the agreement between experiment and the actuator-disc theory. 

Wu 25 obtained the solution of the incompressible flow through a single-stage compressor. He 
considered a compressor consisting of inlet guide vanes, a rotor row and a stator row, each blade 
having a hub-to-tip ratio of 0.6 and an aspect ratio (based on axial-blade length) of 2.67. The ratio 
of inlet velocity to rotor tip speed was assumed to be 0- 7378. In order to proceed with the solution 
Wu had first to specify the axial rate of change of wr on the mean stream surface. Having done this 
he obtained solutions for the axial velocity at all points within the compressor. 

The air angles obtained by Wu have been used by the Authors to obtain a solutionfor the flow 
through the specified compressor by means of the present theory. The slope of the axial-velocity 
profile is shown in Fig. 13 and the axial velocities at three radii derived from this solution for ;t are 
shown in Fig. 14. In this case the radius and axial velocities have been rendered dimensionless by 

dividing by the tip radius and the rotor tip speed respectively. Also plotted in this figure are the 

axial velocities obtained by Wu. 
For this compressor the value of r/t at the design radius is 0" 82462. In the neighbourhood of this 

design radius the axial velocities derived by the two methods agree very closely, while at the hub and 

tip the values again agree closely, differing only in the stator row where the greatest discrepancy 
is 5% at the hub. These results verify the fundamental assumption that the axial-velocity profile 

can be represented by a single-parameter family of curves. The agreement is particularly good, 
since the vortex-flow theory assumes that the chosen axial-velocity profile is true only in the vicinity 

of the design radius, where the equations of motion are satisfied. Hence the close agreement attained 

in the neighbourhood of the design radius would be expected. The fairly close agreement between 

the two axial velocities at points on the blade well away from the design radius shows that the 

assumed axial-velocity profile is acceptable over a much greater proportion of the-blade length. 

9. Conclusions. 

The comparison of the results of Wu's  ~5 calculation and Horlock's 6 experiment with the present 
theory shows good agreement, and it is suggested that the present theory is quite sufficiently accurate 
for design and performance calculations on axial-flow turbo-machines. It is also suggested that 
greater accuracy of the calculations is not warranted unless an adequate means of calculating the 
effects of the boundary layers on the inside and outside walls of the machine is included. The 
limitation to a one-parameter family of axial-velocity profiles leads to a great simplification of ideas 
about how these flows behave. An illustration of this is the  example showing how the first stage of 
a compressor may be designed to do varying work with radius, in order to achieve a more nearly 

constant axial velocity in the first few stages. 
The calculation may very easily be programmed for digital computers. EDSAC 2 takes about 

five minutes to calculate a ten-stage compressor. An alternative assumption, which is recommended 
if no computer is available, has also been given, and this method appears to give equally accurate 
results, although the physical basis for the assumption is not entirely satisfactory. 

The calculations for a model compressor with identical stages show how the flow consists of a 
regular pattern which repeats from stage to stage, together with perturbations at the front and the 
back of the compressor. The flow fluctuation in the regular repeating pattern is small and can 
probably be neglected in design, and the outlet perturbation is also small, but the inlet perturbation 

should certainly be included in design calculations. The effect of varying mass flow has been studied, 
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and also the effect of modifications to the design of the inlet guide vanes, and to the basis of design 

of the vortex flow in the compressor. It is found that if a compressor is designed to have any constant 

axial-velocity profile, and is designed to do constant work with radius, then the design profile will 

be achieved after the first few stages. There will however be substantial deviations from design in 

the first few stages, and the stagnation pressure will vary with radius at exit. 
Further work now being undertaken is to include the effects of taper of the inside and outside walls 

of the machine, and also the effect of compressibility. These are known to be effects of importance 

in turbines and in the first stages of axial compressors. Other effects which could be taken into 

account but which are probably of minor importance are the effects of the radial force exerted by 

the blades, the effect of taper of blade thickness, and the accurate representation of the blade loading 
working from the pressure distribution round the blades, which could be obtained from cascade 

tests or by calculation. 
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General Notation 
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Matrix Notation 

A 

D 

B 

E 

NOTATION 

The notation used is illustrated in Figs. 1, 2 and 3. 

Radial co-ordinate 

Axial co-ordinate 

Tangential co-ordinate 

Radial component of velocity 

Axial component of velocity 

Tangential component of velocity 

Axial chord of blade 

Static-pressure gradient 

Stagnation-pressure gradient relative to the blade 

Hub radius 

Constant defined by equation (8) 

V~/~2R, mass-flow parameter 

Static pressure 

Stagnation pressure 

~_~_r~2 ± / , ~ I 2  design radius 

Tip radius 

Air angle relative to the blade 

tan 

V~ ~r ~.=R' slope of axial-velocity profile at the design radius 

Air density 

A measure of rotation in the flow 

Angular velocity of rotor 

3X3 X 31} matrices for flow through rotor row 

3x3 x 31} matrices for flow through stator row 
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Matrix Notation--continued 

C 

H 

M 

NOTATION--cont inued 

P 

Q 

X 

txl, t~2, txa 

A 

II 

9'1, 9")o 9'3 

P 

O" 

~1, ~2, ¢~} 
~, ~, ~ 

3 x 3  = B x A  

3 x l = B x D + E  

3 x l  = ( 1 - C ) - I H  

3 x 3 tmatrice s defining flow through all stages preceding repeating stages 
3 x l  ) 
3 × 1 = (~, a &/dx ,  g} 

Eigenvalues of C 

Associated eigenvectors of C 

Real part of E 1 and E2 

hnaginary part of E 1 and E 2 

Real part of/x 1 and/~z 

Imaginary part of/~1 and ~2, and also used for the stream function 

Constants used in defining flow 

Real part of 9'1 and 9'~ 

Imaginary part of 9'1 and 9'2 

Components of 3 x 1 matrices used in calculating 9'a 

Suffices 

R 

0 

1 

2 

3 

4 

Conditions at the design radius 

Conditions at entry to the compressor 

Conditions at entry to a rotor row 

Conditions at exit from a rotor row 

Conditions at entry to a stator row 

Conditions at exit from a stator row 

Prefixed subscript 

(n) Conditions at entry to the nth repeating stage in a multi-stage compressor 
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APPENDIX I 

Numerical Solution on the EDSA C Computer 

A programme for the EDSAC computer has been written which will solve the basic differential 

equation {equation (16)} for any compressor consisting of rotor rows, stator rows and small lengths 

of duct. A Runge-Kutta-Gill numerical method has been used to furnish the solution, which consists 

of the values of A and (dA/dx) everywhere within the compressor under consideration. Two initial 

guesses are made for the value of A at inlet to the compressor, and using these values two complete 

solutions are evaluated simultaneously throughout the whole compressor. These solutions are then 

scaled to satisfy the exit condition given by equation (26), and the scaling factor so obtained is used 

to provide the exact solution everywhere within the compressor. 
To enable the solution to proceed, certain data about the compressor under consideration must 

be provided, and this nmst be done in a definite format. This consists of a block of general data 
about the compressor, followed by small data blocks for each of the compressor components, 

arranged in the order the components appear in the machine. 
The general data block must supply the following quantities: hub radius, tip radius, axial velocity 

at entry, angular velocity of rotor, Runge-Kutta-Gill interval. 
Each component data block must consist of--the axial-chord length, fin at exit, (~/Or)n at exit and 

the number of values per section required in the output. 
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APPENDIX II 

Computer Solution of the Flow in a Multi-Stage Machine 
with Identical Repeating Stages 

This solution consists of two phases. The first of these is the calculation of the matrix coefficients 

for the individual blade rows, which coefficients are then used in the second phase to obtain the 

values of ;~, (dk/dx) and g at the leading and trailing edges of all the blade rows comprising the 
compressor. 

Twelve matrix coefficients have to be evaluated for every blade row which does not constitute 

part of a repeating stage (as defined in Section 7), and also for an isolated rotor row- and isolated 

stator row which go to form one of the repeating stages. These coefficients are obtained simply by 

solving equation (16) in the isolated row for the three different cases obtained when two of the 

variables )~, (dA/dx) and g at inlet are put equal to 0 and the third is made equal to unity, and for 

the fourth case when all three variables at inlet are put equal to zero. The solution through the blade 
row is obtained using the Runge-Kutta-Gill numerical integration mentioi~ed in Appendix I. 

The matrices evaluated in the first phase of this solution are now used in the second phase to 
evaluate A, (dA/dx) and g at all the blade interfaces. The algebraic method based on the Caley- 

Hamilton theorem is used to set up the characteristic equation of the matrix C, the dominant 

eigenvalue of which is then extracted by Newton's method. To give an idea of the magnitudes of 
the errors in the method the imaginary parts of all the results (which should be zero) are printed in 

the output in addition ):o the real parts. In all the compressors thus far tested, the largest imaginary 
part recorded has been of the order 10 -11 . 

In order to evaluate the matrix coefficients the following information about each blade row must be 

supplied--the axial chord, the axial velocity at the design radius at the leading edge of the blade, 

the hub and tip radii,/3 R and (Ol~/Or)R at exit from the blade and also at exit from the blades of the 

preceding row, and the angular velocity of the compressor rotor. Additional data required for 

the second phase of the solution are the number of blade rows before the repeating stages and 
the number of repeating stages in the compressor. 
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