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S u m m a r y .  

The theory of equilibrium of balloon flying cables is presented in a simplified form most suitable for 
applications, with numerical tables covering probably the full range of practical cases. A simplified derivation 
of formulae for longitudinal cable derivatives is presented, and the problem of the lateral cable derivative 
solved. The normal oscillatory modes of the 'balloon-plus-cable' system (longitudinal and lateral, ignoring 
balloon aerodynamics) are determined and analysed. All final formulae are expanded into power series which 
converge well in the important case of a highly tensioned cable. 

The report provides the data necessary for studying dynamic stability of captive balloons. 
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i. Introduction. 

The problem of dynamic stability of captive balloons arose initially in connection with observation 
balloons, for which it was obviously important not only to ensure static stability, but also to have 
all oscillatory modes sufficiently damped. An early attack on the problem was made in 1915 by 
Bairstow, Relf and Jones 1 who produced a basic analytical scheme, following broadly the lines of 
G. H. Bryan's linearised approach to aeroplane dynamic stability, but including also all new elements 
peculiar to captive balloons, such as apparent inertia, additional degrees of freedom, and cable 
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derivatives. They obtained two basic characteristic equations (both sextic) for the longitudinal and 
lateral disturbances, respectively. The formidable array of coefficients involving numerous aero- 
dynamic and cable derivatives (most of them presenting at the time insuperable difficulties as 
regards even rough numerical estimates) resulted in this pioneering work remaining largely unused 
for nearly half a century. The big experimental and computational efforts required to obtain reliable 
numerical results, and to establish relationships between the balloon geometry and oscillatory 
behaviour, could hardly be justified, as some more or less satisfactory designs were arrived at by the 
empirical trial and error procedure. Also, observation balloons soon lost importance and, as regards 

barrage balloons, large-amplitude oscillations were not considered a serious inconvenience and 
were believed unavoidable. 

The interest in captive balloons has faded after .the last war, but it recurs again and again, with 
always varying applications in view. Some of these involve carrying frangible instruments, thus a 

balloon serves as a floating platform, and as such should be as stable and oscillation-free as possible. 

It appears therefore that the analytical stability investigation should be revived and pursued, the 

prospects being much more promising now. The main difficulty is still the same as before, viz. 

estimation of stability derivatives. Of these, the aerodynamic (especially rotary) ones may now be 

measured easily if only a tiny fraction of the existing tunnel facilities is made available for this 

purpose. As to the cable derivatives, an analytical approach is more promising, particularly because 
much preparatory work has been done already z to 1~ in connection with either balloon performance 

or with the cognate problems of kites and bodies towed behind aeroplanes (such as radio aerials 
aerodynamic instruments, towed gliders, etc.). The existing information, however, is far from 

complete, difficult of access, and not adapte d to designer's needs. The purpose of this paper is to 
present the full theory, with such computational aids as are available, in the form ready for practical 

applications. 
The first attempts to determine cable derivatives 1,3 tried to avoid analytical difficulties by 

neglecting either the action of wind on cable or the latter's weight. Neither of these simplified 
assumptions is justified, and the need of including both gravity and wind forces has long since been 
recognised. The first step was made by McLeod ~ who proposed the following simple formula for 
the normal wind-force component acting on an inclined cable element: 

P~ dl = ( Cz)o ½p V~ d~) sin2~dl = n sin2q) dl (1) 

(cf. List of Symbols and Fig. 1). The  tangential wind-force component is sufficiently small to be 
reasonably neglected. McLeod's formula was used by almost all later writers e, and it is retained 

also in the present paper. Originally, it was applied only for determining cable configurations in 
equilibrium conditions, with the sole purpose of performance studies. This was done by Glauert 4 for 
the case when the wind force acts against the normal component of weight, as is the case with heavy 
bodies towed behind aircraft, and by Hollingdale and Wild 6 for the inverse case, the one applicable 

to kite balloons. The results were given in form of graphs in both papers. In an early paper by the 
present writer 5 (containing references to some even earlier French and German attempts, now 

obsolete), a solution basically identical with (but differing in form from) that of Ref. 6 was arrived at, 
with tabulated results. For determining the cable configurations, Refs. 5 and 6 are equally suitable 
but, for calculating stability derivatives, the tabulated values are naturally more convenient. It has 

Together with the simplifying assumption that pV ~ does not vary with height, and that the wind direction 
is also constant, the latter postulation ensuring that the equilibrium configuration lies in a vertical plane. 
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been decided therefore to give a short summary of Ref. 5 in Section 2 of the presentpaper and 

reproduce the full table of that reference which is practically unobtainable now. It may be mentioned 
that Pode :1 produced voluminous tables for the Glauert's case, which (somewhat surprisingly) 

take account of the very small tangential wind-force components; they are useless for the investi- 
gations of captive balloons. A Russian paper by Kochin :° is an interesting study of equilibrium 
configurations (originating from war-time work on barrage balloons). It starts by treating the very 
general case of 3-dimensional configurations in wind field of varying direction, strength and air 
density, and ends by more practical simple cases, similar to those considered by the authors 
mentioned above. The McLeod's sinSg-law is, curiously, replaced by sinbo-law , with reference 
to some unspecified tunnel tests, this leading to somewhat different, but not simpler, solutions. 
A few examples were worked out numerically, but no tabulation attempted. Some curious historical 
references were given. A more recent paper by I, ongden :2 brings some interesting analysis of balloon 
performance in connection with a certain special application, the theories of Refs. 2 and 6 being 
used extensively. 

For the cable derivatives, Bairstow, Relf and Jones: developed formulae applying in the case of 
'dragless' balloon cable which then assumes the form of an ordinary catenary. Glauert a did a 
similar work for 'weightless' towing cables (which case, surprisingly, and unnoticed by Glauert, 
also leads to a catenary, this time with a horizontal axis). These early results are now obsolete and 
may possibly be used only in some special cases, or for comparison purposes. Brown 7 gave the 
solution for longitudinal derivatives of kite-balloon cables subject to both weight and wind forces, 
and Mitchell s adapted it to glider towing cables (when the wind force may act either in the same or 

opposite direction to that of the normal component of weight). Both writers noticed grave 
computational difficulties confronting the user, and made some attempts to overcome them, but 

these are hardly sufficient now. The present paper brings, in Section 3, a much simplified derivation 

of the formulae (agreeing with those of Brown but adapted to the basic scheme of Section 2, thus 

making possible the use of existing tables), and systematic series expansions suitable for practical 
use, especially for highly tensioned cables (details are treated in Appendices I to III). It may be 
noticed that O'Hara" extended the analysis of cable configuration and derivatives to the more 
general case of elastic cables. The effect of elasticity may be large for very heavily tensioned and 
nearly horizontal cables connecting gliders with their tugs; it will be small, however, for balloon 
cables which are never so highly tensioned, and are nearer to vertical in normal conditions. This 
effect has been neglected in the present paper. 

The lateral derivative was treated very superficially by previous writers, none of whom considered 
the general case including both gravity and wind forces, and the solution of this problem is presented 
in Section 4, where the final formula is easily adaptable to practical needs, either by a simple 
numerical integration, or by a suitable power expansion. 

The Section 5 deals with what may be considered as a simple example of applying the cable 
derivatives to a dynamic problem, and also as an introduction to a full study of dynamic stability 
of captive balloons. This part of the report was stimulated by some remarks in Glauert's paper s. 
It contains an analysis of oscillatory modes of the 'balloon-plus-cable' configuration in the simplest 

case when the balloon is considered as a floating body subject to constant buoyancy and aerodynamic 
force, while the aerodynamic forces induced by a longitudinal or lateral disturbance, and the 
rotation in pitch or yaw, are all ignored. It is shown that, in such a case, there exist two longitudinal 
modes, in one of which the balloon oscillates rapidly, approximately towards and away from the 
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mooring point," while the other mode may be described very nearly as a slow 'pendulum-like '  
oscillation. There exists only one, pendulum-like, lateral mode. An important result is that the 
two pendulum oscillations have nearly equal frequencies, especially in the case of highly tensioned 
cables. A somewhat  more complicated problem, with simple aerodynamic damping included, is 
briefly treated in Appendix IV. Numerical examples are explained in Section 6 and illustrated 
by Figs. 2, 3 and 5. 

An acknowledgement is due to Mrs. J. Collingbourne and Miss B. Mills who have done the 
computational work and prepared the illustrations. The  name of Dr. W. Wolibner who had 
produced the table of Ref. 5 (reproduced at the end of this paper), more than 25 yearg ago, should 
also be mentioned. 

2. Equilibrhtm Form oJ Cable. 

2.1. General Case. 

The forces acting on cable are shown in Fig. 1 which also explains the notation. Equilibrium 
equations for an element are: 

d T = .zv d/sin g), 

Tdg) = (nsin2g)+w cos g))dl, 

and we have the geometric relationships: 

dx = dl cos ~v 

dz  = d/sing) .  

(2) 

(3) 

(4) 
(5) 

The problem consists in integrating the above system of differential equations, so as to express 
T, x, z and 1 as functions of g). 

From (2) and (5), we have d T  = w d z ,  and hence: 

T =  T o + w z  = T k - w ( z  l - z ) .  (6) 

Eliminating d / f r o m  (2) and (3), we obtain: 

d T  w sin 9 d9 
T n sin2g) + w cos g)" (7) 

Introducing a new constant ~b defined by 

2 cot 2¢ = w/n ,  (8) 

we may write (7) in the more convenient form: 

d T  2 cot 2¢ sin g) dg) _ ( cos 2¢ cos 2¢ ) sin 
T - 1 + 2 cot 2¢ cos g) - cos2g) \ ian ~/~ ~ + cot (s ~- ~os g) 

g) rig) (9) 

and,  integrating, we find that T is proportional to the function: 

(cot  -cos g)toos2  ' 
T(g)) = \ tan ¢ +- cos ~ /  (10) 

so that we may write: 

T = r 2, To = r 5o, (11) 
71  T 1 

where symbols % -q, % have been used for abbreviation, to denote -r(g)), ~-(g)~), ~'(g)o). 



From (7) and (11) it follows that the first derivative of r(so) is: 

w sin 5o 
q-t ~ T 

n sin25o + w cos 5o" 

We then obtain from (3) and (4), taking into account (11): 

dl = Tx "r dso 
~% n sinZso + w cos 5o' 

so that, introducing the following auxiliary functions: 

j '~ nr  dso 
)t(so) = 0 n s{n25o + w cos 5o 

we may write: 

(12) 

dx = T1 z cos 5Odso 
~ n sin25o + w cos 5o' 

(13) 

f qJ n ' r  cos 5o d5o 
( 1 4 )  

1 = Tx 05 )  
;~T 1 , 

TI 
x = ( ~ -  %), (16) 

and we also obtain from (6) and (11): 

Tt 
z = (~ - - - r o ) .  (17)  

~v,r I 

The  function s r,  a and )t were tabulated in Ref. 5, for 5O varying from 0 to 90 ° through l ° intervals, 

for 12 different values of the ratio n/w appropriate for balloon cables. The  table is reproduced 

at the end of this paper. To  utilise the table in practice conveniently, without  tedious between- 

columns interpolation, it is advisable not to assume arbitrary values of wind speed, but  rather to 

choose a few appropriate values of the ratio n/w, such as appear in the table, and then deduce the 

corresponding values of the wind speed V {cf. form. (1)}. 

The  equations (15 to 17) determine the cable configuration completely, if T1, 5Ol and 5o0 are known. 

In  practice, T 1 a n d  5ol will normally be known (T ,  sinsol = Z 1 being equal to the sum of the 

balloon's reserve buoyancy '~ and aerodynamic lift if any, and T 1 cosso, = X ,  being equal to its drag), 

but  5o0 will have to be calculated by using our table. Putt ing 5o = 5ol in "(15 to 17), we obtain: 

n~l~ 1 = Tl(A1-)t0) , (18) 

nx~r~ = T ~ ( ~ - % ) ,  (19) 

W%1.T 1 = T I ( , T I - - - T o ) .  ( 2 0 )  

In practical problems, the height z 1 will usually be known, then (20) will give %, hence 5o0, and so 

the required cable length from (18), and horizontal displacement of balloon xl, from (19). I t  may be 

mentioned that, sometimes, too big a value may be assigned to zl, but  then (20) will lead to a value 

of z 0 less than v(0°), and this will show the impossibility of such a configuration. 

Alternatively, we may know the cable length /1, in which case ('18) gives )t o , which must be 

positive; and then xj and z 1 will be obtained from (19) and (20). 

e Reserve buoyancy is defined as the excess of total buoyancy over the entire weight of balloon (including 
its envelope, gas and air contents, and rigging, but excluding the cable weight). If the excess buoyancy is 
considerably greater than the cable weight, then T o will be large (though always less than T1), and the 
difference (% - 5o0) small under all conditions, the cable will then be 'highly tensioned'. In the opposite 

case T O may be small, and (T1 - 5o0) may become quite large. 



Fig. 2 i l lustrates a numer ica l  example ,  wi th  va ry ing  wind  speed  a n d  cons tan t  height.  T h e  re levant  

numer ica l  data  and  detai led explanat ions  are given in Sect ion 6. 

T h e  fol lowing relat ionships ,  resul t ing direct ly f r o m  (12) and (14), will  be needed  in Sect ion  3: 

3.' - n r '  , _ n~'  cos 50 (21) 
w sin 50' w sin 50 

2.2. Special Cases. 

T w o  special  cases were  of ten cons idered  in the  past ,  for  the i r  s implici ty,  and  m a y  be br ief ly  

surveyed:  

(A) Action of wind on cable neglected ( n - + 0 ) . - - T h i s  m a y  be t rea ted  as an a p p r o x i m a t i o n  for  a 

th ick  heavy  cable in a l ight  wind .  I n  this case ~b-+0 and  the  func t ion  ~- becomes  infinite but ,  

f r o m  (10): 

n~(50)  - +  w s e c  50, 

and we  obta in  f r o m  (14): 

;t(50) ~ sec250 d50 = tan 50, 
0 

(4 a(50) -+ sec q~ d50 = In tan + 
0 

and  f r o m  (11): 

Tcos50 = Ticos50 1 = X 1 = const .  

T h e  equat ions  (15 to 17) n o w  become:  

wl = Xi ( t an  50 7- tan 500), 

wx = X i ( g d - 1 5 0 - g d - l % ) ,  

wz = Xl(Sec 5 0 - s e c  % ) .  

(22) 

= gd-150, 1 (23) 

(24) 

(25) 
(26) 

(27) 

T h e s e  equat ions ,  of  course,  co r r e spond  to a common catenary wi th  a vert ical  axis whose  Car tes ian  

equa t ion  is easily obta ined,  by  e l iminat ing  50 f r o m  (26) and (27), in the  f o r m  

WX 
X i  + sec 500 cosh + gd-150o , (28) 

and  the  p a r a m e t e r  is seen to be X1/w. 

(B) Weight of cable neglected ( w - ~ 0 ) . - - T h i s  m a y  be  t rea ted  as an a p p r o x i m a t i o n  for  a th in  cable 
in a s t rong  wind.  I n  this case $ -+45 ° and  

,(50) -+ 1, hence  T = T 1 = const.  (29) 

T h e  func t ions  2t(50) and  ~(50) bo th  t end  to 0% bu t  

_..>. f q )  
;~ - ;~0 cosec~50 d50 = cot  % cot 50, (30) 

~o o 

~r - % ~ d~0 sin250 d50 = cosec % - cosec 50, (31) 

and  it is also f o u n d  easily: 

w --> n - In tan ~ - In tan . (32) 

~. ra 



Equations (15 to 17) now become: 

nl = Tl(cot 9 o -  cot 9), (33) 

nx = Tl(cosec % -  cosec 9), (34) 

( lntan ), nz = T1 I n t a n ~ -  

and these equations, somewhat surprisingly, correspond again to a common catenary, but this time 
one with a horizontal axis. This can be shown easily by eliminating 9 from (34) and (45), whereupon 

we obtain: 

cosec % T1 + In tan . (36) 

The parameter is T1/n, and the tension is constant. 

3. Longitudinal Cable Derivatives. 

3.1. General Case. 

Let us suppose that a balloon cable is in equilibrium, and that its upper end is displaced in 

xz-plane from its original position (xl, zl) to a slightly different point (x 1 + dXl, z l+ dzl) , while n 

and w remain unaltered. The quantities 90, 91, T1, X1, Z1 will then all change, assuming small 
increments, but the length of the cable l 1 will be considered as constant. The derivatives required 
are Xz, X z, Z~ and Z~, defined by: 

dx1 = xx dxl + ~ &l ,  dzl = z~ &l + ~ &l ,  (37) 

but it will be convenient to consider first the increments of T 1 and 91, the quantities appearing in 

the basic equations (18 to 20). We differentiate these equations, taking into account the relationships 

(21) which apply both at the upper end of the cable (suffix 1) and at the lower end (suffix 0). We 
obtain, after some simplification: 

• r o d %  = O ,  d T l +  wsin91  ws ingo  

( T i c ° s %  ) d91 T l c ° sg°  ' d % =  rldXl, (38) X l q ' l  d T 1 + = X 1 '7"1 ~ - -  7" 0 
T I w sm 91 w sin 90 

- - -  ~o 6 %  = ~1 & l .  

We now eliminate terms containing differentials d91 and d%, by multiplying the above equations 
by the factors 

w sin 91(zl cos 9 o - x l  sin %) - T 1 sin (91-90) ,  

Tl(sin 9 1 -  sin 90) - w sin %(z~-  l 1 sin 90), (39) 

Tl(cos % -  cos 90 - w sin 91(ll cos 9 0 -  x0 ,  

respectively, and adding. The result is: 

dT I = 

{ Tl(sin 91 - sin 90) - w sin 91(zl - l 1 sin %)}dx 1 + { Tt(cos 90 - cos 91) - w sin %(11 cos 90 - xO}dZl 
xl(sin 9ol - sin 90) + zl( cos 9o - cos 90 - l, sin (91 - 9°0) 

(40) 



Similarly, we eliminate terms containing the differentials d T  1 and d% from equations (38), by 

multiplying them by the factors: 

(z 1 cos 9o-x~  sin 90), - (z~-  l 1 sin 90), - (h cos 9 o - x O ,  (41) 

respectively, and adding, taking into account (12), we obtain: 

T 1 d9z = - (n sin2% + w cos %) 
(Z .  1 - -  l I sin 9o)dXl + (l 1 cos 9o - x l ) d z l  

xl(sin 91 - sin 90) + '~'1( cos 90 - -  C O S  9 1 )  - -  I1 sin (91 -- 90)" 
(42) 

To get the four required derivatives, we use the relationships: 

X 1 = T l co sqh ,  Z 1 = T 1 s i n % ,  (43) 

which, upon differentiation, become: 

d X  1 = d T  1 cos 91 - T1 sin 91 d91, 

and hence, from (37, 40, 42), we obtain the final formulae: 

= 

= 

Z,C 

= 

dZ1 = dT1  sin 91 + T1 cos 91 dgl,  

T 1 cos 91(sin 91 - sin %) + n(z 1 - l 1 sin 90) sinS91 ~ 
8 

T I cos 9~(cos 9 o -  cos %) + n(l  1 cos % -  x~) sinS% 

T 1 sin 9~(sin 91 - sin 9o) -~ (zo + n sin29t cos %)(z 1 - ll sin %) ( 

t r l  s in  91 (cos  % -  c o s  9 0  - + sin"%, cos  91)(11 cos  9 o -  

(44) 

( 4 s )  

where, for abbreviation: 

3 = x1(sin 9)1- sin 90) + zl(cos 9 0 -  cos 91) - / 1  sin (91 - '90). (46) 

The following relationship, easily derived from (45), is worth noting: 

X ~ Z ~  - X~Z~  = T 1 n sin2% + w cos 91 (47) 

Formulae equivalent to (45) and (47) were derived by Brown 7 and Mitchell s, in a less simple way. 

!t  will be shown in the footnote to Appendix I that S is" always positive. I t  may also be shown 
easily that all four derivatives (45) are always positive, and the same applies obviously to the 

expression (47). 
The formulae (45) can, of course, be used directly only in conjunction with (18 to 20) and with 

the table of functions ~-, ~, ~. It may be mentioned that the Table 1 was originally computed for 
the purpose of estimating the balloon performance, and only a few decimals were deemed sufficient 
for that purpose. The  accuracy is not satisfactory as regards stability derivatives, chiefly because 

the common denominator ~ is obtained from (46) as a small difference of two large numbers. 
This is found not to be a serious difficulty for moderately tensioned balloons for which the difference 

( 9 1 - % )  is sufficiently large, and ~ not so small, but even then we cannot expect high accuracy 

of numerical results. The  position becomes nearly hopeless for highly tensioned cable when (91-  9o) 



assumes very srnall values, and (46) does not give Significant results. An appropriate method is 

then ~" to expand ~ in powers of (991-%)- Such an expansion is derived in Appendix I, the final 
result being: 

3 - 1l(99~ - %)3 {1 : h ~ ( % -  %)2 + h3(99, - % ) 3 . .  }, (48) 
12 

where: 

h.2 = 3 w ~  - w n  cos 991 + 3n2 sin2991 
30(n sin2991 + w cos 991) ~ ' 

6w 3 - 13wn 2 cos 991 + wnZ( 1 0 -  3 sin2%) - 6n 3 sin2991 cos 991 
h~ = sin 991 60(n sin2% + w cos %)3 , 

(49) 

and (991-990) is measured in radians. 

The  convergence of the series (48) is excellent for small values of (991 - %), but  it is still tolerable 

for quite high values of this angle, say up to 0.5,  the value seldom exceeded in practice. 

The  numerators in (45) do not suffer from the difficulty encountered in computing 3, and can be 

calculated with reasonable accuracy by using our table. T h e  entire formulae can, however, be also 

expanded in powers of (991 - 990), and the first two terms of these expansions (as derived in Appendix I) 
are given below: 

12 
X x = (% _ 990) 3 [(n sin2991 + w cos 991) cos2991 + 

+ sin % cos 991 (~w cos 991- n cos 25ol) (5ol- 9)0)... ] ,  

12 
X~ - (991 - %)3 [(n sin~991 + w cos 501) sin 99, cos 991 + 

+ {-{w cos 7'1 (3 sin2991- 1) + n sin~% (4 sin2991- 3)} (991-990)... ] ,  

12 1 (so) 
z~ = (99~_ %)~ [(~ sin~991+ ~ cos 991) sin 991 cos 991 + 

+ 1{~ cos 991 (3 s i n ~ l -  1) + ~ sin~99a (4 s in~%- 3)} (991 ~ %)-.. 3, 
12 

Z~ - (991- 990) 3 [(n sin2991 + w cos 991) sin~% + 

+ sin 991{½w (3 sin2991-2) - n sin % sin 2991} (991-990).--]. 

Coefficients of further  terms become very complicated, so they would not be of much use. T h e  

approximations (50) may only be used when (99a-990) is really small. I t  is interesting, however, 

to see that, to this order of approximation, X~ = Z x. It  is als0 seen that the large first terms of the 

series are in the ratio cos2q~l : sin 991 cos 991 : sin~991 • If, therefore, 991 is near to 90 °, we may expect Z~ 

to be very large, X~ small, with X~ and Zx somewhere in between, and this should obviously be so. 

A numerical example is illustrated in Fig. 3 which shows the variation of four longitudinal cable 

derivatives with the ratio n/w. This  corresponds to equilibrium configurations of Fig. 2. Numerical  
data and other details will be found in Section 6. 

* Unless we embark upon the rather formidable task of computing a new table of % 99, cr with some eight 
decimals. 
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3.2. Special Cases. 

(A) Action of wind on cable neglected (n = 0 ) . - - P u t t i n g  n = 0 in (45), and  us ing  (24, 27) w h e r e v e r  

appropr ia t e  for  s implif icat ion,  we  obta in :  

X x = Xl(s in  9 1 - s i n  %)  X~ = Z~ = X l ( c ° s  % - - c ° s  91) Z = w x l -  Xl ( s in  9 1 - s i n  9°) (51) 
3 ' 3 ' ° 3 ' 

Where 3, f r o m ( 4 6 ) ,  becomes :  
2 x l  

a = xl(sin 91 - sin 90) - ~ - -  {1 - cos (91 - %)},  (52) 

and  the  re la t ionship  (47) assumes  a s impler  fo rm:  

wX~ (53) 
- = a 

I n  this case, 3 is still a smal l  difference of  t w o  large n u m b e r s  but ,  as w e  have to deal w i th  w e l l - k n o w n  

func t ions  whose  tables w i th  m a n y  decimals  are available,  all der ivat ives  m a y  be  c o m p u t e d  wi th  any  

requ i red  accuracy.  I t  i s ,  however ,  conven ien t  to in t roduce  a n a u x i l i a r y  var iable:  

wxl = gd-191 - g d - 1 % ,  (54) 
~ = X 1  

and tben  the  fo rmu lae  (51) reduce  to m o r e  conven ien t  fo rms :  

s inh /z  sec 91 - sec 90 
X x = w/~ s inh /z  2 ( c o s h / x -  1 ) '  X~ = Z~ = w 2(c-0~sh~- 1) 

- / z s i n h / z -  l (55) 

/~ sec 91 sec 90 - s inh /z  
Z~ = w/x s inh /z  - 2 ( c o s h / z -  1)" 

(B) Weight of cable neglected (w = 0 ) . - - T h e  fo rmu lae  (45) app ly  in this case, w i th  only a tr ivial  

s impl i f icat ion ob ta ined  by  omi t t ing  t e rms  Containing tlie fac tor  w. T h e  d e n o m i n a t o r  3, f r o m  (47) 

m a y  be  wr i t ten ,  us ing  (33, 34): 

3 = zl(cos 9 0 -  cos 91) - --2 T {1 -- cos (91 -- 90)}. (56) 
n 

T h i s  is still a small  difference of two  large n u m b e r s ,  b u t  m a y  be c o m p u t e d  w i th  any  r equ i red  

accuracy.  Alternat ively,  a t r ans fo rma t ion  analogous  to tha t  of  3.2 (A) m a y  be  convenient .  I n t r o d u c i n g  

nzl In tan 91 _ In tan  90 (57) 

% r m u l a e  (45) reduce  to: 

n (cosh v -  1) cos891 + sinh v cos 291 + v (cosh v + s inh v cos 91) sin291 

Xx - sin 91 v s inh v - 2(cosh v - 1) ' 

s inh v cos 91 + (cosh v -  1) sin~91 
X ,  = n v s inh v - 2(cosh v -  1) ' 

(cosh v -  1)(1 + cose91) + 2 sinh u cos 91 - v(cosh v + s i n h  v cos 91) cos 91 
Zx = . n  

Z,  = n sin 91 

v s inh v - 2(cosh v - 1) 

s inh v - (cosh v -  1) cos 91 

v s inh v - 2(cosh v -  1) 

(58) 
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4. Lateral  Cable Derivative. 

In equilibrium conditions, if the wind velocity V is parallel to x-axis, there are no lateral forces 

(in y-direction) and therefore no lateral displacements of the cable which lies entirely in xz-plane. 

Let us assume, however, that a small lateral force II1 is applied to the upper  end, then this end will 

move in the same direction through a small distance Yl- We shall have only one lateral cable 

derivative: 
d Y l  _ 

lim (59) 
0 

g~ - @ I  yl-+0 Yl 

and this will play a part in the problem of lateral stability of the balloon. 

In  the existing literature the derivative Yvhas  never been determined for the general case when 

both gravity and wind forces act on the cable. Bairstow, Relf and Jones 1 neglected the wind forces, 

and the same assumption appears to have been made by BrownL In this case, a small lateral 

displacement Yl of the upper  end will result merely in a rotation of the entire system about the 

vertical axis z through a small angle e' = y l /x l .  T h e  horizontal component  T 1 cos 91 of the tension 

• at the upper  end will also rotate through the same angle, so that the lateraJ force will be 

!11 = T1 cos 91 e', and this leads to a very simple formula: 

5"1 cos 91 
Yv - (60) 

Xl 

An alternative assumption was made by Glauert  a for the case of a body towed by a thin wire whose 

weight could be neglected in comparison with wind forces. In this case, a small displacement Yl 

of the cable upper  end will result again in a mere rotation of the entire system, but  this time about 

the axis x, through a small angle e" = y~/z 1. Th e  lateral force will arise due to rotation of vertical 

component  T 1 sin % of the tension at upper  end, and will be Y~ = T 1 sin ~o 1 e' ,  so that we obtain 

another very simple formula: 
T 1 sin % 

Y.u - (61) 
21 

However,  neither of the two above formulae can be used for captive balloons when the cable is 

subject to both gravity and wind forces (it is also obvious that the two formulae always give different 

results). T h e  difficulty in this general case is that a lateral displacement of the upper  end results 

in the cable curve becoming three-dimensional,  and it would be very difficult to obtain fldl equations 

of that curve. I t  suffices, however, to consider small displacements from xz-plane, in which case the 

equations simplify considerably, and this way is followed below. 

Let  us consider a small element dl of the curve (Fig. 4), and denote by c~, ]3, y the angles this 

element makes with x-, y- ,  z-axes. The  element is supposed to be in equilibrium under  the tensions 

at two ends, the weight ( -  wdl) acting along z-axis, and the aerodynamic force due to the wind of 

velocity V directed along x-axis. This  velocity must be resolved in two components, tangential 

V cos c~ and normal V sin ~. As in the two-dimensional case, we assume that only the latter produces 

an aerodynamic force n sinZ~ dl, and we need expressions for its direction cosines. To  find them, 

we note that the total velocity V has resolutes in x-, y-,  z-directions: 

o V, 0, 0, (62) 

respectively, its tangential component  V cos ~ has the resolutes: 

V cos2~, V cos a cos fl, V cos c~ cos 7,  (63) 
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and the  resolutes  of  the  no rma l  c o m p o n e n t  V sin ~, ob ta ined  by  sub t rac t ing  (63) f r o m  (62), 

respect ively,  become:  

V sin%c, - V cos a cos/3,  - V cos a cos y .  

T h e  direct ion cosines of  the  n o r m a l  c o m p o n e n t  are thus:  

cos ~ cos/3 cos ~ cos y 
13 ' (65) cos c~' sin e~, cos ' sin e~ sin e~ = = , COS 'y = , 

and  hence  the  ae rodynamic - fo r ce  resolutes  are ob ta ined  a s  

n sin3~ d l ,  - n sin ~ cos ~ cos/3 d l ,  - n sin ~ cos ~ cos y d l ,  (66) 
respect ively.  

T o  wr i te  the  equ i l ib r ium condi t ions  for  the  e lement ,  w e  not ice tha t  the  tens ion resolutes  at the  

lower  end of the  e l emen t  are T cos % T cos/3, T cos 7, so tha t  the  equat ions  are: 

d ( T  cos ~) + n sinaa d l  = O, ) 

d ( T  cos fi) - n sin a cos a cos B d l  = 0,  j (67) 

d( T cos 7) - n sin ~ cos ~ cos 7 d l  - w d l  = O. 

E x p a n d i n g  differentials  of  p roduc ts ,  mul t ip ly ing  equat ions  by  cos ~, cos/3, cos Y, respect ively,  

and  adding,  w e  obtain:  
d T  = w dl  cos  7 = w d z ,  (68) 

and hence  the  re la t ionship  (6) still holds.  Subs t i tu t ing  (68) into the  first  two  of equat ions  (67), 

we  m a y  wr i te  t h e m  as fol lows: 

(w cos a cos 7 + n sinS@d/ = T sin c~ d~,  / 
(69) 

J (w cos y - n sin ~ cos c~)cos/3 dl  = T sin/3 dfi, 

and then,  e l iminat ing  T, w e  obtain:  '" 

sin/3 d/3 w cos 7 - n sin ~ cos 
cos/3 w cos ~ cos 7 + n sinaa sin c¢ d~.  (70) 

T h i s  differential  equa t ion  contains  th ree  var iables  c¢, /8, y; we  m a y  el iminate  7 by  us ing  the 

re la t ionship:  
cos 7 = ~/ (s in2~-cos2/3) ,  (71) 

bu t  the  resul t ing equa t ion  cannot  be in tegra ted  in an e l emen ta ry  way.  If, however ,  we  make  use  

of  the  a s s u m p t i o n  tha t  the  lateral  d i sp lacements  y are small,  t hen  cos/3 = d y / d l  is also small  of  the 

same  order ,  and  (71) m a y  be wr i t t en  as cos 7 ~ sin ~, the  error  be ing  of  2nd  order .  I t  will be then  

conven ien t  to in t roduce  the  angle r 2 (Fig. 3) b e t w e e n  the  project ion of  dl  on w - p l a n e  and  x-axis,  

and  to wri te :  
~T 

~ ~ ,  .- y ~  ~ - q 0 ,  (72) 

the  errors  be ing  still of  the  2nd  order .  T h e  1st and 3rd of equat ions  (67) then  reduce  to (2, 3). 

T h i s  means  that ,  to this o rder  of  approx ima t ion ,  the  projec t ion  of the  3 -d imens iona l  curve  on 

xz -p l ane  remains  the  same as the  p lane  curve  ob ta ined  in Sect ion 2.1. T h e  differential  equa t ion  (70) 

t hen  assumes  a s imple  fo rm:  

d ( c o s  ~ )  w - n c o s  ~o 
- d(cos @ ,  (73) 

cos 13 n sin2~o + w cos qo 

(64) " 
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and Js easily integrabie, introducing the constant ¢ from (8) we obtain: 

d(cos ~) (2 cot 2 ¢ - c o s  9)d(cos ~) 
cos 13 1 + 2 cot 2¢ cos 9 - c°se9 

( 1 + cos 2¢ 1 - cos 2¢ ~ 4cos 9) 
= ½ \ tan ¢ + cos 9° cot ~/~-- cos 9]  

(74) 

and then, integrating, using (10), and simplifying: 

cos fi = K J n  s in29 + go cos  9 
~'(9) (75) 

where the constant K may be determined from the condition at the upper end: 

We have further: 

K / n  sin2qh + w cos 91 
cos  P~ 

dy = dl cos ]?, 

(76) 

(77) 

where, according to (7, 15, 21): 

d l -  T1 ~" 
"r 1 n sin29 + w cos  9 

d 9 . (78) 

Substituting (78) into (77) and simplifying, we get: 

T 1 cos ~1 J nr  dg.  
dy = ~/{m.l(n sin~91+ w cos 91)} n sin~9 + w cos 9 

(79) 

Noticing that T 1 cos ~1 = Y1, and integrating (79) from % to %, we obtain: 

where 

r l  
Y = %/{nr l (n  sin291 + w cos 91)} {8(9)-8(9°)}'  (80) 

v~(9) = n sine9 + w cos 9 

(80) is the third parametric equation of our curve, while the first two equations remain (16) and (17). 

Putting now 9 = 91, J' = Yl in (80), we obtain finally the lateral cable derivative: 

Y1 ~/{n71(n sin~91 + w cos 91)} 
YY = 3'1 81 _ 80 (82) 

The new auxiliary function 8(@, defined by (81), cannot be reduced to elementary integrals, but 
might be tabulated numerically. There is hardly peed for this, however, as (81 -80)  may be computed, 

in each particular case, by applying one of the formulae for approximate integration (such as 
Simpson's rule), with quite sufficient accuracy. It is also possible to expand (82) in powers of 

(91-%) ,  as previously done for the longitudinal derivatives, with the following result (for 
derivations, see Appendix II): 

go - n cos 9t sin 91.- , yy  = n sin291 + w cos % + . (83) 
% -- % 2 

and the two first terms often give a sufficiently accurate result (the third term may be found in 

Appendix II). In practice, formula (82) is quite easy to handle and more accurate, but (83) may be 
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used for quick estimates. Comparing it with (50) it is seen that the lateral derivative is generally 

much smaller than the longitudinal ones, especially for highiy tensioned cables. This, of course, 
could be expected. 

As a final check of the above theory, let us come back to the two particular cases n = 0 and 
W = 0 "  

(A) Action Of wind on cable neglected (n = 0).--Replacing n-r by w sec % according to (22), 
the formula (81) becomes: 

z5(9o ) = sec qo drp = gd-lqo, (84) 
o 

and hence, taking into account (26), the lateral derivative reduces to: 

w X 1 (85) 
Yv gd-19ol _ gd- l% xa 

which is identical with (60). 

(B) Weight of cable neglected (w = 0) . - -Here  z is to be replaced by 1 {cf. (30)}, so that (81) 
becomes: 

vq(qo) = cosec qv dq) = In tan , (86) 
0 

and hence, using (35)~ the lateral derivative becomes: 

Yv = n sin 9ol __ T 1 sin q~l, (87) 

5°1 In tan 9°° z~ In tan ~- - ~- 

in agreement with (61). 

As an illustration to this Section, Fig. 5 shows a few examples of the laterally disturbed came 

curves. It  should be remembered that they are 3-dimensional curves, but  only their projections 
on yz-plane are shown. For each of the two cases (lightly and highly tensioned cables) three 
curves are given, corresponding to n/w = oo, 1, and 0. For the first value, the projection is a 
straight line because then y is proportional to z (see 35, 80, 86); for otl~er values, the projections 
become more curved (convex outward) as n/w decreases, but  the curvature is always small, and 
hence there is little difference between the curves, especially for highly tensioned cables. It  must  
be kept in mind that all lateral displacements y are supposed small but, in the graph, they are 
magnified to such (arbitrary) scales as to make the differences between curves clearly visible. 
Numerical  data and other details will be found in Section 6. 

5. Normal OsdUatory Modes of Floating Mass at Upper End of Cable. 

5.1. Longitudinal Oscillations. 

Let us consider a balloon and cable in equilibrium conditions, and suppose that the balloon 
has been displaced slightly in the xz-plane. In real conditions, this will lead to complicated oscilla- 
tions with 3 degrees of freedom because, in addition to horizontal and vertical translatory movements,  
the balloon will also rotate in pitch. T h e  dynamic process will be described by a complex system 
of differential equations of 6th order. We are going, however, to s tudy only a greatly simplified 
problem, in which the pitching rotation and all aerodynamic restoring and damping forces caused 
by the disturbance are ignored. The balloon will therefore be considered as a floating mass particle 
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subject (apart from the constant static forces) only to the forces (37). The theory will apply 
approximately to a fictitious spherical captive balloon, with all damping forces and cable inertia 
neglected. The  equations of motion will be: 

d ~  } 
m2g +G +GC = 0, 

(88) 
dS~ 

= 0 ,  

where letters ~:, ~ denote small horizontal and vertical displacements. The solution is obtained in 
the usual way, assuming: 

= d sin(~ot+ c), 

Substituting (89) into (88), we obtain 

B 8 - 

A 
hence 

and 

whence 

G 

= B sin(~ot+ e). (89) 

X z  Ylz(-.°2 - Z z  ' 

(tacos) ~ - (X:~ + Z , ) (m,o  8) + ( X x Z  ~-. X~Z~,) = 0 

2ma,~, ,,9 = Xx + Z z + V{(Z z -  Xx)8 + 4X~Z~}, 

(90) 

(91) 

(92) 

(93) 
B) - Xx +_ + 4XoZ:r} 
-d i, 8 = 2X~ 

It is seen that there are two simple harmonic oscillatory modes, as both solutions given by (92) 
are positive. In the mode 1, the balloon oscillates at a high frequency along a straight line of positive 
slope, while the mode 2 is an oscillation of lower frequency along another straight line, of negative 
slope. The formulae (92, 93), in conjunction with complicated expressions (45) do not give an 
immediate insight into the quantitative relations. However, the method of" series expansion in 
powers of (gx-9o) proves very helpful again. It requires a very tedious algebra (briefly summarised 
in Appendix III), but the final formulae are rather simple: 

! sin95 w -  2 n c ° s %  I 12(nsin~'9t+w cosgl) 1 + 
m%8 = (91-  %)a 2 n sin891 + w cos 91 (91-90) . - .  , (94) 

m°)~ 2 = n sin891 + w cos 91 1 + (91-9o) . . -  , (95) 
91 -- 90 n sin291 + w cos 91 

(two more terms of each series are given in Appendix III); 

(B )  1 q°~-q°° ( 1 1 w - 4 n c o s g ~  ] (91_90)  8 . I(96) 
= s I = tan91 1 + - -  + sTn~l~wc~ss91!  1 sin 25Ol 4 cos2qh 12 COS 91 n " "  

- = s 8 = cot qo i 1 + 9i - 90 - (rpi.-90) 8 . . . .  (97) 
~/~ 8 sin 29~ + 4 sin2cyl 12 cos 9i n sinZgi ~ w cos 9i 

The latter two expansions may be compared with the following ones (see end of Appendix III): 

~1 { 9 1 - - 9 0 (  1 ] w_--_ n _c°s 91 t } 
- t a n g ~  1 - -  + - - + - -  . .  , 

x~ sin 29~ 4 cos29~ 6 cos q% n sin89~+ wcosq% ! (9~-9°)z" (98) 

x~ 1 9 ~ - 9 0  ( 1 1 w -  ncosgl  ) "I" -- cot9a 1 + - - - - - +  (9~--%)8"- (99) 
Z i sin 29i 4 sin89i 6 cos 9i n siffa~ q--w cos 9i 
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It is seen that, if (91-90) is small, the slopes sl, s~ are very nearly the same as those of the secant 
OB (Fig. 1) and of the normal to this secant, respectively. The oscillation 1 thus consists, approxi- 
mately, in the balloon moving rapidly towards the mooring point O al~d away from it, so that the 
cable flexes and unflexes. In  the oscillation 2, the system behaves, approximately, as a simple 
pendulum rotating about the mooring point in xz-plane. 

Formulae (94, 95) show that the ratio of two natural frequencies is 

co~z 2~/3 l l - }n eos 91sin 91 (91__90).. .I ,  (100) 
co~ 91 -- 90 n sin291 + w COS 91 

so it may become very large when the cable is highly tensioned. 
We may still consider the series expansion of the formula (18) for the cable length (see Appendix I): 

I gO-- ncos91 I " T1(91- 90) 1 - sin 91 (91-  %).--  , (101) 
/1 = n sin291 + w cos 91 n sin2% + w cos 91 

/ 

multiplying (95) by (101), we obtain: 

I sin91 2n cos 91 - w ( 9 1 _ 9 0 ) . . . I ,  (102) 
mco~2ll = T 1 1+ 2 n sine91+ w cos 91 

so that 

~ / ( m ~ ) l  sin91 2 n c ° s 9 1 - w  ( 9 1 - % ) . . .  I . (103) 
co2 = 1 + ~ n sin291 + w cos 91 

If the cable is highly tensioned, the frequency co~ is thus very nearly given by the ordinary pendulum 
formula. This result could be expected, and it provides a satisfactory check of the entire theory. 

A more realistic approach to the longitudinal stability of a spherical captive balloon will be 
obtained by introducing damping forces acting on it, proportional to the velocity components 
d~/dt and d~/dt in the equations of motion (88). This may also be considered as some sort of 
approximation for a kite balloon, with disturbance in pitch neglected. A short analysis of this case 
is given in Appendix IV. 

5.2. Lateral Oscillations. 

This is a very simple case, with a single degree of freedom, and the equation of motion (damping 
neglected) is: 

m-~i+d2n Yv~7 = 0, (104) 

so that the frequency (co,) is given by 
mco?= (lo5) 

or, using the expansions (83, 101): 

(m~l) I sin 91 n COS 91--W (91--90)""" l" (106) 
col = 1 + 4 n sin291 + w cos qol 

It  is seen that, to the first approximation, the frequency co I is again given by the ordinary pendulum 
formula. The second approximations in (103) and (106) differ somewhat but, at least in the case 
of a highly tensioned cable, the longitudinal and lateral pendulum modes have nearly the same 
frequency. This conclusion may be of considerable importance for the general problem of 
kite-balloon oscillations. It is hnown that the existing balloons suffer from insufficient damping 
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in the lateral mode 13,14, so that they are subject to slow oscillations of very large amplitudes e. 

In  these conditions, a (non-linear) coupling between the lateral and longitudinal oscillations may 

make appearance, and thi~ may contribute to enhancing both, if their natural frequencies are 

nearly in resonance. T h e  frequencies of the two pendulum modes may, of course, differ from (103) 

and (106), owing to the complicated effects of balloon aerodynamics, but  large chapges are unlikely, 

and the possibility of near-resonance is clearly there. 

6. Numerical Examples. 

(A) Equilibrium configurations, see Section 2 and Fig. 2 . - - I t  is assumed for simplicity that the 

balloon is set at zero incidence at any wind, so that no aerodynamic lift is present; also, that the 

balloon height z 1 is maintained constant = 900 ft throughout  the range of win'd speed, more cable 

length being paid out as this increases. Other data assumed are: Z 1 = T 1 sin ~o 1 = reserve 

buoyancy = 745 Ib (constant); CD = 0.1185, p = 0.00232 lb. sect/it 4, d b = 25 .2  it, Sb = 499 ft ~, 

so that X~ = I1, cos q0, = D = Cz)(½pV~)(~zrdo 2) = 0.0686 V ~ (lb), V being measured in ft/sec; 

w = 0.1 lb/ft, C~), = 1.025, d~. = 0.0225 it, so that {see formula (1)} n = 0.0002744 V 2 (lb/ft). 

A number  of round values of the ratio n/w appearing in Table  1 have been taken, leading to 

corresponding values of speed V and other basic parameters, as tabulated below: 

n/w V Xl  
~/sec lb 

}-2 27.00 50 
0-4 38.18 100 
0.6 46.76 1150 
0'8 53.99 200 
1.0 60.37 250 
1.2 66-13 300 
1-4 71-43 350 
1.6 76.36 400 
2.0 85.37 500 
2.5 95'45 625 

lb 

746-7 
751.7 
760.0 
771.4 
785.8 
803.1 
823.1 
845.6 
897.2 
972.4 

86.16 
82.35 
78.62 
74.97 
71.45 
68-07 
64-84 
61.77 
56.13 
50.00 

15.964 
3.849 
1.982 
1.404 
1.159 
1-032 
0.958 
0.912 
0.862 
0.833 

7 0 

14.040 
3-388 
1.747 
1.240 
1.026 
0.916 
0.853 
0-815 
0.776 
0-756 

%0 

84-07 
78-24 
72.59 
67.11 
62.00 
57-30 
52-88 
48.83 
41.83 
34.40 

0" 1 

1-218 
0.753 
0.638 
0.625 
0.652 
0.697 
0-747 
0.803 
0.909 
1.038 

0" 0 

1.185 
0.721 
0.602 
0-581 
0-596 
0.626 
0.660 
0.695 
0.762 
0-821 

3-054 
1-389 
1.013 
0.913 
0.887 
0.904 
0-935 
0.973 
1.055 
1.160 

)to 

2.668 
1.201 
0.866 
0.771 
0-741 
0.747 
0.762 
0.782 
0.826 
0-866 

X 1 

ft 

77 
156 
230 
302 
380 
460 
534 
626 
765 

1013 

l 1 

ft 

903 
918 
939 
975 
990 

1018 
1062 
1107 
1192 
1373 

Fig. 2 gives all the corresponding configurations, and it is seen that the curvature is small in all 

cases, though it increases with wind speed. This  is clearly connected with the cable being 'highly 

tensioned' ,  as could  be seen in advance from the fact that the reserve buoyancy is over 8 times 

greater than the weight of the initial cable length. 

A number  of similar and somewhat more complicated examples (involving, e.g., constant cable 

length, aerodynamic lift, etc.) are given in Ref. 5 (calculated by exactly the same method) and in 

Ref. 6 (using a different but  equivalent method). 

(B) Longitudinal derivatives, see Section 3 and Fig. 3.---The same numerical data as under  (A) 

have been used but, of 10 values of n/w and corresponding equilibrium configurations, only 6 (as 

A plausible explanation of this phenomenon is that the damping is negative at small amplitudes where 
the motions may be analysed by linearised equations, but becomes positive at large amplitudes, where the 
non-linear effects become significant. 
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tabulated in Fig. 3) have been selected for computing longitudinal derivatives. This has been found 
sufficient for drawing curves showing variation of derivatives with n/w and V. The cable being 
highly tensioned, and the difference (qo1-%) small (especially for low values of n/w), the basic 

formulae (45, 46), in conjunction with Table 1 containing only few decimals, seem to be inconvenient 
for computation. In fact, when (46) was used to calculate 3 in this way, either 0. 000 or minute 

positive or even negative values were found in most cases. The series expansions are clearly most 

suitable here and, of several alternatives, series (I.20) proved most convenient. The results are 
tabulated as inset in Fig. 3. They have been checked by using (47). It should be noted that X~ 

and Z x are so nearly (but never exactly) equal that the difference could be shown only in the table 

but not in the graph. A remark may be not superfluous that X~, Z x and Z~ all increase indefinitely 
when n/w --> O, and only X z then remains finite, as could be expected. 

(C) Lateral derivative, see Section 4 and Fig. 5.- -The derivative Y.v has been caiculated for 
three cases only, of the ten listed above under (A), by using (81, 82), Table 1, and numerical 

integration by means of Trapezoidal, Simpson's and Weddle's Rules, which all gave identical 
results, viz. 

n/w 0-2 1.0 2.5 

G 0.780 0-767 0.737 lb/ft 

and it is seen that the variation was too small to warrant a graph. ~Instead, Fig. 5 gives some 
examples of laterally distorted cable curves as already discussed at the end of Section 4. It proved 
sufficient to consider, only the extreme values 0, oo, and one intermediate value 1 of the ratio n/w. 
The assumed angles q~i, % for the highly tensioned cable correspond to the appropriate case of the 
table given under (A), and kept unaltered for n/w = 0 or oo. For the lightly tensioned cable, 
arbitrary angles 76 ° and 30 ° were chosen. 
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A 

a 

al~ a 2, as ,  cl 4 

A 1 ,  d ~  

B 

B' 

bl, b2, ba, b4 

C 

C '  

£1, C2, C3, C 4 

D 

D '  

de 

dl, 4, d4 

E '  

f(A) 

h,,, ha, h 4 

j , k  

K 

1 

1, 

I1l 

N 

LIST O F  SYMBOLS 

Constant, see  (89) 

Lift slope of balloon, see  Appendix IV 

Coefficients in expansion of 11, see (I.5, 6) 

Portmanteau symbols, see (IV.9, 10) 

Constant, see (89) 

Coefficient of ;~a in characteristic equation of system, see (IV.7, 8) 

Coefficients in expansion of longitudinal derivatives, see (I.20, 21) 

Drag coefficient of balloon, see  Section 6 and Appendix IV 

Cable drag coefficient, see (1) 

1 - cos O, see (I.15) 

Coefficient of A s in characteristic equation of system, see (IV.7, 8) 

Coefficients in expansion of longitudinal derivatives, see  (I.20, 21) 

Balloon drag 

Coefficient of A in characteristic equation of system, see (IV.7, 8) 

Diameter of balloon, maximum cross-section 

Cable diameter 

Coefficients in expansion of longitudinal derivatives, see (I.20, 21) 

Constant term in characteristic equation of system, see (IV.7, 8) 

General symbol for any of integrands used in deriving expansions of 
longitudinal and lateral cable derivatives, see Appendices I, II 

Quartic polynomial in characteristic equation, see (IV.7) 

Coefficients in the expansion of S, see  (48, 1.18) 

Factors of damping coefficients relating to longitudinal oscillations, see 

(IV.4, 5, 6) 

Constant, see  (75) 

Length of cable from origin to current point, see Fig. 1 

Total length of cable 

Mass of balloon, see Section 5 and Appendix IV; apparent mass either 
ignored or, if included, with differences in its value in x-, y-, z-directions 
disregarded 

Normal force per unit length of cable at balloon attachment point, see  (I.7) 
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P 

S 

& 

,1, ( -  

T 

To, T1 

t 

V 

gO 

x l  

xx, 

X 

xl  

Y1 

Y 

Z 

~' , /Y ,  7' 

LIST OF SYMBOLS (continued) 

n Drag per unit length of cable when perpendicular to wind 

P~ Normal wind-force component acting on an inclined cable element, per unit 
length 

Portmanteau symbol, see (IV.9, 10) 

= sin O, see (I.15) 

Representative balloon area (usually maximum cross-sectional area) 

Slopes of paths of oscillation of balloon in two longitudinal modes 

Tension at any point of cable 

Values of T at mooring point and at point of attachment to balloon, respectively 

Time 

Wind velocity 

Weight of cable per unit length 

= T 1 cos ~01, horizontal component of T1, equal to balloon drag 

Horizontal force derivatives due to x- and z-displacements, respectively 

Horizontal co-ordinate of current point of cable (in wind direction) 

Value of x at upper end of cable 

Lateral force on upper end of cable 

Lateral force derivative due to y-displacement 

Lateral displacement of current point of cable (perpendicular to equilibrium 
plane) 

Yl Value of y at upper end of cable 

Z 1 = T 1 sin ~1, vertical component of 1;'1, equal to sum of balloon reserve buoyancy 
and aerodynamic lift if any (see Section 2.1) 

Vertical force derivatives due to x- and z-displacements, respectively 

Vertical co-ordinate of current point of cable 

Value of z at upper end of cable, or balloon height 

Direction angles of cable element in three-dimensional case, see Section 4 
(paragraph 3) and Fig. 4 

Direction angles of normal wind velocity component at cable element in 
three-dimensional case, see Section 4 (paragraph 3) 

Portmanteau symbols, see (IV.9, 10) 
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C 

i~ t 

6 "  

8, 80, 81 

0 

A(9) 

A, Ao, A 1 

/z 

v 

P 

17(9) 

17, 170, 171 

"(9) 

T,  "gO, T1 

9 

9o, 9x 

gl, X~ 

¢ 

CO 

091,  09 2 

CO I 

LIST OF SYMBOLS ( c o n t i n u e d )  

Common denominator in formulae (45) for longitudinal derivatives, see  (46) 

Phase angle, see  (89) 

y l / x l ,  small angle of rotation of entire cable configuration about z-axis in case 
of small lateral displacement, with wind forces neglected 

y l / z l ,  small angle Of rotation of entire cable configuration about x-axis in case 
of small lateral displacement, with gravity forces neglected 

Small vertical displacement of balloon, see  (88) 

Small horizontal (lateral) displacement of balloon, see  (88) 

Auxiliary function, see  (81) 

Abbreviations of 8(9), 8(9o), ~(91) 

9 1 -  90, difference between cable inclinations at upper and lower ends; 
basic variable in all power expansions 

Auxiliary tabulated function, see  (14) and Table 1 

Abbreviations of A(9 ), A(90), A(91) 

Auxiliary variable, see (54) 

Auxiliary variable, see  (57) 

Small horizontal (longitudinal) displacement of balloon, see  (88) 

Air density 

Auxiliary tabulated function, see (14) and Table 1 

Abbreviations of a(9 ), 17(90), 17(91) 

Auxiliary tabulated function, see  (10) and Table 1 

Abbreviations of ~(9), *(90), 7(91) 

Inclination of cable element to horizontal for equilibrium configuration 

Values of 9 at ground and balloon, respectively 

Portmanteau symbols, see  (IV.9, 10) 

Angle defined by equation (8) (constant for a given cable under given wind 
speed) 

Oscillatory frequency of (balloon + cable) system 

Solutions of frequency equation (91) (frequencies of rapid mode 1, and of 
slow 'pendulum' mode 2, respectively) 

Frequency of lateral oscillation of (balloon + cable) system 
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A P P E N D I X  I 

P o w e r  Expansions  f o r  Longi tud ina l  Cable Der ivat ives  

The  basic idea of the procedure applied in this Appendix and in the two following ones is to 

assume that the difference % -  50o = 0 is small, and to expand various quantities appearing in 

the formulae for cable derivatives as power series in 0. Th e  method was already applied, to a very 

limited extent, by K. Mitchell s and W. S. Brown 7 for the related problem of towed gliders and 

kites. Here, an at tempt is made to go as far as practicable with the procedure, so as to provide 

most convenient formulae for designer's use. T h e  convergence of all series will be satisfactory 

only if 0 is sufficiently small, but  this is believed to be so in most cases. In the case of slack cables 

0 may be large, but  then the unexpanded formulae, such as (45), will give tolerable accuracy. 

In what  follows, we start by expanding such quantities as ll, xl etc. {which comes to the same 

as (A 1 -  A0), ( a l - % ) ,  etc.) as power series in 0, with coefficients expressed only in terms of data 

pertaining to the upper  end of the cable (Ti,  5Ol) and, of course, of basic parameters w and n. The  

fundamental  series, of which all the subsequent ones are special cases, is: 

f ~l F(50) d50 = F(501) 0 F'(5Ol) 02 + F"(5Ol) 03 F"(91) 04 + . . . .  (I.1) 
21 ~ 4[ ' 

rP0 
this is merely one of the many alternative forms of Taylor ' s  expansion, most convenient for our 

needs. T w o  simple particular cases (which will be needed later) may be noted: 

f cos 5ol 0 4 sin 9i  0 5. i ]  ~pl cos 50i 0 2 sin 5Ol 0 3 + + 
cos % - cos 9i  = sin 5o dso = sin 5oi 0 2 1 3 I ~ ~ ' 

~0 " " I (1.2) 
f cos 501 0 5" ~1 s i n  91  02 c o s  5ol 03 s i n  5ol 0, l + 

sin % - sin 500 = cos 9 d50 = cos 501 0 + ~ 3 ! 4 ! 
90 

Let us now consider the expansion of the function {cf. form. (18)}: 

f 11 T 1 (A1-Ao)  = T 1 ~i A' dso. (1.3) 
n"rl nT1 ~P0 

In this case {cf. form. (21, 12)}: 

F(So) = A' n~ [ n~l 1 = , F(501) = a l ' =  ( I . 4 )  
n sin250 + w cos 50 n sin250i + r~ cos 5oi 

and, differentiating this four times, while making use of (12) each time, and substituting 501 for 50, 

we obtain: 
F ' ( % )  = AI" = Z l 'a l ,  F"(501 ) = AI" = 2k'a2, F"(501) = 2k i*' = Zt'aa, etc. (I.5) 

where: 

2 sin 50i ( w -  n c o s  501) ") 
al -- N 

a 2 = ~ {w2(1 + 2 sin~50i) - wn cos 501(1 + 4 sin25oi) + n 2 sin2501(1 + 2 cos25ol)},  

2 sin 5ol {4w3(2+ sin291) _ w2n cos 501(17+ 12 sin~501) + 3wn2(4+ 3 sin~501- 4 sin4%) - 
a 3 - N ~  

- 4n 3 sin25oi cos 501(2 + cos25oi)}, 

{4w4(2 + 11 sin2501 + 2 sin4501) - w3n cos 5O1(17 + 143 sin25ol + 32 sin4501) + a4 

+ w2n2(12 + 194 sin25ol- 84 sin45ol-48 sin6%) - 

- wn  3 cos 501 sin2501( 120 + 37 sin2501 - 32 sin450~) + 4n 4 sin4501(2 + i 1 cos2501 + 2 cos4501)}, 

24 

(1.6) 



where ,  for  abbreviat ion:  

N = n sin291 + w cos 91 (I.7) 

{formulae (1.6) look repuls ively complicated,  bu t  the  final fo rmulae  will be seen to be m u c h  heater}. 

I n t roduc ing  (I.4) into (I.1), and using (I.5), we  obtain:  

riO( a,o  ) 
11= 1 -  0 + + . . . .  (I.8) 

Similarly,  we have:  

where  

xl  = T ~  f ~ l  ~' dg ,  (1.9) 
n'gl  ~o o 

, n ,  cos 9 1' cos 90, (I. 10) 
n sin"9 + w cos 9 

and hence,  af ter  different iat ing (I.10) several t imes:  

x l = ~ -  cos 9 1 -  
a 1 cos 9 1 -  sin 91 0 + 

2 6 
a 2 cos 91 - 2al  sin 91 - cos 91 02 _ 

a 3 cos 91 - 3a2 sin 91 - 3al cos 91 + sin 91 02 + . . . ]  
24 ] 

An exactly similar p rocedure  yields: 

(1.11) 

a., sin 91 + 2al  cos 91 - sin 91 02 TIO a 1 sin 91 + cos 91 0 + 
z 1 = - ~ -  s i n 9 1 -  2 6 

a 3 sin 91 + 3a2 cos 91 - 3al sin 9i  - cos 91 0 8 . .  
(1.12) 

24 "] " 

T h e  next  step is to f ind  the  expansion of 8 {cf. form.  (46)}, and this could be done by  u s ing  

(I.2, 8, 11, 12) and the ord inary  expansion for sin(91 - 9 0 ) .  However ,  the algebra involved is ra ther  

heavy,  and a more  convenien t  way is to present  8 in the easily der ived form:  

8 = T1 (~1 A ' { s i n ( 9 - % )  + s i n ( 9 1 - 9 )  _ s i n ( 9 1 - % ) }  d9 (1.13) 
n ~ l  d~o o 

and apply  (I.1) direct ly ~. I t  is easily found  that,  in this case: 

F(91) 
F"(91) 

= 0 ; F ' ( 9 1 )  = - ).1 ' C  ; f " ( 9 1 )  = - , ~ 1 ' ( 2 a l C  7}- S )  ; 

-2,1'{(3a2 - 1) C + 3a lS  } ; Fir(91) = - Al'{(4a~ - 4al) C + (6a 2 - 1)S) ; 

- Zl { ( 5 a ~ -  10a2 + 1) C + (10as - 5a l )S}  ; 

= - ,~x'{(6as- 20a 8 + 6al) C + (15a, - 15a 2 + 1)S}, 

(1.14) 

* It may be mentioned that the expression in curly brackets in (1.13) is easily shown to be always positive 
and, as A' is also positive, we have always 8 > 0. Also, the expression in curly brackets is 0 for 9 = % 
and 9 = 91, and has its only maximum 2sin  ½0(1-cos ½0) at 9 = ½(90+91). The  expression is therefore 
very small whenever the angle 0 is small, and thus is limited to very small values for highly tensioned Cables. 
This explains why 8 is so small in such cases. 
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where  
02 04 ) 

C =  1 - c o s 0  = ½0 z 1 - ~ + - 3 ~ . . . .  ' 

( 0o) 
S = s i n O =  0 1 - ~ - + ~ 0  . . . .  

@15)  

Subs t i tu t ing  into (I .1)  and  s impl i fying,  w e  obtain:  

T10411 al (3a,2 1.)02q____ - 
8 = 1 2 N  - ~ - 0 +  \ 2 0  

17a2 1)0 . } 
a 1 - a a 0 a + + 

)0  16-8 1680 566 "" 
(1.16) 

and,  d iv id ing (I .16) by  (I .8):  

3 0 a 
1 - 1 2 ( 1 - h 2 0 2 + h a O a - h 4 0 4 " " ) '  

where :  

(1.17) 

h 2 _ 4 + a ~ _  1 (3w 2 - w n c o s 5 0 1 + 3 n  2sin2%) 
60 3 0 N  2 

ha _ a a - axa 2 _ sin 5ol {6w a - 13w2n cos 5ol -[- g°n2( 10 --3 s in2~q)-  6n a cos 5O, sin25ox} (I.  18) 
120 6 0 N  a - 

h4 - 1 {12a4 + 2 1 a l ( a l a 2 _ a a ) _ ( 9 +  5a2+14a22)} = 
5040 . . . .  

( T h e  express ion  for  h a in t e r m s  of  w, n, % is prohib i t ive ly  long, b u t  it is ve ry  se ldom needed. )  T h e  

expans ion  (48) has thus  been  proved.  

T o  obta in  the  expans ions  of  the  comple te  longi tudinal  der ivat ives  (45), w e  need the  fo l lowing 

auxi l iary series, of  w h i c h  the  two  last ones are easily der ived  f r o m  (I.8, 11, 12): 

sin 91 COS 5Ol 02 sin 5Ol 0 a ) 
Tl(s in  % -  sin %)  = TlO c o s s o l + - ~ - - 0  6 -- 2 ~  " '"  ' 

T l (c°s  5o0-cos  5Ol) = TIO ( s in  5ol 
cos 5ol 0 

2 
sin 5Ol 02 + cos 9)1 0a 

6 - 2 g -  " " ' /  

z 1 - l 1 sin 9"0 = TIO ( c ° s  5ol a 1 cos 5Ol - 2 sin 5ol 02 
N \ 2  0 -  6 

+ 

+ a 2 cos 5Ol - -  3al  sin 5Ol - 3 cos % 0a. .  

24 "] ' 

TIO (s insol  a l  sin qq + 2 cos 5O 1 0 2 +  
/1 cos % - x  1 = ~ \ z O -  6 

+ - -  a 2 sin 5O~ + 3a 1 cos 5Ol - -  3 sin 5Ol 0 a 
24 " " ]  ' 

26 

(I .19)  



and hence, after some more  algebraic work,  and in t roduc ing  (I.16): 

12 N cos~501 + blO - c102 - d lOa . . .  -I 

;) X~ = 0-~ ~ [ 3 ~  0~ ~1 - a~ 0~ 
1 - - ~ 0 +  ~20 + - 3 ~ -  "'" 

12 N sin 91 cos 91 - b~O - c~O ~ + & 0 3 . . .  

& = ~ al 1 - ~ 0 + . . .  

12 N sin % cos 5ol - b~O - c 3 0 2  - d 3 0 3 . . .  

Z~ = 0~ al 
1 -  ~ - 0 + . . .  

12 N sin~% - b40 - c402 + d403 

1 -  ~- 0 + ' . . .  

where :  

2bl 

2b2 =, 2b3 

2b~ 

6c 1 

6c2 

6ca 

6c4 

24d 1 

24d2 

2 4 G  

= N sin 291 - w sin 91 cos2501 

= N cos 2501 + w sin291 cos 5ol 

= N sin 2501 + w sin3501 

= ½N(3 cos 2501- 1) + 2w sin291 cos 501 + hal  sin3% cos 5ol 

= ~-N sin 2501 - 2w sin 91 C0S291 + /'/al sin~91 

= ~-N sin 2501 + 2w sin391 - ( N  cos 91 + w sin291)al cos 501 

= - ½N(3 cos 291 + 1) = 2w sin291cos 91 - ( N  cos 91 + w sin291)al sin 9a 

= 2 N  sin 291 - 3w sin 91 cos291 + 3hal  sin4501 - ha2 sina501 cos 9~ 

= N(2  cos 2501- 1) + 3w sin291 cos 91 + 3nal  sina91 cos 5ol + na 2 sin491 

= - N(2  cos 2501+ 1) - 3w sin2501 cos 91 - 3 ( N  cos 9 1 + w  sin2501)al sin 501 + 

+ ( N  cos 91 + w sin291)a2 cos 91 

24d4 = 2 N  sin 2501 + 3w sin391 - 3 ( N  cos 91 + w sin2501)al cos 501 - 

- ( N  cos 501 + w sin2501)a~ sin 501. 

(I.2O) 

(i.21) 

Per fo rming  the  division in (1.20) up to the  t e rm in 0, we  obtain  the formulae  (50). Fu r the r  te rms  

become  very  complicated,  and the  formulae  (I.20) are more  convenient  if h igher  accuracy  is required.  

T h e y  will be f o u n d  part icular ly useful  in Append ix  I I I .  
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A P P E N D I X  II  

Power Expansions for Lateral Cable Derivative 

It is requi red  to expand (82), where  the denomina tor  is 

f91  N / n  m- d~o. 71 sin~9 + w cos go 90 

W e  use again the  general expansion (I.1), where :  

• /  n-r 

F(go) = n sin2go + w cos go 

and, differentiating twice, and making use of (12), we  obtain:  

sin go(w-n cos 9) 
F ' (9  ) = F(go) n sin2go + w cos go' 

F"(go) = F(go) 
wZ(1 + sin2go) - wn cos go(1 + 2  sin2go) + n ~ sin29(1 + cos2go) 

(n sin~9 + w cos go)2 

Subs t i tu t ing  in (I.1) and simplifying, we  get 

~1 -- ~o = F(91) l 1 - sin godW2N-n cos go1) 0 + 

wZ(1 + sin~gol) - wn cos go1(1 + 2 sin2gol) + n z sin2gol(1 + cos~gol 
+ 6 N  z 

and hence, f rom (82): 

Y v = - 0 -  1 +  
sin % ( w - n  cos  go1) 0 - 

2 N  

wZ(2 -  sin~%) - 2wn co8391 - -  n 2 sin2gol(1 + sin2gol) 09 . t 
12N2 "" t " 

T h e  expansion (83) has thus  been  proved,  wi th  one addit ional  term.  

l 
02" " " I 

(II .1)  

(11.2) 

(11.3) 

'(ii.4) 

(ii.5) 
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to 

A P P E N D I X  I I I  

Power Expansions for Characteristics of Longitudinal Oscillatory Modes 

It is required to expand (92) and (93), by using (I.20). The  transformation is rather lengthy, and only a few major steps will be 
indicated below: 

1 1 (3w sin 501-3alN-wa2 sin 501)03.. -12 N - ½w sin 5010 + ~ (N+alw sin 501)0 2 "-~ ~ 
, (III .1) 

Xx + Z. = -~ 1 al ( 332 ; ) 0 2  ~ al a303. 
- - ~ - 0 +  \ 2 0  + 30 "" 

l 
- N cos 250 1 - (N  sin 250 1 - ½w sin 501 COS 2501)0 + ] ½N cos 2501 + 

12 3 
z .  - x ~  = 0~ a~ 

l - ~ - 0 + . . .  

2w sin2501 cos 501 + - -  a a sin6 5°1 (2N cos 501 - w cos 2501) 1 02"" " 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . .  (111.2)  

12 N - ½w sin 5010 + 
x / { ( Z . - X ~ )  2 + 4 X . Z x }  = 

alw sin 501 0 2 + 

6 24 

a 1 1 - ~ - 0 + . . .  

w s i n  9~  - a ~ N  - wag s i n  50~ 03 . . .  

Adding (III.1) and (III.3), we obtain'. 

( 1  alw sin 501) (w sin 501 a I a2wsin(Pl)  0 3 12N 1 w sin 501 0 + + 0 2 
2 N  6-N- + \ 1 2 N  1 2  2 ~  "'" 

m ~ d  - 03 {3a2 02 + _ _  l al al -- aa 03. . .  
- ~ 0 + ~, 20  30  

Subtracting (111.3) from (III.1) leads to 

N 
mo)22 ~_ 

( w sin 501 ~ ) 0  
1 + 2 N  ' 

a 1 1 - ~ 0 . . .  

(III.3) 

(111.4) 

(111.5) 



and it is seen that  only two terms of the series have been obtained {as against four terms in (III.4)}. However,  we may make use of the 
relationship {cf. (91) and (47)}: 

(m~ol~)(mo~2 ~) = XxZ z - X~Z x - 
T1N 12N 2 

3 04 al [~ II-~0+ 1,20 15) 0~'"} 
It  is seen at a glance that  (111.4, 5) satisfy (III.6) up to the terms in 0. We may reverse the procedure  using 
obtain more terms of the expansion for (moJ~): o 

(111.6) 

o 
111.4) and (111.6) to 

N 1 (111.7) 
mc%~= 0 1 w s i n g ) 1 0 + ( 1  + ) + (  algo sin 9)1 02 w sin 9)1 a~ a2zv sin q~l~ 03.. 

2N -6N ~ 12 ~ / 

and, performing the division in (III .4) and (III.7), we get: 

12N I (~ gosin~l~ I 3 (1_a2)+ a12 alwsing)lt 02 ] )  
m~ol 2 -  0~ 1 +  2N ] 0 +  ~ 4 1 ~  } "'" 

2 ( [  wsing)lo (nSin29)l-zocos%)2+w~sine9)lo~ l 
me% ~ =  ~ 1 + -  2 ~  12N 2 "'" ' 

(HI.8) 

so that  (94, 95) have been proved, with additional terms. 
Final!y, int roducing (III .2,  3) into (93), we obtain: 

(~) _- tan~l 1 
( osin~ l ocos~lal( os~n~l) 102 1 -- cot 9)1 + 2 N  ] 0 + ~(cot~9)1- 1) + 3 ~  + 6 cot 9)1 + - - - ~  . . .  

1+ l~/tan~l cot~l~ °sin~ll2N 0 l0 ~cos~lT + altan~l~__ tl o cosN ~1)I 

go sin 9)1~ 1 gO sin29)~ 
1 +  tan 9)1 2 N  ] 0 -  ¼(1 - t an~9 ) l )+3Ncosg ) l  

(1~) = coti/o 1 - ~ 
I w sin 9)1 t 

1 + ½(tan 9)1-- cot 9)2) ~ -  1 0,,, 
and this leads directly to (96, 97). 

As to the expansions (98, 99), they are simply obtained by dividing (I.12) by (I.11), and vice versa. 

al z 

+ ~ ( tan 9)i t 
o sinN ~1)I 

/ 

2. . .  

2 . . .  

(111.9) 



APPENDI X IV 

Longitudinal Oscillatory Modes for a Captive Balloon with Damping but no Disturbance in Pitch 

Let us first re-consider the equations of motion with no damping (88). They may be conveniently 

re-written by eliminating the cable derivatives and introducing instead the frequencies 091, 09~ of the 

two undamped natural modes, and the slopes of their respective paths s 1 = (B/A)1, s~ = - (B/A)~. 

From (92), (93) we get: 

x +z. 
z,-x  

xo 
and hence, solving for the 

= m(0912 + 0922) ~ 

- -  : 3 1  - -  S 2 , 

XxZz - XzZx__ = m~091209 , } 

. Z ' x  = SlS  2 , x ,  
derivatives: 

320912 -}- S10922 S10912 + 320922 
X x = m  , Z z = m  

s 1 + s 2 s l  + s 2 '. 

Xz = m 0912- 09~ Z~ = msls 2 0912-09~2 
31 + 32 ' . S l  + S 2 

Substituting into (88) and dividing by m, we obtain: 

dS~ s~0912 + s1092 2 0912 - 09~, 
dt- ~ + ~ + - ~ = O, s 1 + s 2 s l  + s 2 - 

d ~  0912 _ 09 2 sl0912 + s209 ~ 
dt ~ + sls 2- ~ + .  ~ = O. 

s 1 + s 2 Sl  + s 2 

(IV.l) 

(IV.2) 

(IV.3) 

The  equations of motion, including aerodynamic damping forces acting on the balloon, may now be 
r 

written: 

dt 2 + 2jk + .  ~ + ~ = O, 
s I + s 2 s 1 + s~ (IV.4) 

0912 _ 092 + sl097 + s 09 2 ] 
sl ~ s2 \ dt ~ + 2k-di + sl + s2 ~ / = O, sis2 

where 2jk and 2k are the respective damping coefficients which, of course, are normally not eqt/al 

(the original dampingcoefficients have been divided by m, as all other coefficients). In the case of a 

spherical balloon, these coefficients are easily determined: 

c s pv j = 2 (IV.S) 
h = -  4m ' 

the damping in horizontal direction being twice that in the vertical one. For kite balloons we obtain: 

h = (a+ ½c )s pv cD 
2m , j = 2 CD + 2~' (IV.6) 

where a is the lift slope of balloon. The damping in vertical direction may now become much 
greater than in the horizontal one, and the value o f j  obviously depends on the balloon shape. 

The characteristic quartic equation of the system (IV.4) is: 

f(;~) = A 4 + B'A ~ + C'A 2 + D'A + E'  = 0, (IV.7) 
where 

B'  = 2 ( j +  1)k, C' = 091 ~ + 0922 + 4jk 2, ] 

(IV.8) 
O' = 2k (jsl + s~)°~12 + (sl +Js2)0922, E' = 09120922 . [ 

s 1 + s 2 ) 
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The  quartic may be factorised numerically in each particular case. If, however, k may be considered 

as small (as is often the case), we can factorise (IV.7) approximately, expanding the coefficients of 

quadratic factors into power series in k, and determining a few terms for each coefficient. Some 

ordinary algebra leads to the following factorisation: ~ 

f ( 1 )  = {1 ~ + ( 2 k A y - 8 k 3 c q )  1 + ~ot 2 ( 1 -  4k~p+ 16k4x~)} x 

x {A 2 + (2kd2+ 8k~. )  A + oJ28 (1 +4kSp - 16k~xs)} = 0,  (iV.9) 
where: 

& _ Sl ÷ j,~ & _ is1 + ,8 ( j _  1)8 hs2 t 
sl + s2 s 1 + s2 P - - ( q  + ss) 8 

' ' 401~ ~°8" ' : (IV.10) 
A~(918 - A1~% 8 ~ ( A s -  & )  - p8(98" ~ ( & _  & )  _ p8(97 

% = % = P Xl = X2 = • 
O918 - -  (9.088 ' (912 - -  0)22 ' (912 - -  0338 

T o  see how well this approximation works, let us consider the following numerical example (the 

units of dimensional quantities being unspecified): 

(91 = 5 ,  co~ = 1 ,  s 1 = 9 " 9 ,  s 8 = 0 " 1 ,  k = 0 " 5 ,  j = 2 .  

T h e  characteristic equation is: 

f (1)  = A 4 + 3 A  ~ + 2 8 t  8 + 5 0 . 7 6 1 + 2 5  = 0 

and, factorising it by means of (IV.9, 10) we get: 

A1 = 1 .01,  A2 = 1 .99,  p = 0.0004125, ~ = 0.0008377, 

X1 = 0. 0000342, X2 = 0.0000340, 
thus: 

f (1)  = (18 + 1. 00921+ 24. 9905)(I 8 + 1. 99081 + 1. 0004 ) = 0, 

and, as it happens, all decimal figures retained here are correct. This  example might apply to some 

spherical bal loon.  The  damping has left the high frequency practically unchanged, and this mode 

is not strongly damped. The  low frequency mode is almost critically damped. 

If  we now change the values of k a n d j  to: 

k = 2 ,  i = 0 .1 ,  

so as to make the example plausible in some case of kite balloon, the characteristic equation becomes: 

I a + 4 . 4 1  a + 2 7 . 6 1 8 + 1 4 . 8 6 4 t + 2 5  = 0, 
then 

A 1 = 0 .991 ,  A 8 = 0 .109 ,  p = 0.00033414, ~ = 0.000024142, 

X~ = - 0.000008918, X~ = - 0.000001003, 

and we obtain the factorisation: 

f(A) = ( t  8 + 3.96251 + 24. 8607)(I 8 + 0.43751 + 1. 0056) = 0, 

the correct values of coefficients being 3. 9624, 24. 8605, 0.4376, 1. 0056. 

It  may be mentioned that, if damping is present, the balloon trajectories in the two modes are 

no longer straight lines but  spirally converging curves (oblong and narrow if the damping is small). 
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T A B L E  1 

Numerical Values of Functions -r(~), ~(~o), a(~o) 

n/w=O.1; ~ = 5 . 6 5 5  ° n/w=0.2;~=10.901 ° 

( p o  i 

0 7.946 
1 7.948 
2 7.951 
3 7.957 
4 7.966 
5 7.977 

6 7.990 
7 8"006 
8 8.024 
9 8.045 

10 8.069 

11 8.093 
12 8.120 
13 8.150 
14 8.184 
15 8.226 

16 8.261 
17 8.304 
18 8.351 
19 8.400 
20 8.453 

21 8.505 
22 8.561 
23 8.621 
24 8.685 
25 8.759 

26 8.826 
27 8.903 
28 8.983 
29 9.068 
3 0  9.157 

31 9.247 
32 9.343 
33 9.445 
3 4  9.551 
35 9.663 

36 9-777 
37 9. 899 
38 10.026 
39 10.161 
40 i 10.302 

I 

41 10.446 
42 10-598 
43 10.759 
44 10.929 
45 11-108 

46 11.289 
47 11.482 
48 11.686 
49 11.904 
50 12.132 

51 12. 363 
52 12.610 
53 12. 874 
54 13.154 
55 13.451 

56 13.749 
57 14.072 
58 14.418 
59 14.790 
60 15. 185 

61 15,576 
62 16.006 
63 16.475 
64 16-982 

i 
65 117.527 

66 18-077 
67 18.683 
68 19.344 
69 20.060 
70 20.832 

71 21.617 
72 22.505 
73 23.495 
74 24.589 
75 25.785 

76 27.084 
77 28.379 
78 30.012 
79 31.868 
80 33.947 

81 36-250 
82 38.891 
83 41-946 
84 45.525 
85 49.771 

86 54-890 
87 61.183 
88 69.103 
89 79:376 
90 93.229 

0.000 
0-014 
0-027 
0.041 
0-055 
0-069 

0.083 
0-097 
0-111 
0.!26 
0.140 

0.154 
0.168 
0.183 
0-197 
0.212 

0-227 
0-242 
0-257 
0.272 
0-288 

0-303 
0-319 
0-334 
0-350 
0.367 

0-384 
0-401 
0-418 
0-436 
0-454 

0.471 
0-489 
0.508 
0.527 
0.546 

0.566 
0.587 
0.609 
0.631 
0.653 

0"674 
0'696 
0"719 
0"743 
0'768 

0.794 
0.822 
0.851 
0.880 
0.911 

0.937 
0-965 
0.996 
1.030 
1.066 

1.104 
1.145 
1.188 
1.234 
1.283 

1.312 
1.348 
1.392 
1.443 
1-501 

1.567 
1-641 
1.721 
1-809 
1.904 

1.954 
2.023 
2.111 
2.218 
2.345 

2.490 
2.654 
2.838 
3.040 
3.262 

3.492 
3.763 
4-063 
4.431 
4.841 

5.371 
5.959 
6.794 
7.877 
9.208 

0.000 3-213 
0.014 3.214 
0.027 3.215 
0-041 3-218 
0.055 3-221 
0.069 3-226 

0.083 3.231 
0.097 3-237 
0.111 3.245 
0.125 3-253 
0.139 3.263 

0.153 3.274 
0-167 3-285 
0.181 3-298 
0.195 3.311 
0.210 3-326 

0.224 3-340 
0.238 3-355 
0.253 3.372 
0.267 3-391 
0.282 3-412 

0.296 3-435 
0.311 3-459 
0.326 3-484 
0.341 3-511 
0.356 3.539 

0.371 3-567 
0.386 3.597 
0.401 3.628 
0.417 3-661 
0-432 3.696 

0.447 3-731 
0.463 3-769 
0.479 3.808 
0.495 3,850 
0.511 3.893 

0.527 3.938 
0.544 3.984 
0.561 4.034 
0.,577 4.085 
0.595 4.139 

0-611 4.194 
0.629 4.252 
0.646 4.313 
0.664 4.337 
0.682 4.445 

0.700 4.513 
0-719 4.585 
0.737 4.661 
0-757 4.741 
0.776 4-825 

0.795 4.910 
0.815 5-000 
0.834 5.096 
0.855 5.196 
0.876 5.302 

0.897 5.409 
0.919 5.523 
0.941 5.645 
0.964 5.773 
0.987 5.909 

1.009 6.046 
1-032 6.193 
1,056 6.350 
1.081 6.518 
1-106 6.697 

1.132 6.875 
1.159 7.069 
1-187 7-279 
1.215 7.506 
1.244 7-750 

1.273 8-002 
1.303 8.274 
1.334 8.563 
1.366 8.876 
1.398 9.212 

1.432 9.574 
1.467 9.964 
1-502 10.393 
1-539 10.854 
1.576 11.365 

1.615 11.922 
1.654 12.537 
1.694 13.218 
1.735 13.977 
1-776 14.828 

1-816 15.789 
1.857 16.882 
1-889 18.138 
1-912 19.594 
1 927 21.304 

n/w= 0.3; ~ =  15.482 ° n/w= 0.4; ~ =  19-330 ° n/w = 0.6; ~ =  25.097 ° n/w= 0.8; ~ =  28.997 ° 

i O.O00 
0.011 
0.022 
0.033 
0.045 
0.056 

0.067 
0.079 
0.090 
0.102 
0.113 

0.125 
0.136 
0.147 
0.159 
0.171 

0.183 
0.195 
0.207 
0.219 
0.232 

0.244 
0"256 
0'269 
0.282 
0"295 

0'308 
0"322 
0"336 
0.350 
0-364 

0.377 
0.392 
0.406 
0.420 
0.436 

0.452 
0.468 
0.484 
0.501 
0.518 

0-534 
0-551 

10-569 
i0 .587  

0.606 

0.626 
0.646 
0.667 
0.689 

!0.711 

0.731 
0.753 
0.776 
0.800 
0.826 

0.853 
0.881 
0.911 
0.943 
0.975 

1-001 
1-029 
1-061 
1-097 
1-135 

1.178 
1.223 
1.272 
1.325 
1.381 

1.429 
1.484 
1.547 
1.618 
1.686 

1-762 
1.842 
1-930 
2-026 
2.128 

2-241 
2- 366 
2" 502 
2" 656 
2- 824 

3- 020 
3.254 
3.490 
3. 786 
4. 123 

0.000 
0-011 
0-022 
0-033 
0-045 
0-056 

0-067 
0-079 
0-090 
0-101 
0-112 

0.124 
0-135 
0-146 
0.158 
0-169 

0.181 
0-192 
0.204 
0/215 
0-227 

0-239 
0.250 
0.262 
0.274 
0.286 

0.298 
0.310 
0.322 
0.334 
0-346 

0.358 
0.370 
0.383 
0.395 
0.408 

0.420 
0.433 
0.446 
0.459 
0.472 

0.485 
0.498 
0.511 
0.525 
0.538 

0-552 
0-566 
0-.580 
0-594 
0.608 

O. 622 
O. 637 
0.651 
O. 666 
0.681 

0.696 
0.711 
0.727 
0.742 
0.758 

0.774 
0.791 
0.807 
0.823 
0-840 

0-857 
0.874 
0-892 
0.909 
0.927 

0.945 
0.964 
0.982 
0.999 
1.018 

1.037 
1.056 
1-075 
1.094 
1.112 

1.131 
1.149 
1-167 
1.184 
1.201 

1.216 
1.229 
1- 240 
1- 247 
1-251 

1.846 
1.846 
1.847 
1.849 
1.851 
1-853 

1.856 
1.860 
1.864 
1-869 
1.874 

1.880 
1.887 
1.894 
1.902 
1.910 

1.919 
~.929 
1.939 
1-951 
1.962 

1.975 
1.988 
2.001 
2,.016 
2.031 

2.047 
2-064 
2-081 
2.100 
2-119 

2-139 
2-160 
2-182 
2.205 
2.229 

2-253 
2-279 
2-306 
2-334 
2.364 

2.394 
2.425 
2.458 
2.493 
2.529 

2.565 
2.604 
2.644 
2.686 
2.730 

2.775 
2.822 
2-872 
2.924 
2-~78 

3.033 
3.091 
3.153 
3.217 
3.285 

3.353 
3.426 
3.503 
3.585 
3.671 

3.757 
3.850 
3.949 
4.054 
4.165 

4-276 
4.397 
4.527 
4.667 
4-817 

4.970 
5-136 
5.315 
5.506 
5.709 

5-928 
6.165 
6.421 
6.699 
7.001 

7.333 
7.696 
8'098 
8:543 
9.040 

0.000 
0.010 
0.019 
0.029 
0.039 
0-048 

0-058 
0.068 
0-078 
0.088 
0.098 

0.108 
0.118 
0.128 
0.138 

'0.148 

0.158 
0-169 
0.179 
0.189 
0.199 

0.210 
0.221 
0.232 
0.243 
0.255 

0.266 
0.277 
0.288 
0.299 
0-310 

0.323 
0.336 
0.348 
0.361 
0.374 

0.387 
0.399 
0.412 
0.425 
0.438 

0.451 
0-465 
0.479 
0.494 
0-509 

0.525 
0.541 
0.558 
0.575 
0.593 

0.609 
0.627 
0,645 
0.664 
0.683 

0.704 
0.726 
0.748 
0.772 
0.796 

0-816 
0-839 

i0-863 
10-890 

0-918 

0.948 
0.980 
1.014 
1.049 
1.087 

1 . 1 1 9  
1.154 
1.193 
1.236 
1.282 

1.332 
1.385 
1.442 
1-502 
1.566 

1.632 
1.704 
1-781 
1-866 
1.957 

2.057 
2-165 
2-287 
2-422 
2-571 

0.000 1-279 
0-010 1.279 
0.019 1.280 
0.029 1.281 
0.039 1.282 
0-048 1.284 

0.058 1.286 
0.068 1-288 
0.077 1.291 
0-087 1.295 
0.097 1.298 

0.107 1.303 
0.116 1-307 
0.126 1.312 
0.136 1.317 
0.146 1.323 

0.156 1.329 
0.165 i.336 
0-175 1.343 
0-185 1.351 
0.195 1.359 

0.205 1.367 
0.215 1.376 
0-225 1.385 
0.235 1.395 
0-245 1.406 

0-255 1.417 
0-265 1.428 
0.275 1.440 
0.285 1.452 
0-295 1.465 

0.306 1-479 
0.316 1-493 
0.327 1.507 
0.337 1-523 
0.348 1.539 

0.358 1-555 
0.368 1-572 
0.379 1-590 
0.389 1.609 
0.400 1-628 

0.411 1.648 
0.421 1.669 
0.432 1.690 
0.443 1.713 
0.454 1.736 

0.465 1.760 
0.476 1.785 
0.487 1.810 
0.498 1.837 
0.509 1.865 

0-520 1.894 
0-532 1.924 
0.544 1.955 
0.555 1.988 
0.567 2.022 

0..578 2.056 
0.590 2.093 
0.601 2.131 
0.613 2.170 
0.624 2.211 

0.636 2.253 
0.649 2.297 
0.661 2.344 
0.673 2.393 
0.685 2.443 

0-697 2.495 
0-709 2.549 
0.721 2.607 
0-733 2.668 
0.746 2.731 

0.757 2.796 
0.769 2.864 
0.781 2.937 
0.793 3-014 
0.805 3.096 

0.817 3-181 
0.829 3.271 
0.841 3-364 
0.853 3-465 
0.865 3-572 

0.876 3-684 
0.887 3-804 
0.897 3-932 
0.907 4-068 
0.915 4.215 

0.923 4.371 
0.930 4.540 
0.935 4.723 
0.938 4.920 
0.939 5.135 

0.000 
0.009 
0.018 
0.027 
0.036 
0-045 

0.054 
0.063 
0.072 
0-081 
0-090 

0-099 
0.108 
0.118 
0-127 
0.136 

0-146 
0.155 
0-164 
0.174 
0-183 

0-193 
0.203 
0.213 
0.223 
0.233 

0.243 
0.253 
0.264 
0.274 
0.284 

0.295 
0.306 
0.318 
0.329 
0.340 

0.352 
0.363 
0.374 
0.386 
0.397 

0.410 
0-424 
0.437 
0-451 
0.464 

0-477 
0-491 
0-504 
0-518 
0.531 

0.000 0.848 
0-009 0.848 
0-018 0.849 
0.027 0.849 
0.036 0.850 
0.045 0-851 

0.054 0-853 
0.063 0-854 
0.072 0.856 
0.080 0.859 
0.089 0.861 

0.098 0.864 
0.107 0.867 
0.116 0.870 
0.125 0.874 
0.134 0.877 

0.143 0.881 
0.152 0.886 
0.161 0.890 
0.170 0.895 
0.179 0.900 

0-188 0-906 
0.198 0-912 
0-207 0.918 
0.216 0.924 
0-225 0.931 

0-234 0.937 
0-243 0.945 
0-252 0.952 
0-261 0.960 
0-270 0.968 

0-280 0.977 
0-289 0.986 
0.298 0.996 
0-307 1.005 
0-317 1.015 

0-326 1.025 
0.335 1.035 
0.344 1.046 
0.354 1-057 
0.363 1.068 

0.372 1-080 
0.382 1.093 
0.391 1.106 
0.401 1-119 
0.410 1.133 

0.420 1.147 
0.429 1-161 
0.439 1.176 
0.448 1.192 
0.457 1.208 

0.545 0.467 1.224 
0.560 0.477 1.241 
0.575 0.486 1.259 
0.591 0-496 1.277 
0.608 0.505 1.296 

0.625 0.515 1.315 
0.643 0.525 1.335 
0 .661  0.534 1.355 
0.680 0.544 1-376 
0.700 0.553 1.398 

0.717 0.563 1-421 
0.736 0.573 1.444 
0.756 0.582 1-468 
0.777 0.592 1.493 
0.800 0.601 1.519 

0-823 0.611 1.546 
0.848 0.620 1.573 
0.874 0.630 1.602 
0.901 0-640 1.632 
0.929 0.649 1.663 

0.955 0-658 1.694 
0.982 0.667 1.727 
1.012 0.675 1.761 
1.044 0.684 1.797 
1.077 0-693 1.835 

1.113 0-702 1.873 
1.151 0-710 1.913 
1.191 0.719 1.955 
1.233 0.728 1.999 
1.277 0.737 2.044 

1.322 0.744 2.090 
1.371 0.751 2-141 
1-422 0.758 2-t93 
1.478 0.764 2-248 
1.536 0.770 2-305 

1-599 0.775 2-366 
1.666 0.779 2.429 
1-740 0.782 -2.496 
1-820 0.784 2-566 
1-905 0.785 2-641 

0-000 
0.009 
0.018 
0-027 
0.036 
0.045 

0.054 
0.062 
0.071 
0-080 
0.089 

0.098 
0.107 
0.117 
0.126 
0:135 

0.144 
0.153 
0.162 
0-171 
0.181 

0-190 
0-200 
0-209 
0-219 
0.229 

0-238 
0-248 
0-258 
0-267 
0-277 

0.287 
0.298 
0"308 
0.319 
0.329 

0.340 
0.350 
0.361 
0.371 
0.382 

0.393 
0-405 
0.417 
0.429 
0.441 

0.452 
0.464 
0.476 
0.488 
0.500 

0.512 
0.525 
0.538 
0.551 
0.565 

0.579 
0.594 
0.608 
0.624 
0.639 

0.654 
0.669 
0.685 
0.702 
0.719 

0.737 
0.755 
0-774 
0.794 
0-814 

0.833 
0-854 
0.875 
0.897 
0.920 

0.944 
0.970 
0.996 
1.023 
1.051 

1.080 
1.110 
1.141 
1.175 
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