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Summary. .
The theory of equilibrium of balloon flying cables is presented in a simplified form most suitable for
" applications, with numerical tables covering probably the full range of practical cases. A simplified derivation

of formulae for longitudinal cable derivatives is presented, and the problem of the lateral cable derivative
solved. The normal oscillatory modes of the ‘balloon-plus-cable’ system (longitudinal and lateral, ignoring
balloon aerodynamics) are determined and analysed. All final formulae are expanded into power series which
converge well in the important case of a highly tensioned cable.

The report provides the data necessary for studying dynamic stability of captive balloons.
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1. Introduction.

The problem of dynamic stability of captive balloons arose initially in connection with observation
balloons, for which it was obvicusly important not only to ensure static stability, but also to have
all oscillatory modes sufficiently damped. An early attack on the problem was made in 1915 by
Bairstow, Relf and Jones! who produced a basic analytical scheme, following broadly the lines of
G. H. Bryan’s linearised approach to aeroplane dynamic stability, but including also all new elements
peculiar to captive balloons, such as apparent inertia, additional degrees of freedom, and cable
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“derivatives. They obtained two basic characteristic equations (both sextic) for the longitudinal and
lateral disturbances, respectively. The formidable array of coefficients involving numerous aero-
dynamic and cable derivatives (most of them presenting at the time insuperable difficulties as
regards even rough numerical estimates) resulted in this pioneering work remaining largely unused
for nearly half a century. The big experimental and computational efforts required to obtain reliable
numerical results, and to establish relationships between the balloon geometry and oscillatory
behaviour, could hardly be justified, as some more or less satisfactory designs were arrived at by the
empirical trial and error procedure. Also, observation balloons soon lost importance and, as regards
barrage balloons, large-amplitude oscillations were not considered a serious inconvenience and
were believed unavoidable.

The interest in captive balloons has faded after the last war, but it recurs again and again, with
always varying applications in view. Some of these involve carrying frangible instruments, thus a
balloon serves as a floating platform, and as such should be as stable and oscillation-free as possible.
It appears therefore that the analytical stability investigation should be revived and pursued, the
prospects being much more promising now. The main difficulty is still the same as before, viz.
estimation of stability derivatives. Of these, the aerodynamic (especially rotary) ones may now be
measured easily if only a tiny fraction of the existing tunnel facilities is made available for this
purpose. As to the cable derivatives, an analytical approach is more promising, particularly because
much preparatory work has been done already®t°12, in connection with either balloon performance
or with the cognate problems of kites and bodies towed behind aeroplanes (such as radio aerials
aerodynamic instruments, towed gliders, etc.). The existing information, however, is far from
complete, difficult of access, and not adapted to designer’s needs. The purpose of this paper is to
present the full theory, with such computational aids as are available, in the form ready for practical
applications.

The first attempts to determine cable derivatives®:? tried to avoid analytical difficulties by
neglecting either the action of wind on cable or the latter’s weight. Neither of these simplified
assumptions is justified, and the need of including both gravity and wind forces has long since been
recognised. The first step was made by McLeod? who proposed the following simple formula for
the normal wind-force component acting on an inclined cable element:

P,dl = (Cp,3pV?d,) sin’pdl = nsin’pdi (1)
(cf. List of Symbols and Fig. 1). The tangential wind-force component is sufficiently small to be
reasonably neglected. Mcl.eod’s formula was used by almost all later writers*, and it is retained
also in the present paper. Originally, it was applied only for determining cable configurations in
equilibrium conditions, with the sole purpose of performance studies. This was done by Glauert? for
the case when the wind force acts against the normal component of weight, as is the case with heavy
bodies towed behind aircraft, and by Hollingdale and Wild® for the inverse case, the one applicable
to kite balloons. The results were given in form of graphs in both papers. In an early paper by the
present. writer® (containing references to some even earlier French and German attempts, now
obsolete), a solution basically identical with (but differing in form from) that of Ref. 6 was arrived at,
with tabulated results. For determining the cable configurations, Refs. 5 and 6 are equally suitable
but, for calculating stability derivatives, the tabulated values are naturally more convenient. It has

* Together with the simplifying assumption that pl’2 does not vary with height, and that the wind direction
is also constant, the latter postulation ensuring that the equilibrium configuration lies in a vertical plane.
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been decided therefore to give a short summary of Ref. 5 in Section 2 of the present paper and
reproduce the full table of that reference which is practically unobtainable now. It may be mentioned
that Pode' produced voluminous tables for the Glauert’s case, which (somewhat surprisingly)
take account of the very small tangential wind-force components; they are useless for the investi-
gations of captive balloons. A Russian paper by Kochin® is an interesting study of equilibrium
configurations (originating from war-time work on barrage balloons). It starts by treating the very
general case of 3-dimensional configurations in wind field of varying direction, strength and air
density, and ends by more practical simple cases, similar to those considered by the authors
mentioned above. The McLeod’s sin?p-law is, curiously, replaced by sing-law, with reference
to some unspecified tunnel tests, this leading to somewhat different, but not simpler, solutions.
A few examples were worked out numerically, but no tabulation attempted. Some curious historical
references were given. A more recent paper by Longden'? brings some interesting analysis of balloon
performance in connection with a certain special application, the theories of Refs. 2 and 6 being
used extensively.

For the cable derivatives, Bairstow, Relf and Jones! developed formulae applying in the case of
‘dragless’ balloon cable which then assumes the form of an ordinary catenary. Glauert? did a
similar work for ‘weightless’ towing cables (which case, surprisingly, and unnoticed by Glauert,
also leads to a catenary, this time with a horizontal axis). These early results are now obsolete and
may possibly be used only in some special cases, or for comparison purposes. Brown? gave the
solution for longitudinal derivatives of kite-balloon cables subject to both weight and wind forces,
and Mitchell® adapted it to glider towing cables (when the wind force may act either in the same or
opposite direction to that of the normal component of weight). Both writers noticed grave
computational difficulties confronting the user, and made some attempts to overcome them, but
these are hardly sufficient now. The present paper brings, in Section 3, a much simplified derivation
of the formulae (agreeing with those of Brown but adapted to the basic scheme of Section 2, thus
making possible the use of existing tables), and systematic series expansions suitable for practical
use, especially for highly tensioned cables (details are treated in Appendices I to III). It may be
noticed that O’Hara® extended the analysis of cable configuration and derivatives to the more
general case of elastic cables. The effect of elasticity may be large for very heavily tensioned and
nearly horizontal cables connecting gliders with their tugs; it will be small, however, for balloon
cables which are never so highly tensioned, and are nearer to vertical in normal conditions. This
effect has been neglected in the present paper.

The lateral derivative was treated very superficially by previous writers, none of whom considered
the general case including both gravity and wind forces, and the solution of this problem is presented
in Section 4, where the final formula is easily adaptable to practical needs, either by a simple
numerical integration, or by a suitable power expansion.

The Section 5 deals with what may be considered as a simple example of applying the cable
derivatives to a dynamic problem, and also as an introduction to a full study of dynamic stability
of captive balloons. This part of the report was stimulated by some remarks in Glauert’s paper®.
It contains an analysis of oscillatory modes of the ‘balloon-plus-cable’ configuration in the simplest
‘case when the balloon is considered as a floating body subject to constant buoyancy and aerodynamic
force, while the aerodynamic forces induced by a longitudinal or lateral disturbance, and the
rotation in pitch or yaw, are all ignored. It is shown that, in such a case, there exist two longitudinal
modes, in one of which the balloon oscillates rapidly, approximately towards and away from the
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mooring point, while the other mode may be described very nearly as a slow ‘pendulum-like’
oscillation. There exists only one, pendulum-like, lateral mode. An important result is that the
two pendulum oscillations have nearly equal frequencies, especially in the case of highly tensioned
cables. A somewhat more complicated problem, with simple aerodynamic damping included, is
briefly treated in Appendix IV. Numerical examples are explained in Section 6 and illustrated
by Figs. 2, 3 and 5.

An acknowledgement is due to Mrs. J. Collingbourne and Miss B. Mills who have done the
computational work and prepared the illustrations. The name of Dr. W. Wolibner who had
produced the table of Ref. 5 (reproduccd at the end of this paper), more than 25 years ago, should
also be mentioned.

2. Equilibrium Form of Cable.
2.1. General Case.

The forces acting on cable are shown in Fig. 1 which also explains the notation, Equilibrium
equations for an element are:

dT = wdlsin ¢, (2)
Tdp = (nsin’p+w cos @)dl, (3)
and we have the geometric relationships:
dx = dlcos : : 4
dz = dlsing. (5)

The problem consists in integrating the above system of differential equations, so as to express
T, x, z and [ as functions of o.
From (2) and (5), we have dT = wdz, and hence:

T="Ty+wz=T —w(z—z2). - (6)
Eliminating 4/ from (2) and (3), we obtain:

daT _ w sin ¢ do 7)
T nsin’pfwcosg
Introducing a new constant i defined by

2 cot 2ip = win, : (8)

we may write (7) in the more convenient form:

arT 2 cot 2y sin ¢ do _ ( cos Zif cos 2¢

= = : 1 9
T 1+ 2cot2ifcosq— cosp )Sm‘P‘S” (9)

tan g5 + cos @ = cot ¢ — cos ¢

and, integrating, we find that T is proportional to the function:

cot i — cos ) oS
7lp) = (tan i + cos (p) ’ (10)
so that we may write: .
T=7T", Ty = T,2, (11)
71 71

where symbols 7, 7, 7, have been used for abbreviation, to denote (¢), 7(@y), T(pq)-
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From (7) and (11) it follows that the first derivative of (¢p) is:

, w sin @
T =

. - (12
" sin®p + 2 cos @ (12)

We then obtain from (3) and (4), taking into account (11):
T, T dop
7y 7 5in%p + w cos p’

de — T TCOE‘(;D_di_“ (13)

7, 7 sin?p + w cos ¢

dl =

so that, introducing the following auxiliary functions:

Xe) = |

s nrde

?  nurcos o dy
o(qo)=j TP (14)

o7 sin?p + = cos ¢’ o7 sin%p + w cos ¢’

we may write:

1= Loy, (15)
7’17'1-

I PR 19
Ty :

and we also obtain from (6) and (11):

7= EL(T_7O)_ ' (17)
wr,

The functions =, o and A were tabulated in Ref. 5, for ¢ varying from 0 to 90° through 1° intervals, -
for 12 different values of the ratio n/w appropriate for balloon cables. The table is reproduced
at the end of this paper. To utilise the table in practice couveniently, without tedious between-
columns interpolation, it is advisable not to assume arbitrary values of wind speed, but rather to
choose a few appropriate values of the ratio n/w, such as appear in the table, and then deduce the
corresponding values of the wind speed V {cf. form. (1)}.

The equations (15 to 17) determine the cable configuration completely, if T, ; and ¢, are known.
In practice, 7y and @, will normally be known (T sing, = Z; being equal to the sum of the
balloon’s reserve buoyancy* and aerodynamic lift if any, and T cosp, = X, being equal to its drag),
but ¢, will have to be calculated by using our table. Putting ¢ = ¢, in (15 to 17), we obtain:

nlymy = Ty(A— ), (18)
nwy 7y = Ty(o1—0), (19)
way Ty = T3(m— 7). (20)

In practical problems, the height =, will usually be known, then (20) will give 7,, hence g, and so
the required cable length from (18), and horizontal displacement of balloon x;, from (19). It may be
mentioned that, sometimes, too big a value may be assigned to 2, but then (20) will lead to a value
of 7, less than 7(0°), and this will show the impossibility of such a configuration.

Alternatively, we may know the cable length /;, in which case (18) gives A, which must be
positive; and then x; and #; will be obtained from (19) and (20).

# Reserve buoyancy is defined as the excess of total buoyancy over the entire weight of balloon (including
its envelope, gas and air contents, and rigging, but excluding the cable weight). If the excess buoyancy is ‘
considerably greater than the cable weight, then T, will be large (though always less than T'), and the
difference (p; — @) small under all conditions, the cable will then be ‘highly tensioned’. In the opposite
case Ty may be small, and (¢; — @) inay become quite large.
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Fig. 2 illustrates a numerical example, with varying wind speed and constant height. The relevant
numerical data and detailed explanations are given in Section 6.
The following relationships, resulting directly from (12) and (14), will be needed in Section 3:

nr’ ntr' cos
No= -, o = 2% (21)
w sin @  sin @

2.2. Special Cases.

T'wo special cases were often considered in the past, for their simplicity, and may be briefly
surveyed:

(A) Action of wind on cable neglected (n—0).—This may be treated as an approximation for a
thick heavy cable in a light wind. In this case 4 -0 and the function = becomes infinite but,
from (10):

nt(p) = wsec @, (22)

and we obtain from (14):

@
ANop) - f sec’p dp = tan ¢,
0

(23)
e B e
o(p) > | secpdp = In tan Z_—}—i = gdlp,
0
and from (11):

Tcosp = T cosp; = X; = const. (24)

The equations (15 to 17) now become:
wl = X (tan p —tan ¢), ' (25)
wx = Xy(gd e —gdlp,), (26)
wz = X (sec p—sec ). (27)

These equations, of course, correspond to a common catenary with a vertical axis whose Cartesian
equation is easily obtained, by eliminating ¢ from (26) and (27), in the form

;"é + sec gy = cosh'(%’ + gd_lqno) , (28)
~ and the parameter is seen to be X, /w.

(B) Weight of cable neglected (w->0).—This may be treated as an approximation for a thin cable
in a strong wind. In this case s —45° and

T(p) =1, hence T = T, = const. (29)
The functions M¢) and o(p) both tend to o, but

P
A— A —>f cosecchdgo = cot ¢, — cot ¢, (30)
? cos e
o — 0y > f 5?15_ dp = cosec p, — cosec @, (31
and it is also found easily:
T—7 1 ¢ Po
o T n (ln tan 5 In tan 2) (32)
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Equations (15 to 17) now become:

nl = Ty(cot py—cot ), ~ (33)
nx = Ty(cosec g, — cosec @), (34)
ny = T4 (Intan 5~ Intan ZO) , (35)

and these equations, somewhat surprisingly, correspond again to a common catenary, but this time
one with a horizontal axis. This can be shown easily by eliminating ¢ from (34) and (45), whereupon
we obtain:

n Po
cosempo—?l—c h(Tl—i-lntanz) - (36)

The parameter is 7 /#, and the tension is constant.

3. Longitudinal Cable Devivatives.
3.1. General Case.

Let us suppose that a balloon cable is in equilibrium, and that its upper end is displaced in
xz-plane from its original position (%, 2,) to a slightly different point (x, + dx,, 2, +dz;), while n
and = remain unaltered. The quantities ¢,, ¢, Ty, X;, Z; will then all change, assuming small
increments, but the length of the cable /; will be considered as constant. The derivatives required
are X, X,, Z, and Z,, defined by:

dX, = X, dx, + X, dz;, Az, = Z,dx, + Z,dz,, (37)

but it will be convenient to consider first the increments of 73 and ¢,, the quantities appearing in
the basic equations (18 to 20). We differentiate these equations, taking into account the relationships

(21) which apply both at the upper end of the cable (suffix 1) and at the lower end (suffix 0). We
obtain, after some simplification:

-

Ly T, T
1 ar -1 "dop, — : ! =0
T, 1t (w sin ¢ ) T i Po 7o' Ao ’
X, T T;cos g T, cos g, |, :
T (g, ) e i = s, .
2T T , Ty,
17115”11 + (—z_u} - z1) ™ dpy — E]TG dpy = T1dz; .

We now eliminate terms containing differentials dp, and dg,, by multiplying the above equations
by the factors
w sin gy(2; Cos @o— 2y sin @g) — Ty sin (¢ — o),
Ty(sin @y —sin @) — w sin ¢;(z, — 4, sin ¢,), (39)
T, (cos py—cos @) — @ sin g}, cos gy—x4),
respectively, and adding. The result is: ’
T, =

{T1(sin p; —sin ¢,) — w sin (pl(zl — {4 sin Po) Vs, +{ Ty(cos @y — cos @y) — w sin @(I; cos g — xl)}dz]
x,(sin @ —sin @p) + (oS @y — cos @;) — /; sin (¢ — @)

(40)



Similarly, we eliminate terms containing the differentials d7; and dp, from equations (38), by

multiplying them by the factors:
(27 COS Qg — &, Sin @), — (zy—1; sin ¢), — (£ cos pg—xy), (41)
respectively, and adding, taking into account (12), we obtain:

(21— sin @y)dxy + (b cos py—x;)d3,

T, dp;, = — (n sin’p; +w cos : - - . (42
L& ( & #) x,(sin @ —sin ) + 21(cos @y —cos ;) — & sin (¢ — o) (42
- To get the four required derivatives, we use the relationships:
X, = Ty cos gy, Zy = T,sing, ' (43)
which, upon differentiation, become:
dX, = dTycos o, — Ty sin ¢ dpy, dZ, = dT,sinp + T cos @, dp,, (44)
and hence, from (37, 40, 42), we obtain the final formulae:
- T, cos pq(sin gy —sin gg) + 7(2; — 4 sin @) sin’p,
X, = 5 ,
T, cos p(cos py—cos @) + n(l; cos @y — ;) sin’p;
X, = 5 ,
(45)
P T, sin y(sin @; —sin @p) = (w+ 7 sin?p, cos @ )(%, —h sin @)
r = 8 3
P T, sin g,(cos py— €08 @;) — (w+ 7 sinp; cos ¢,)(f cos py— ;)
e = 8 ’
where, for abbreviation:
8 = xy(sin gy —sin @) + 2;(cos @ — €08 py) — Iy sin ¢y — ). (46)
The foliowing relationship, easily derived from (45), is worth noting:
n sinp, + w cos ¢,
XZ —-XZ,=1T; . (47)

b

Formulae equivalent to (45) and (47) were derived by Brown’ and Mitchell3, in a less simple way.
Tt will be shown in the footnote to Appendix I that § is”always positive. It may also be shown
easily that all four derivatives (45) are always positive, and the same applies obviously to the
expression (47).

The formulae (45) can, of course, be used directly only in conjunction with (18 to 20) and with
the table of functions 7, A, o. It may be mentioned that the Table 1 was originally computed for
the purpose of estimating the balloon performance, and only a few decimals were deemed sufficient
for that purpose. The accuracy is not satisfactory as regards stability derivatives, chiefly because
the common denominator § is obtained from (46) as a small difference of twe large numbers.
This is found not to be a serious difficulty for moderately tensioned balloons for which the difference
(p1— @) is sufficiently large, and & not so small, but even then we cannot expect high accuracy
of numerical results. The position becomes nearly hopeless for highly tensioned cable when (¢; — ¢,)
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assumes very small values, and (46) does not give significant results. An appropriate method is

then* to expand & in powers of (p, —g,). Such an expansion is derived in Appendix I, the final
result being:

_ 3
5 = PP 1 g+ s}, (+9)
where:

B 3w? — wn cos ¢, + 3n? sinZp,

® 7 30(nsin’p, +wcos )2

(49)

‘ . 62® — 13wn? cos ¢, + wn?(10— 3 sin%p;) — 643 sinp, cos ¢,
hy = sin @, ,

60(n sin?p, + w cos g,)3

and (¢; — ;) is measured in radians.
The convergence of the series (48) is excellent for small values of (¢, —pq), but it is still tolerable
for quite high values of this angle, say up to 0-5, the value seldom exceeded in practice,
"The numerators in (45) do not suffer from the difficulty encountered in computing 8, and can be
calculated with reasonable accuracy by using our table. The entire formulae can, however, be also

expanded in powers of (p; — ), and the first two terms of these expansions (as derived in AppendixI)
are given below: :

12 . ~ I
Xy = —— [(n sin%p, +w cos ;) cosZp, + ‘
(@1 —Po)
+ sin g, cos @ (Sw cos ¢, — 7 cos 2¢,) (@1 —@p) ... ],
12 . .
X, = o [(n sin’p, 4w cos ¢,) sin ¢, cos ¢, +
17 Po
+ {w cos g1 (3 sin’p, — 1) + n sin’p; (4 sin®p; —3)} (g~ y). .. ],
1 f (50)
Z, = (‘P_—‘P_)g [(n sin®p; + 2 cos @) sin ¢; cos @ +
1~ Po : ‘
+ ${w cos g, (3 sin®p; — 1) + u sin%py (4 sinp; —3)} (91 —gp) ... ],
12 : . -
Z, = —— [(n sin®p; +w cos ¢,) sinp; +
(p1—Pp)
+ sin gy{iw (3 sin?p; —2) — 1 sin g 'sin 2014 (pr—w®g) - - -] J

Coeflicients of further terms become very complicated, so they would not be of much use. The
approximations (50) may only be used when (p,—q,) is really small. It is interesting, however,
to see that, to this order of approximation, X, = Z,. It is also seen that the large first terms of the
series are in the ratio cosp, :sin ¢, cos ¢, : sin?p,. If, therefore, o, is near to 90°, we may expect Z,
to be very large, X, small, with X, and Z, somewhere in between, and this should obvicusly be so.

A numerical example is illustrated in Fig. 3 which shows the variation of four longitudinal cable
derivatives with the ratio #/w. This corresponds to equilibrium configurations of Fig. 2. Numerical
data and other details will be found in Section 6.

* Unless we embark upon the rather formidable task of computing a new table of 7, g, o with some eight
decimals. '
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3.2. Special Cases. ’
(A) Action of wind on cable neglected (n = 0).—Putting n = 0 in (45), and using (24, 27) wherever
appropriate for simplification, we obtain:

X, - X,(sin qals sin (pn)’ X =7 = X;(cos qa%—— cos q)l)’ 7 = wx; — Xl(sig py—sin <p0)’ (51)

where 8, from (46), becomes:
. . 2X.
8 = x(sin @y —sin ) — o > {1—cos (o1~ )} ‘ (52)

and the relationship (47) assumes a simpler form:

X7, - X7, ”’f - O (53)

In this case, & is still a small difference of two large numbers but, as we have to deal with well-known
functions whose tables with many decimals are available, all derivatives may be computed with any
required accuracy. It is, however, convenient to introduce an auxiliary variable:

WX
w= g, = ede - gd e, | (54)
and then the formulae (51) reduce to more convenient forms:
sinh p . sec g, — 8ec @
== X =7Z_ =
Ko = ¥ R = Heosh p=1)" “* = 7* = ¥ sinhp - %cosh u—1)
55
7 - p,sec%sec%—smh‘u %)
2

p, sinh . — 2(cosh u—1)°

(B) Weight of cable neglected (w = 0).—The formulae (45) apply in this case, with only a trivial
simplification obtained by omitting terms containing the factor z. The denominator 3, from (47)
may be written, using (33, 34):

: 2T ‘
3 = #;(cos py—cos py) — o {1—cos (p1— o)} - (56)
This is still a small difference of two large numbers, but may be computed with any required
accuracy. Alternatively, a transformation analogous to that of 3.2 (A) may be convenient. Introducing

p =™ ntan® —Intan 2 | - (57)

T 2 2’
formulae (45) reduce to:

n  (cosh v—1) cos®p, + sinh v cos 2, + v (cosh v-+sinh v cos g;) sin’p;

Ko = sin ¢ ~ ysinhv— 2(cosh P 1) ’
X - g sinh v cos ¢; + (cosh v—1) sin%p,
: v sinh v — 2(cosh v—1) ’

(58)
7 - (cosh v —1)(1+ cos?p,) + 2 sinh v cos ¢; — ¥(cosh v4sinh » cos ¢;) cos q)l
e _ vsinh v — 2(cosh v — 1) ¥

sinh » — (cosh v—1) cos ¢,
v sinh v — 2(cosh »—1)

Z,=nsing,
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4. Lateral Cable Derivative.

In equilibrium conditions, if the wind velocity V is parallel to x-axis, there are no lateral forces
(in y-direction) and therefore no lateral displacements of the cable which lies entirely in xz-plane.
Let us assume, however, that a small lateral force Y is applied to the upper end, then this end will
move in the same direction through a small distance y,. We shall have only one lateral cable

derivative:
Y, = ‘f]_Yl = lim 5, (59)
Y y—0 Y1
and this will play a part in the problem of lateral stability of the balloon.

In the existing literature the derivative Y, has never been determined for the general case when
both gravity and wind forces act on the cable. Bairstow, Relf and Jones! neglected the wind forces,
and the same assumption appears to have been made by Brown?. In this case, a small lateral
displacement y, of the upper end will result merely in a rotation of the entire system about the
vertical axis z through a small angle ¢’ = y,/x,. The horizontal component T cos ¢, of the tension

-at the upper end will also rotate through the same angle, so that the lateral force will be
Y, = T, cos ¢, €, and this leads to a very simple formula:

v T, cos ¢4

4

(60)

Xy

An alternative assumption was made by Glauert? for the case of a body towed by a thin wire whose
weight could be neglected in comparison with wind forces. In this case, a small displacement y;
of the cable upper end will result again in a mere rotation of the entire system, but this time about
the axis &, through a small angle ¢” = y,/2;. The lateral force will arise due to rotation of vertical
component 7' sin ¢; of the tension at upper end, and will be YV, = T sin ¢; €”, so that we obtain
another very simple formula:

y _ Lising,

v

(61)

2

However, neither of the two above formulae can be used for captive balloons when the cable is
subject to both gravity and wind forces (it is also obvious that the two formulae always give different
results). The difficulty in this general case is that a lateral displacement of the upper end results
in the cable curve becoming three-dimensional, and it would be very difficult to obtain full equations
of that curve. It suffices, however, to consider small displacements from xz-plane, in which case the
equations simplify considerably, and this way is followed below.

Let us consider a small element df of the curve (Fig. 4), and denote by «, 8, y the angles this
element makes with «-, -, s-axes. The element is supposed to be in equilibrium under the tensions
at two ends, the weight (— wdl) acting along z-axis, and the aerodynamic force due to the wind of
velocity ¥ directed along x-axis. This velocity must be resolved in two components, tangential
V cos « and normal V sin a. As in the two-dimensional case, we assume that only the latter produces
an aerodynamic force # sin’x d/, and we need expressions for its direction cosines. To find them,
we note that the total velocity V' has resolutes in x-, y-, z-directions:

0 v, 0, 0, (62)
respectively, its tangential component ¥ cos « has the resolutes:

V cos?x, V cos acos fB, Vecosacosy, (63)
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and the resolutes of the normal component ¥ sin «, obtained by subtracting (63) from (62),
respectively, become: '

V sin%a, — V cos a cos 3, — Vcosacosy. (64) .

The direction cosines of the normal component are thus:

cos « cos 3 COS o COS

! T I ?
cos o’ = sin o cos f’ = y cosy = — ——~ 65
’ 8 sin « 4 sinae 7 (65)
and hence the aerodynamic-force resolutes are obtained as -
n sinx df, — msin « cos a cos B d, — 7 .8in o €08 & cos v dl, (66)

respectively.
To write the equilibrium conditions for the element, we notice that the tension resolutes at the

lower end of the element are T cos «, T cos 3, T cosy, so that the equations are:
d(T cos o) + nsin®a dl - =0,
d(T cos ) — n sin « cos « cos B df =0, (67)
d(Tcosy)—msinacosacosydl —wdl = 0.

Expanding differentials of products, multiplying equations by cos «, cosf, cosy, respectively,
and adding, we obtain:

dT =wdlcosy = wdz, (68)
and hence the relationship (6) still holds. Substituting (68) into the first two of equations (67),
we may write them as follows:

(w cos « cos y +# sin®u)d! = Tsin « de, 6
(2 cos y —n sin o cos a)cos B dl = T'sin 8 df3, (6%

and then, eliminating 7, we obtain: "
sin,Bd,B=wcos'y—nsinoccos<xsin“dw (70)

cos f3 w €08 o €08 ¢ + 72 sinda

This differential equation contains three variables «, 8, y; we may eliminate y by using the
relationship:

cos y = 4/(sin®x—cos?p), (71)
but the resulting equation cannot be integrated in an elementary way. If, however, we make use
of the assumption that the lateral displacements y are small, then cos § = dy/dl is also small of the
same order, and (71) may be written as cos y & sin w, the error being of 2nd order. It will be then
convenient to introduce the angle ¢ (Fig. 3) between the projection of d/ on xz-plane and x-axis,

and to write:
ks

WRP, - YR, (72)
the errors being still of the 2nd order. The 1st and 3rd of equations (67) then reduce to (2, 3).
This means that, to this order of approximation, the projection of the 3-dimensional curve on
xz-plane remains the same as the plane curve obtained in Section 2.1. The differential equation (70)
then assumes a simple form:
d{cosf)  w-—ncosg
cos B msin%p + wcos ¢
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N

and is easily integrable. Introducing the constant i from (8) we obtain:

d(cos ) (2cot 2p—cos p)d(cos ) | ( 1 + cos 24 1 — cos 24

= =1 d 74
cos B3 1+ 2cotZhcosp —cos?lp ) (cos ¢), 74

tan h+cos @  cot ¢h—cos

and then, integrating, using (10), and simplifying:

.
COSBZKA\/nsmq)i—wcoszp, (75)
n(p)
where the constant K may be determined from the condition at the upper end:
2
cos B, — KJ”SIH (p1+wcos¢1. (76)
‘ nr(ep,)
We have further: ,
dy = dlcos B, : -~ (77)

where, according to (7, 15, 21):
T, T

a=D (78)
Ty B SIN“® + W COSs ¢
Substituting (78) into (77) and simplifying, we get:
T cos f34 nr -
Y ' dep .
dy v/ {nr,(n sinp, +w cos p;)} A/ 7 sin®p + w cos ¢ P (79)
Noticing that T cos ; = Y7, and integrating (79) from ¢, to ¢;, we obtain:
- o {5()~ (o0} (50)
Y= v/ {nry(n sinp; +w cos @)} ¥ Pl
where
® nr
Hop) = . 1
() fo\/n sin?p + @ cos ¢ e (81)

(80) is the third parametric equation of our curve, while the first two equations remain (16) and (17).
Putting now @ = @, ¥ = ¥, in (80), we obtain finally the lateral cable derivative:

Y,  A/nr(n sin%p, +w cos o)}
Y, =-t= .
M P — B,y

(82)

The new auxiliary function %(¢), defined by (81), cannot be reduced to elementary integrals, but
might be tabulated numerically. There is hardly need for this, however, as ($; —&,) may be computed,
in each particular case, by applying one of the formulae for approximate integration (such as
Simpson’s rule), with quite sufficient accuracy. It is also possible to expand (82) in powers of
(p1— o), as previously done for the longitudinal derivatives, with the following result (for
derivations, see Appendix II):

n sin2p, + w cos W — # COS )
Y, = (:)1 —, LEY 5 PLsingy..., (83)
1 ]

and the two first terms often give a sufficiently accurate result (the third term may be found in
Appendix II). In practice, formula (82) is quite easy to handle and more accurate, but (83) may be
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used for quick estimates. Comparing it with (50) it is seen that the lateral derivative is generally
much smaller than the longitudinal ones, especially for h1ghly tensioned cables. This, of course,
could be expected.

As a final check of the above theory, let us come back to the two particular cases # = 0 and
w = 0: ’

(A) Action of wind on cable neglected (n = 0).—Replacing #r by w sec g, according to (22),
the formula (81) becomes:

L4
%) = [ secpdp = gdy, (34
0
" and hence, taking into account (26), the lateral derivative reduces to:
, x :
V= o =t (85)

v gdTle —gdlpy  x
which is identical with (60).

(B) Weight of cable neglected (w = 0).—Here 7 is to be replaced by 1 {cf. (30)} so that (81)
becomes: :

He) = fo cosec p dp = In tan ¥ X : (86)
and hence, using (35); the lateral derivative becomes:
. ¥, 7 sin ¢ . T1 S;n 1 (87)
In tan 21 In tan (ZO !

in agreement with (61).

As an illustration to this Section, Fig. 5 shows a few examples of the laterally disturbed cable
curves. It should be remembered that they are 3-dimensional curves, but only their projections
on yz-plane are shown. For each of the two cases (lightly and highly tensioned cables) three
curves are given, corresponding to n/w = oo, 1, and 0. For the first value, the projection is a
straight line because then y is proportional to = (see 35, 80, 86); for other values, the projections
become more curved (convex outward) as n/w decreases, but the curvature is always small, and
hence there is little difference between the curves, espeéially for highly tensioned cables. It must
be kept in mind that all lateral displacements y are supposed small but, in the graph, they are
magnified to such (arbitrary) scales as to make the differences between curves clearly visible.
Numerical data and other details will be found in Section 6. '

5. Normal Oscillatory Modes of Floating Mass at Upper End of Cable.
5.1. Longitudinal Oscillations.

Let us consider a balloon and cable in equilibrium conditions, and suppose that the balloon
has been displaced slightly in the xz-plane. In real conditions, this will lead to complicated oscilla-
tions with 3 degrees of freedom because, in addition to horizontal and vertical translatory movements,
the balloon will also rotate in pitch. The dynamic process will be described by a complex system
of differential equations of 6th order. We are going, however, to study only a greatly simplified
problem, in which the pitching rotation and all acrodynamic restoring and damping forces caused
by the disturbance are ignored. The balloon will therefore be considered as a floating mass particle

15



subject (apart from the constant static forces) only to the forces (37). The theory will apply
approximately to a fictitious spherical captive balloon, with all damping forces and cable inertia
neglected. The equations of motion will be:

£

m ot X g+ XL =0,

L
mor

where letters £, { denote small horizontal and vertical displacements. The solution is obtained in

(88)
v ZE+ 2L =0,

the usual way, assuming:

& = Asin(wt+c), { = Bsin(wt+e). (89)
Substituting (89) into (88), we obtain
B mw? - X, Z,
A~ X " mei-Z (%0)
hence ,
(ma?)? — (X, + Z,)(mw?) + (X, 2, X,Z,) = 0 (91)
and
2may = X, + Z, + V{(Z,— X, ) +4X.Z,}, . (92)
whence

(93)

B Z,— X, + V{Z.— X)2+4XZ}
G%2= 2%,

It is seen that there are two simple harmonic oscillatory modes, as both solutions given by (92)
are positive. In the mode 1, the balloon oscillates at a high frequency along a straight line of positive
slope, while the mode 2 is an oscillation of lower frequency along another straight line, of negative
slope. The formulae (92, 93), in conjunction with complicated expressions (45) do not give an
immediate insight into the quantitative relations. However, the method of series expansion in
powers of (¢, —g,) proves very helpful again. It requires a very tedious algebra (briefly summarised
in Appendix III), but the final formulae are rather simple:

12(n sin® W Cos sin W — 27 CoS ¢
771(1)12 — ( P1 -+ (Pl) 1 + 1 - 1 ((pl _ (Po) b E (94)
(Pr—o)? \ 2 msin’p; + wcos g,
7 sin? w COS $w sin
may? = Ps ¥ WS ;1 — i (gvl—(po)...g , (95)
@1 — Po 7 8IN“p; + W COS ¢y
(two more terms of each series are given in Appendix I1I);
B — @ 1 1 — 4n cos ¢,
) =5 =t 1 - ) —g)?...| (96
(A)l g e i sin 2<p1 + (4— coszqo1 12 cos ¢, 7 sinp; + w cos ¢y (1= %0) E (96)
B P1— Po 1 1 w '
— |- = s = cot 1 ; - - - —@o)E. . (97
(A)2 fa = COLg sin 2p, + (4 sin?p; 12 cos gy # sin’p, + w cos (pl) (1= o) E ©7)

The latter two expansions may be compared with the following ones (see end of Appendix III):

Z — 1 1 W — 7 COS
2 tng 1= L AT N

X, sin 2¢, 4 COSztpl 6 cos ¢y nsin®g + wcosp,

X @1 — P 1 1 W — 7 COS gy

z_:cot(plgl—%—sinz +(4sin2 ~ 5 g )(‘Pl_‘Po)z"‘E' (99)
1 n Zesy P COS @y 7 SIN°p; + W COS @,
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It is seen that, if (p; —p,) is small, the slopes s;, 5, are very nearly the same as those of the secant
OB (Fig. 1) and of the normal to this secant, respectively. The oscillation 1 thus consists, approxi-
mately, in the balloon moving rapidly towards the mooring point O affd away from it, so that the
cable flexes and unflexes. In the oscillation 2, the system behaves, approximately, as a simple
pendulum rotating about the mooring point in xz-plane.

Formulae (94, 95) show that the ratio of two natural frequencies is

24/3 inc '
@, §1_ i ek T SR T O (100)
wy P1— Pq 7 sin qal—{—wcos:;ol

0 it may become very large when the cable is highly tensioned.
We may still consider the series expansion of the formula (18) for the cable length (see Appendix I):

Ty(p1— o) W — nCosS

B 1 —si — @)t 101
Y sin%p; + w cos ¢ S 91 7 sin®p; + .2 cOS @y (®1— o) (101)
multiplying (95) by (101), we obtain:
27 _ sing; 2umcosp; —w B L2
Mwy 11 T1 gl -+ 5 o sinzqal T w cos (q)l (po). . § , ( )
~ 50 that
T, sing; 2mcosqp; —w

= ml —~ Q) ey - 103
“2 ’\/(mll) 1 + 4‘ 7 sin2<p1 + v cos @y (qjl (PO) ( )

If the cable is highly tensioned, the frequency w, is thus very nearly given by the ordinary pendulum
formula. This result could be expected, and it provides a satisfactory check of the entire theory.

A more realistic approach to the longitudinal stability of a spherical captive balloon will be
obtained by introducing damping forces acting on it, proportional to the velocity components
dé[dt and dn/dt in the equations of motion (88). This may also be considered as some sort of
approximation for a kite balloon, with disturbance in pitch neglected. A short analysis of this case

is given in Appendix IV.

5.2. Lateral Oscillations.
This is a very simple case, with a single degree of freedom, and the equation of motion (damping

neglected) is:
d?y .
m—z + Yn=0, (104)
so that the frequency (w;) is given by
(105)

. mwl2 = Y7
or, using the expansions (83, 101):

T singp, nBCOSQy— W |
= = : —@o)eeet e 106
“ f\/ (mll) , 1+ 4 nsin’p; + wcos ¢, (1 =90) (106)

It is seen that, to the first approximation, the frequency w; is again given by the ordinary pendulum
formula. The second approximations in (103) and (106) differ somewhat but, at least in the case
of a highly tensioned cable, the longitudinal and lateral pendulum modes have nearly the same
frequency. This conclusion may be of considerable importance for the general problem of
kite-balloon oscillations. It is hnown that the existing balloons suffer from insufficient damping
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in the lateral mode' ™, so that they are subject to slow oscillations of very large amplitudes®.
In these conditions, a (non-linear) coupling between the lateral and longitudinal oscillations may
make appearance, and thi§ may contribute to enhancing both, if their natural frequencies are
nearly in resonance. The frequencies of the two pendulum modes may, of course, differ from (103)
and (106), owing to the complicated effects of balloon aerodynamics, but large changes are unlikely,
and the possibility of near-resonance is clearly there.

6. Numerical Examples.

(A) Equilibrium configurations, see Section 2 and Fig. 2.—It is assumed for simplicity that the
balloon is set at sero incidence at any wind, so that no aerodynamic lift is present; also, that the
balloon height 2, is maintained constant = 900 ft throughout the range of wind speed, more cable
length being paid out as this increases. Other data assumed are: Z; = T4 sin ¢, = reserve
buoyancy = 745 Ib (constant); Cj, = 0-1185, p = 0-00232 1b. sec?/ftt, 4, = 25-2 ft, S, = 499 {3,
so that X; = Tycos o, = D = Cy(3pV?)(4nd,?) = 0-0686 V2 (Ib), V being measured in ft/sec;
w = 0-1 Ib/ft, Cp, = 1-025, d, = 0-0225 ft, so that {see formula (1)} # = 0-0002744 V2 (Ib/ft).
A number of round values of the ratio n/w appearing in Table 1 have been taken, leading to
corresponding values of speed V' and other basic parameters, as tabulated below:

T. X l
e ft/Zec Tln el n oo oo x| % 88
0-2 | 27:00 | 50| 7467 | 86-16 [15-964 |14-040 | 84-07 | 1-218 | 1-185 | 3-054 | 2-668 | 77 | 903
0-4 |38-18 |100| 751-7 | 8235 | 3-849 | 3-388 | 78-24 | 0-753 | 0-721 | 1-389 | 1-201 | 156 | 918
0-6 | 4676 {150 | 760-0 | 78-62 | 1-982 | 1-747 | 7259 | 0-638 | 0-602 | 1-013 | 0-866 | 230 | 939
0-8 | 53-99 [200| 771-4 | 74-97 | 1-404 | 1240 | 67-11 | 0-625 | 0-581 | 0-913 | 0-771 | 302 | 975
1.0 | 60-37 |250| 785-8 | 71-45 | 1-159 | 1-026 | 62-00 | 0-652 | 0-596 | 0-887 | 0-741 | 380 | 990
12| 6613 |300| 8031 | 68-07 | 1-032 | 0-916 | 57-30 | 0-697 | 0-626 | 0-904 | 0-747 | 460 | 1018
1-4 | 71-43 [350| 8231 | 64-84 | 0-958 | 0-853 | 52-88 | 0-747 | 0-660 | 0-935 | 0-762 | 534 | 1062
1-6 | 76-36 |400| 8456 | 61-77 | 0-912 | 0-815 | 48-83 | 0-803 | 0695 | 0-973 | 0-782 | 626 | 1107
2.0 | 85:37 |500| 897-2 | 5613 | 0-862 | 0-776 | 41-83 | 0-909 | 0-762 | 1-055 | 0-826 | 765 | 1192
2.5 | 95.45 625 | 972-4 | 5000 | 0-833 | 0-756 | 34-40 | 1.038 | 0-821 | 1-160 | 0-866 [1013 | 1373

Fig. 2 gives all the corresponding configurations, and it is seen that the curvature is small in all
cases, though it increases with wind speed. This is clearly connected with the cable being ‘highly
tensioned’, as could be seen in advance from the fact that the reserve buoyancy is over § times
greater than the weight of the initial cable length.

A number of similar and somewhat more complicated examples (involving, e.g., constant cable

length, aerodynamic lift, etc.) are given in Ref. 5 (calculated by exactly the same method) and in
Ref. 6 (using a different but equivalent method).

(B) Longitudinal derivatives, see Section 3 and Fig. 3.—The same numerical data as under (A)
have been used but, of 10 values of #/w and corresponding equilibrium configurations, only 6 (as

* A plausible explanation of this phenomenon is that the damping is negative at small amplitudes where
the motions may be analysed by linearised equations, but becomes positive at large amplitudes, where the
non-linear effects become significant.

18



tabulated in Fig. 3) have been selected for computing longitudinal derivatives. This has been found
sufficient for drawing curves showing variation of derivatives with »/w and V. The cable being
highly tensioned, and the difference (p;— @) small (especially for low values of n/w), the basic
formulae (45, 46), in conjunction with Table 1 containing only few decimals, seem to be inconvenient
forAcomputation. In fact, when (46) was used to calculate 8 in this way, either 0-000 or minute
positive or even negative values were found in most cases. The series expansions are clearly most
suitable here and, of several alternatives, series (1.20) proved most convenient. The results are
tabulated as inset in Fig. 3. They have been checked by using (47). It should be noted that X,
and Z, are so nearly (but never exactly) equal that the difference could be shown only in the table
but not in the graph. A remark may be not superfluous that X, Z, and Z, all increase indefinitely
when nfw — 0, and only X, then remains finite, as could be expected.

(C) Lateral derivative, see Section 4 and Fig. 5.—The derivative ¥, has been calculated for
three cases only, of the ten listed above under (A), by using (81, 82), Table 1, and numerical
integration by means of Trapezoidal, Simpson’s and Weddle’s Rules, which all gave identical
results, viz.

nlw | 0-2 1-0 25

Y,

v

0-780 0-767 | 0-737 Ib/ft

and it is seen that the variation was too small to warrant a graph. Instead, Fig. 5 gives some
examples of laterally distorted cable curves as already discussed at the end of Section 4. It proved
sufficient to consider. only the extreme values 0, 0, and one intermediate value 1 of the ratio n/w.
The assumed angles ¢y, ¢, for the highly tensioned cable correspond to the appropriate case of the
table given under (A), and kept unaltered for njw = 0 or oo. For the lightly tensioned cable,
arbitrary angles 76° and 30° were chosen.
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LIST OF SYMBOLS

Constant, see (89)

Lift slope of balloon, see Appendix IV

Coefficients in expansion of [;, see (1.5, 6)

Portmanteau symbols, see (IV.9, 10)

Constant, see (89)

Coefficient of A% in characteristic equation of system, see (IV.7, 8)
Coefficients in expansion of longitudinal derivatives, see (1.20, 21)
Drag coefficient of balloon, see Section 6 and Appendix IV

Cable drag coeflicient, see (1)

1 — cos 0, see (1.15)

Coeflicient of A% in characteristic equation of system, see (IV.7, 8)
Coefficients in expansion of longitudinal derivatives, see (1.20, 21)
Balloon drag

Coefficient of A in characteristic equation of system, see (IV.7, 8)

Diameter of balloon, maximum cross-section

Cable diameter

Coeflicients in expansion of longitudinal derivatives, see (1.20, 21)
Constant term in characteristic equation of system, see (IV.7, 8)

General symbol for any of integrands used in deriving expansions of
longitudinal and lateral cable derivatives, see Appendices I, II

Quartic polynomial in characteristic equation, see (IV.7)
Coefficients in the expansion of 3, see (48, 1.18)

Factors of damping coefficients relating to longitudinal oscillations, see
(IV4, 5, 6)

Constant, see (75)
Length of cable from origin to current point, see Fig. 1
Total length of cable

Mass of balloon, see Section 5 and Appendix IV; apparent mass either
ignored or, if included, with differences in its value in x-, y-, s-directions
disregarded

Normal force per unit length of cable at balloon attachment point, see (1.7)
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LIST OF SYMBOLS (continued)

Drag per unit length of cable when perpendicular to wind

Normal wind-force component acting on an inclined cable element, per unit
length

Portmanteau symbol, see (IV.9, 10)

sin 6, see (1.15)

Representative balloon area (usually maximum cross-sectional area)
Slopes of paths of oscillation of balloon in two longitudinal modes
Tension at any point of cable

Values of T at mooring point and at point of attachment to balloon, respectively
Time

Wind velocity

Weight of cable per unit length

T, cos ¢y, horizontal component of T, equal to balloon drag
Horizontal force derivatives due to x- and z-displacements, respectively
Horizontal co-ordinate of current point of cable (in wind direction)
Value of x at upper end of cable

Lateral force on upper end of cable

Lateral force derivative due to y-displacement

Lateral displacement of current point of cable (perpendicular to equilibrium
plane)

Value of y at upper end of cable

T, sin g, vertical component of 73, equal to sum of balloon reserve buoyancy
and aerodynamic lift if any (see Section 2.1)

Vertical force derivatives due to x- and z-displacements, respectively
Vertical co-ordinate of current point of cable

Value of z at upper end of cable, or balloon height

- Direction angles of cable element in three-dimensional case, see Section 4

(paragraph 3) and Fig. 4

Direction angles of normal wind velocity component at cable element in
three-dimensional case, see Section 4 (paragraph 3)

Portmanteau symbols, see (IV.9, 10)
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X1 X2
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LIST OF SYMBOLS (continued)

Common denominator in formulae (45) for longitudinal derivatives, see (46)
Phase angle, see (89)

y1/%,, small angle of rotation of entire cable configuration about z-axis in case
of small lateral displacement, with wind forces neglected

1/%y, small angle of rotation of entire cable configuration about x-axis in case
of small lateral displacement, with gravity forces neglected

Small vertical displacement of balloon, see (88)

Small horizontal (lateral) displacement of balloon, see (88)
Auxiliary function, see (81) |
Abbreviations of H(p), He,), Hpy)

@, — @y, difference between cable inclinations at upper and lower ends;
basic variable in all power expansions

Auxiliary tabulated function, see (14) and Table 1
Abbreviations of A(p), A(py), Alpy)

Auxiliary variable, see (54)

Auxiliary variable, see (57)

Small horizontal (longitudinal) displacement of balloon, see (88)
Air density

Auxiliary tabulated function, see (14) and Table 1
Abbreviations of o(¢), o(p,), o(p;)

Auxiliary tabulated function, see (10) and Table 1
Abbreviations of (), 7(pp), (1)

Inclination of cable element to horizontal for equilibrium configuration
Values of ¢ at ground and balloon, respectively

Portmanteau symbols, see (IV.9, 10)

Angle defined by equation (8) (constant for a given cable under given wind
speed)

Oscillatory frequency of (balloon + cable) system

Solutions of frequency equation (91) (frequencies of rapid mode 1, and of
slow ‘pendulum’ mode 2, respectively)

Frequency of lateral oscillation of (balloon + cable) system
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summary). 1946.

Tables for computing the equilibrium configuration of a
flexible cable in a uniform stream,

David Taylor Model Basin Report No. 687. March, 1951,

Some characteristics of kite balloons as targets for guided
weapons.

Unpublished M.o.A. Report.

Notes on stability of kite balloons.
Unpublished M.o.A. Report.

Some observations on the wander of a kite balloon.
Unpublished M.o.A. Report.
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APPENDIX 1
Power Expansions for Longitudinal Cable Derivatives

The basic idea of the procedure applied in this Appendix and in the two following ones is to
assume that the difference ¢; — ¢y = 6 is small, and to expand various quantities appearing in
the formulae for cable derivatives as power series in 6. The method was already applied, to a very
limited extent, by K. Mitchell® and W. S. Brown? for the related problem of towed gliders and
kites. Here, an attempt is made to go as far as practicable with the procedure, so as to provide
most convenient formulae for designer’s use. The convergence of all series will be satisfactory
only if § is sufficiently small, but this is believed to be so in most cases. In the case of slack cables
§ may be large, but then the unexpanded formulae, such as (45), will give tolerable accuracy.

In what follows, we start by expanding such quantities as /, &, etc. {which comes to the same
as (A —Ag), (01— 0p), etc.} as power series in 6, with coefficients expressed only in terms of data
pertaining to the upper end of the cable (T}, ;) and, of course, of basic parameters w and 7. The
fundamental series, of which all the subsequent ones are special cases, is:

q;l Fl FI/ FIII
[ rerap = Fyo - ey T - T g (LY

this is merely one of the many alternative forms of Taylor’s expansion, most convenient for our
needs. Two simple particular cases (which will be needed later) may be noted:

’ . .
COS @y — COS p; = f 1sinqod<p = sing, § — COZSI% 62 — 3121'901 02 + CO:I% 04 + 81239105...
" ! ! ! ! 12)
v . .
sin g, — sin gy = f 1 cos ¢ dp = cos gy 0 + sm;pl 02 _ COS'(Pl 03 — sin ltpl 0t + Cos|¢105n_
70 21 31 4! 51
Let us now consider the expansion of the function {cf. form. (18)}:
-1 Ty (7 '
== (M—Ay) = — A dp. .
b= Ot = 2 [P (13)
In this case {cf. form. (21, 12)}:
nr : nr )
Flo) =X = Flpy) =)' = L .
(%) n sinZp + w cos ¢ 1: (1) 7 nsin%p; + @ cos q)l:I (L4)
and, differentiating this four times, while making use of (12) each time, and substituting ¢, for ¢,
we obtain:
Flle) = N = Na, Flp) =X =MNa, Flp)=A"=AN0a,etc (L.5)
where:
2 sin ¢ I
@ = 222 w-ncos ),

a, = NZE {w*(1 42 sin®p;) — wn cos py(1+4 sin®p,;) + 72 sin’p,(1+2 cos?py)},

2 sin g

ag = {4w3(2+ sin®p;) — w?n cos @,(17+12 sinzf;al) + 3wn?(4+ 3 sin®p, — 4 sintp) —

N® L (L6)
— 473 sin2gp,; cos @y(2+ cos’py)},
03 = o (A(2-+ 11 singy +2 sinp,) — ' Gos (17 + 143 sin + 32 sindpy) +

+ w?n2(12 4- 194 sin?p, — 84 sin’p; — 48 sinep,) —
i P1

— wnB cos ¢ sin?p,(120+ 37 sin?p; — 32 sintp,) + 4n* sin'p,(2+ 11 cos?p, +2 costey)}, |
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where, for abbreviation:
N = nsin’p; + w cos ¢, : . (1.7)

{formulae (I.6) look repulsively complicated, but the final formulae will be seen to be much neater}:
Introducing (I.4) into (I.1), and using (I1.5), we obtain:

~ 7,6 a ay ag a,
(1 e B Y ) , :
b N( 20t Tt ) (5)

Similarly, we have:

\ .
yo= 2 (Moo, (1.9)
11'7'1 ®g .
where ,
' ITCP _ _ Xcoso, (1.10)

"~ msin?p + w cos @

and hence, after differentiating (1.10) several times:

7.0 @y COS @y — Sin @, ay COS @y — 2a, sin @; — COS ¢y
= —— |cosp; — 4 0% —
X1 N ( 08 @1 2 + 6
G308 ¢ — 3a, sin ¢, — 3a, cos p; + sin ¢, 63’—1— (111)
57 o) .
An exactly similar procedure yields:
1.0 /. @, sin ¢, + €os ¢ @ sin @, + 24, cos @; — sin ¢
2 = —= |sin ¢; — g+ 62 —
N 2 6
@3 sin p; + 3a, cos ¢, — 3a; sin @, — cos ¢ o ) (112)
_— 24. -« . .

The next step is to find the expansion of 8 {cf. form. (46)}, and this could be done by using
(1.2, 8, 11, 12) and the ordinary expansion for sin(p; —p,). However, the algebra involved is rather
heavy, and a more convenient way is to present  in the easily derived form:

5 = o [ Klinto—g0) + sintou ) — sinrs =) o (L13)
and apply (I.1) directly*. It is easily found that, in this case:
C Fe)=0;  Fle) = -NC;  Flle) = —A2a,C+8);
F'(p) = —A/{(3a,—1)C+34a,S}; F(p)) = — A {(4a;—4a)C + (bay,—1)S};
FYp) = —N'{(5a,—10ay+ 1)C+ (10ag—5a,)S}; |
F(p) = —A/{(6a5—20a;+ 6a,)C + (15a,— 15a,+ 1)},

(1.14)

* It may be mentioned that the expression in curly brackets in (I.13) is easily shown to be always positive
and, as X’ is also positive, we have always 8 > 0. Also, the expression in curly brackets is 0 for P = @
and @ = @, and has its only maximum 2 sin 16(1—cos 16) at ¢ = ¥(p,+¢,). The expression is therefore
very small whenever the angle # is small, and thus is limited to very small values for highly tensioned cables.
This explains why 8 is so small in such cases.
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where

02
C=1—cos€=%92(1—1—2+
_ e
S=s1n0—9(1—€+m..

e \
'370 .. n) 3
(1.15)

Substituting into (I.1) and simplifying, we obtain:

T,64 a; 3a,

and, dividing (1.16) by (1.8):

20 15

s Mgy (G 1 L) .
)9+ 5 0+(168 1630 * 560 g+...t (L.16)

; _ {’;(1_;;202%393_11494...), (1.17)
where:
By = 4—6{-—(;'2 - 30.1]\72 (Bw? —wn cos @y + 3n? sinp,), \
By = 2 '1‘231“2 - Zigl]\f; {6w® — 13w cos g, +wn2(10— 3 sin’p,) — 67° cos ¢y sin’p}, & (L.18)
hy = ﬁ) {12a, + 21a,(aya, — ag) — (94 Say+ 14a,?)} = ... .

o

(The expression for 4, in terms of w, #, ¢, is prohibitively long, but it is very seldom needed.) The

expansion (48) has thus been proved.

To obtain the expansions of the complete longitudinal derivatives (45), we need the following

auxiliary series, of which the two last ones are easily derived from (1.8, 11, 12):

Ti(sin o, —sin ¢g) = 716 ( oS ¢ +

\

Ty(cos py—cos @) = 14,0 (sin P —

gy — lsingy _

sin @, cos g, sin @, )
g — 2 — 6. ..
2 s " ) ’

€os @y sin @ cos @y
0— 62 B,
2 6 "t )

- N

a, cos ¢; — 3a; sin p; — 3 cos ¢ o

7.0 (coszqa1 g B Cos P — 2sin g, 6 4

6 u
. (1.19)

lycospy — %y =

o )

N

7,0 (sinzqs1 P sin @, + 2 cos @y 4+

6

a; sin ¢y + 3a, cos ¢y — 3sing; .
+ 50 ...,
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and hence, after some more algebraic work, and introducing (I1.16):

-~

Xzz_;é N 6082%3 +b101— ot —af...
1—%1—0+(—2%9‘—i§)02+a_1;)a393“_
XZ=;_fNSin%COS%—bz@—c202+d203...,
1-20+... ? o
Zﬂ=;_32Nsin<p1cos<p1—b39—c302_d393.”,
1—%9+...
'Zzzgl\f Si22¢1—540—c492+d463’
1—716+‘.._.
where: ’
2b; = N sin 2, — w sin ¢, cos?p, ﬂ

2b, = 2b; == N cos 2, + w sin%p, cos ¢,
| 2b, = N sin 2¢, + w sin’p,
6c; = $N(3 cos 2, — 1) + 2w sin’p, cos @, + na, sinp; cos ¢,
6c, = 2N sin 2p; — 2w sin ¢, cos?p; + na, sindp,
6c; = §N sin 2p; + 2w sin®p; — (N cos @, + w sinp,)a, cos ¢;
6c4 = — 3N(3 cos 29, + 1) — 2w sin’p;cos @, — (N cos @, +w sin’p,)a; sin @, - (1.21)
24d;, = 2N sin 2p; — 3w sin @, cos’p; + 3na, sin‘p, — na, sin’p, cos g, ‘
24d, = N(2 cos 2p;— 1) + 3w sin’p, cos p; + 3nay sinp, cos ¢, + na, sinp,
24dy = — N(2 cos 2, + 1) — 3w sin’p; cos @; — 3(IV cos @; +w sin®p,)a, sin ¢, +
+ (N cos @, 4+ sin’p,)a, cos ¢,

24d, = 2N sin 2¢; + 3w sin®p; — 3(V cos ¢, + w sin’p,)a, cos ¢, —

— (N cos @+ w sinp,)a, sin ¢, .
Performing the division in (I.20) up to the term in 6, we obtain the formulae (50). Further terms
become very complicated, and the formulae (1.20) are more convenient if higher accuracy is required.
They will be found particularly useful in Appendix III.
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APPENDIX II
Power Expansions for Lateral Cable Derivative

It is required to expand (82), where the denominator is

71 nr s
K %—J‘,m nsin’p +wcosg

We use again the general expansion (I.1), where:

N nT
F9) = [
7 Sinp + W Cos @

and, differentiating twice, and making use of (12), we obtain:

sin g(w —7n cos p)
nsinp + wcos ¢’

Fe) = Flo)

2?(1 + sin?p) — wn cos p(1+ 2 sin%p) + 72 sin®p(1 + cos’p)

F// — F
(¢) = Flo) (n sin®p + w cos @)?

Substituting in (I1.1) and simplifying, we get

sin @(w —7n cos
771_770:F((P1)§1_ (Pl( N (Pl)e‘}‘

N w1+ sin’p,) — wn cos p,(1+ 2 sinp,) + #? sinp,(1 + cos’p;)
62 o

and hence, from (82):

N ~ sin @,(w —n cos @)
Y, = 7 gl + N 0 —

_ wX2—sin’p,) — 2wn cos’p, — n* sin’p,(1 + sin’p,) .
’ 12N? o

The expansion {83) has thus been proved, with one additional term.
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APPENDIX III
Power Expansions for Characteristics of Longitudinal Oscillatory Modes

It is required to expand (925 and (93), by using (I.20). The transformation is rather Iengthy, and only a few major steps will be
indicated below:

1
12 N — lwsin @0 + g N+ a2 sin ¢)0% + 2l4 (3w sin ¢, —3a,N —wa, sin ¢,)83. ..

_4 3a, 1) B— %y ’
-G (Gp-5g) o+ e

(IL1)

2w sin®p, cos @; @, sin g,

lz—Ncos 2¢, — (N sin 2, — $ow sin ¢, cos 2¢,)8 + 3%Ncos 20, + 3 3 (2N cos o, —w cos 2991)% 62...
Zz_Xw:ﬁs‘ : | 1-%9 ) - ,
—Z CEEERY
... (I11L2)
B
\o . . .
‘ IZN_%wsin(pla_l_a1w361n<p192+wsm%—aléi—wazsmcplgs'“ |
V{Z,— X ) + 4X 2} = = : (111.3)
6 1-294
) 3
Adding (II1.1) and (I11.3), we obtain:
- -. 1_-wsin<p10+ i czlwsinqol)‘e2 wsingol_ﬂ_azwsincpl o
. 12N~ 2N 12 6N 12N 12 24N 1114
mer = g ay 3a, 1 a; — a, ; - (I11.4)
1-%0 (E"i’s‘) e
Subtracting (I11.3) from (IT1.1) leads to
wsineg; & l
1 ~%)e...
2 2 '

mwy? = % N , (TIL.5)

a.
1—1g...
2



and it is seen that only two terms of the series have been obtained {as against four terms in (III.4)}. However, we may make use of the

relationship {cf. (91) and (47)}:

2
(meo)mog) = X7, — X2, — DN — 12N
‘ & 6’41—@0 3ao_i oo
2 20 15

(IIL6)

It is seen at a glance that (II1.4, 5) satisfy (II1.6) up to the terms in §. We may reverse the procedure using (II1.4) and (III.6) to

©

obtain more terms of the expansion for (mw,?):

N 1

- 12N 12 24N

Mwy? = — - - - :
0 wsin g ( 1 gwsin qal) 0 (w Sin gy @ G sin (pl) o

2N 12 6N

and, performing the division in (II1.4) and (IIL.7), we get:

12N a  sin 3 a2 a,wsin
2 _ 227 4 #1 _ I il
mw,® = [1+( )6+§20( a2)+4 2N

...

63 2 2N
S
N % sin ¢ (n sin?p; —w cos @)% + w? sinp,
2= 02 ..
Mo =g [1 N 0~ 12N® } ’

so that (94, 95) have been proved, with additional terms.
Finally, introducing (II1.2, 3) into (93), we obtain: -

o

i wce

i 1—(cot¢1+wszl;9"1)9+ Ycot?p,— 1) + 33\sf¢1+g(cot¢1+%05;3(p1) 6...
(Z) = tane w sin @ W Cos p; a4 tan ¢y w COS @y

! 1+ {$(tan @, —cot ¢q) — 5 ! 0—{%—— v T 6 (1_ ~ );62“'

_wsing\ w sin%p, L@ / wsin g1\ ,,
(B) ot 1+<tan‘*’1 2N )6 =100 + 5 cos g + (a5 );9
—\z) T oty :

4le 1+ {4(tan gy~ cot ) — 50T

and this leads directly to (96, 97).
As to the expansions (98, 99), they are simply obtained by dividing (I.12) by (1.11), and wice versa.

(I11.7)

(1T1.8)

(I11.9)



APPENDIX IV
Longitudinal Oscillatory Modes for a Captive Balloon with Damping but no Disturbance in Pitch

Let us first re-consider the equations of motion with no damping (88). They may be conveniently
re-written by eliminating the cable derivatives and introducing instead the frequencies w;, w, of the
two undamped natural modes, and the slopes of their respective paths s; = (B[A)y, 55 = — (B/A),.

 From (92), (93) we get:

| X, + Z, = mopto?), X7, — X7, = molfes,

Z,— X, Z, (Iv.1)
X, =575 ' Z=3132,

and hence, solving for the derivatives:

AN

Souy® + 8057 §101% + Sywe?

Xx = M ~*+— ) Zz = m———‘_i'_s— Iy
$1+ 8, $
2 ' 22 ' 2 ’ % (1v.2)
X, =m2r =2 Z, = msys, %
$1 + $g ' §1+ 8y
Substituting into (88) and dividing by m, we obtain:
A2 s + sjwy? wi? — wy? r=0
ds? 51+ s 545,
2 . 2 i : 2 . : 2 (Iv.3)
d*{ + 518, wy” — Wy N {=0.
di? 8+ S $;+ 5y
The equations of motion, including aerodynamic damping forces acting on the balloon, may now be
written: '
g iy c_lg N Sgeq? 4 $yw,2 ¢ Wy — wy? =0,
dt? dt $3+ 85 §; + Sy
Wi — we? , . [d¥ Al sj04% + $pw,° (V4
$8 2 EF (o A+ 2k 2 A 22 =0,
P2+ 5, £ (dt2+ dt+ s+ 85 C)

where 2jk and 2k are the respective damping coefficients which, of course, are normally not equal
(the original damping coefficients have been divided by #, as all other coefficients). In the case of a
spherical balloon, these coefficients are easily determined:

CpSyppV . '
k_T, j=2, (IV.5)
the damping in horizontal direction being twice that in the vertical one. For kite balloons we obtain:
(a+5Cp)SpeV Cp
[ = 2 .
k 2m > Cp+2a’ (1V.6)

where a is the lift slope of balloon. The damping in vertical direction may now become much
greater than in the horizontal one, and the value of j obviously depends on the balloon shape.
The characteristic quartic equation of the system (IV.4) is:
J) =X+ BB+ C'X2+ DA+ E =0, (Iv.7)
where
B = 2(j+ 1)k, C' = w4 w? + 4k?, ‘
D — 2k (Js1+ Sg)ws® + (55 +755)ws” (IV.8)

E' = wi2w,?
R ’ 1 2 -
$1 + 85
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The quartic may be factorised numerically in each particular case. If, however, 2 may be considered
as small (as is often the case), we can factorise (IV.7) approximately, expanding the coefficients of
quadratic factors into power series in %, and determining a few terms for each coefficient. Some
ordinary algebraleads to the following factorisation:’

FQ) = {22 + (2kA, - 8R3x) A + w? (1 —4k2p + 16k%y,)} x

| X A2+ (2hAy+ 8F%) A + osg? (1+4k2p— 16kiy)} = 0, (1V.9)
where: ‘ : ‘ . S
g h + jss 4 = ISyt 8 -1 s

M=o T oy P z 59

§p+ 8y S F S w1 — Wy (51 +5)

- (IV.10)
A ® — Aywy? Ay — A,;) — pPevy? a(dy—Ay) — pPeo,?
al:a2=pW’ A R w2 — w,2 )
1 2 1 2 1 2

To see how well this approximation works, let us consider the following numerical example (the
units of dimensional quantities being unspecified):

The characteristic equation is:
FA) = A%+ 3M3 + 28X+ 50-76A + 25 = 0
and, factorising it by means of (IV.9, 10) we get:
4, =101, A, =199, p = 0-0004125, « = 0-0008377,

x1 = 0-0000342, xs = 0-0000340,
thus:

F) = (A2+1-0092)+24-9905)(A+ 1-9908A + 1-0004) = 0,

and, as it happens, all decimal figures retained here are correct. This example might apply to some
spherical balloon.. The damping has left the high frequency practically unchanged, and this mode
is not strongly damped. The low frequency mode is almost critically damped.

If we now change the values of & and j to:

k=2, j=0-1,
soas to make the example plausible in some case of kite balloon, the characteristic equation becomes:

X4 44703 + 27-6)% + 14-8641 + 25 = 0,
then
A, = 0-991, Ay = 0-109, p = 0-00033414, a = 0-000024142,

¥, = — 0-000008918, - xs = — 0-000001003,
and we obtain the factorisation:
f(A) = (A2+3-9625) 4 24-8607)(A2+0-4375A+1-0056) = 0,

the correct values of coeflicients being 3-9624, 24-8605, 0-4376, 1-0056.
It may be mentioned that, if damping is present, the balloon trajectories in the two modes are
no longer straight lines but spirally converging curves (oblong and narrow if the damping is small).
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TABLE 1

Numerical Values of Functions 1(p), Xg), o(p)

njw=01; = 5-655° | nfw = 0-2; ¢ = 10-901° | nfw = 0-3; f = 15-482° | njw = 0-4; o = 19-330° | njw = 0-6; 3 = 25-097°| n/w = 0-8; ¢ = 28-997°

(P - T
@) | M) | ol@) | 7@ | X@) | o@) | (@) | Np) | olp) | ) | Ae) | ol@) | (@) | No) | ole) | e) | ANe) | olp)
0| 7-946 | 0-000 | 0-000 | 3-213 | 0-000 | 0-000 | 1-846 | 0-000 | 0-000 | 1-279 | 0-000 | 0-000 | 0-848 | 0-000 | 0-000 | 0-705 | 0-000 | 0-000
1| 7-948 | 0-014 | 0-014 | 3-214 | 0-011 | 0-011 | 1-846 | 0-010 | 0-010 | 1-279 | 0-009 | 0-009 | 0-848 | 0-009 | 0-009 | 0-705 | 0-010 | 0-010
2| 7-951 | 0-027 | 0-027 | 3-215 | 0-022 | 0-022 | 1-847 | 0-019 | 0-019 | 1-280 | 0-018 | 0-018 | 0-849 | 0-018 | 0-018 | 0-706 | 0-020 | 0-020
3| 7-957 | 0-041 | 0-041 | 3-218 | 0033 | 0-033 | 1-849 | 0-029 | 0-029 | 1-281 | 0-027 | 0-027 | 0-849 | 0-027 | 0-027 | 0-706 | 0-030 | 0-029
4| 7-966 | 0-055 | 0-055 | 3-221 | 0-045 | 0-045 | 1-851 | 0-039 | 0-039 | 1-282 | 0-036 | 0-036 | 0-850 | 0-036 | 0-035 | 0-707 | 0-040 | 0-039
5(7-977 | 0-069 | 0-069 | 3-226 | 0-056 | 0-056 | 1-853 | 0-048 | 0-048 | 1-284 | 0-045 | 0-045 | 0-851 | 0-045 | 0-044 | 0-708 | 0-050 | 0-049
6| 7-990 | 0-083 | 0-083 | 3-231 | 0-067 | 0-067 | 1-856 | 0-058 | 0-058 | 1-286 | 0-054 | 0-054 | 0-853 | 0-054 | 0-053 | 0-709 | 0-059 | 0-059
e 7 |8-006|0-097 | 0-097 | 3-237 | 0-079 | 0-079 | 1-860 | 0-068 | 0-068 | 1-288 | 0-063 | 0-063 | 0-854 | 0-062 | 0-062 | 0-711 | 0-069 | 0-069
8| 8-024 | 0-111 | 0-111 | 3-245 | 0-090 | 0-090 | 1-864 | 0-078 | 0-077 | 1-291 | 0-072 | 0-072 | 0-856 | 0-071 | 0-071 | 0-712 | 0-079 | 0-079
9| 8-045 | 0-126 | 0-125 | 3-253 | 0-102 | 0-101 | 1-869 | 0-088 | 0-087 | 1-295 | 0-081 | 0-080 | 0-859 | 0-080 | 0-080 | 0-714 | 0-089 | 0-088
10 | 8-069 | 0-140 | 0-139 | 3-263 | 0-113 | 0-112 | 1-874 | 0-098 | 0-097 | 1-298 | 0-090 | 0-089 | 0-861 | 0-089 | 0-089 | 0-716 | 0-099 | 0-098
11 | 8-093 | 0-154 | 0-153 | 3-274 | 0-125 | 0-124 | 1-880 | 0-108 | 0-107 | 1-303 | 0-099 | 0-098 | 0-864 | 0-098 | 0-098 | 0-718 | 0-109 | 0-108
12 | 8-120 | 0-168 | 0-167 | 3-285 | 0-136 | 0-135 | 1-887 | 0-118 | 0-116 | 1-307 | 0-108 | 0-107 | 0-867 | 0-107 | 0-106 | 0-721 | 0-119 | 0-117
13 | 8-150 | 0-183 | 0-181 [ 3-298 | 0-147 | 0-146 | 1-894 | 0-128 | 0-126 | 1-312 | 0-118 | 0-116 | 0-870 | 0-117 | 0-115 | 0-723 | 0-129 | 0-127
14 | 8-184 | 0-197 | 0-195 | 3-311 | 0-159 | 0-158 | 1-902 | 0-138 | 0-136 | 1-317 | 0-127 | 0-125 | 0-874 | 0-126 | 0-124 | 0-726 | 0-139 | 0-137
15 | 8:226 | 0-212 | 0-210 | 3-326 | 0-171 | 0169 | 1-910 |'0-148 | 0-146 | 1-323 | 0-136 | 0-134 | 0-877 | 0:135 | 0-133 | 0-729 | 0-149 | 0-146
16 | 8:261 | 0-227 | 0224 | 3-340 | 0-183 | 0-181 | 1-919 | 0-158 | 0-156 | 1-329 | 0-146 | 0-143 | 0-881 | 6-144 | 0-142 | 0-733 | 0-159 | 0-156
17 | 8-304 | 0-242 | 0-238 | 3-355 | 0-195 | 0-192 | 1-929 | 0-169 | 0-165 | 1-336 | 0-155 | 0-152 | 0-886 | 0-153 | 0-150 | 0-736 | 0-169 | 0-166
18 | 8-351 | 0-257 | 0-253 | 3-372 | 0-207 | 0-204 | 1-939 | 0-179 | 0-175 | 1-343 | 0-164 | 0-161 | 0-890 | 0-162 | 0-159 | 0-740 | 0-179 | 0-175
19 | 8-400 | 0-272 | 0-267 | 3-391 | 0-219 | 0-215 | 1-951 | 0-189 | 0-185 | 1-351 | 0-174 | 0-170 | 0-895 | 0-171 | 0-168 | 0-744 | 0-189 | 0-185
20 | 8:453 | 0-288 | 0-282 | 3-412 | 0-232 | 0-227 | 1-962 | 0-199 | 0-195 | 1-359 | 0-183 | 0-179 | 0-900 | 0-181 | 0-177 | 0-748 | 0-199 | 0-195
21 | 8-505 | 0-303 | 0-296 | 3-435 | 0-244 | 0-239 | 1-975 | 0-210 | 0-205 | 1-367 | 0-193 | 0-188 | 0-906 | 0-190 | 0-186 | 0-753 | 0-209 | 0-204
22 [8-561 | 0-319 | 0-311 | 3-459 | 0-256 | 0-250 | 1-988 | 0-221 | 0-215 | 1-376 | 0-203 | 0-198 | 0-912 | 0-200 | 0-194 | 0-757 | 0-219 | 0-213
23 | 8-621 | 0-334 | 0-326 | 3-484 | 0-269 | 0-262 | 2-001 | 0-232 | 0-225 | 1-385 | 0-213 | 0-207 | 0-918 | 0-209 | 0-203 | 0-762 | 0-229 | 0-223
24 | 8-685 | 0-350 | 0-341 | 3-511 | 0-282 | 0-274 | 2-016 | 0-243 | 0-235 | 1-395 | 0-223 | 0-216 | 0-924 | 0-219 | 0-212 | 0-767 | 0-240 | 0-232
25 | 8:759 | 0-367 | 0-356 | 3-539 | 0-295 | 0-286 | 2:031 | 0-255 | 0-245 | 1-406 |.0-233 | 0-225 | 0-931 | 0-229 | 0-220 | 0-773 | 0-250 | 0-241
26 | 8-826 | 0-384 | 0371 3-567 | 0-308 | 0-298 | 2-047 | 0-266 | 0-255 | 1-417 | 0-243 | 0-234 | 0-937 | 0-238 | 0-229 | 0-778 | 0-260 | 0-251
27 | 8-903 | 0-401 | 0-386 | 3-597 | 0-322 | 0-310 | 2-064 | 0-277 | 0-265 | 1-428 | 0-253 | 0-243 | 0-945 | 0-248 | 0-238 | 0-784 | 0-271 | 0-260
28| 8-983 | 0-418 | 0-401 | 3-628 | 0-336 | 0-322 [ 2-081 | 0-288 | 0-275 | 1-440 | 0-264 | 0-252 | 0-952 | 0-258 | 0-247 | 0-790 | 0-281 | 0-269
29 | 9-068 | 0-436 | 0-417 | 3-661 | 0-350 | 0-334 | 2-100 | 0-299 | 0-285 | 1-452 | 0-274 | 0-261 | 0-960 | 0-267 | 0-255 | 0-796 | 0-291 | 0-278
30 { 9-157 | 0-454 | 0-432 | 3-696 | 0-364 | 0-346 | 2-119 | 0-310 | 0-295 | 1-465 | 0-284 | 0-270 | 0-968 | 0-277 | 0-264 | 0-803 | 0-302 | 0-288
31| 9-247 | 0-471 | 0-447 [ 3-731 | 0-377 | 0-358 | 2-139 | 0-323 | 0-306 | 1-479 | 0-295 | 0-280 | 0-977 | 0-287 | 0-273 | 0-809 | 0-312 | 0-297
32| 9-343 | 0-489 | 0-463 | 3-769 | 0-392 | 0-370 | 2-160 | 0-336 | 0-316 | 1-493 | 0-306 | 0-289 | 0-986 | 0-298 | 0-281 | 0-816 | 0-323 | 0-305
33 | 9-445 | 0-508 | 0-479 [ 3-808 | 0-406 | 0-383 | 2-182 | 0-348 | 0-327 [ 1-507 | 0-318 | 0-298 | 0-996 | 0-308 | 0-290 | 0-823 | 0-334 | 0-314
34 9-551 | 0-527 | 0-495 | 3:850 | 0420 | 0-395 | 2-205 | 0361 | 0-337 [ 1-523 | 0-329 | 0-307 | 1-005 | 0-319 | 0-298 | 0-831 | 0-345 | 0-323
35| 9-663 | 0-546 | 0-511 | 3-893 | 0-436 | 0-408 | 2-229 | 0-374 | 0-348 | 1-539 | 0-340 | 0-317 | 1-015 | 0-329 | 0-307 | 0-839 | 0-356 | 0-332 .
36 | 9-777 | 0-566 | 0-527 | 3-938 | 0-452 | 0-420 | 2-253 | 0-387 | 0-358 | 1-555 | 0-352 | 0-326 | 1-025 | 0-340 | 0-315 | 0-846 |.0-367 | 0-341
37 [ 9-899 | 0-587 | 0-544 | 3-984 | 0-468 | 0-433 | 2:279 | 0-399 | 0-368 | 1-572 | 0-363 | 0-335 | 1-035 | 0-350 | 0-324 | 0-854 | 0-377 | 0-350
38 [10-026 | 0-609 | 0-561 | 4-034 | 0-484 | 0-446 | 2-306 | 0-412 | 0-379 | 1-590 | 0-374 | 0-344 | 1-046 | 0-361 | 0:332 | 0-863 | 0-388 | 0-359
39 [10-161 | 0-631 | 0-577 | 4-085 | 0-501 | 0-459 | 2-334 | 0-425 | 0-389 | 1-609 | 0-386 | 0-354 | 1-057 | 0-371 | 0-341 | 0-871 | 0-399 | 0-367
40 {10-302 | 0-653 | 0-595 | 4-139 | 0-518 | 0-472 | 2-364 | 0-438 | 0-400 | 1-628 | 0-397 | 0-363 | 1-068 | 0-382 | 0-350 | 0-880 | 0-410 | 0-376
41 (10-446 | 0-674 | 0-611 | 4:194 | 0-534 | 0-485 | 2:394 | 0-451 | 0-411 [ 1-648 | 0-410 | 0-372 | 1-080 | 0-393 | 0-358 | 0-889 | 0-422 | 0-385
42 (10-598 | 0696 | 0-629 | 4252 | 0-551 | 0-498 | 2.425 | 0-465 | 0-421 | 1-669 | 0-424 | 0-382 | 1-093 | 0-405 | 0-366 | 0-899 | 0-433 | 0-393
43 [10-759 | 0-719 | 0-646 | 4-313 | 0-569 | 0-511 | 2-458 | 0-479 | 0-432 | 1-690 | 0-437 | 0-391 | 1-106 | 0-417 | 0-375 | 0-909 | 0-445 | 0-401
44 [10-929 | 0-743 | 0-664 | 4-337 | 0-587 | 0-525 | 2-493 | 0-494 | 0-443 | 1.713 | 0-451 | 0-401 | 1-119 | 0-429 | 0-383 | 0-919 | 0-457 | 0-409
45 |11-108 | 0-768 | 0-682 | 4-445 | 0-606 | 0-538 | 2529 | 0-509 | 0-454 | 1-736 | 0-464 | 0-410 | 1-133 | 0-441 | 0-391 | 0-929 | 0-469 | 0-418

-147 | 0-452 | 0-400 | 0-939 | 0-480 | 0-426
-161 | 0-464 | 0-408 | 0-950 | 0-492 | 0-434
176 | 0-476 | 0-416 | 0-961 | 0-504 | 0-443
-192 | 0-488 | 0-424 | 0-972 | 0-516 | 0-451
-208 | 0-500 | 0-433 | 0-984 | 0-527 | 0-459

46 |11-289 | 0-794 | 0-700 | 4-513 | 0-626 | 0-552 | 2-565 | 0-525 | 0-465
47 111-482 | 0-822 | 0-719 | 4-585 | 0-646 | 0-566 | 2-604 | 0-541 | 0-476
48 {11-686 | 0-851 | 0-737 | 4-661 | 0-667 | 0-580 | 2-644 | 0-558 | 0-487
49 111-904 | 0-880 | 0-757 | 4-741 | 0-689 | 0-594 | 2-686 | 0-575 | 0-498
50 [12-132 | 0-911 | 0-776 | 4-825 | 0-711 | 0-608 | 2-730 | 0-593 | 0-509

760 | 0-477 | 0-420
785 | 0-491 | 0-429
+810 | 0-504 | 0-439°
-837 1 0-518 | 0-448
-865 | 0-531 | 0-457

— s e
i h b

51 112-363 | 0-937 | 0:795 | 4-910 | 0-731 | 0-622 | 2-775 | 0-609 | 0-520
52 {12-610 | 0-965 | 0-815 | 5-000 | 0-753 | 0-637 | 2-822 | 0-627 | 0-532
53 [12-874 | 0-996 | 0-834 | 5-096 | 0-776 | 0-651 | 2-872 | 0-645 | 0-544 | 1-955 | 0-575 | 0-486
54 (13-154 | 1-030 | 0-855 | 5-196 | 0-800 | 0-666 | 2-924 | 0-664 | 0-555 | 1-988 | 0-591 | 0-496
55 [13-451 | 1-066 | 0-876 | 5-302 | 0-826 | 0-681 | 2-978 | 0-683 | 0-567 | 2-022 | 0-608 | 0-505

894 | 0-545 | 0-467
924 | 0-560 | 0-477

2241 0-512 | 0-441 | 0-996 | 0-540 | 0-467
241 1 0-525 1 0-449 | 1-008 | 0-554 | 0-474
-259 | 0-538 | 0-457 [ 1-021 | 0-567 | 0-482
-277 | 0-551 | 0-465 | 1-034 | 0-580 | 0-439
-296 | 0-565 | 0-473 | 1-047 | 0-593 | 0-497

1
1
1
1
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56 [13-749 | 1 5-409 1 0-853 | 0-696 | 3-033 | 0-704 | 0-578 | 2-056 | 0-625 | 0-515 | 1-315 | 0-579 | 0-481 | 1-061 | 0-606 | 0-504
57 |14-072 | 1-145 | 0-919 | 5-523 | 0-881 | 0-711 | 3-091 | 0-726 | 0-590 | 2-093 | 0-643 | 0-525 | 1-335 | 0-594 | 0-489 | 1-075 | 0-620 | 0-512
58 |14-418 | 1-183 | 0-941 | 5-645 | 0-911 | 0-727 | 3-153 | 0-748 | 0-601 | 2-131 | 0-661 | 0-534 | 1-355 | 0-608 | 0-496 | 1-089 | 0-633 | 0-519
59 {14-790 | 1-234 | 0-964 | 5-773 | 0-943 | 0-742 | 3-217 | 0-772 | 0-613 | 2-170 | 0-680 | 0-544 | 1-376 | 0-624 | 0-504 | 1-104 | 0-646 | 0-527
60 [15-185 | 1-283 | 0-987 [ 5-909 | 0-975 | 0-758 | 3-285 [ 0-796 | 0-624 | 2-211 |{ 0-700 | 0-553 | 1-398 | 0-639 | 0-512 | 1-119 | 0-659 | 0-534
61 [15-576 | 1-312 | 1-009 | 6-046 | 1-001 | 0-774 | 3-353 | 0-816 | 0-636 | 2-253 | 0-717 | 0-563 | 1-421 | 0-654 | 0-520 | 1-135 | 0-675 | 0-541
62 116-006 | 1-348 | 1-032 [ 6-193 | 1-029 | '0-791 | 3-426 | 0-839 | 0-649 | 2-297 | 0-736 | 0-573 | 1-444 | 0-669 | 0-527 | 1151 | 0-691 | 0-548
63 116-475 | 1-392 | 1056 | 6350 | 1-061 | 0-807 | 3-503 | 0-863 | 0-661 | 2-344 | 0-756 | 0-582 | 1-468 | 0-685 | 0-534 | 1-167 | 0-706 | 0-554
64 116-982 | 1-443 | 1-081 | 6-518 | 1-097 | 0-823 | 3-585 | 0-890 | 0-673 | 2-393 | 0-777 | 0-592 | 1-493 | 0-702 | 0-542 | 1-184 | 0-722 | 0-561
65 17-527 | 1-501 | 1-106 | 6-697 | 1-135 | 0-840 | 3-671 | 0-918 | 0-685 | 2-443 | 0-800 | 0-601 | 1-519 | 0-719 | 0-549 | 1-202 | 0-737 | 0-567
66 (18-077 | 1-567 | 1-132 | 6-875 | 1-178 | 0-857 | 3-757 | 0-948 | 0-697 | 2-495 | 0-823 | 0-611 | 1-546 | 0-737 | 0-556 | 1-219 | 0-753 | 0-574
67 [18-683 | 1-641 | 1-159 | 7-069 | 1-223 | 0-874 | 3-850 | 0-980 | 0-709 | 2-549 | 0-848 | 0-620 | 1-573 | 0-755 | 0-564 | 1-238 | 0-769 | 0-580
68 119-344 | 1-721 | 1-187 | 7-279 | 1-272 | 0-892 | 3-949 | 1-014 | 0-721 | 2-607 | 0-874 | 0-630 | 1-602 | 0-774-| 0-571 | 1-257 | 0-784 | 0-587
69 (20-060 | 1-809 | 1-215 | 7-506 | 1-325 | 0-909 | 4-054 | 1-049 | 0-733 | 2-668 | 0-901 | 0-640 | 1-632 | 0-794 | 0-578 | 1-276 | 0-800 | 0-593
70 120-832 | 1-904 | 1-244 { 7-750 | 1-381 | 0-927 | 4-165 | 1-087 | 0-746 | 2-731 | 0-929 | 0-649 | 1-663 | 0-814 | 0-586 | 1-296 | 0-815 | 0-600
71 (21-617 | 1-954 | 1-273 | 8-002 | 1-429 | 0-945 | 4-276 | 1-119 | 0-757 | 2-796 | 0-955 | 0-658 | 1-694 | 0-833 | 0-592 | 1-317 | 0-835 | 0-605
72 122-505 | 2-023 | 1-303 | 8-274 | 1-484 | 0-964 | 4-397 | 1-154 | 0-769 | 2-864 | 0-982 | 0-667 | 1-727 | 0-854 | 0-598 | 1-338 | 0-855 | 0-610
73 |23-495 | 2-111 | 1-334 | 8-563 | 1-547 | 0-982 | 4-527 | 1-193 | 0-781 | 2-937 | 1-012 | 0-675 | 1-761 | 0-875 | 0-604 | 1-360 | 0-874 | 0-615
74 124-589 | 2:218 | 1-366 | 8-876 | 1-618 | 0-999 | 4-667 | 1-236 | 0-793 | 3-014 | 1-044 | 0-684 | 1-797 | 0-897 | 0-610 | 1-382 | 0-894 | 0-620
75125-785 | 2-345 | 1-398 [ 9-212 | 1-686 | 1-018 | 4-817 | 1-282 | 0-805 | 3-096 | 1-077 | 0-693 | 1-835 | 0-920 | 0-616 | 1-405 | 0-914 | 0-625
76 127-084 | 2:490 | 1-432  9-574 | 1-762 | 1-037 | 4-970 | 1-332 | 0-817 | 3-181 | 1-113 | 0-702 | 1-873 | 0-944 | 0-622 | 1-429 | 0-933 | 0-63C
77 |28-379 | 2:654 | 1-467 | 9-964 | 1-842 | 1-056 | 5-136 | 1-385 | 0-829 | 3-271 | 1-151 | 0-710 | 1-913 | 0-970 | 0-628 | 1-454 | 0-953 | 0-635
78 [30-012 | 2-838 | 1-502 (10-393 | 1-930 | 1-075 | 5-315 | 1-442 | 0-841 | 3-364 | 1-191 | 0-719 | 1-955 | 0-996 | 0-634 | 1-480 | 0-973 | 0-640
79 131-868 | 3-040 | 1-539 [10-854 | 2-026 | 1-094 | 5-506 | 1-502 | 0-853 | 3-465 | 1-233 | 0-728 | 1-999 | 1-023 | 0-640 | 1-506 | 0-992 | 0-645
80 [33-947 | 3-262 | 1-576 |11-365 | 2-128 | 1-112 | 5-709 | 1-566 | 0-865 | 3-572 | 1-277 | 0-737 | 2-044 | 1-051 | 0-646 | 1-533 | 1-012 | 0-650
81 136-250 | 3-492 | 1-615 [11-922 | 2-241 | 1-131 | 5-928 | 1-632 | 0-876 | 3-684 | 1-322 | 0-744 | 2-090 | 1-080 | 0-650 | 1-562 | 1-035 | 0-654
82 138-891 | 3-763 | 1-654 |12-537 | 2-366 | 1-149 | 6-165 | 1-704 | 0-837 | 3-804 | 1-371 | 0-751 | 2-141 | 1-110 | 0-655 | 1-591 | 1-058 | 0-657
83 |41-946 | 4-063 | 1-694 |13-218 | 2-502 | 1-167 | 6-421 | 1-781 | 0-897 | 3-932 | 1-422 | 0-758 | 2-193 | 1-141 | 0-659 | 1-621 | 1-083 | 0-660
84 |45-525 | 4-431 | 1-735 |13-977 | 2-656 | 1-184 [ 6-699 | 1-866 | 0-907 | 4-068 | 1-478 | 0-764 | 2-248 | 1175 | 0-663 | 1-653 | 1-108 | 0-663
85 |49-771 | 4-841 | 1-776 [14-828 | 2-824 | 1-201 | 7-001 | 1-957 | 0-915 | 4-215 | 1-536 | 0:770 | 2-305 | 1-209 | 0-666 | 1-685 | 1-134 | 0-666
86 |54-890 | 5-371 | 1-816 [15-789 | 3-020 | 1-216 | 7-333 | 2-057 | 0-923 | 4-371 | 1-599 | 0:775 [ 2-366 | 1-245 | 0-669 | 1-719 | 1-162 | 0-668
87 161-183 | 5-959 | 1-857 |16-882 | 3-254 | 1-229 [ 7-696 | 2-165 | 0-930 | 4-540 | 1-666 | 0-779 | 2-429 | 1-283 | 0-671 | 1-754 | 1-190 | 0-670
88 169-103 | 6:794 | 1-839 |18-138 | 3-490 | 1-240 | 8-098 | 2-287 | 0-935 | 4-723 | 1-740 | 0-782 [-2-496 | 1-324 | 0-673 | 1-791 | 1-219 | 0-671
89 (79:376 | 7-877 | 1-912 [19-594 | 3-786 | 1-247 | 8:543 | 2-422 | 0-938 [ 4-920 | 1-820 | 0-784 | 2-566 | 1-366 | 0-674 | 1-829 | 1-250 | 0-672
90 193-229 | 9-208 | 1-927 {21-304 | 4-123 | 1-251 | 9:040 | 2-571 | 0-939 [ 5-135 | 1-905 | 0-785 | 2-641 | 1-411 | 0-674 | 1-869 | 1-282 | 0-672
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TABLE 1 (continued)

Numerical Values of Functions w(¢), A(p), o(p)

nfw=1-0; = 31-717° | njw = 1-2; th = 33:690° | njw = 1-4; y = 35-173° | n)w = 1-6; s = 36-323°|nfew = 2-0; o = 37-982° | njw = 2-5; s = 39-345°

p) | Mp) | ol@) | @) | Mo) | ole) | @) | M) | ol@) | @) | XNo) | ole) | 7(@) | o) | olp) | 7e) | Ae) | olp)

0-650 | 0-000 | 0-000 | 0-629 | 0-000 | 0-000 | 0-624 | 0-000 | 0-000 } 0-626 | 0-000 | 0-000 | 0-639 | 0-000 | 0-000 | 0-661 | 0-000 | 0-000

0
1| 0-650 | 0-011 | 0-011 | 0-629 | 0-013 | 0-013 | 0-624 | 0-015 | 0-015 | 0-626 | 0-017 | 0-017 { 0-639 | 0-022 | 0-022 | 0-661 | 0-028 | 0-028
2| 0-651 | 0-023 | 0-023 | 0-630 | 0-026 | 0-026 | 0-624 | 0-030 | 0-030 | 0-626 | 0-035 | 0-035 { 0-639 | 0-044 | 0-044 | 0-661 [ 0-057 | 0-057
31 0-651 | 0-034 | 0-034 | 0-630 | 0-039 | 0-039 | 0-625 | 0-046 | 0-045 | 0-627 | 0-052 | 0-052 | 0-640 | 0-066 | 0-066 | 0-662 | 0-085 | 0-085
410-652 | 0-045 | 0-045 | 0-631 | 0-053 | 0-052{ 0-625 | 0-061 | 0-060 | 0-627 | 0-069 | 0-069 | 0-640 | 0-088 | 0-088 | 0-662 | 0-114 | 0-113
510:653 | 0-057 | 0-056 | 0-632 | 0:066 | 0-065 | 0-626 | 0-076 | 0-076 | 0-628 | 0-087 | 0-086 | 0-641 | 0-110 : 0-110 | 0-663 | 0-142 | 0-141
610654 | 0-068 | 0-068 | 0-633 | 0-079 | 0-079 | 0-627 | 0-091 | 0-091 | 0-629 | 0-104 | 0-104 | 0-642 | 0-132 | 0-132 | 0-664 | 0-170 | 0-170
w 710655 | 0-079 | 0-079 | 0-634 | 0-092 | 0-092 } 0-628 | 0-106 | 0-106 | 0-630 | 0-122 0-121 | 0-643 | 0-155 ' 0-154 | 0-665 | 0-199 | 0-198
810-656 | 0-091 ) 0-090 | 0635 | 0-105 | 0-105 | 0-629 | 0-121 | 0-121 | 0-631 | 0-139 | 0-138 | 0-644 | 0-177 | 0-176 | 0-666 | 0-227 | 0-226
910-658 | 0-102 | 0-102 | 0-637 | 0-118 | 0-118 | 0-631 | 0-137 | 0-136 | 0-633 | 0-156 | 0-156 | 0-646 | 0-199 | 0-198 | 0:668 | 0-256 | 0-255
10 ] 0-660 | 0-113 | 0-113 | 0-639 | 0-132 | 0-131 | 0-633 | 0-152 | 0-151 | 0-635 | 0-174 | 0-173 | 0-648 | 0-221 | 0-220 | 0-670 | 0-284 | 0-283
111 0-663 | 0-125 | 0-124 ] 0-641 | 0-145 | 0-143 | 0-635 | 0-167 | 0-165 | 0-637 | 0-191 | 0-189 | 0-651 | 0-242 | 0-241 | 0-673 | 0-310 | 0-309
12 | 0665 | 0-136 | 0-135 | 0-644 | 0-158 | 0-156 | 0-638 | 0-182 | 0-180 | 0-640 | 0-207 | 0-205 | 0-653 | 0-263 | 0-262 | 0-675 | 0-337 | 0-335
13| 0-667 | 0-148 | 0-146 | 0-646 | 0-171 | 0-169 | 0-640 | 0-196 | 0-194 | 0-642 | 0-224 | 0-221 | 0-655 | 0-284 | 0-283 | 0-677 | 0-363 | 0-360
141 0-669 | 0-159 | 0-157 | 0-648 | 0-184 | 0-181 | 0-642 | 0-211 | 0-208 | 0-645 | 0-241 | 0-238 | 0-658 | 0-305 | 0-303 | 0-680 | 0-389 | 0-385
151 0-672 | 0-170 | 0-168 | 0-651 | 0-197 | 0-194 | 0-645 | 0-226 | 0-223 | 0-647 | 0-258 | 0-254 | 0-660 | 0-325 | 0-323 | 0-682 | 0-415 | 0-410
16 | 0-676 | 0-182 | 0-179 | 0-654 | 0-210 | 0-206 | 0-648 | 0-241 | 0-237 | 0-650 | 0-275 | 0-270 | 0-663 | 0-346 | 0-343 | 0-685 | 0-441 | 0-435
17 1 0-679 { 0-193 | 0-190 | 0-657 | 0-223 | 0-219 | 0-651 | 0-256 | 0-251 | 0-653 | 0-291 | 0-286 { 0-666 | 0-367 | 0-363 | 0-688 | 0-468 | 0-461
18 | 0-683 | 0-204 | 0-201 | 0-660 | 0-236 | 0-231 | 0-654 | 0-271 | 0-266 | 0-656 | 0-308 | 0-303 | 0-669 | 0-388 | 0-383 | 0:691 | 0-494 | 0-486
191 0-686 | 0-216 | 0-212 § 0-664 | 0-249 | 0-244 | 0-657 | 0-286 | 0-280 | 0-659 | 0-325 | 0-319 | 0-672 | 0-409 | 0-403 | 0:694 | 0-520 | 0-511
20| 0-690 | 0-227 | 0-223 | 0-667 | 0-262 | 0-257 | 0-661 | 0-300 | 0-294 | 0-662 | 0-342 | 0-335 [ 0-675 | 0-430 | 0-422 | 0-697 | 0-546 | 0-536
2110694 | 0-239 | 0-233 | 0-671 | 0-275 | 0-268 | 0-665 | 0-315 | 0-307 | 0-666 | 0-358 | 0-350 | 0-679 | 0-449 | 0-440 | 0-701 | 0-569 |} 0-560
221 0-698 | 0-250 | 0-243 | 0-675 | 0-288 | 0-280 | 0-669 | 0-329 | 0-320 | 0-670 | 0-374 | 0-364 | 0-683 | 0-468 | 0-458 | 0-705 | 0-592 | 0-583
2310703 | 0-261 | 0-254 | 0-679 | 0-300 | 0-291 | 0-672 | 0-344 | 0-333 [ 0-674 | 0-390 | 0-378 | 0-687 | 0-488 | 0-476 | 0-708 | 0-616 | 0-606
241 0-707 | 0-273 | 0-264 | 0-683 | 0-313 | 0-303 | 0-676 | 0-358 | 0-346 | 0-678 | 0-406 | 0-393 | 0-690 | 0-507 | 0-494 [ 0-712 ) 0-639 | 0-628
2510-711 | 0-284 | 0-274 | 0-687 | 0-326 | 0-315 | 0-680 | 0-372 | 0-359 | 0-682 | 0-422 | 0-407 | 0-694 | 0-526 | 0-511 | 0-716 | 0-662 | 0-649

26 0-717 | 0-296 | 0-285 | 0-692 | 0-339 | 0-326 | 0-685 | 0-387 | 0-373 | 0-686 | 0-438 | 0-422 | 0-698 | 0-545 | 0-528 ] 0-720 | 0-685 | 0-669
2710-722 | 0-307 | 0-295 [ 0-697 | 0-352 | 0-338 | 0-690 | 0-401 | 0-386 | 0-691 | 0-454 | 0-436 | 0-703 | 0-564 | 0-545 | 0-724 | 0-708 | 0-688
281 0-727 | 0-319 | 0-305 | 0-702 | 0-365 | 0-350 | 0-694 | 0-415.| 0-399 | 0-695 | 0-470 | 0-451 | 0-707 | 0-583 | 0-562 ] 0-728 | 0-731 | 0-707
291 0-733 1 0-330 | 0-316 { 0-707 | 0-377 | 0-361 | 0-699 | 0-430 | 0-412 [ 0-700 | 0-486 | 0-466 | 0-711 | 0-603 | 0-579 [ 0-732 | 0-754 | 0-726
30 | 0-738 | 0-342 | 0-326 | 0-712 | 0-390 | 0-373 | 0-704 | 0-444 | 0-425 | 0-704 | 0-502 | 0-480 | 0-716 | 0-622 | 0-595 | 0-736 | 0-777 | 0-745

31| 0-744 | 0-353 | 0-336 | 0-718 | 0-403 | 0383 | 0-709 | 0-458 | 0-436 | 0-709 | 0-517 | 0-493 | 0-721 | 0-639 | 0-611 | 0-741 | 0-797 | 0-764
32(0-750 | 0-365 | 0-345 | 0-724 | 0-416 | 0-394 | 0-715 | 0-472 | 0-447 | 0-715 | 0-532 | 0-505 | 0-725 | 0-657 | 0-626 | 0-745 | 0-818 | 0-782
3310-757 | 0-377 | 0-355 | 0-729 | 0-429 | 0-404 | 0-720 | 0-486 | 0-459 | 0-720 | 0-547 | 0-517 | 0-730 | 0-674 | 0-641 | 0-750 | 0-838 | 0-799
341 0-763 | 0-388 | 0-364 | 0-735 | 0-441 | 0-415| 0-725 | 0-500 | 0-470 | 0-725 | 0-562 | 0-529 | 0-735 | 0-692 | 0-656 | 0-754 ; 0-858 | 0-815-
351 0-769 | 0-400 | 0-374 | 0-741 | 0-454 | 0-425 | 0-731 | 0-514 | 0-482 | 0-730 | 0-577 | 0-542 ] 0-740 | 0-709 | 0-670 | 0-759 | 0-878 | 0-831

361 0-776 | 0-412 | 0-384 | 0-747 | 0-467 | 0-436 | 0-737 | 0-528 | 0-493 | 0:736 | 0-593 | 0-555 | 0-745 | 0-727 | 0-684 | 0-763 | 0-898 | 0-847
371 0-783 | 0-424 | 0-393 | 0-754 | 0-480 | 0-446 | 0-743 | 0-542 | 0-505 | 0-741 | 0-608 | 0-568 | 0-750 | 0-744 | 0-698 | 0-768 | 0-919 | 0-863

381 0-791 | 0-435 | 0-403 | 0-760 | 0-493 | 0-457 | 0-749 | 0-556 | 0-516 | 0-747 | 0-623 | 0-580 | 0-755 | 0-762 | 0-712 [ 0-773 | 0-939 | 0-879
39| 0-798 | 0-447 | 0-412 | 0-767 | 0-505 | 0-467 | 0-755 | 0-570 | 0-527 | 0-753 | 0-638 | 0-592 [ 0-761 | 0-779 | 0-726 | 0-778 | 0-959 | 0-895
40 [ 0-805 | 0-459 | 0-422 | 0-773 | 0-518 | 0-477 | 0-761 | 0-584 | 0-539 | 0-758 | 0-653 | 0-604 [ 0-766 | 0-797 | 0-739 | 0-782 | 0-979 | 0-910°
411 0-813 | 0-471 | 0-431 | 0-780 | 0-531 | 0-487 | 0-768 | 0-598 | 0-549 | 0-765 | 0-668 | 0-615 [ 0-771 | 0-813 | 0-752 | 0-787 | 0-997 | 0-923
42 0-821 | 0483 | 0-439 | 0-788 | 0-544 | 0-496 | 0-774 | 0-611 | 0-558 | 0-771 | 0-682 | 0-625 | 0-777 | 0-829 | 0-764 ] 0-792 | 1-015 | 0-936
431 0-829 | 0-495 | 0-448 | G-795 ' 0-557 | 0-505 | 0-781 | 0-625 | 0-568 | 0-777 | 0-697 | 0-637 | 0-782 | 0-846 | 0-776 | 0-797 | 1-033 | 0-949
‘44| 0-838 | 0-508 | 0-456 | 0-802 | 0-570 | 0-514 | 0-788 | 0-639 { 0-578 | 0-783 | 0-712 | 0-647 | 0-788 | 0-862 | 0-788 | 0-802 | 1-051 | 0-962
45 0-846 | 0-520 | 0-465 | 0-809 | 0-583 | 0-523 | 0-794 | 0653 | 0-588 | 0-790 | 0-726 | 0-657 { 0-794 | 0-878 | 0-800 | 0-807 | 1-069 | 0-975
46 | 0-855 | 0-532 | 0-474 | 0-817 | 0-596 | 0-533 | 0-802 | 0-667 | 0-597 | 0-796 | 0-741 | 0-667 [ 0-800 | 0-894 | 0-811 | 0-813 | 1-087 | 0-988
471 0-864 | 0-544 | 0-482 | 0-826 | 0-609 | 0-542 | 0-809 | 0-680 | 0-607 |{ 0-803 | 0-756 | 0-677 | 0-805 | 0-911 | 0-822 | 0-818 | 1-105 | 1-001
481 0-873 | 0-557 | 0-491 | 0-834 | 0-622 | 0-551 | 0-816 | 0-694 | 0-617 | 0-810 | 0-770 | 0-687 | 0-811 | 0-927 | 0-833 | 0-823 | 1-124 | 1-014
491 0-882 | 0-569 | 0-500 | 0-842 | 0-635 | 0-560 | 0-823 | 0-708 [ 0-627 | 0-816 | 0-785 | 0-697 | 0-817 | 0-943 | 0-844 | 0-828 | 1-142 | 1-026
50 { 0-892 | 0-581 | 0-508 | 0-850 | 0-648 | 0-569 | 0-831 | 0-722 | 0-636 | 0-823 | 0-800 | 0-707 | 0-823 | 0-959 | 0-854 | 0-833 | 1-160 | 1-038
51| 0-902 | 0-594 | 0-516 | 0-858 | 0-662 | 0-577 | 0-839 | 0-736 | 0-644 | 0-830 | 0-814 | 0-716 | 0-829 | 0-975 | 0-863 | 0-839 | 1-176 | 1-048
52| 0-912 | 0-606 | 0-523 | 0-867 | 0-675 | 0-585 | 0-846 | 0-750 | 0-653 | 0-837 | 0-829 | 0-725 | 0-836 | 0-991 | 0-872 | 0-844 | 1-193 | 1-058
53 10-922 | 0-619 | 0-531 | 0:876 | 0-689 | 0-593 | 0-854 | 0-764 | 0-661 | 0-845 | 0-843 | 0-734 [ 0-842 | 1-006 | 0-881 [ 0-849 | 1-210 | 1-067
5410932 | 0-632 | 0-539 | 0-885 | 0-702 | 0-600 | 0-862 | 0-778 | 0-669 | 0-852 | 0-858 | 0-743 | 0-848 | 1-022 | 0-890 | 0-855 | 1-226 | 1-077
55| 0-943 | 0-645 | 0-546 | 0-894 | 0-716 | 0-608 | 0-870 | 0-792 | 0-677 | 0-859 | 0-873 | 0-752 | 0-854 | 1-037 | 0-899 | 0-860 | 1-243 | 1-087
56 | 0-954 | 0-659 | 0-554 | 0-904 | 0-730 | 0-616 | 0-879 | 0-806 | 0-685 | 0-867 | 0-887 | 0-761 | 0-861 | 1-053 | 0-908 [ 0-866 | 1-260 | 1-096
571 0-966 | 0-672 | 0-561 | 0-913 | 0-743 | 0-624 | 0-887 | 0-820 | 0-693 | 0-875 | 0-902 | 0-769 | 0-867 | 1-069 | 0-917 | 0-871 | 1-277 | 1-106
58 | 0-977 | 0-686 | 0-569 | 0-923 | 0-757 | 0-631 | 0-896 | 0-835 | 0-701 | 0-882 | 0-916 | 0-777 | 0-874 | 1-084 | 0-926 | 0-877 | 1-293 | 1-116
59 ( 0-989 | 0-700 | 0-576 | 0-933 { 0-770 | 0-639 { 0-904 | 0-849 | 0-709 | 0-890 | 0-931 | 0-784 | 0-880 | 1-100 | 0-935 | 0-882 1 1-310 | 1-125
60 | 1-000 | 0-714 | 0-584 | 0-942 | 0-784 | 0-647 | 0-913 | 0-863 | 0-717 | 0-898 | 0-946 | 0-791 | 0-887 | 1-115 | 0-943 | 0-888 | 1-327 | 1-134
61 1-013 ) 0-727 | 0-590 | 0-953 | 0-799 | 0-653 | 0-922 | 0-878 | 0-723 | 0-906 | 0-961 | 0-798 | 0-894 | 1-131 | 0-950 { 0-894 | 1-343 | 1-141
6211026 | 0-741 | 0-596 | 0-964 | 0-814 | 0-659 [ 0-932 | 0-893 | 0-730 | 0-914 | 0-976 | 0-805 | 0-901 | 1-147 | 0-957 | 0-899 | 1-359 | 1-148
631 1-038 | 0-755 | 0-603 [ 0-974 | 0-829 | 0-666 | 0-941 | 0-908 | 0-736 | 0-922 | 0-991 | 0-812 | 0-908 | 1-162 | 0-964 | 0-905 | 1-375 | 1-155 °
641 1-051 | 0-770 | 0-609 | 0-985 | 0-843 | 0-672 | 0-950 | 0-922 | 0-742 | 0-931 } 1-006 | 0-819 | 0-914 | 1-178 | 0-971 | 0-911 | 1-391 | 1-162
65| 1-064 | 0-785 | 0-615 | 0-996 | 0-858 | 0-678 | 0-959 | 0-937 | 0-748 | 0-939 | 1-021 | 0-826 | 0-921 | 1-193 | 0-978 | 0-917 | 1-408 | 1-168
66 | 1-078 | 0-800 | 0-621 | 1-008 | 0-873 | 0-684 | 0-969 | 0-952 | 0-755  0-948 | 1-036 | 0-832 ] 0-929 | 1-209 | 0-985 | 0-923 | 1-424 | 1-175
67 1 1-093 | 0-815 | 0627 [ 1-019 | 0-888 | 0-691 | 0-979 | 0-967 | 0-761 | 0-957 | 1-051 | 0-838 | 0-936 | 1-225 | 0-992 | 0-928 | 1-440 | 1-182
68 [ 1-107 | 0-831 | 0-634 | 1-031 | 0-903 | 0-697 | 0-989 | 0-982 | 0-767 | 0-966 | 1-067 | 0-844 | 0-943 | 1-240.| 0-998 [ 0-934 | 1-456 | 1-189
69 1-121 | 0-847 | 0-640 [ 1-043 | 0-918 | 0-703 | 1-000 | 0-997 | 0-774 | 0-974 | 1-082 | 0-850 | 0-950 | 1-256 ' 1-004 | 0-940 | 1-472 | 1-196
70§ 1-136 | 0-863 | 0-646 | 1-055 | 0-933 | 0-709 | 1-010 | 1-012 | 0-780 | 0-983 | 1-097 | 0-855 | 0-958 | 1-271 | 1-009 | 0-946 | 1-488 | 1-202
71 [ 1-152 | 0-879 | 0-650 | 1-067 | 0-948 | 0-714 | 1-020 | 1-029 | 0-784 | 0-993 | 1-113 [ 0-859 | 0-965 | 1-288 | 1-013 | 0-953 | 1-505 | 1-207
721 1-168 | 0-896 | 0-655 | 1-080 | 0-964 | 0-718 | 1-031 | 1-045 | 0-788 | 1-002 | 1-130 | 0-863 | 0-973 | 1-304 | 1-017 | 0-959 | 1-521 | 1-212
731 1-184 |1 0-913 | 0-660 | 1-093 | 0-980 | 0-723 | 1-042 | 1-062 | 0-793 | 1-012 | 1-146 | 0-867 | 0-980 | 1-321 | 1-021 | 0-965 | 1-537 | 1-216
741 1-200 | 0-930 | 0-664 | 1-106 | 0-997 | 0-727 | 1-053 | 1-079 | 0-797 | 1-021 | 1-163 | 0-872 | 0-988 | 1-337 | 1-026 | 0-971 | 1-553 | 1-220
751 1-217 | 0-947 | 0-669 | 1-120 | 1-014 | 0-731 | 1-065 | 1-095 | 0-801 | 1-031 [ 1-179 | 0-876 | 0-996 | 1-353 | 1-030 | 0-978 | 1-570 | 1-224
76 1 1-235 1 0-966 | 0-673 [ 1-133 { 1-031 | 0-736 | 1-076 | 1-112 | 0-806 | 1-041 | 1-196 | 0-880 | 1-004 | 1-370 | 1-034 | 0-984 | 1-586 | 1-229
771 1-253 | 0-984 | 0-678 ) 1-147 | 1-049 | 0-740 | 1-088 | 1-129 | 0-810 | 1-051 | 1-212 | 0-884 | 1-012 | 1-386 | 1-038 | 0-990 | 1-603 | 1-233
78 [ 1-272 ) 1-003 | 0-682 | 1-162 | 1-067 | 0-744 [ 1-100 | 1-146 | 0-814 | 1-062 | 1-229 | 0-889 | 1-020 | 1-403 | 1-042 [ 0-997 | 1-620 | 1-237
79| 1-290 | 1-023 | 0-687 | 1177 | 1-085 | 0-749 | 1-112 | 1-162 | 0-818 | 1-072 | 1-245 | 0893 | 1-028 | 1-419 | 1-047 | 1-004 | 1-637 | 1-241
80 1-309 | 1-042 | 0-692 | 1-192 | 1-103 | 0-753 | 1-125 | 1-179 | 0-823 | 1-083 } 1-262 | 0-897 | 1-037 | 1-435 | 1-051 | 1-010 | 1-654 | 1-245
81| 1-329 | 1-063 | 0-695 | 1-207 | 1123 | 0-756 ( 1-137 | 1-197 | 0-826 | 1-094 | 1-279 { 0-900 | 1-045 | 1-452 | 1-054 | 1-017 | 1-671 | 1-248
821 1-349 1 1-083 | 0-698 | 1-223 | 1-142 | 0-759 | 1-150 | 1-215 | 0-828 | 1-105 | 1-297 | 0-903 | 1-054 | 1-470 | 1-056 | 1-024 | 1-688 | 1-250
8§31 1-370 | 1-105 | 0-701 ] 1-240 | 1-162 | 0-762 | 1-164 | 1-234 | 0-831 | 1-116 | 1-315 | 0-905 | 1-063 | 1-487 | 1-059 | 1-031 | 1-705 | 1-252
84| 1-392 | 1-127 | 0-703 | 1-256 | 1-181 | 0-764 [ 1-177 | 1-253 | 0-833 | 1-128 | 1-334 | 0-907 { 1-071 | 1-505 | 1-061 | 1-038 | 1-723 | 1-254
85| 1-414 | 1-149 | 0-705 | 1-273 | 1-202 | 0-766 | 1-191 | 1-273 | 0-835 | 1-139 | 1-353 | 0-909 | 1-080 | 1-523 | 1-063 { 1-045 | 1-740 | 1-256
86  1-437 | 1-172 | 0-707 | 1-291 | 1-223 | 0-768 | 1-205 | 1-293 | 0-837 | 1-151 | 1-372 | 0-910 | 1-090 | 1-542 | 1-064 | 1-052 | 1-758 | 1-257
871 1-461 | 1-196 | 0-709 | 1-309 | 1-245 | 0-769 | 1-220 | 1-313 | 0-838 | 1-163 | 1-391 | 0-911 | 1-099 | 1-560 | 1-065 | 1-059 | 1-776 | 1-258
881 1-486 1 1-221 | 0-710 | 1-327 | 1-267 { 0-770 | 1-235 { 1-334 | 0-839  1-176 | 1-411 | 0-912 | 1-108 | 1-579 | 1-066 | 1-066 | 1-794 | 1-259
891 1-512 | 1-247 | 0-711 | 1-346 | 1-290 | 0-771 { 1-250 | 1-355 | 0-839 | 1-189 | 1-432 | 0-913 | 1-118 | 1-598 | 1-066 | 1-074 | 1-812 | 1-260
90} 1-538 | 1-273 | 0-711 | 1-366 | 1-313 | 0-771 | 1-265 | 1-377 | 0 1-201 | 1-453 | 0-913 | 1-128 | 1-618 | 1-066 | 1-081 | 1-831 | 1-260
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F1e. 1. Typical two-dimensional cable configuration,

and forces acting on cable,
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Fi6, 2. Example of cable configurations for varying winds,

with constant balloon height.
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F1e. 3. Variation of longitudinal cable derivatives for configurations

of Fig. 2.
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